Distributed Synthesis
for Alternating-Time Logics*

Sven Schewe and Bernd Finkbeiner

Universitat des Saarlandes, 66123 Saarbriicken, Germany

Abstract. We generalize the distributed synthesis problem to the set-
ting of alternating-time temporal logics. Alternating-time logics spec-
ify the game-like interaction between processes in a distributed system,
which may cooperate on some objectives and compete on others. Our
synthesis algorithm works for hierarchical architectures (in any two pro-
cesses there is one that can see all inputs of the other process) and
specifications in the temporal logics ATL, ATL*, and the alternating-
time p-calculus. Given an architecture and a specification, the algorithm
constructs a distributed system that is guaranteed to satisfy the speci-
fication. We show that the synthesis problem for non-hierarchical archi-
tectures is undecidable, even for CTL specifications. Our algorithm is
therefore a comprehensive solution for the entire range of specification
languages from CTL to the alternating-time p-calculus.

1 Introduction

Program synthesis, which automatically transforms a specification into a correct
implementation, has been an active field of research since Church’s solvability
problem [1] in the early sixties. For a given sequential specification over two
sets I, O of boolean input and output variables, Church’s problem is to find an
implementation f : (27)¥ — (29)“ such that (i, f(i)) satisfies the specification
for all possible input sequences i € (2/)“. Church’s problem has been intensively
studied in the setting of temporal logics [2-6].

More recently, Church’s problem has been extended to distributed sys-
tems [7-9], where the implementation consists of several independent processes
which must choose their actions based on generally incomplete information about
the system state. In game-theoretic terms, this type of synthesis solves a multi-
player game, where all players belong to the same team (when synthesizing closed
systems), or where the system processes belong to one team and the external
environment belongs to the other team (when synthesizing open systems).

However, in many distributed systems the processes do not consistently be-
long to one team, but rather form different coalitions for different objectives.
In security protocols [10-12], for example, process Alice may have to deal not

* This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

o ° °) {0,0 o}
I\ N N TN AN /N Y N

5 o {3} {o} {o}{03}
(a) inconsistent strategy (b) consistent strategy (c) choice-set tree

Fig. 1. Figure la shows an inconsistent nondeterministic strategy: on the leftmost
branch (with input i-) the process always reacts with output @, while on the rightmost
branch, with identical input 4 - 7, it reacts with output o. Figure 1b shows a consistent
nondeterministic strategy. Figure 1c shows the choice-set representation of this strategy.

only with a hostile environment (which drops her messages from the network),
but also with the dishonest process Bob, who cooperates with Alice on some
objectives (like transferring money from Alice to Bob), but not on others (like
delivering merchandise from Bob to Alice). Such systems can be specified with
alternating-time logics, like the alternating-time p-calculus (AMC) [13], which
contain modalities expressing that a process or a coalition of processes has a
strategy to accomplish a goal.

In this paper, we solve the synthesis problem for alternating-time logics. For
this purpose, we generalize Church’s notion of an implementation as a determin-
istic strategy or function f : (21)Y — (20)“ to nondeterministic strategies or
relations v C (27)* x (29)«, which allow for multiple possible outcomes due to
choices made by the process.

Church’s representation facilitates the development of automata-theoretic
synthesis algorithms, because deterministic strategies can be represented as trees
that branch according to the possible inputs. Each node carries a label that
indicates the output of the process after seeing the input defined by the path
to the node. Sets of such trees can be represented as tree automata, and can
therefore be manipulated by standard tree automata operations.

Along the same lines, nondeterministic strategies can be unterstood as trees
that branch not only according to inputs but also to the choices of the process.
However, in this representation, sets of implementations can no longer be repre-
sented by tree automata, because tree automata cannot ensure that the choices
available to the process are consistent with its observations: a strategy tree is
consistent if every pair of nodes that are reached on paths labeled by the same
input allows the same set of choices (for each input). For example, Figure la
shows an inconsistent strategy tree, while the strategy tree in Figure 1b is con-
sistent. Unfortunately, the consistent trees do not form a regular language, and
can therefore not in general be recognized by tree automata.

