
Bounded Synthesis⋆

Sven Schewe and Bernd Finkbeiner

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. The bounded synthesis problem is to construct an implemen-
tation that satisfies a given temporal specification and a given bound
on the number of states. We present a solution to the bounded syn-
thesis problem for linear-time temporal logic (LTL), based on a novel
emptiness-preserving translation from LTL to safety tree automata. For
distributed architectures, where standard unbounded synthesis is in gen-
eral undecidable, we show that bounded synthesis can be reduced to
a SAT problem. As a result, we obtain an effective algorithm for the
bounded synthesis from LTL specifications in arbitrary architectures.
By iteratively increasing the bound, our construction can also be used
as a semi-decision procedure for the unbounded synthesis problem.

1 Introduction

Verification and synthesis both provide a formal guarantee that a system is im-
plemented correctly. The difference between the two approaches is that while
verification proves that a given implementation satisfies the specification, syn-
thesis automatically derives one such implementation. Synthesis thus has the
obvious advantage that it completely eliminates the need for manually writing
and debugging code.

Unfortunately, the synthesis problem is undecidable even for simple dis-
tributed architectures. Consider, for example, the typical 2-process arbiter ar-
chitecture shown in Figure 1b: the environment (env) sends requests (r1, r2) for
access to a critical resource to two processes p1 and p2, which react by sending
out grants (g1, g2). As shown by Pnueli and Rosner [1], the synthesis problem is
undecidable for this architecture, because both p1 and p2 have access to informa-
tion (r1 and r2, respectively) that is hidden from the other process. For system
architectures without such information forks [2], like pipeline architectures (Fig-
ure 1a shows a pipeline of length 3), the synthesis problem is decidable, but has
nonelementary complexity.

The high complexity of synthesis is explained by the fact that, as pointed
out by Rosner [3], a small LTL formula of size n which refers to m different pro-
cesses already suffices to specify a system that cannot be implemented with less
than m-exp(n) states. From a practical point of view, however, it is questionable

⋆ This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

env p1 p2 p3
a b c d

(a)

env

p1 p2

r1 r2

g1

g2

(b)

env

p1 p2

r1, r2 r1, r2

g1

g2

(c)

env p1
r1, r2 g1, g2

(d)

Fig. 1. Distributed architectures: (a) pipeline architecture, (b) 2-process arbiter archi-
tecture, (c) 2-process arbiter architecture with complete information, (d) single-process
architecture.

whether such huge implementations should be considered by the synthesis algo-
rithm, because they are likely to violate other design considerations (such as the
available memory). In this paper, we therefore study a variation of the synthesis
problem, which we call the bounded synthesis problem, where an upper limit on
the size of the implementation is set in advance. The bound may either be an
explicit design constraint or the result of iteratively increasing the limit in the
search for a solution of minimal size.

Our starting point is the representation of the LTL specification as a uni-
versal co-Büchi tree automaton. We show that the acceptance of a finite-state
transition system by a universal co-Büchi automaton can be characterized by
the existence of an annotation that maps each pair of a state of the automa-
ton and a state of the transition system to a natural number. The advantage
of this characterization is that the acceptance condition can be simplified to
a simple safety condition: we show that the universal co-Büchi automaton can
be translated to an (emptiness-equivalent) deterministic safety automaton that
implicitly builds a valid annotation. The emptiness of the safety automaton can
then be determined in a simple two-player game, where player accept represents
the system implementation and wins the game if the specification is satisfied;
the opponent, player reject, wins the game if the specification is violated.

If the system architecture consists of a single process, as in Figure 1d, then
a victory for player accept means that the specification is realizable. Any win-
ning strategy for player accept immediately defines a correct implementation
for the process. If the architecture consists of more than one process, as in the
arbiter architecture of Figure 1b, then a victory for player accept only means
that the specification can be implemented in the slightly modified architecture
(shown for the arbiter example in Figure 1c), where all processes have the same
information. An implementation for the architecture with incompletely informed
processes must additionally satisfy a consistency requirement: if a process can-
not distinguish between two different computation paths, it must react in the
same way.

Inspired by the success of bounded model checking [4, 5], we show that
the bounded synthesis problem for distributed architectures can be effectively

2

reduced to a SAT problem. We define a constraint system that describes the
existence of a valid annotation and, additionally, ensures that the resulting
implementation is consistent with the limited information available to the dis-
tributed processes. For this purpose, we introduce a mapping that decomposes
the states of the safety game into the states of the individual processes: because
the reaction of a process only depends on its local state, the process is forced
to give the same reaction whenever it cannot distinguish between two paths
in the safety game. The satisfiability of the constraint system can be checked
using standard SAT solvers [6, 7]. As a result, we obtain an effective algorithm
for the bounded synthesis from LTL specifications in arbitrary distributed
architectures. By iteratively increasing the bound, our construction can also
be used as a semi-decision procedure for the standard (unbounded) synthesis
problem.

