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Subsequence Invariants⋆

Klaus Dräger and Bernd Finkbeiner

Universität des Saarlandes
Fachrichtung Informatik, 66123 Saarbrücken, Germany

{draeger|finkbeiner}@cs.uni-sb.de

Abstract. We introduce subsequence invariants, which characterize the be-
havior of a concurrent system in terms of the occurrences of synchronization
events. Unlike state invariants, which refer to the state variables of the sys-
tem, subsequence invariants are defined over auxiliary counter variables that
reflect how often the event sequences from a given set have occurred so far.
A subsequence invariant is a linear constraint over the possible counter val-
ues. We allow every occurrence of a subsequence to be interleaved arbitrarily
with other events. As a result, subsequence invariants are preserved when a
given process is composed with additional processes. Subsequence invariants
can therefore be computed individually for each process and then be used
to reason about the full system. We present an efficient algorithm for the
synthesis of subsequence invariants. Our construction can be applied incre-
mentally to obtain a growing set of invariants given a growing set of event
sequences.

1 Introduction

An invariant is an assertion that holds true in every reachable state. Since most
program properties can either directly be stated as invariants or need invariants as
part of their proof, considerable effort has been devoted to synthesizing invariants
automatically from the program text [7, 4, 2, 1, 14, 3].

The most natural approach to invariant generation, followed in almost all pre-
vious work, is to look for constraints over the program variables that are inductive
with respect to the program transitions. This approach works well for sequential
programs, but often fails for concurrent systems: to be inductive, the invariants must
refer to variables from all (or at least multiple) processes; working on the product
state space, however, is only feasible if the number of processes is very small.

We introduce a new type of program invariants, which we call subsequence invari-
ants. Instead of referring to program variables, subsequence invariants characterize
the behavior of a concurrent system in terms of the occurrences of synchronization
events. Subsequence invariants are defined over auxiliary counter variables that re-
flect how often the event sequences from a given set of subsequences have occurred
so far. A subsequence invariant is a linear constraint over the possible counter values.
Each occurrence of a subsequence may be scattered over a sequence of synchroniza-
tion events: for example, the sequence acacb contains two occurrences (acacb and
acacb) of the subsequence ab. This robustness with respect to arbitrary interleavings
with other events ensures that subsequence invariants are preserved when a given
process is composed with additional processes. Subsequence invariants can therefore
be computed individually for each process and then be used to reason about the
full system.

⋆ This technical report is an extended version of our paper [6] accepted for CONCUR
2008. This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).
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Fig. 1. Arbiter tree: Access to a shared resource is controlled by binary arbiters arranged
in a tree, with a central root process.

As an example, consider the arbiter tree shown in Figure 1. The environment
represents the clients of the system, which may request access to a shared resource
from one of the leaf nodes of the arbiter tree. The arbiter node then sends a request
to its parent in the tree. This request is forwarded up to the central root process,
which generates a grant as soon as the resource is available. The grant is propagated
down to a requesting client, which then accesses the resource and eventually sends a
release signal when it is done. Each arbiter node satisfies the following subsequence
invariants:

(1) Whenever a grant is given to a child, the number of grants given to the other
child so far equals the number of releases received from it. For example, for
Arbiter 1, each occurrence of gr2 in an event sequence w is preceded by an
equal number of occurrences of gr1 and rel1:

|w|gr
1
gr

2
= |w|rel1 gr2

and, symmetrically, |w|gr
2
gr

1
= |w|rel2 gr

1
.

(2) Whenever a grant is given to a child, the number of grants received from the
parent exceeds the number of releases sent to it by exactly 1. For example, for
Arbiter 1, each occurrence of gr1 or gr2 is preceded by one more occurrence of
gr0 than of rel0:

|w|gr
0
gri

= |w|rel0 gri
+ |w|gri

, for i = 1, 2.

(3) Whenever a release is sent to, or a grant received from, the parent, the number
of releases received from each child equals the number of grants given to that
child. For Arbiter 1:

|w|gri gr
0

= |w|reli gr
0

and |w|gri rel0 = |w|reli rel0 , for i = 1, 2.

(4) The differences between the corresponding numbers of grants and releases only
ever take values in {0, 1}. For Arbiter 1:

|w|gri reli + |w|reli gri
= |w|gri gri

+ |w|reli reli + |w|reli , for i = 0, 1, 2.
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Combined, the subsequence invariants (1) - (4) of all arbiter nodes imply that
the arbiter tree guarantees mutual exclusion among its clients.

In this paper, we present algorithms for the synthesis of subsequence invari-
ants that automatically compute all invariants of an automaton for a given set of
subsequences. Since the set of invariants is in general not finite, it is represented
algebraically by a finite set of generators. Based on the synthesis algorithms, we
propose the following verification technique for subsequence invariants:

To prove a desired system property ϕ, we first choose, for each process, a set U
of relevant subsequences and then synthesize a basis of the subsequence invariants
over U . The invariants computed for each individual process translate to invariants
of the system. If ϕ is a linear combination of the system invariants, we know that
ϕ itself is a valid invariant.

The only manual step in this technique is the choice of an appropriate set of
subsequences, which depends on the complexity of the interaction between the pro-
cesses. A practical approach is therefore to begin with a small set of subsequences
and then incrementally compute a growing set of invariants based on a growing set
of subsequences until ϕ is proved.

Related work. There is a significant body of work on the generation of invari-
ants over program variables, ranging from heuristics (cf. [7]), to methods based
on abstract interpretation (cf. [4, 2, 1, 14]) and constraint solving (cf. [3]). The key
difference to our approach is that, while these approaches aim at finding a concise
characterization of a complex state space, we aim at finding a concise representation
of a complex process interaction. T-invariants, which relate the number of firings of
different transitions in a Petri net, have a similar motivation (cf. [11]), but are not
applied in the compositional manner of subsequence invariants.

Subsequence occurrences have, to the best of our knowledge, not been used in
verification before. However, there has been substantial interest in subsequences in
the context of formal languages, in particular in connection with Parikh matrices
and their generalizations; see, for example, [8, 10, 13, 5], as well as Parikh’s original
paper [12], introducing Parikh images.