We solve this problem with a new encoding of nondeterministic strategies as
trees where each node is labeled by the set of possible choices. Figure 1c shows
the representation of the consistent strategy of Figure 1b as such a choice-set
tree. Choice-set trees always represent consistent strategies and every consistent

(b) Two-way chain
b
Q==
v Y

(¢) Two-way chain
with white-box process

~(

(e) 5-process two-way ring

Fig. 2. Distributed architectures

strategy can be represented as a choice-set tree (modulo bisimilarity). Using the
choice-set representation, we define an automata-theoretic synthesis algorithm
which solves the distributed synthesis problem for all hierarchical architectures.
Let the system architecture be given as a directed graph, where the nodes repre-
sent processes, including the environment as a special process. The edges of the
graph are labeled by system variables, which represent the communication of
choices: the source process chooses the value and the target process is informed
about the choice. The same variable may occur on multiple outgoing edges of a
single node, allowing for the broadcast of information. Among the set of system
processes, we distinguish two types: a process is black-box if its implementation
is unknown and needs to be discovered by the synthesis algorithm. A process
is white-box if the implementation is already known and fixed. Figure 2 shows
several example architectures, depicting the environment as a circle, black-box
processes as filled rectangles, and white-box processes as empty rectangles. We
call an architecture hierarchical if in each pair of black-box processes, there is
one process whose set of input variables is a subset of the set of input variables
of the other process.

We show that the distributed synthesis problem for alternating-time logics is
decidable if and only if the architecture is hierarchical. This is in contrast to our
recent result that the distributed synthesis problem for linear and branching-
time logics is decidable if and only if the informedness relation of the processes
is fork-free, i.e., the processes can be completely ordered with respect to their
relative informedness [9]. The class of architectures for which the distributed
synthesis problem is decidable for alternating-time logics thus forms a strict

subset of the class of architectures for which the problem is decidable for linear
and branching-time logics.

For example, the pipeline architecture [7] of Figure 2a is fork-free but not
hierarchical: each of the three system processes ps, p3, and p4 has a unique input
variable. The two-way chain [8] of Figure 2b is also fork-free and not hierarchical
(process po has input {a,b,c} and process ps has input {b,c,d}), but becomes
hierarchical if process ps is made white-box (process p4 has input {¢, d}, which
is contained in the input of p3), as shown in Figure 2c. Figure 2d and Figure 2e
show two ring architectures: The 3-process ring of Figure 2d is both fork-free
and hierarchical, while the 5-process ring of Figure 2e satisfies neither criterion.

Related Work. Synthesis algorithms for linear and branching-time logics
exploit the finite-model property of these logics: a formula ¢ is satisfiable iff it
has a finite model [3,2]. Our construction builds on the recent result that the
finite-model property extends to alternating-time logics [14, 15].

The first results for the synthesis of distributed systems from temporal for-
mulas are due to Pnueli and Rosner: in their landmark paper [7] they provide a
synthesis algorithm for LTL in pipeline architectures and demonstrate the exis-
tence of undecidable architectures. An automata-based synthesis algorithm for
pipeline and ring architectures and CTL* specifications is due to Kupferman
and Vardi [8]. We recently generalized the automata-based construction to all
architectures without information forks [9].

2 The Synthesis Problem

In this paper, we solve the distributed synthesis problem for the alternating-
time p-calculus. Given an AMC formula ¢ and a system architecture, we decide
if there exists a distributed implementation that satisfies .

2.1 Concurrent Game Structures

In a distributed system where all processes cooperate, we can assume that the
behavior of every process is fixed a priori: in each state, the next transition
follows a deterministic strategy. If we allow for non-cooperating behavior, we
can no longer assume a deterministic choice. Instead, we fix the set of possible
decisions and the effect each decision has on the state of the system. At each
point in a computation, the processes choose a decision from the given set and
the system continues in the successor state determined by that choice. For two
sets of sets X and Y, let X®Y = {zUy | € X,y € Y} denote the set consisting
of the unions of their elements. A concurrent game structure (CGS) is a tuple
G=(A,11,8, 50,1, {aa }aca, A, 7), where

— A =Ny is a finite set of k different processes,
— II is a finite set of atomic propositions,
— S is a set of states, with a designated initial state sg € .5,

—1:8 — 27 is a labeling function that decorates each state with a subset of
the atomic propositions, and

— g defines, for each process a € A, a set of possible decisions.

- A: S — @,ca(2% ~ {0}) maps each state s € S to a vector of possible
decisions for the processes. For A : s +— @, 4 Da, Aar(s) denotes the
projection of the set @, 4 D, of possible common decisions to the possible
decisions @, 4 Da of a subset A" C A of the processes.

— Let © = [J,cg A(s) denote the set of all vectors of possible decisions. Then
T:8x®D — Sis a (partial) transition function that maps a state s and
a vector d of possible decisions for the processes to a successor state. The
partial function 7 is defined on (s,d) € S x D iff d € A(s).