Related work. The synthesis of distributed reactive systems was pioneered
by Pnueli and Rosner [1], who showed that the synthesis problem is undecid-
able in general and has nonelementary complexity for pipeline architectures. An
automata-based synthesis algorithm for pipeline and ring architectures is due
to Kupferman and Vardi [8]; Walukiewicz and Mohalik provided an alternative
game-based construction [9]. We recently showed that the synthesis problem is
decidable if and only if the architecture does not contain an information fork [2].
Madhusudan and Thiagarajan [10] consider the special case of local specifications
(each property refers only to the variables of a single process). Among the class of
acyclic architectures (without broadcast) this synthesis problem is decidable for
exactly the doubly-flanked pipelines. Castellani, Mukund and Thiagarajan [11]
consider transition systems as the specification language: an implementation is
correct if the product of the processes is bisimilar to the specification. In this
case, the synthesis problem is decidable independently of the architecture.

Our translation of LTL formulas to tree automata is based on Kupferman
and Vardi’s Safraless decision procedures [12]. We use their idea of avoiding
Safra’s determinization using universal co-Büchi automata. Our construction
improves on [12] in that it produces deterministic safety automata instead of
nondeterministic Büchi automata.

2 Preliminaries

We consider the synthesis of distributed reactive systems that are specified in
linear-time temporal logic (LTL). Given an architecture A and an LTL formula ϕ,
we decide whether there is an implementation for each system process in A, such
that the composition of the implementations satisfies ϕ.

Architectures. An architecture A is a tuple (P, env , V, I, O), where P is a set
of processes consisting of a designated environment process env ∈ P and a set
of system processes P− = P r {env}. V is a set of boolean system variables
(which also serve as atomic propositions), I = {Ip ⊆ V | p ∈ P−} assigns a set

3

Ip of input variables to each system process p ∈ P−, and O = {Op ⊆ V | p ∈ P}
assigns a set Op of output variables to each process p ∈ P such that

⋃

p∈P Op =
V . While the same variable v ∈ V may occur in multiple sets in I to indicate
broadcasting, the sets in O are assumed to be pairwise disjoint. If Oenv ⊆ Ip for
every system process p ∈ P−, we say the architecture is fully informed. Since
every process in a fully informed architecture has enough information to simulate
every other process, we can assume w.l.o.g. that a fully informed architecture
contains only a single system process p, and that the input variables of p are the
output variables of the environment process Ip = Oenv .

Implementations. We represent implementations as labeled transition sys-
tems. For a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled
Υ -transition system is a tuple T = (T, t0, τ, o), consisting of a set of states T , an
initial state t0 ∈ T , a transition function τ : T ×Υ → T , and a labeling function
o : T → Σ. T is a finite-state transition system iff T is finite.

Each system process p ∈ P− is implemented as a 2Op-labeled 2Ip-transition
system Tp = (Tp, tp, τp, op). The specification ϕ refers to the composition of
the system processes, which is the 2V -labeled 2Oenv -transition system TA =
(T, t0, τ, o), defined as follows: the set T =

⊗

p∈P− Tp × 2Oenv of states is formed
by the product of the states of the process transition systems and the possible
values of the output variables of the environment. The initial state t0 is formed
by the initial states tp of the process transition systems and a designated root
direction ⊆ Oenv . The transition function updates, for each system process p,
the Tp part of the state in accordance with the transition function τp, using (the
projection of) o as input, and updates the 2Oenv part of the state with the output
of the environment process. The labeling function o labels each state with the
union of its 2Oenv part with the labels of its Tp parts.

With respect to the system processes, the combined transition system thus
simulates the behavior of all process transition systems; with respect to the en-
vironment process, it is input-preserving, i.e., in every state, the label accurately
reflects the input received from the environment.

Synthesis. A specification ϕ is (finite-state) realizable in an architecture A =
(P, V, I, O) iff there exists a family of (finite-state) implementations {Tp | p ∈
P−} of the system processes, such that their composition TA satisfies ϕ.

Bounded Synthesis. We introduce bounds on the size of the process im-
plementations and on the size of the composition. Given an architecture A =
(P, V, I, O), a specification ϕ is bounded realizable with respect to a family of
bounds {bp ∈ N | p ∈ P−} on the size of the system processes and a bound
bA ∈ N on the size of the composition TA, if there exists a family of implemen-
tations {Tp | p ∈ P−}, where, for each process p ∈ P , Tp has at most bp states,
such that the composition TA satisfies ϕ and has at most bA states.