Subsequences are also used in machine learning, in the context of kernel-based
methods for text classification [9]; here the focus is on their use as characteristic
values of given pieces of text, not on the characterization of languages or systems
by constraints on their possible values.

2 Preliminaries

Linear algebra. For a given finite set U , the real vector space R
U generated by U

consists of all tuples φ = (φu)u∈U of real numbers indexed by the elements of U . For
a given set of vectors φ1, . . . , φk ∈ R

U , the subspace span(φ1, . . . , φk) spanned by
φ1, . . . , φk consists of all linear combinations λ1φ

1 + . . . λkφ
k for λ1, . . . , λk ∈ R. We

assume that the set U is equipped with a total ordering <, i.e., U = {u1, . . . , um}
with u1 < · · · < um. We write vectors as tuples φ = (φu1 , . . . , φum)T according
to this order. The pivot element pivot(φ) is the <-least element u such that φu is
nonzero.

A set B of linearly independent vectors is a basis for a subspace H ⊆ R
U iff

H = span(B). When we collect the basis vectors of a subspace, we ensure the linear
independence of the vectors with the following construction: To add a new vector η
to a set {φ1, . . . , φk} of vectors, we consider, for each vector φi, the pivot element
ui := pivot(φi) and reduce η to η− (ηui/φi

ui)φi. For the resulting vector η′ we know
that η′

ui = 0 for all i. If η′ = 0, then the new set of vectors is the same as the
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original set {φ1, . . . , φk}; otherwise, we reduce each vector φi from the original set
to ψi := φi − (φi

ui/ηui)η, resulting in the new set {ψ1, . . . , ψk, η′}.

As an example, consider the set of vectors {φ1, φ2} ⊂ R
{1,...,5}, where

φ1 = (1, 2, 0,−1, 1)T and φ2 = (0, 0, 1, 2,−2)T , with pivot elements 1 and
3, respectively. A new vector η = (1, 1, 2, 2,−1)T would first be reduced to
(0,−1, 2, 3,−2)T (by subtracting φ1), and then to η′ = (0,−1, 0,−1, 2)T (by sub-
tracting 2φ2). Reducing φ1, we obtain ψ1 = (1, 0, 0,−3, 5)T , resulting in the new
set {(1, 0, 0,−3, 5)T , (0, 0, 1, 2,−2)T , (0,−1, 0,−1, 2)T}.

The orthogonal complement H⊥ of a subspace H ⊆ R
U consists of the vectors

that are orthogonal to those in H , i.e., all vectors ψ where the scalar product
ψ · φ =

∑

u∈U ψuφu is zero for all φ ∈ H . Given a basis B for H that has been

reduced as described above, a basis for H⊥ is obtained as follows:
Let V ⊆ U be the set of all u ∈ U which are not the pivot element of any

φ ∈ B. For each u ∈ V , define a vector ψu by ψu
u = 1, ψu

v = 0 for all v ∈ V \ {u},
and for each φ ∈ B, ψu

pivot(φ) = −φu/φpivot(φ). For example, given the basis B =

{(1, 0, 0,−3, 5)T , (0, 0, 1, 2,−2)T , (0,−1, 0,−1, 2)T}, we have that V = {4, 5}, and
therefore obtain the basis vectors ψ4 = (3,−1,−2, 1, 0)T and ψ5 = (−5, 2, 2, 0, 1)T

for span(B)⊥.

Alphabets and Sequences. An alphabet is a finite set of symbols. For an alphabet
A, A∗ is the set of finite sequences over A. The empty sequence is denoted by ǫ, the
composition of two sequences v, w ∈ A∗ by v.w, and the length of a sequence w by
|w|.

For alphabets A1 ⊆ A2, the projection w ↓A1
of a sequence w ∈ A∗

2 onto A1 is
defined recursively by

ǫ ↓A1
= ǫ, (w.a) ↓A1

=

{

(w ↓A1
).a if a ∈ A1,

w ↓A1
otherwise.

We equip A with a total order <, and A∗ with the corresponding length-
lexicographical ordering given by u <llex v iff either

– |u| < |v| or
– |u| = |v|, and there are x, y, z ∈ A∗, a, b ∈ A with a < b, u = xay, v = xbz.

In particular, elements φ of the vector space R
U , generated by a finite sub-

set U ⊂ A∗, are written according to this order, i.e., φ = (φu1 , . . . , φun) for
U = {u1, . . . , un}, u1 <llex · · · <llex u

n.

Communicating automata. We consider concurrent systems that are given as a
set of communicating finite-state automata. A (nondeterministic) finite automaton
P = (QP ,AP , q

0
P , TP ) consists of

– a finite set QP of locations,
– a finite alphabet AP of synchronization events,
– an initial location q0P ∈ QP , and
– a transition relation TP ⊆ QP ×AP ×QP .

When dealing with automata P1, . . . , Pn, we use i as the subscript instead of Pi.
We denote (q, a, r) ∈ TP by q

a
→P r. For a sequence w = w1 . . . wn ∈ A∗

P ,

q
w
→P r iff q

w1→P · · ·
wn→P r. The language of a location q ∈ QP is the set L(q) :=

{w ∈ A∗
P : q0

w
→P q}; q is reachable iff L(q) 6= ∅. We assume in the following that our

automata only contain reachable locations. For a subset Q′ ⊆ QP of the locations,
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the language of Q′ is the union of all languages of the locations in Q′. The language
of an automaton P is the language of its locations, L(P ) := L(QP ).

A set {P1, . . . , Pn} of finite automata defines a system automaton S =

(Q,A, q0,→), where Q = Q1 × · · · × Qn, A = A1 ∪ · · · ∪ An, and (q1, . . . , qn)
a
→

(r1, . . . , rn) iff for all i ∈ {1, . . . , n} either

– a ∈ Ai and qi
a
→i ri, or

– a /∈ Ai and qi = ri.

The language L(S) of S thus consists of all sequences w over A, such that, for each
automaton Pi, the projection w↓Ai

to the alphabet Ai is in the language L(Pi).

3 Subsequence Invariants

Let P = (Q,A, q0, T ) be a finite automaton. We define the subsequence invariants
of P relative to a given finite, prefix-closed set of sequences U = {u1, . . . , un} ⊂ A∗,
which we call the set of subsequences.