Architectures. In a distributed system, it is not generally the case that ev-
ery process is informed about the decisions of all other processes. The system
architecture fixes a set of output variables for each process such that every de-
cision corresponds to a certain value of the output variables. An output vari-
able can be an input variable to another process, indicating that the value
of the variable is communicated to that process. An architecture is a tuple

A= (A7 Bu Ha {Ia}aeAa {Oa}aEA) with

— a set A of processes, which is partitioned into a set B C A of black-box
processes, whose implementations we wish to synthesize, and a set W =
A~ B of white-box processes, which have known and fixed implementations,

— a set IT of system variables or atomic propositions,

— a family {I,}sca of sets of input variables, such that I, C IT denotes the
variables visible to agent a, and

— a family {O4}aca of non-empty sets of output variables that disintegrates
the set IT of system variables.

An architecture is called hierarchical if the informedness relation
<= {(b,b/) € B x B|Ib - Ib/} is linear.

Implementations. An implementation defines for each position of a com-
putation a subset of the output values as the set of possible decisions avail-
able to a process. The set of possible decisions must be consistent with the
knowledge of the process: an implementation of a process a € A is a function
po : (21e)" — 227 {0} = O,, which assigns a choice-set of possible output
values to each history of input values. Occasionally, we consider implementa-
tions that have access to a superset I of their input variables. We call a function
pa i (21)* — O, with I, C I a relazed implementation of a with input I.

We identify process implementations with trees. As usual, an T'-tree is a prefix
closed subset Y C T of finite words over a predefined set 7" of directions. For
given sets X and 7', a X-labeled T-tree is a pair (Y, 1), consisting of a tree Y C T*
and a labeling function [: Y — X that maps every node of Y to a letter of X .
If T and X are not important or clear from the context, (Y,1) is called a tree. If
Y # 0 is non-empty and, for each y € Y, some successor y -v (v € 7) of y is in
Y, then Y and (Y, 1) are called total. If Y =1, Y and (Y,[) are called full.

A distributed implementation is a set P = {p,}aca of process implementa-
tions, one for each process a in the architecture. A distributed implementation P
defines the concurrent game structure Gp = (A, I1, S, s0, 1, {tq }aca, A, 7) where

— S = (2)* is the full 27 tree, with its root so = ¢ as initial state,

— each state is labeled with its direction I(s- o) = o (with I(s¢) = 0),

— Qg = 20(17

— A(8) = B,ecaPa(8a), where s, = I1 1213 ... I, is the local view of process a
on s = V1V V3...V, such that I, =V,,, N1, for all m < n,

— 7(s,d) =s-d.

2.2 Alternating-Time p-Calculus

The alternating-time p-calculus (AMC) extends the classical p-calculus with
modal operators which express that an agent or a coalition of agents has a
strategy to accomplish a goal. AMC formulas are interpreted over concurrent
game structures.

AMC Syntax. The classical p-calculus contains two modalities, expressing that
a property ¢ holds in some () or in all () successor states. In AMC!, the
operators are generalized to (04, expressing that a set A’ C A of agents can
enforce that ¢ holds in the successor state, and <) 4/, expressing that it cannot
be enforced against the agents A’ that ¢ is violated in the successor state.

Let P and B denote disjoint finite sets of atomic propositions and bound
variables, respectively. Then

true and false are AMC formulas.

p and —p are AMC formulas for all p € P.

x is an AMC formula for all x € B.

If ¢ and ¢ are AMC formulas then ¢ A 9 and ¢ V 1) are AMC formulas.

If ¢ is an AMC formula and A’ C A then O 4/ and < 4 are AMC formulas.
— If x € B and ¢ is an AMC formula where = occurs only free then pz.¢ and
vz.p are AMC formulas.

AMC Semantics. An AMC formula ¢ with atomic propositions IT is inter-
preted over a CGS G = (A, 11, S, so, 1, {ca }aca, A, 7). ||¢llg € S denotes the set
of nodes where ¢ holds. A CGS G = (A, I1, S, so, 1, {aa}aca, A,7) is a model of
a specification ¢ with atomic propositions IT iff sg € [|¢||g, and a distributed
implementation P satisfies an AMC specification ¢ iff Gp is a model of .

! The original definition of alternating-time logics under incomplete information by
Alur et al. [13] syntactically restricts the specifications such that the objectives of
each process only refer to the atomic propositions that are visible to the process. This
restriction ensures that the processes can state their respective strategies, while we
only require that they can cooperate to accomplish their goals. For the specifications
allowed in [13], the semantics coincide.

— Atomic propositions are interpreted as follows: ||truel|g = S, ||false||g = 0,
Ipllg = {s € S|p e l(s)}, and [[-pllg = {s € S[p & I(s)}.

— As usual, conjunction and disjunction are interpreted as intersection and
union, respectively: [[o Allg = [lellg NlYllg and [l Vibllg = [lellg Ullllg-

— A node s € S is in ||[Hargp|g if the agents A’ can make a joint decision
v € Ay (s) such that, for all counter decisions v/ € Aga/(s), ¢ holds in
the successor state.