Alternating Automata. An alternating parity tree automaton is a tuple
A = (Σ, Υ, Q, q0, δ, α), where Σ denotes a finite set of labels, Υ denotes a finite

4

set of directions, Q denotes a finite set of states, q0 ∈ Q denotes a designated
initial state, δ denotes a transition function, and α : Q → C ⊂ N is a coloring
function. The transition function δ : Q × Σ → B

+(Q × Υ) maps a state and an
input letter to a positive boolean combination of states and directions. In our
setting, the automaton runs on Σ-labeled Υ -transition systems. The acceptance
mechanism is defined in terms of run graphs.

A run graph of an automaton A = (Σ, Υ, Q, q0, δ, α) on a Σ-labeled Υ -
transition system T = (T, t0, τ, o) is a minimal directed graph G = (G, E) that
satisfies the following constraints:

– The vertices G ⊆ Q × T form a subset of the product of Q and T .

– The pair of initial states (q0, t0) ∈ G is a vertex of G.

– For each vertex (q, t) ∈ G, the set {(q′, υ) ∈ Q×Υ | ((q, t), (q′, τ(t, υ))) ∈ E}
satisfies δ(q, o(t)).

A run graph is accepting if every infinite path g0g1g2 . . . ∈ Gω in the run graph
satisfies the parity condition, which requires that the highest number occurring
infinitely often in the sequence α0α1α2 ∈ N with αi = α(qi) and gi = (qi, ti) is
even. A transition system is accepted if it has an accepting run graph.

The set of transition systems accepted by an automaton A is called its lan-
guage L(A). An automaton is empty iff its language is empty.

The acceptance of a transition system can also be viewed as the outcome
of a game, where player accept chooses, for a pair (q, t) ∈ Q × T , a set of
atoms satisfying δ(q, o(t)), and player reject chooses one of these atoms, which
is executed. The transition system is accepted iff player accept has a strategy
enforcing a path that fulfills the parity condition.

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of Q × {υ} for all υ ∈ Υ in every
disjunct. The emptiness of a nondeterministic automaton can be checked with
a variation of the acceptance game called the emptiness game, where, in each
step, player accept additionally chooses the label from Σ. A nondeterministic
automaton is empty iff the emptiness game is won by player reject.

An alternating automaton is called universal if, for all states q and input
letters σ, δ(q, σ) is a conjunction. A universal and nondeterministic automaton
is called deterministic.

A parity automaton is called a Büchi automaton if the image of α is contained
in {1, 2}, a co-Büchi automaton iff the image of α is contained in {0, 1}, and
a safety automaton if the image of α is {0}. Büchi and co-Büchi automata are
denoted by (Σ, Υ, Q, q0, δ, F), where F ⊆ Q denotes the states with the higher
color. Safety automata are denoted by (Σ, Υ, Q, q0, δ). A run graph of a Büchi
automaton is thus accepting if, on every infinite path, there are infinitely many
visits to F ; a run graph of a co-Büchi automaton is accepting if, on every path,
there are only finitely many visits to F . For safety automata, every run graph is
accepting.

5

3 Annotated Transition Systems

In this section, we introduce an annotation function for transition systems. The
annotation function has the useful property that a finite-state transition system
satisfies the specification if and only if it has a valid annotation.

Our starting point is a representation of the specification as a universal co-
Büchi automaton. Since the automaton is universal, every transition system in
the language of the automaton has a unique run graph. The annotation assigns
to each pair (q, t) of a state q of the automaton and a state t of the transition
system either a natural number or a blank sign. The natural number indicates
the maximal number of rejecting states that occur on some path to (q, t) in the
run graph.

We show that the finite-state transition systems accepted by the automaton
are exactly those transition systems for which there is an annotation that assigns
only natural numbers to the vertices of the run graph. We call such annotations
valid.

3.1 Universal Co-Büchi Automata

We translate a given LTL specification ϕ into an equivalent universal co-Büchi
automaton Uϕ. This can be done with a single exponential blow-up by first
negating ϕ, then translating ¬ϕ into an equivalent nondeterministic Büchi word
automaton, and then constructing a universal co-Büchi automaton that simu-
lates the Büchi automaton along each path: if each path is co-Büchi accepting
(i.e., it violates the Büchi condition), then the specification ϕ must hold along
every path.