Given two sequences u = u1 . . . uk and w = w1 . . . wn ∈ A∗, the set of occurrences
of u as a subsequence in w is [w]u := {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n,wij

=
uj for all j}. For example, [aababb]ab = {(1, 3), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6),
(4, 5), (4, 6)}. The sizes of these sets define the numbers of occurrences |w|u :=
‖[w]u‖. These numbers can be computed recursively, using the recurrence [8]

|w|ǫ = 1, |ǫ|u.b = 0, |w.a|u.b =

{

|w|u.b + |w|u if a = b,

|w|u.b otherwise,

for all u,w ∈ A∗, a, b ∈ A. This gives rise to a mapping |.|U from A∗ into R
U defined

by |w|U = (|w|u1 , . . . , |w|un).
For any subset Q′ ⊆ Q, the subsequence hull of Q′ is the subspace HQ′ of R

U

spanned by the subsequence occurrences {|w|U : w ∈ L(Q′)}.

Definition 1. A subsequence invariant for Q′ ⊆ Q over U is a vector φ ∈ R
U such

that for all w ∈ L(Q′),
∑

u∈U φu|w|u = 0.

The subsequence invariants for Q′ define a linear subspace IQ′ ⊆ R
U , which is

the orthogonal complement of HQ′ in R
U . Special cases are the local subsequence

invariants Iq = I{q} at q ∈ Q and the global invariants of P , IP = IQ. The spaces
of the invariants satisfy the relation IQ′ =

⋂

q∈Q′ Iq.
The sequences that satisfy a given set of subsequence invariants form a context-

sensitive language [13]. The expressiveness of subsequence invariants is, however,
incomparable to the regular and context-free languages. For example, subsequence
invariants can characterize the context-sensitive language {anbncn : n ∈ N} = {w ∈
A∗ : |w|a = |w|b, |w|b = |w|c, |w|ba = 0, |w|cb = 0}, but not the regular language
{a.w : w ∈ A∗} for some a ∈ A .

Requiring invariants to be linear equalities may appear restrictive. In the re-
mainder of this section we illustrate the expressive power of subsequence invariants
by translating two useful types of invariants, conditional and disjunctive invariants,
to equivalent linear subsequence invariants.

Resolving conditions. Properties (1)–(3) of the arbiter tree discussed in the
introduction are examples of conditional invariants, stating that a linear equality
over the numbers |w|u should hold whenever some event a ∈ A occurs. Obviously,
the equality must be in IEa

, where Ea is the set of locations in which an a-transition
can occur. We can resolve the event condition to obtain a global statement, using
subsequences no more than one symbol longer than those in U , using the following
theorem:
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Theorem 1. Let a ∈ A and Ea := {q ∈ Q : q
a
→ r for some r ∈ Q}. Then

∑

u∈U φu|w|u = 0 for all w ∈ L(Ea) if and only if
∑

u∈U φu|w|u.a = 0 for all
w ∈ L(P ).

Proof. ⇒: Proof by induction over w ∈ L(P ), using the assumption
∑

u∈U φu|w|u =
0 for all w ∈ L(Ea).
For w = ǫ, the claim is obviously true since |ǫ|u.a = 0 for all u and a. For the
step w → w.b, there are two cases:
If b 6= a, then |w.b|u.a = |w|u.a for all u, and the claim follows immediately from
the induction hypothesis.
If b = a, we have |w.a|u.a = |w|u.a + |w|u for all u, and therefore
∑

u∈U φu|w.a|u.a =
∑

u∈U φu|w|u.a +
∑

u∈U φu|w|u.
The first part is again zero by the induction hypothesis. By definition of Ea,
w must be in L(Ea), and therefore, by the assumption, the second part is also
zero.

⇐: Assume that
∑

u∈U φu|w|u.a = 0 for all w ∈ L(P ), and that there is some
w ∈ L(Ea) for which

∑

u∈U φu|w|u 6= 0.
It follows from w ∈ L(Ea) that both w and w.a are in L(P ). But then, by the
second assumption,
∑

u∈U φu|w.a|u.a =
∑

u∈U φu|w|u.a +
∑

u∈U φu|w|u 6=
∑

u∈U φu|w|u.a.
In particular, they cannot both be zero, contradicting the first assumption.

⊓⊔

Thus, for example, the condition that the number of releases received from
the left child must equal the number of grants given to it whenever a grant is
given to the right child, i.e., |w|gr

1
= |w|rel1 for all w ∈ L(Egr

2
), is equivalent to

|w|gr1.gr2
= |w|rel1.gr2

for all w ∈ L(P ).

Resolving disjunctions. Consider now the fourth statement in the introductory
example: The differences between the corresponding numbers of grants and releases
only ever take values in {0, 1}. Such a disjunctive condition can be translated in
two steps into an equivalent linear equation: The condition is first transformed into
a polynomial equation (Step 1), and then reduced, using algebraic dependencies, to
an equivalent linear equation (Step 2).

Step 1 is simple: The condition
∑

u∈U φu|w|u ∈ {c1, . . . , ck} is equivalent to
(
∑

u∈U φu|w|u − c1) · · · (
∑

u∈U φu|w|u − ck) = 0.
For the transformation of the resulting polynomial equation into a linear equa-

tion, we define, as an auxiliary notion, the set of coverings of x ∈ A∗ by u and v to
be

[x]u,v := {((i1, . . . , ik), (j1, . . . , jm)) : i1 < · · · < ik, j1 < · · · < jm,

u = xi1 . . . xik
, v = xjl

. . . xjm
,

{i1, . . . , ik, j1, . . . , jm} = {1, . . . , |x|}},

i.e., the set of pairs of occurrences of u and v as subsequences of x such that every
index in 1, . . . , |x| is used in at least one of them. For example,

[aabaa]aaa,aba ={((1, 2, 4), (1, 3, 5)), ((1, 2, 4), (2, 3, 5)), ((1, 2, 5), (1, 3, 4)), ((1, 2, 5), (2, 3, 4)),

((1, 4, 5), (2, 3, 4)), ((1, 4, 5), (2, 3, 5)), ((2, 4, 5), (1, 3, 4)), ((2, 4, 5), (1, 3, 5))}.