[Hapllg ={s € S[Fv e Au(s). Vo' € Aua(s).7(s, (v,V)) € [ollg}

— A node s € S is in [[Qarp|g if for all joint decisions v € Aga/(s) of the
agents not in A’, the agents in A’ have a counter decision v/ € A/ (s) that
ensures that ¢ holds in the successor state.

[Carpllg ={s € S[Vv' € Ausa(s).Tv € Au(s).7(s, (v,0")) € ll¢llg}-
The modal operators [0 and <} of the classical u-calculus are equivalent to
the modal operators [y and < 4, respectively.

— Let G+ = (A II U {z},8,50,15°,{0a}aca, A, 7) denote, for G =
(A, I1, S, so, |, {aa aca, A, 7) and = ¢ II, the adapted CGS with the labeling
function 15+ : § — 27Y{#} which is defined by

o [J2(s)NII =(s) and

e rcl(s)eseS, CS.
Since, for AMC formulas A\z.p, « occurs only positive in ¢, [|¢||gs. is mono-
tone in S, and the following least and greatest fixed points are well-defined:

[uz-pllg= {525 | [¢llgs: €Sz}, and [[vz.pllg=U{SzCS | [|¢llgs- 25z }-

2.3 Realizability and Synthesis

We call an AMC formula ¢ realizable in a given architecture A =
(A, B, II,{I,}aca,{Outaca) and for a given set Py = {pw}wew of imple-
mentations for the white-box processes if there exists a set of implementations
Pp = {pp}vep for the black-box processes, such that the CGS defined by the
distributed implementation P = Py U Pp satisfies . A is called decidable if
realizability can be decided for all formulas ¢ and implementations Py of the
white-box processes.

In the following section, we present a synthesis algorithm, which determines
if a specification is realizable. If the specification is realizable, the synthesis
algorithm computes an implementation.

3 The Synthesis Algorithm

In this section, we present a synthesis algorithm for hierarchical architectures.
The construction is based on automata over infinite trees and game structures.

3.1 Preliminaries: Automata over Infinite Objects

Automata over Infinite Trees. An alternating parity tree automaton is a
tuple A = (¥, @, qo, 9, @), where X' is a finite set of labels, @ is a finite set of

states, go € @ is a designated initial state, J is a transition function, and o : Q —
C C N is a coloring function. The transition function 6 : @ x X' — BT(Q x T)
maps a state and an input letter to a positive boolean combination of states and
directions.

The automaton runs on full X-labeled T-trees. A run tree (R, r) on a given
full X-labeled Y-tree (T*,1) is a Q x T™*-labeled tree where the root is labeled
with (go,) and where, for each node n with label (¢q,y) and with the set L =
{r(n-p)|n-p € R} of labels of its successors, the following condition holds: the
set {(¢',v) € Q@ xT | (¢,y-v) € L} satisfies §(q, 1(y)).

An infinite path fulfills the parity condition, if the highest color of the states
appearing infinitely often on the path is even. A run tree is accepting if all infinite
paths fulfill the parity condition. A total X-labeled 7-tree is accepted if it has
an accepting run tree.

The set of trees accepted by an alternating automaton A is called its language
L(A). An automaton is empty if its language is empty.

The acceptance of a tree can also be viewed as the outcome of a game, where
player accept chooses, for a pair (g, o) € Qx X, a set of atoms of §(q, o), satisfying
4(g,0), and player reject chooses one of these atoms, which is executed. The input
tree is accepted iff player accept has a strategy enforcing a path that fulfills the
parity condition. One of the players has a memoryless winning strategy, i.e.,
a strategy where the moves only depend on the state of the automaton, the
position in the tree and, for player reject, on the choice of player accept in the
same move.

In a nondeterministic tree automaton, the image of § consists only of such
formulae that, when rewritten in disjunctive normal form, contain exactly one
element of @ x{v} for all v € T in every disjunct. For nondeterministic automata,
every node of a run tree corresponds to a node in the input tree. Emptiness can
therefore be checked with an emptiness game, where player accept also chooses
the letter of the input alphabet. A nondeterministic automaton is empty iff the
emptiness game is won by reject.

Automata over Concurrent Game Structures. Generalizing symmetric
automata [16], automata over concurrent game structures [15] contain universal
atoms (O, A"), which refer to all successor states for some decision of the agents
in A’, and ezistential atoms ({, A’), which refer to some successor state for each
decision of the agents not in A’.

An automaton over concurrent games structures (ACG) is a tuple A =
(2,Q,qo0,96,a), where X, Q, qo, and « are defined as for alternating parity
automata in the previous paragraph. The transition function § : Q x X —
BT(Q x ({,0} x 24)) now maps a state and an input letter to a positive
boolean combination of two types of atoms: (¢,[d, A’) is a universal atom, and
(g, <, A”) is an existential atom.