Theorem 1. [12] Given an LTL formula ϕ, we can construct a universal co-
Büchi automaton Uϕ with 2O(|ϕ|) states that accepts a transition system T iff T
satisfies ϕ. ⊓⊔

3.2 Bounded Annotations

An annotation of a transition system T = (T, t0, τ, o) on a universal co-Büchi
automaton U = (Σ, Υ, Q, δ, F) is a function λ : Q × T → { } ∪ N. We call an
annotation c-bounded if its mapping is contained in { }∪{0, . . . , c}, and bounded
if it is c-bounded for some c ∈ N. An annotation is valid if it satisfies the following
conditions:

– the pair (q0, t0) of initial states is annotated with a natural number
(λ(q0, t0) 6=), and

– if a pair (q, t) is annotated with a natural number (λ(q, t) = n 6=) and
(q′, υ) ∈ δ(q, o(t)) is an atom of the conjunction δ(q, o(t)), then (q′, τ(t, υ))
is annotated with a greater number, which needs to be strictly greater if
q′ ∈ F is rejecting. That is, λ(q′, τ(t, υ)) ⊲q′ n where ⊲q′ is > for q′ ∈ F and
≥ otherwise.

6

Theorem 2. A finite-state Σ-labeled Υ -transition system T = (T, t0, τ, o) is
accepted by a universal co-Büchi automaton U = (Σ, Υ, Q, δ, F) iff it has a valid
(|T | · |F |)-bounded annotation.

Proof. Since U is universal, U has a unique run graph G = (G, E) on T . Since
T and U are finite, G is finite, too.

If G contains a lasso with a rejecting state in its loop, i.e., a path
(q0, t0)(q1, t1) . . . (qn, tn) = (q′0, t

′
0) and a path (q′0, t

′
0)(q

′
1, t

′
1) . . . (q′m, t′m) =

(q′0, t
′
0) such that q′i is rejecting for some i ∈ {1, . . . , m}, then, by induction,

any valid annotation λ satisfies λ(qj , tj) ∈ N for all j ∈ {0, . . . , n}, λ(q′j , t
′
j) ∈ N

for all j ∈ {0, . . . , m}, λ(q′j−1, t
′
j−1) ≤ λ(q′j , t

′
j) for all j ∈ {1, . . . , m}, and

λ(q′i−1, t
′
i−1) < λ(q′i, t

′
i).

If, on the other hand, G does not contain a lasso with a rejecting state in its
loop, we can easily infer a valid (|T | · |F |)-bounded annotation by assigning to
each vertex (q, t) ∈ G of the run graph the highest number of rejecting states
occurring on some path (q0, t0)(q1, t1) . . . (q, t), and by assigning to every pair
of states (q, t) /∈ G not in G. ⊓⊔

3.3 Estimating the Bound

Since the distributed synthesis problem is undecidable, it is in general not pos-
sible to estimate a sufficient bound c that guarantees that a transition system
with a valid c-bounded annotation exists if the specification is realizable.

For fully informed architectures, however, such an estimate is possible. If a
universal co-Büchi automaton is non-empty, then the size of a smallest accepted
transition system can be estimated by the size of an equivalent deterministic
parity automaton.

Theorem 3. [13] Given a universal co-Büchi automaton U with n states, we
can construct an equivalent deterministic parity automaton P with n2n+2 states
and 2n colors. ⊓⊔

A solution to the synthesis problem is required to be input-preserving, i.e., in
every state, the label must accurately reflect the input. Input preservation can
be checked with a deterministic safety automaton DI , whose states are formed
by the possible inputs I = 2Oenv . In every state i ∈ I, DI checks if the label
agrees with the input i, and sends the successor state i′ ∈ I into the direction i′.
If U accepts an input-preserving transition system, then we can construct a finite
input-preserving transition system, which is accepted by U , by evaluating the
emptiness game of the product automaton of P and DI . The minimal size of
such an input-preserving transition system can be estimated by the size of P
and I.

Corollary 1. If a universal co-Büchi automaton U with n states and m reject-
ing states accepts an input-preserving transition system, then U accepts a finite
input-preserving transition system T with n2n+2 · |I| states, where I = 2Oenv .
T has a valid m · n2n+2 · |I|-bounded annotation for U . ⊓⊔

7

4 Automata-Theoretic Bounded Synthesis

Using the annotation function, we can reduce the synthesis problem for fully
informed architectures to a simple emptiness check on safety automata. The
following theorem shows that there is a deterministic safety automaton that, for
a given parameter value c, accepts a transition system iff it has a valid c-bounded
annotation. This leads to the following automata-theoretic synthesis procedure
for fully informed architectures:

Given a specification, represented as a universal co-Büchi automaton U =
(Σ, Υ, Q, q0, δ, F), we construct a sequence of safety automata that check for
valid bounded annotations up to the bound c = |F | · b, where b is either the
predefined bound bA on the size of the transition system, or the sufficient bound
n2n+2·|I| from Corollary 1. If the intersection of DI with one of these automata is
non-empty, then the specification is realizable; if the intersection with the safety
automaton for the largest parameter value c is empty, then the specification is
unrealizable. The emptiness of the automata can be checked by solving their
emptiness games.