Let |w|u,v = ‖[w]u,v‖ denote the number of coverings, which can be computed
recursively as follows:

|w|u,ǫ = |w|ǫ,u =

{

1 if u = w,

0 otherwise,
|ǫ|u,v =

{

1 if u = v = ǫ,

0 otherwise,
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|w.a|u.b,v.c =



















|w|u,v + |w|u.b,v + |w|u,v.c if b = a = c,

|w|u,v.c if b = a 6= c,

|w|u.b,v if b 6= a = c,

0 if b 6= a 6= c.

It is easy to see that for every u, v ∈ A∗, the set C(u, v) := {x ∈ A∗ : [x]u,v 6= ∅}
of sequences coverable by u and v is finite, since it cannot contain sequences longer
than |u|+ |v|.

Theorem 2. (See Theorem 6.3.18 in [8] for an equivalent statement to (2))

1. For all u, v, w ∈ A∗, there is a bijection between [w]u × [w]v and
⊎

x∈C(u,v)([x]u,v × [w]x), and therefore,

2. For all u, v, w ∈ A∗, |w|u|w|v =
∑

x∈C(u,v) |x|u,v|w|x.

Proof. 1. Let u, v, w ∈ A∗. For two occurrences i = (i1, . . . , im) ∈ [w]u and j =
(j1, . . . , jn) ∈ [w]v, the shuffle tuple s(i, j) = (s1, . . . , sp) is the unique ordered
tuple containing all elements of the set {i1, . . . , im, j1, . . . , jn}. It gives rise to
ordered embedding tuples l(i, j) = (l1, . . . , lm) and r(i, j) = (r1, . . . , rn) defined
uniquely by ik = slk for k = 1, . . . ,m and jk = srk

for k = 1, . . . , n.
Now, for the word x = ws1

. . . wsp
, we obviously have s ∈ [w]x . Also, the

embedding tuples satisfy (l(i, j), r(i, j)) ∈ [x]u,v, because

– for k = 1, . . . ,m, xlk = wslk
= wik

= uk,
– for k = 1, . . . , n, xrk

= wsrk
= wjk

= vk,
– {l1, . . . , lm, r1, . . . , rn} = {1, . . . , p}.

Together, l, r, s map each pair of occurrences (i, j) ∈ [w]u × [w]v to an element
(l(i, j), r(i, j), s(i, j)) ∈

⊎

x∈C(u,v)([x]u,v × [w]x). We are going to show that this
is a bijection.
For injectivity, assume that for two pairs of tuples (i1, j1) and (i2, j2),
(l(i1, j1), r(i1, j1), s(i1, j1)) = (l(i2, j2), r(i2, j2), s(i2, j2)).
Then for k = 1, . . . ,m,
i1k = slk(i1,j1)(i

1, j1) = slk(i2,j2)(i
2, j2) = i2k,

and for k = 1, . . . , n,
j1k = srk(i1,j1)(i

1, j1) = srk(i2,j2)(i
2, j2) = j2k.

Therefore (i1, j1) = (i2, j2).
For surjectivity, let x ∈ C(u, v), s′ = (s1, . . . , sp) ∈ [w]x, and (l′, r′) =
((l′1, . . . , l

′
m), (r′1, . . . , r

′
n)) ∈ [x]u,v. Defining i = (i1, . . . , im) = (s′

l′
1

, . . . , s′l′m)

and j = (j1, . . . , jn) = (s′
r′

1

, . . . , s′r′

n
), it is easy to check that

– since (l′, r′) ∈ [x]u,v, we have {l′1, . . . , l
′
m, r

′
1, . . . , r

′
n} = {1, . . . , p}, and there-

fore {i1, . . . , im, j1, . . . , jn} = {s′1, . . . , s
′
p}, implying s(i, j) = s′;

– for k = 1, . . . ,m, lk(i, j) is defined to be the unique index such that ik =
slk(i,j)(i, j); in this case, ik = s′l′

k
, for all k, implies l(i, j) = l′;

– analogously, we get r(i, j) = r′.

2. Immediately from the first item, we have

|w|u|w|v = ‖[w]u × [w]v‖

= ‖
⊎

x∈C(u,v)

([x]u,v × [w]x)‖

=
∑

x∈C(u,v)

|x|u,v|w|x.

⊓⊔

7



Simple examples for Theorem 2 are the equalities |w|2a = 2|w|aa + |w|a and
|w|a|w|b = |w|ab + |w|ba. For u = ab and v = ba, we obtain the equality |w|ab|w|ba =
|w|aba + |w|bab + |w|abab + 2|w|abba + 2|w|baab + |w|baba.

The degree k polynomial equation p(|w|u1 , . . . , |w|un) = 0 resulting from Step
1 can then be transformed into a linear equation using the equalities from Theo-
rem 2. This linear equation involves subsequences of length up to kl, where l is the
maximum length of any u ∈ U .

Example: For property (4) from the introduction, we obtain

|w|gri
− |w|reli ∈ {0, 1}
⇔ (|w|gri

− |w|reli)(|w|gri
− |w|reli − 1) = 0

⇔ |w|2gri
− 2|w|gri

|w|reli + |w|2reli − |w|gri
+ |w|reli = 0

⇔ |w|gri . gri
+ |w|reli.reli + |w|reli = |w|gri . reli + |w|reli . gri

.

This technique can also handle more complicated constraints: An alternative
characterization of Arbiter 1 is given by the requirement that for all w ∈ L(P ),





|w|gr
0
− |w|rel0

|w|gr
1
− |w|rel1

|w|gr
2
− |w|rel2



 ∈











0
0
0



 ,





1
0
0



 ,





1
0
1



 ,





1
1
0











.

Note that the possible values for the linear expressions are mutually dependent. The
set of vectors on the right-hand side can be characterized as the set of all (x, y, z)T

for which x2−x, y2− y, z2− z, xy− y, xz− z and yz are all zero. Using Theorem 2,
we again obtain a set of linear subsequence constraints. In general, we have:

Theorem 3. Let ‖U‖ = n,max{|u| : u ∈ U} = l,M ∈ R
k×n, and φ1, . . . , φm ∈ R

k.
Then the constraint given by M |w|U ∈ {φ1, . . . , φm} is equivalent to a finite set of
linear subsequence constraints involving subsequences of length ≤ ml.