A run tree (R,r) on a given CGS G = (A, 11, S, so, !, {ag }aca, A4,7) is a
@ xS-labeled tree where the root is labeled with (go, o) and where, for a node
n with label (g, s) and a set L = {r(n - p)|n-p € R} of labels of its successors,

the following property holds: there is a set A C Q x ({0, {} x 24) of atoms
satisfying d(q,1(s)) such that

— for all universal atoms (¢’,J, A’) in A, there exists a decision v € Aa/(s)
of the agents in A’ such that, for all counter decisions v € Ag_a/(s),
(¢, 7(s,(v,v"))) € L, and

— for all existential atoms (¢’, {, A’) in 2 and all decisions v/ € A a/(s) of
the agents not in A’, there exists a counter decision v € A4/ (s) such that

(¢',7(s, (v,0"))) € L.

As before, a run tree is accepting iff all paths satisfy the parity condition, and a
CGS is accepted iff there exists an accepting run tree.

3.2 Realizability in 1-Black-Box Architectures

We first consider the realizability problem for architectures with a single black-
box process. Given such an architecture A = (A, {b}, I, {1, }aca, {Oa}aca), an
AMC specification ¢ and a set Py = {pw}wew of implementations for the
white-box processes, the following algorithm constructs a nondeterministic au-
tomaton £, which accepts an implementation p; of the black-box process b iff the
distributed implementation P = Py U {pp} defines a concurrent game structure
that is a model of . Realizability can then be checked by solving the emptiness
game for €. For convenience, we use V = @, 4 O, in the following constructions.
The synthesis algorithm uses the following automata operations:

— From specification to automata. First, a specification ¢ is turned into
an ACG A that accepts exactly the models of ¢ (Theorem 1).

— From models to implementations. We then transform A4 into an alter-
nating tree automaton B that accepts a relaxed implementation with input
IT iff it defines a model of ¢ (Lemmata 1 and 2).

— Adjusting for white-box processes. In a third step, we construct an al-
ternating automaton C that accepts an Op-labeled 2/-tree iff the V-labeled
27 _tree obtained by adding the decisions of the white-box processes is ac-
cepted by B (Lemma 3).

— Incomplete information. We then transform C into an alternating au-
tomaton D that accepts an Op-labeled 20-tree iff its suitable widening is
accepted by C (Lemma 4). In the last step, we construct a nondeterministic
tree automaton £ with £(£) = £(D) (Lemma 5).

From Specifications to Automata. AMC formulas can be transformed to
equivalent automata over concurrent game structures.

Theorem 1. [15] Given an alternating-time p-calculus specification ¢ with n
subformulas, we can construct an ACG A with O(n?) states and O(n) colors,
which accepts exactly the models of ¢.

From Models to Implementations. The transformation of A into an al-
ternating tree automaton that accepts a relaxed implementation iff it defines a
model of ¢ consists of two steps: We first restrict for each process a the set of
possible decisions to the fixed set O, (Lemma 1) and then ensure that the label
of each node reflects the preceeding decisions of the processes (Lemma 2).

Lemma 1. For ACG A = (27,Q,qo,0,«) and an architecture A =
(A, B, II,{Is}aca,{Oataca) we can construct an alternating automaton A" =
27 x V,Q,q0,0',) that accepts a tree ((27)*,1 x DocaPa) iff the concur-
rent game structure G = (A, II, S, 50,1, {0t }aca, A, T) with A = @ ,c 4 pa and
7:(s,d) — s-d is accepted by A.

Proof. Since the potential decisions of the processes are determined by the (re-
laxed) implementation, the universal and existential atoms can be resolved by
boolean combinations of concrete directions.

We obtain ¢'(q, (V,@,c 4 Oa)) by resolving the ¥3 and 3V semantics of uni-
versal and existential atoms in (g, V') in the following way:

— Each occurrence of (¢, (4,0)) in 6(¢q,V) is replaced Dby
/ /
v@aeA/ 0.€@ucar Oa /\EBaEA\A/ 04€@acaar Oa (q ’U‘IEA Oa)-
The outer disjunction refers to the fact that the agents in A’ first choose
a direction in accordance with the enabled directions in the current state.
The inner conjunction refers to the counter choice made by the agents in
ANA.
— Likewise, each occurrence of (¢’,(A4’,<¢)) in d(¢,V) is replaced by
/ /
/\@aeA\A’ 0.€D,caarOa v@aeA’ 0,€@.car Oa (q ’U‘IEA Oa)' O

Let (Y*, dir) denote the Y-labled 1-tree with dir(y-v) = v for all y € T*
and v € 7, and dir(e) = vy for some predefined vy € 7.