Theorem 4. Given a universal co-Büchi automaton U = (Σ, Υ, Q, q0, δ, F), we
can construct a family of deterministic safety automata {Dc = (Σ, Υ, Sc, s0, δc) |
c ∈ N} such that Dc accepts a transition system iff it has a valid c-bounded
annotation.

Construction: We choose the functions from Q to the union of N and a
blank sign (S = Q → { } ∪ N) as the state space of an abstract deterministic
safety automaton D = (Σ, Υ, S, s0, δ∞). Each state of D indicates how many
times a rejecting state may have been visited in some trace of the run graph
that passes the current position in the transition system. The initial state of D
maps the initial state of U to 0 (s0(q0) = 0) and all other states of U to blank
(∀q ∈ Q r {q0}. s0(q) =).

Let δ+
∞(s, σ) = {((q′, s(q′) + f(q′)), υ) | q, q′ ∈ Q, s(q) 6= , and (q′, υ) ∈

δ(q, σ)}, where f(q) = 1 ∀q ∈ F , and f(q) = 0 ∀q /∈ F , be the function that
collects the transitions of U . The transition function δ∞ is defined as follows:
δ∞(s, σ) =

∧

υ∈Υ (sυ , υ) with sυ(q) = max{n ∈ N | ((q, n), υ ∈ δ+
∞(s, σ)} (where

max{∅} =). Dc is formed by restricting the states of D to Sc = Q → { } ∪
{0, . . . , c}.

Proof. Let λ be a valid c-bounded annotation of T = (T, t0, τ, o) for U , and let λt

denote the function with λt(q) = λ(q, t). For two functions s, s′ : Q → { } ∪ N,
we write s ≤ s′ if s(q) ≤ s′(q) holds for all q ∈ Q, where is the minimal
element (< n for all n ∈ N). We show by induction that Dc has a run graph
G = (G, E) for T , such that s ≤ λt holds true for all vertices (s, t) ∈ G of
the run graph. For the induction basis, s0 ≤ λt0 holds by definition. For the
induction step, let (s, t) ∈ G be a vertex of G. By induction hypothesis, we
have s ≤ λt. With the definition of δ+

∞ and the validity of λ, we can conclude
that ((q′, n), υ) ∈ δ+

∞(s, o(t)) implies n ≤ λτ(t,υ)(q
′), which immediately implies

s′ ≤ λt′ for all successors (s′, t′) of (s, t) in G.

8

1

2 3⊥

∗

g1 g2

r1 r2g1g2

Fig. 2. Specification of a simple arbiter, represented as a universal co-Büchi automaton.
The states depicted as double circles (2 and 3) are the rejecting states in F .

Let now G = (G, E) be an accepting run graph of Dc for T , and let
λ(q, t) = max{s(q) | (s, t) ∈ G}. Then λ is obviously a c-bounded annota-
tion. For the validity of λ, λ(q0, t0) ∈ N holds true since s0(q0) ∈ N is a natural
number and (s0, t0) ∈ G is a vertex of G. Also, if a pair (q, t) is annotated
with a natural number λ(q, t) = n 6= , then there is a vertex (s, t) ∈ G with
s(q) = n. If now (q′, υ) ∈ δ(q, o(t)) is an atom of the conjunction δ(q, o(t)), then
((q′, n + f(q′)), υ) ∈ δ+

∞(s, o(t)) holds true, and the υ-successor (s′, τ(t, υ)) of
(s, t) satisfies s′(q′)⊲q′ n. The validity of λ now follows with λ(q′, τ(t, υ) ≥ s′(q′).

⊓⊔

Remark 1. Since U may accept transition systems where the number of rejecting
states occurring on a path is unbounded, the union of the languages of all Dc

is, in general, a strict subset of the language of U . Every finite-state transition
system in the language of U , however, is accepted by almost all Dc.

Example. Consider the specification of a simple arbiter, depicted as a universal
co-Büchi automaton in Figure 2. The specification requires that globally (1) at
most one process has a grant and (2) each request is eventually followed by a
grant. The emptiness game for D1 intersected with DI is depicted in Figure 3.

5 Constraint-Based Bounded Synthesis

We now develop an alternative synthesis method for fully informed architectures
that uses a SAT solver to determine an input-preserving transition system with
a valid annotation. The constraint system defined in this section will provide
the foundation for the synthesis method for general distributed architectures in
Section 6.