Proof. Using standard methods from algebraic geometry, one can find polynomials
p1, . . . , pN of degree at most m, such that

{φ1, . . . , φm} = {φ ∈ R : pi(φ) = 0 for all i}.

As before, by Theorem 2, there is an equivalent linear subsequence invariant for each
of the conditions pi(|w|U ) = 0, involving subsequences no longer than deg(pi)l ≤ ml.

⊓⊔

4 Computing Subsequence Invariants

In this section, we present two algorithms for computing the subsequence invariants
of a given finite automaton P = (Q,A, q0, T ) with respect to a finite, prefix-closed
set U ⊂ A∗ of subsequences. The first algorithm is generally applicable. The second
algorithm is a more efficient solution that is applicable if the state graph is strongly
connected.

4.1 The general algorithm

The subsequence invariants are computed using matrices Fa representing the effect
of appending a ∈ A, which are defined by

Fa = (fu,v)u,v∈U : fu,v =

{

1 if u ∈ {v, v.a},

0 otherwise.
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Data: Automaton P = (Q,A, q0, T ), finite prefix-closed U ⊂ A∗

Result: Bases Bq for the subspaces Hq = span(|w|U : w ∈ L(q))
// Initialization:

foreach q ∈ Q do Bq := ∅;
// Bq0 initially contains {|ǫ|U}

Bq0 := {(1, 0, . . . , 0)T };
// The open list, containing pairs (q, φ) to be explored

O := {(q0, (1, 0, . . . , 0)T )};
// Basis construction:

while O 6= ∅ do
take (q, φ) from O;
foreach q

a
→ r do

ψ := Faφ;
begin reduce ψ with Br:

foreach η ∈ Br do
v := min{u ∈ U : ηu 6= 0};
ψ := ψ − (ψv/ηv)η;

end
if ψ 6= 0 then

Br := Br ∪ {ψ};
O := O ∪ {(r, ψ)};

Fig. 2. Fixpoint iteration computing the subspaces Hq.

For example, for U = {ǫ, a, b, aa, ab, ba, bb},

|w.a|U =







1 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 1






|w|U , |w.b|U =







1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 1






|w|U .

These matrices are easily seen to be unit lower triangular matrices (recall that U is
ordered by <llex) and thus have determinant 1; their inverses are

F−1
a = (bu,v)u,v∈U : bu,v =

{

(−1)k if u = v.ak, k ≥ 0,

0 otherwise.

To compute the invariants, we determine, for all q ∈ Q, a basis of the subspace
Hq = span({|w|U : w ∈ L(q)}), using the fixpoint iteration shown in Figure 2.

Theorem 4. 1. The sets Bq computed by the fixpoint iteration shown in Figure 2
are bases for the vector spaces Hq spanned by {|w|U : w ∈ L(q)}.

2. When called for an automaton P = (Q,A, q0, T ) with ‖T ‖ = m and U ⊂ A∗

with ‖U‖ = n, the fixpoint iteration terminates in time O(mn3).

Proof. 1. Note first that the elements of Bq are linearly independent. This is
achieved by the reduction step; if a vector ψ is a linear combination of the
elements of Bq found so far, it will be reduced to 0 and discarded.
We can prove inductively that all elements of the Bq are linear combinations of
the vectors {|w|U : w ∈ L(q)}:
– Initially, the only element of any Bq is (1, 0, . . . , 0)T = |ǫ|U ∈ Bq0 . This

fulfills the condition, since ǫ ∈ L(q0).

– Let ψ = Faφ be generated from a vector φ ∈ Bq, for a transition q
a
→ r.

By the induction hypothesis, φ = λ1|w1|U + · · ·+ λk|wk|U for some λi ∈ R

and wi ∈ L(q). But then ψ = Faφ = λ1Fa|w1|U + · · · + λkFa|wk|U =
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λ1|w1.a|U + · · ·+λk|wk.a|U ∈ Hr, since wi.a ∈ L(r). The reduction with the
existing elements of Br, which are also in Hr by the induction hypothesis,
does not change this.

Assume now that there are r ∈ Q and w ∈ L(r) such that |w|U is not in
span(Br). Obviously, w 6= ǫ, since the only r with ǫ ∈ L(r) is q0, and Bq0 is
initialized such that it contains |ǫ|U .
So we have w = v.a for some v ∈ A∗ and a ∈ A, and there is a q ∈ Q satisfying
v ∈ L(q) and q

a
→ r.

We can assume without loss of generality that r, w were picked such that w
is a minimal unrepresented word, in the sense that the vector |v|U associated
to its prefix v is in span(Bp) for all p ∈ Q with v ∈ L(p). But then we have
that |v|U = λ1φ

1 + · · ·+ λkφ
k, where Bq = {φ1, . . . , φk}, and therefore |w|U =

Fa|v|U = λ1Faφ
1 + · · · + λkFaφ

k. Each of the vectors Faφ
i is generated in the

course of the algorithm, and only discarded if it is linearly dependent of the
existing elements of Br; in particular, all Faφ

i, and therefore also |w|U , are in
the space spanned by Br, a contradiction.

2. Obviously, the time used by the initialization is trivial, and the relevant part of
the algorithm is the while loop.
Observe that each transition q

a
→ r is used for computation of a vector ψ = Faφ

exactly once for every basis element φ ∈ Bq, i.e., dimHq ≤ n times. This gives
a total of O(mn) iterations, each with

– a matrix-vector multiplication; the special form of the Fa allows this to be
done in time O(n) - basically, for each u ∈ U , ψu = φu or ψu = φu + φv,
where u = v.a,

– a reduction of the vector ψ, using the ≤ n vectors already in Br, with a
time complexity of O(n2).

The reduction is the dominant step here, resulting in the overall complexity of
O(mn3).