Lemma 2. [17] Given an alternating automaton A" = (T x X, Q, qo, 0,) over
T x X-labeled T -trees, we can construct an alternating automaton B = (X, Q x
Y, qp,d,) over X-labeled T'-trees such that B accepts a tree (Y*,1) iff A" accepts
(r*, dir x 1). O

Adjusting for White-box Processes. In this step, we eliminate the trees
that are inconsistent with the decisions of the white-box processes. These deci-
sions are represented by the @, oy, O fraction of the label. We assume that
the implementations {p, }wew of the white-box processes are represented as a
deterministic Moore machine with output alphabet @, .y Ow. We construct
an automaton that simulates the behavior of this Moore machine, replacing the
@D, cw Ow fraction of the label with the output of the Moore machine. The state
space of this automaton is linear in the state space of the original automaton
and in the state space of the Moore machine, while the set of colors remains
unchanged.

10

Lemma 3. [18] Given an alternating automaton B = (X x Z,Q, qo, d,) over
2 x Z-labeled T -trees and a deterministic Moore machine O with set O of states
and initial state og € O that produces a Z-labeled T-tree (T*,1), we can construct
an alternating automaton C = (X,Q x O, (qo,00),d’, ') over X-labeled T-trees,
such that C accepts (Y*,I') iff B accepts (X*,I") with 1" 1y — (I'(y),1(y)).

If B is a nondeterministic automaton, so is C. ad

Incomplete Information. The output of the black-box process b may only
depend on the input I, visible to b. For a set = x 7" of directions and a node
x € (E x1)*, hider(z) denotes the node in =* obtained from z by replacing
(&,v) by & in each letter of z. For a X-labeled Z-tree (=*,1) we define the 7-
widening of (£* 1), denoted by wideny({=*,1)), as the X-labeled = x T -tree

(2 x 1), 1) with I'(z) = I(hider(z)).

Lemma 4. [17] Given an alternating automaton C = (X, Q,qo,0,«) over
X -labeled = x T-trees, we can construct an alternating automaton D =
(X,Q,q0,8,a) over X-labeled =-trees, such that D accepts (£*,1) iff C accepts
wideny ((£%,1)). O

The resulting alternating automaton can be transformed into an equivalent
nondeterministic automaton.

Lemma 5. [9, 19] Given an alternating automaton D with n states and ¢ colors,
we can construct an equivalent nondeterministic automaton € with n®(™ states
and O(c -n) colors. O

3.3 Realizability in Hierarchical Architectures

For a hierarchical architecture A = (A, B, IT,{I,}aca,{Oa}aca), the linear in-
formedness relation < = {(b,0’) € B x B|I, C Iy} partitions the black-box
processes B into equivalence classes and defines an order on them. If < defines
n different equivalence classes, we say that A has n levels of informedness. We
define an ordering function o : N,, — 28, which maps each natural number
i € Ny, to the set of i-th best informed black-box processes. For convenience, we
use O; = @beo({i 1) Op and I; = I, for b € o(i).

The Algorithm. We start by applying the transformations discussed in the
previous subsection (Theorem 1 and Lemmata 1 through 3) to construct a tree
automaton Cy that accepts a set of relaxed implementations Py = {ps }secp (with
input I7T) iff P = Py U P, satisfies .

Then, we stepwise eliminate the processes in decreasing order of informed-
ness. We successively construct:

.....

— The alternating automaton D; that accepts a O;-labeled 2%i_tree iff its widen-
ing is accepted by C; 1 (Lemma 4).
A set P; = {p} | b € B;} of relaxed implementations with input I; for the
processes in B; = o({i,...,n}) is accepted by D; iff there is a set P; =
{Pi | b € B;} of implementations for the processes in B; = o(N;_1), such
that Py U P; U P; satisfies .

11

— The nondeterministic automaton & with £(&;) = £(D;) (Lemma 5); and
— The nondeterministic automaton C; that accepts an O;41-labeled I;-tree iff
it can be extended to an O;-labeled I;-tree accepted by C; (Lemma 6).

Narrowing and nondeterminization have been discussed in the previous section,
and language projection is a standard operation on nondeterministic automata.

Lemma 6. Given a nondeterministic automaton &€ = (X x =,Q, qo,0,) that
runs on X x Z-labeled T -trees, we can construct a nondeterministic automaton
C=(X,Q,q0,9,«a) that accepts a X-labeled T-tree (Y*,l5) iff there is a X x =-
labeled T-tree (Y*,lx x lz) accepted by & with (Y*,1) = proj s ((T*,1l=)).