We represent the (unknown) transition system and its annotation by un-
interpreted functions. The existence of a valid annotation is thus reduced to
the satisfiability of a constraint system in first-order logic modulo finite integer
arithmetic. The advantage of this representation is that the size of the constraint
system is small (bilinear in the size of U and the number of directions). Further-
more, the additional constraints needed for distributed synthesis, which will be

9

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)

(0, 1,)

(0, , 1)

(0, 1, 1)

g1g2,

g1g2,

g1g2

g1g2,

g1g2

g
1

g
2

g
1
g
2

g1g2,

g1g2

g1
g2

g1g2

g1g2

g1g2

g1g2

g
1

g
2

g1g2

g1g2

g1g2

g
1
g
2

g1g2

(0, ,)

(0, ,)
r1r2

(0, , 1)

Fig. 3. Example of a safety game for synthesis in a fully informed architecture. The
figure shows the emptiness game for the intersection of D1 and DI in the arbiter
example (Figure 2). Circles denote game positions for player accept, rectangles denote
game positions for player reject. Game positions that are not completely expanded
(i.e., that have more successors if the parameter is increased) are dashed. The starting
position specifies r1r2 as the (arbitrarily chosen) root direction. Player accept wins the
game by avoiding the move to (0, 1, 1).

10

defined in Section 6, have a compact representation as well (logarithmic in the
number of directions of the individual processes).

The constraint system specifies the existence of a finite input-preserving 2V -
labeled 2Oenv -transition system T = (T, t0, τ, o) that is accepted by the universal
co-Büchi automaton Uϕ = (Σ, Υ, Q, q0, δ, F) and has a valid annotation λ.

To encode the transition function τ , we introduce a unary function symbol
τυ for every output υ ⊆ Oenv of the environment. Intuitively, τυ maps a state t
of the transition system T to its υ-successor τυ(t) = τ(t, υ).

To encode the labeling function o, we introduce a unary predicate symbol a
for every variable a ∈ V . Intuitively, a maps a state t of the transition system T
to true iff it is part of the label o(t) ∋ a of T in t.

To encode the annotation, we introduce, for each state q of the universal co-
Büchi automaton U , a unary predicate symbol λB

q and a unary function symbol

λ#
q . Intuitively, λB

q maps a state t of the transition system T to true iff λ(q, t) is

a natural number, and λ#
q maps a state t of the transition system T to λ(q, t) if

λ(q, t) is a natural number and is unconstrained if λ(q, t) = .
We can now formalize that the annotation of the transition system is valid

by the following first order constraints (modulo finite integer arithmetic):

∀t. λB
q (t)∧ (q′, υ) ∈ δ(q,−→a (t)) → λB

q′(τυ(t))∧λ#
q′ (τυ(t))⊲q λ#

q (t), where −→a (t) rep-

resents the label o(t), (q′, υ) ∈ δ(q,−→a (t)) represents the corresponding proposi-
tional formula, and ⊲q stands for ⊲q ≡> if q ∈ F and ⊲q ≡≥ otherwise. Addi-
tionally, we require λB

q0
(0), i.e., we require the pair of initial states to be labeled

by a natural number (w.l.o.g. t0 = 0).
To guarantee that the resulting transition system is input-preserving, we add,

for each a ∈ Oenv and each υ ⊆ Oenv , a constraint ∀t. a(τυ(t)) if a ∈ υ, and a
constraint ∀t.¬a(τυ(t)) if a /∈ υ. Additionally, we require that the initial state is
labeled with the root direction.

As an obvious implication of Theorem 2, this constraint system is satisfiable
if and only if U accepts a finite input-preserving transition system.

Theorem 5. For fully informed architectures, the constraint system inferred
from the specification, represented as the universal co-Büchi automaton U , is
satisfiable modulo finite integer arithmetic iff the specification is finite-state re-
alizable. ⊓⊔

Lemma 1. For a specification represented as a universal co-Büchi automaton
U = (2V , 2Oenv , Q, q0, δ, F), the inferred constraint system has size O(|δ| · |V | +
|Oenv | · |2Oenv |). ⊓⊔

The main parameter of the constraint system is the bound bA on the size of
the transition system TA. If we use bA to unravel the constraint system com-
pletely (i.e., if we resolve the universal quantification explicitly), the size of the
resulting constraint system is linear in bA.

Theorem 6. For a specification, represented as a universal co-Büchi automaton
U = (2V , 2Oenv , Q, q0, δ, F), and a given bound bA on the size of the transition sys-
tem TA, the unraveled constraint system has size O(bA ·(|δ|·|V |+ |Oenv |·|2Oenv |)).