⊓⊔

4.2 An optimized algorithm for strongly-connected automata

If P is strongly connected, i.e., there is a path from q to r for all locations q, r ∈
Q, we can improve the construction of the invariants. For w = w1 . . . wn such
that q

w
→ r, the composition Fw = Fwn

. . . Fw1
is an isomorphism from Hq to its

image Fw(Hq) ⊆ Hr, implying in particular dim(Hq) ≤ dim(Hr). In the strongly
connected case, this implies dim(Hq) = dim(Hr) for all q, r, and Hr = Fw(Hq), i.e.,

Fw is an isomorphism from Hq to Hr when q
w
→ r.

The local fixpoint iteration shown in Figure 3 exploits this observation by finding
isomorphisms Mq : Hq0 → Hq for all q ∈ Q as well as a set C of automorphisms
of Hq0 corresponding to a cycle basis of the automaton. The matrices Ci ∈ C are
then used to compute a basis of Hq0 . For all other q ∈ Q, Hq is obtained via Mq.
The main advantage of this algorithm is the lower number of reduction steps if the
cycle degree ‖T ‖ − ‖Q‖+ 1 of P is small:

Theorem 5. 1. The set Bq0 computed by the local fixpoint iteration shown in
Figure 3 forms a basis of Hq0 .

2. When called for an automaton P = (Q,A, q0, T ) with ‖T ‖ = m and cycle degree
γ := ‖T ‖ − ‖Q‖ + 1, and U ⊂ A∗ with ‖U‖ = n, the local fixpoint iteration
terminates in time O(mn2 + γn3).

Proof. 1. As in the general algorithm, reduction of each candidate vector ψ with
the existing elements of Bq0 keeps Bq0 linearly independent.
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Data: Automaton P = (Q,A, q0, T ), finite prefix-closed U ⊂ A∗

Result: Bases Bq for the subspaces Hq = span(|w|U : w ∈ L(q))
// Initialization:

Mq0 := IC := ∅;
O := {q0};
// Exploration:

while O 6= ∅ do
take q from O;
foreach q

a
→ r do

N := FaMq ;
if Mr not yet defined then

define Mr := N ;
O := O ∪ {r};

else if Mr 6= N then
C := C ∪ {M−1

r N};

// Basis construction:

Bq0 := {(1, 0, . . . , 0)};
O := {(1, 0, . . . , 0)};
while O 6= ∅ do

take φ from O; foreach M ∈ C do
ψ := Mφ;
begin reduce ψ with Bq0 :

foreach η ∈ Bq0 do
v := min{u ∈ U : ηu 6= 0};
ψ := ψ − (ψv/ηv)η;

end
if ψ 6= 0 then

Bq0 := Bq0 ∪ {ψ};
O := O ∪ {ψ};

foreach q ∈ Q \ {q0} do
Bq := {Mqφ : φ ∈ Bq0}

Fig. 3. Local fixpoint iteration computing the subspaces Hq.

The proof for Bq0 ⊂ Hq0 relies on the above observation that in the strongly

connected case, Fa is an isomorphism from Hq to Hr for all q
a
→ r. The initial

element (1, 0, . . . , 0)T = |ǫ|U is again obviously in Hq0 .

Assume ψ = Ciφ is obtained by the fixpoint iteration, where φ ∈ Hq0 . By

construction, Ci = M−1
r FaMq for some q, r ∈ Q with q

a
→ r. Ci is a composition

of isomorphisms and thus an automorphism of Hq0 , such that Mφ ∈ Hq0 .

Now, let w = w1 . . . wl ∈ L(q0), which implies that there is a path q0 =

q0
w1→ q1 · · · ql−1

wl→ ql = q0. For each step qi−1
wi→ qi, define a matrix

Ni := M−1
qi
Fwi

Mqi−1
. Each of these matrices will equal either the identity (if

qi−1
wi→ qi was used to define Mqi

during the exploration) or an element Ci ∈ C.

Now,

|w|U = Fwl
· · ·Fw1

|ǫ|U

= M−1
ql
Fwl

Mql−1
M−1

ql−1
Fwl−1

Mql−2
· · ·Mq1

M−1
q1
Fw1

Mq0

(since Mql
= Mq0

= Mq0 = I and all the Mqi
M−1

qi
cancel)

= Nl · · ·N1|ǫ|U ,
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Fig. 4. Example for the local fixpoint construction.

and it suffices to prove that ψi := Ni · · ·N1|ǫ|U ∈ span(Bq0) for i = 0, . . . , l.
But by construction, Bq0 contains |ǫ|U , and the fixpoint iteration ensures Ciφ ∈
span(Bq0) for all φ ∈ span(Bq0) and Ci ∈ C.

2. The algorithm has two main parts:

– The computation of the matrices Mq and Ci ∈ C:

The operations involved are a matrix-matrix multiplication for each q
a
→ r,

which only takes time O(n2) due to the special form of the Fa, and a matrix
inversion and matrix-matrix multiplication (both feasible in time O(n3)1)
for each cycle.

– The fixpoint iteration: for each of the dimHq0 ≤ n basis vectors and each
of the γ cycle matrices, this requires the computation of a Matrix-vector
product and a reduction with the existing elements of Bq0 , each feasible in
time O(n2).

Altogether, this results in the complexity O(mn2 + γn3).

⊓⊔

Example: Consider the automaton in Figure 4. Using U = {ǫ, a, b, c, aa, ab, ac, ba,
bb, bc, ca, cb, cc}, we compute Bq0 as follows:

1. Initialization: Mq0 = I, C = ∅, B = {φ0}, where φ0 = (1, 0, . . . , 0);
2. Exploration:

q0
a
→ q1 : Mq1 = Fa;

q0
c
→ q2 : Mq2 = Fc;

q1
b
→ q2 : add C1 = F−1

c FbFa to C;

q2
b
→ q3 : Mq3 = FbFc;

q3
c
→ q0 : add C2 = FcFbFc to C;

C1 and C2 correspond to the two basic undirected cycles q0
a
→ q1

b
→ q2

c
← q0

and q0
c
→ q2

b
→ q3

c
→ q0.