Proof. C can be constructed by using ¢’ to guess the correct tree: we set ¢’ :

(4,0) = Veez (¢, (0,€))- 0

We check realizability by solving the emptiness game for &,,. This step can be
extended to the synthesis of implementations {p, }sc g of the black-box processes.

3.4 Synthesis

The specification is realizable iff player accept has a winning strategy in the
emptiness game of &,. From this strategy we obtain by projection a family of
implementations P, = {p, |a € o(n)} for the least-informed processes.

In increasing order of informedness, we obtain implementations for the other
processes: After computing implementations for the processes in o({i+1,...,n}),
they are represented as Moore machines. Using Lemma 3, we then construct
from &; a nondeterministic automaton F; that accepts those implementations
P; for the processes in o(i) for which there exists a set of implementations
P; 1 = {pa]a € o(N;_1)} such that P;_; U P U Py satisfies ¢. F; is non-
empty by construction. From the winning strategy for player accept we obtain
by projection a family of implementations P’ = {p,|a € o(i)} and set P; to
P U Pii1.

Theorem 2. The distributed synthesis problem for an architecture A with n
levels of informedness, a specification ¢ given as an AMC formula, and a family
Pw = {pw}wew of implementations of the white-box processes can be solved in
time n-exponential in the number of subformulas of .

Proof. The specification ¢ is realizable for an architecture A and a given set
{pw}wew of white-box strategies iff &, is not empty. The construction of &,
involves one transformation of an alternating automaton to a nondeterministic
automaton for each ¢ € N,,, and therefore takes n-exponential time in the number
of subformulas of ¢. The size of each nondeterministic automaton F; is linear
in the size of &; and the size of the Moore machines for the strategy of the less-
informed processes. Each step along the order of informedness therefore again
takes n-exponential time. O

12

The upper bounds for ATL, CTL* and ATL* follow from linear translations
to alternation-free AMC [13], exponential translations to the p-calculus [20],
and doubly exponential translations to AMC [21,13], respectively. p-calculus
and CTL form a syntactical subset of AMC and ATL, respectively.

Corollary 1. The distributed synthesis problem for an architecture A with
n levels of informedness and a specification ¢ can be performed in time n-
exponential in the length of ¢ for specifications in CTL, ATL, or the classical
p-caleulus, (n+1)-exponential in the length of ¢ for specifications in CTL*, and
(n + 2)-exponential in the length of ¢ for specifications in ATL*.

A matching nonelementary lower bound (for LTL formulas and pipelines?)
is provided in [7].

4 Completeness

In the previous section we showed that the linearity requirement on the informed-
ness relation is a sufficient condition for the decidability of an architecture. In
this section, we show that the condition is also necessary: we prove that, for
non-linear informedness relations, the synthesis problem is already undecidable
for the sublogic CTL.

The proof is a variant of the reduction of the synthesis problem for determin-
istic implementations to the halting problem in [7,9]. In the following we give a
brief sketch of this argument before discussing the extension to nondeterministic
strategies. In the simplest case, shown in Figure 3a, there are two processes p
and g, such that the input ¢, and the output o, of process p is invisible to process
g, and, vice versa, i, and o, are invisible to p. For a given deterministic Turing
machine M, the conjunction ¥,s of the following conditions is realizable iff M
halts on the empty input tape:

The environment can send a start signal through i,, and i,.

Initially, p and ¢ output the terminal state of M.

— Upon receiving the first start signal, p (¢) starts to output syntactically legal
configurations of M such that

e the first two configurations are correct, and
o whenever p and ¢ output two configurations C}, and Cy, such that C}, (Cy)
is the successor configuration of Cy (Cp), then the next configurations
emitted by p and ¢ have the same property.
— p and q always eventually output the terminal state of M.

2 For linear-time specifications we can restrict our attention w.l.o.g. to deterministic
implementations. In this case, the processes at the beginning of the pipeline have
(implicit) knowledge of the output produced by processes later in the pipeline [9].
Turning this knowledge into explicit input does not change the nonelementary com-
plexity.

13

(a) (b) (c)

Fig. 3. Three undecidable situations: an architecture is undecidable if it contains two
processes with incomparable sets of inputs.

o R 6 @

For the more complicated case that the processes have access to each other’s
output (Figure 3b), ¢, is extended to describe a two-phase protocol: On the
input variables, a start symbol may be transmitted in the first phase, and an
XOR key is sent in the second phase. The output variables are again used to emit
sequences of configurations of Turing machines. In the first phase, the output is
constantly set to true, and in the second phase it is encrypted by the last received
XOR key. In this way, the processes cannot infer the decrypted meaning of the
output from the other process, even if they have access to each other’s output [9].