11

1. ∀t. r1(τr1r2
(t)) ∧ r2(τr1r2

(t)) ∧ r1(τr1r2
(t)) ∧ ¬r2(τr1r2

(t))
∧ ¬r1(τr1r2

(t)) ∧ r2(τr1r2
(t)) ∧ ¬r1(τr1r2

(t)) ∧ ¬r2(τr1r2
(t))

2. λB

1(0) ∧ ¬r1(0) ∧ ¬r2(0)
3. ∀t. λB

1(t) → λB

1(τr1r2
(t)) ∧ λ

#
1 (τr1r2

(t)) ≥ λ
#
1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ

#
1 (τr1r2

(t)) ≥ λ
#
1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ

#
1 (τr1r2

(t)) ≥ λ
#
1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ

#
1 (τr1r2

(t)) ≥ λ
#
1 (t)

4. ∀t. λB

1(t) → ¬g1(t) ∨ ¬g2(t)
5. ∀t. λB

1(t) ∧ r1(t) → λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
1 (t)

6. ∀t. λB

1(t) ∧ r2(t) → λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
1 (t)

7. ∀t. λB

2(t) ∧ ¬g1(t) → λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

8. ∀t. λB

3(t) ∧ ¬g2(t) → λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

Fig. 4. Example of a constraint system for synthesis in a fully informed architecture.
The figure shows the constraint system for the arbiter example (Figure 2). The arbiter
is to be implemented in the fully informed architecture shown in Figure 1d.

It is satisfiable if and only if the specification is bounded realizable in the fully
informed architecture ({env , p}, V, {Ip = Oenv}, {Oenv , Op = V r Oenv}) with
bound bA. ⊓⊔

Example. Figure 4 shows the constraint system, resulting from the specifica-
tion of an arbiter by the universal co-Büchi automaton depicted in Figure 2,
implemented on the single process architecture of Figure 1d (or, likewise, on the
distributed but fully informed architecture of Figure 1c).

The first constraint represents the requirement that the resulting transition
system must be input-preserving, the second requirement represents the initial-
ization (where ¬r1(0) ∧ ¬r2(0) represents an arbitrarily chosen root direction),
and the requirements 3 through 8 each encode one transition of the universal
automaton of Figure 2. Following the notation of Figure 2, r1 and r2 represent
the requests and g1 and g2 represent the grants.

12

6 Distributed Synthesis

To solve the distributed synthesis problem for a given architecture A =
(P, V, I, O), we need to find a family of (finite-state) transition systems {Tp =
(Tp, t

p
0, τp, op) | p ∈ P−} such that their composition to TA satisfies the specifi-

cation. The constraint system developed in the previous section can be adapted
to distributed synthesis by explicitly decomposing the global state space of the
combined transition system TA: we introduce a unary function symbol dp for
each process p ∈ P−, which, intuitively, maps a state t ∈ TA of the product
state space to its p-component tp ∈ Tp.

The value of an output variable a ∈ Op may only depend on the state of
the process transition system Tp. We therefore replace every occurrence of a(t)
in the constraint system of the previous section by a(dp(t)). Additionally, we
require that every process p acts consistently on any two histories that it cannot
distinguish. The update of the state of Tp may thus only depend on the state of
Tp and the input visible to p. This is formalized by the following constraints:

1. ∀t. dp(τυ(t)) = dp(τυ′(t)) for all decisions υ, υ′ ⊆ Oenv of the environment
that are indistinguishable for p (i.e., υ ∩ Ip = υ′ ∩ Ip).

2. ∀t, u. dp(t) = dp(u) ∧
∧

a∈IprOenv

(

a(dpa
(t)) ↔ a(dpa

(t))
)

→ dp(τυ(t)) =

dp(τυ(u)) for all decisions υ ⊆ Oenv ∩ Ip (picking one representative for each
class of environment decisions that p can distinguish). pa ∈ P− denotes the
process controlling the output variable a ∈ Opa

.

Since the combined transition system TA is finite-state, the satisfiability of
this constraint system modulo finite integer arithmetic is equivalent to the dis-
tributed synthesis problem.

Theorem 7. The constraint system inferred from the specification, represented
as the universal co-Büchi automaton U , and the architecture A is satisfiable
modulo finite integer arithmetic iff the specification is finite-state realizable in
the architecture A. ⊓⊔

Lemma 2. For a specification, represented as a universal co-Büchi automaton
U = (2V , 2Oenv , Q, q0, δ, F), and an architecture A, the inferred constraint system
for distributed synthesis has size O(|δ| · |V |+ |Oenv | · |2Oenv |+

∑

p∈P−

|Ip r Oenv |).

⊓⊔

The main parameters of the constraint system for distributed synthesis are
the bound bA on the size of the transition system TA and the family {bp | p ∈ P−}
of bounds on the process transition systems {Tp | p ∈ P−}. If we use these
parameters to unravel the constraint system completely (i.e., if we resolve the
universal quantification explicitly), the resulting transition system is linear in
bA, and quadratic in bp.