1 Algorithms with lower complexity exist, such as the Coppersmith-Winograd algorithm
with asymptotic complexity O(n2.376). n needs to be rather large for these benefits to
manifest, though.
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3. Basis construction: Successively extending B by reducing and adding L1φ
0,

L2φ
0, L2

1φ
0, L2L1φ

0, L1L2φ
0, L2

2φ
0, we obtain basis vectors

φ0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,
φ1 = (0, 1, 0, −3, 0, 0, −3, 0, 0, −2, 0, 2, 6)T ,
φ2 = (0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1)T ,
φ3 = (0, 0, 0, 0, 1, 0, −3, 0, 0, 0, −3, 0, 9)T ,
φ4 = (0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, −3, −6)T ,
φ5 = (0, 0, 0, 0, 0, 0, 0, 1, 0, −3, 2, 0, −6)T ,
φ6 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 4)T .

All further products Liφ
j reduce to 0.

4. Local invariant generation: Computing the orthogonal complement, we obtain
the following basis for Iq0 :

ψ1 = (0, 3, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,
ψ2 = (0, 3, 0, 0, 3, −2, 1, 0, 0, 0, 0, 0, 0)T ,
ψ3 = (0, 2, −1, 0, 0, 0, 0, 3, −2, 1, 0, 0, 0)T ,
ψ4 = (0, 0, 0, 0, 3, 0, 0, −2, 0, 0, 1, 0, 0)T ,
ψ5 = (0, −2, −1, 0, 0, 3, 0, 0, −2, 0, 0, 1, 0)T ,
ψ6 = (0, −6, −1, 0, −9, 6, 0, 6, −4, 0, 0, 0, 1)T .

For example, ψ1 represents the invariant 3|w|a−2|w|b+|w|c = 0, ψ2 the invariant
3|w|a + 3|w|aa − 2|w|ab + |w|ac = 0.

5. Global invariant generation: Adding the vectors Mqφ
i to B and computing the

orthogonal complement, we obtain the single global invariant 3|w|aa − 2|w|ba +
|w|ca = 0.

5 From Process to System Invariants

A key advantage of subsequence invariants is that invariants that have been com-
puted for an individual automaton are immediately inherited by the full system and
can therefore by composed by simple conjunction.

Theorem 6. Let S = {P1, . . . , Pn} be a system of communicating finite automata.
If

∑

u∈U φu|w|u = 0 is a global subsequence invariant for Pi over U ⊂ A∗
i , then

∑

u∈U φu|w|u = 0 also holds for all w ∈ L(S).

Proof. If w ∈ A∗, a ∈ A \AP and u ∈ U ⊂ A∗
P , then obviously |w.a|u = |w|u, and

therefore, by induction, |w|u = |w ↓AP
|u for all w ∈ A∗. Since w ↓AP

∈ L(P ) for
w ∈ L(S), this implies

∑

u∈U φu|w|u = 0 for all w ∈ L(S). ⊓⊔

The system S may satisfy additional invariants, not covered by Theorem 6, that
refer to interleavings of sequences from A∗

i with sequences from a different A∗
j . In

the following, we present two methods for obtaining such additional invariants.

5.1 System invariants obtained by projection

The first approach works similarly to the resolution of conditions in the Section 3.
It uses the fact that given any subsequence invariant for S, we can obtain a new
subsequence invariant by appending the same symbol to all involved subsequences:

Theorem 7. Let
∑

u∈U φu|w|u = 0 for all w ∈ L(S), and a ∈ A. Then we also
have

∑

u∈U φu|w|u.a = 0 for all w ∈ L(S).
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Proof. We prove the theorem by induction over w. For w = ǫ, the property holds,
because ǫu.a = 0 for all u, a. Assume that

∑

u∈U φu|w|u.a = 0 holds for some w, and
let b ∈ A.

If b 6= a, then |w.b|u.a = |w|u.a for all u, and the claim follows immediately from
the induction hypothesis.

If b = a, we have |w.b|u.a = |w|u.a + |w|u for all u, and
∑

u∈U φu|w.b|u.a =
∑

u∈U φu|w|u.a +
∑

u∈U φu|w|u. The sum
∑

u∈U φu|w|u.a equals 0 by the induction
hypothesis, and

∑

u∈U φu|w|u equals 0 because of the original invariant. ⊓⊔

Example: Consider a system containing the automaton from Figure 4. From the
invariant (3|w|aa − 2|w|ba + |w|ca)|w|ad = 0 we obtain the new invariants 3|w|aad −
2|w|bad + |w|cad = 0, 3|w|aaad − 2|w|baad + |w|caad = 0, and 3|w|aada − 2|w|bada +
|w|cada = 0 by appending d, ad, and da, respectively.

5.2 System invariants obtained by algebraic dependencies

The equalities in Theorem 2 can be used to derive new invariants from a given set
of subsequence invariants:

Let
∑

u∈U φu|w|u = 0 for all w ∈ L(S), and v ∈ A∗. Then
obviously,

∑

u∈U φu|w|u|w|v is also zero; Using the equalities |w|u|w|v =
∑

x∈C(u,v) |x|u,v|w|x, this can be transformed into new linear subsequence invariants
∑

u∈U

∑

x∈C(u,v) φu|x|u,v|w|x = 0.

Example: Consider a system containing the automaton from Figure 4. It contributes
the invariant 3|w|aa − 2|w|ba + |w|ca = 0 for all w ∈ L(S). For v = ad, Theorem 2
provides the algebraic dependencies

|w|aa|w|ad = 2|w|aad + |w|ada + 3|w|aaad + 2|w|aada + |w|adaa,
|w|ba|w|ad = |w|bad + |w|abad + |w|abda + |w|adba + 2|w|baad + |w|bada,
|w|ca|w|ad = |w|cad + |w|acad + |w|acda + |w|adca + 2|w|caad + |w|cada,

which can be used to obtain from (3|w|aa − 2|w|ba + |w|ca)|w|ad = 0 the new sub-
sequence invariant 6|w|aad + 3|w|ada + 9|w|aaad + 6|w|aada + 3|w|adaa − 2|w|bad −
2|w|abad − 2|w|abda − 2|w|adba − 4|w|baad − 2|w|bada + |w|cad + |w|acad + |w|acda +
|w|adca + 2|w|caad + |w|cada = 0.