We now extend this argument to prove the undecidability of the synthesis
problem for nondeterministic strategies and architectures with non-linear in-
formedness relation. In addition to the architectures considered above, we take
into account the situation where the two processes do not receive any input
from an external environment (Figure 3c). In this case, we specify that the
start-symbols and XOR keys are chosen completely nondeterministically during
the first and second phase. The configurations of the Turing machine are emitted
in a separate third phase, where the values of the output variables are specified
to be deterministic.

Theorem 3. The synthesis problem for CTL specifications is undecidable for
all architectures with two black-box processes b,p € B with incomparable sets of
input variables (I, 2 I, 2 I,,).

Proof. The halting problem is reduced to the synthesis problem as follows.
W.l.o.g. we fix one input variable for p and ¢ that is invisible to the other
process (i, € I, \ I, and i4 € I, \ I,) and two output variables o, € O, and
04 € O4. We extend the CTL specification ¢y (from Theorem 5.3 of [9]) to
describe the following three-phase communication pattern:

— A start symbol can be transmitted to p and ¢ through i, and ¢, in a first
phase.

— A one bit XOR key is transmitted to p and ¢ through i, and i, in a second
phase.

— p and ¢ output an encoded bit of their output sequence in a third phase.

We extend the specification with the following guarantees:

— Exactly in every third round (and in the third round from the beginning)
the values of the variables o, and o, are fixed deterministically.
In the remaining rounds they are set nondeterministically to true and false.

14

— The variables in {ip, i} \ {0p, 04} are set deterministically to true in every
third round (and in the third round from the beginning).
In the remaining rounds they are set nondeterministically to true and false.
— To rule out the influence of the remaining variables, we require that they are
always set to true.

If the white-box strategies are chosen consistently with the specification, the
synthesis problem has a solution iff M halts on the empty input tape. a

5 Conclusions

This paper provides a comprehensive solution to the distributed synthesis prob-
lem for alternating-time temporal logics. The synthesis problem is decidable if
and only if the architecture is hierarchical. Our synthesis algorithm is uniformly
applicable to all decidable architectures and all specification logics in the range
from CTL to the alternating-time pu-calculus.

The central technical innovation is the treatment of nondeterministic im-
plementations. We encode nondeterministic implementations as (deterministic)
choice-set trees. This allows us to represent sets of strategies with tree automata
and to distribute the global specification over the distributed architecture using
standard automata transformations.

Nondeterministic implementations are also of interest if the specification is
expressed in a standard branching-time logic like CTL*. In this case, nondeter-
minism means abstraction: details regarding the interaction with the external
environment (including the user) can be omitted, since existential requirements
can be demonstrated without immediately establishing the protocol. The reso-
lution of the nondeterminism is moved to later design phases, where, in divide-
and-conquer fashion, only a single nondeterministic component needs to be con-
sidered at a time.

References

1. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math.,
Upsala (1963) 23-25

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proc. IBM Workshop on Logics of Pro-
grams, Springer-Verlag (1981) 52-71

3. Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifi-
cations. PhD thesis, Stanford University (1982)

4. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable concurrent pro-
gram specifications. In: Proc. 16th Int. Colloquium on Automata, Languages and
Programming. Volume 372 of Lecture Notes in Computer Science., Springer-Verlag
(1989) 1-17

5. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In ACM, ed.: Proc.
POPL, New York, NY, USA, ACM Press (1989) 179-190

6. Kupferman, O., Vardi, M.Y.: p-calculus synthesis. In: Proc. MFCS, Springer-
Verlag (2000) 497-507

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS, IEEE Computer Society Press (1990) 746-757

Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. LICS,
IEEE Computer Society Press (2001) 389-398

Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS, IEEE
Computer Society Press (2005) 321-330

Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security 11(3) (2003) 399-430
Mahimkar, A., Shmatikov, V.: Game-based analysis of denial-of-service prevention
protocols. In: IEEE Computer Security Foundations Workshop. (2005) 287-301
Kremer, S.: Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Université Libre de Bruxelles, Brussels, Belgium (2003)

Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5) (2002) 672-713

van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc.
LICS, IEEE Computer Society Press (2003) 208-217

Schewe, S., Finkbeiner, B.: The alternating-time p-calculus and automata over
concurrent game structures. In: Proc. CSL, Springer-Verlag (2006) 591-605
Wilke, T.: Alternating tree automata, parity games, and modal p-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic
Logic 5(2) (1999) 245-263

Finkbeiner, B., Schewe, S.: Semi-automatic distributed synthesis. In: Proc. ATVA,
Springer-Verlag (2005) 263-277

Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theor. Comput. Sci. 141(1-2) (1995) 69-107

Bhat, G., Cleaveland, R.: Efficient model checking via the equational u-calculus.
In: Proc. LICS, IEEE Computer Society Press (1996) 304-312

de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, IEEE Computer
Society Press (2001) 279-290

16