Theorem 8. For a given specification, represented as a universal co-Büchi au-
tomaton U = (2V , 2Oenv , Q, q0, δ, F), an architecture A = (P, V, I, O), a bound bA

13

4. ∀t. λB

1(t) → ¬g1(d1(t)) ∨ ¬g2(d2(t))
7. ∀t. λB

2(t) ∧ ¬g1(d1(t)) → λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ

#
2 (τr1r2

(t)) > λ
#
2 (t)

8. ∀t. λB

3(t) ∧ ¬g2(d2(t)) → λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ

#
3 (τr1r2

(t)) > λ
#
3 (t)

9. ∀t. d1(τr1r2
(t)) = d1(τr1r2

(t)) ∧ d1(τr1r2
(t)) = d1(τr1r2

(t))
∧ d2(τr1r2

(t)) = d2(τr1r2
(t)) ∧ d2(τr1r2

(t)) = d2(τr1r2
(t))

10. ∀t, u. d1(t) = d1(u) ∧
`

g2(d2(t)) ↔ g2(d2(u))
´

→ d1(τr1r2
(t)) = d1(τr1r2

(u))
∧ d1(τr1r2

(t)) = d1(τr1r2
(u))

11. ∀t, u. d2(t) = d2(u) ∧
`

g1(d1(t)) ↔ g1(d1(u))
´

→ d2(τr1r2
(t)) = d2(τr1r2

(u))
∧ d2(τr1r2

(t)) = d2(τr1r2
(u))

Fig. 5. Example of a constraint system for distributed synthesis. The figure shows
modifications and extensions to the constraint system from Figure 4 for the arbiter
example (Figure 2) in order to implement the arbiter in the distributed architecture
shown in Figure 1b.

on the size of the input-preserving transition system TA, and a family {bp | p ∈
P−} of bounds on the process transition systems {Tp | p ∈ P−}, the unraveled
constraint system has size O(bA ·(|δ| · |V |+ |Oenv | · |2

Oenv |)+
∑

p∈P−

bp
2|Ip rOenv |)).

It is satisfiable if and only if the specification is bounded realizable in A for the
bounds bA and {bp | p ∈ P−}. ⊓⊔

Example. As an example for the reduction of the distributed synthesis problem
to SAT, we consider the problem of finding a distributed implementation to the
arbiter specified by the universal automaton of Figure 2 in the architecture of
Figure 1b. The functions d1 and d2 are the mappings to the processes p1 and
p2, which receive requests r1 and r2 and provide grants g1 and g2, respectively.
Figure 5 shows the resulting constraint system. Constraints 1–3, 5, and 6 are
the same as in the fully informed case (Figure 4). The consistency constraints
9–11 guarantee that processes p1 and p2 show the same behavior on all input
histories they cannot distinguish.

7 Conclusions

Despite its obvious advantages, synthesis has been less popular than verification.
While the complexity of verification is determined by the size of the implemen-
tation under analysis, standard synthesis algorithms [1, 8, 9, 2] suffer from the
daunting complexity determined by the theoretical upper bound on the smallest
implementation, which, as shown by Rosner [3], increases by an extra exponent
with each additional process in the architecture.

14

By introducing a bound on the size of the implementation, we have levelled
the playing field for synthesis and verification. We have shown that the bounded
synthesis problem can be solved effectively with a reduction to SAT.

Our solution for the bounded synthesis problem can be extended to the stan-
dard (unbounded) synthesis problem by iteratively increasing the bound. The
advantage of this approach is that the complexity is determined by the size of
the smallest actual implementation. Typically, this is far less than the exploding
upper bound.

References

1. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS, IEEE Computer Society Press (1990) 746–757

2. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS, IEEE
Computer Society Press (2005) 321–330

3. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Insti-
tute of Science, Rehovot, Israel (1992)

4. Copty, F., Fix, L., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.: Benefits
of bounded model checking at an industrial setting. In: Proc. of CAV. LNCS,
Springer Verlag (2001)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58 (2003) 118–149

6. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability
(SAT) Problem: A survey. In Du, D.Z., Gu, J., Pardalos, P., eds.: Satisfiability
Problem: Theory and applications. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society (1997) 19–152

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation
Conference (DAC’01). (2001)

8. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. LICS,
IEEE Computer Society Press (2001) 389–398

9. Walukiewicz, I., Mohalik, S.: Distributed games. In: Proc. FSTTCS’03, Springer-
Verlag (2003) 338–351

10. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local spec-
ifications. In: Proc. ICALP, Springer-Verlag (2001) 396–407

11. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing distributed transition
systems from global specification. In: Proc. FSTTCS. (1999) 219–231

12. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science, Pittsburgh (2005) 531–540

13. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. LICS, IEEE Computer Society (2006) 255–264

15