Using the invariants from the previous example, the new invariant reduces to
3|w|aad + 3|w|ada + 3|w|aaad + 3|w|aada + 3|w|adaa− 2|w|abad− 2|w|abda− 2|w|adba +
|w|acad + |w|acda + |w|adca = 0.

6 Incremental Invariant Generation

For the invariant generation algorithms of Section 4, we considered the set U of sub-
sequences as given and fixed. In practice, however, the set of subsequences depends
on the complexity of the interaction between the processes, and is therefore not
necessarily known in advance. In this section, we present an incremental method
that allows for growing sets of subsequences.

Let P = (QP ,AP , q
0
P , TP ) be an automaton and U ⊂ A∗ be finite and prefix-

closed. Let V = U ⊎ {v} again be prefix-closed, i.e. v = u.a for some u ∈ U, a ∈ A.

Theorem 8. Assume that for q ∈ QP and the set of subsequences U , a basis of the
space Hq,U = span(|w|U : w ∈ L(q)) has already been computed, consisting of the
vectors φ1, . . . , φk. Then either

1. Hq,V is spanned by vectors ψ1, . . . , ψk such that ψj
u = φj

u for all u ∈ U , or
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2. Hq,V is spanned by the vectors ψ1, . . . , ψk, η given by:

– ψj
u = φj

u for all u ∈ U , and ψj
v = 0;

– ηu = 0 for all u ∈ U , and ηv = 1.

Proof. For any w ∈ A∗, the orthogonal projection of |w|V = (|w|u)u∈V onto R
U

is just (|w|u)u∈U = |w|U ; since any ψ ∈ Hq,V is a linear combination of the form
ψ = µ1|w(1)|V + · · ·+µm|w(m)|V , this means that the projection of ψ onto R

U also
lies in Hq,U .

An immediate consequence of this is that the elements of Hq,V satisfy all lo-
cal invariants over U that hold for Hq,U , and its dimension is either dimHq,U or
dimHq,U + 1.

If dimHq,V = dimHq,U , then for each vector φ(j) =
∑m

i=1 λi|w(i)|U of the
existing basis for Hq,U , define the corresponding vector ψ(j) to be

∑m

i=1 λi|w(i)|V ;
then for all u ∈ U , ψu = φu. These form a basis of Hq,V and satisfy the conditions
in (1).

Note that the vector η given in (2) cannot be in Hq,V in this case: If it were, it
would have to be a linear combination of the ψ(j) in which at least one coefficient is
nonzero; but then its projection onto R

U , which is 0, would be a linear combination
of the φ(j) with the same coefficients, which is impossible since the φ(j) are linearly
independent.

If dimHq,V = dimHq,U + 1, then Hq,V must be the space of all vectors in R
V

satisfying the invariants in Iq,U . The vectors given in (2) form a linearly independent
(k + 1)-tuple of such vectors, and thus a basis of Hq,V . ⊓⊔

All invariants obtained for U remain valid; in the first case, we additionally
obtain a new invariant |w|v −

∑k

i=1(ψ
i
v/ψ

i
ui)|w|ui = 0, where ui = pivot(ψi) for all

i, while in the second case, the set of invariants is unchanged.

Example: Consider again the automaton in Figure 4. Starting with
the smaller set of subsequences U = {ǫ, a, b, c}, we obtain the basis
{(1, 0, 0, 0)T , (0, 1, 0,−3)T , (0, 0, 1, 2)T} for Hq0,U , along with the single local
invariant 3|w|a − 2|w|b + |w|c = 0 for q0. When U is extended to V = U ∪ {aa, ab}
by first adding aa and then ab, case (2) of Theorem 8 holds each time. Hq0,V

has the basis {(1, 0, 0, 0, 0, 0)T , (0, 1, 0,−3, 0, 0)T , (0, 0, 1, 2, 0, 0)T , (0, 0, 0, 0, 1, 0)T ,
(0, 0, 0, 0, 0, 1)T}. Extending V to W = V ∪{ac}, case (1) holds: Hq0,W has the basis
{(1, 0, 0, 0, 0, 0, 0)T , (0, 1, 0,−3, 0, 0,−3)T , (0, 0, 1, 2, 0, 0, 0)T , (0, 0, 0, 0, 1, 0,−3)T ,
(0, 0, 0, 0, 0, 1, 2)T}, and we obtain a new invariant, 3|w|a+3|w|aa−2|w|ab+|w|ac = 0.

We compute Hq,V incrementally from Hq,U as follows:

– for each basis vector φ, except for the initial unit vector |ǫ|U , we remember by
which multiplication Faψ it was obtained and how it was reduced; these steps
are repeated for the new index v.

– we also remember which successors Faψ are reduced to zero; when extending U
by v = u.a, where u ∈ U , we check for all such ψ whether the reductions result
in a nonzero vector, indicating that case (2) of Theorem 8 holds.

If case (2) holds for some location q, then the new basis vector η ofHq is invariant
under all Fa,V , because, by choice, v cannot be a prefix of another sequence in V .
Therefore, η is also contained in the subspace Hr for all locations r reachable from
q. The check for case (2) therefore only needs to be performed in one location of
each strongly connected component.

15



7 Conclusions and Future Work

We have introduced a new class of invariants, subsequence invariants, which are
linear equalities over the occurrences of sequences of synchronization events. Subse-
quence invariants are a natural specification language for the description of the flow
of synchronization events between different processes; basic equations over the num-
ber of occurrences of events as well their conditional and disjunctive combinations
can easily be expressed.

The key advantage of subsequence invariants is that they can be computed
individually for each process and compose by simple conjunction to invariants over
the full system. The synthesis algorithms in this paper provide efficient means to
obtain subsequence automatically from the process automata; they thus provide
the foundation for a verification method that proves global system properties from
locally obtained invariants.

A promising direction of future work is to extend the incremental invariant
generation method from Section 6 into a refinement loop that automatically com-
putes an appropriate set of subsequences. Also interesting is the idea of expanding
the class of invariants by considering linear inequalities over the variables |w|U .
Such an approach could make use of established techniques for linear transition
systems, combined with special properties of subsequence occurrences: for exam-
ple, Theorem 2 can be used to derive general, system-independent inequalities like
|w|aa − |w|a + |w|ǫ ≥ 0.
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