Causal Termination
of Multi-threaded Programs*

Andrey Kupriyanov and Bernd Finkbeiner

Universitat des Saarlandes, Saarbriicken, Germany

Abstract. We present a new model checking procedure for the termi-
nation analysis of multi-threaded programs. Current termination provers
scale badly in the number of threads; our new approach easily handles
100 threads on multi-threaded benchmarks like Producer-Consumer. In
our procedure, we characterize the existence of non-terminating execu-
tions as Mazurkiewicz-style concurrent traces and apply causality-based
transformation rules to refine them until a contradiction can be shown.
The termination proof is organized into a tableau, where the case splits
represent a novel type of modular reasoning according to different causal
explanations of a hypothetical error. We report on experimental results
obtained with a tool implementation of the new procedure, called Arctor,
on previously intractable multi-threaded benchmarks.

1 Introduction

One of the most exciting recent advances in computer-aided verification is the ex-
tension of CEGAR-based model checking to liveness properties. Counterexample-
guided abstraction refinement (CEGAR) [5] has been very successful in the ver-
ification of safety properties, where model checkers like Magic [4], ARMC [23],
and SLAB [10] can handle even complex multi-threaded programs. For quite
some time, the common belief was that CEGAR is limited to safety — until a
new generation of CEGAR-based model checkers, notably the termination check-
ers Terminator [6] and T2 [2,8], proved capable of verifying the termination of
difficult recursive functions, such as McCarthy’s 91 function [16], as well as of
reasonably complicated industrial software, such as device drivers. Unlike the
model checkers for safety, however, the termination provers have been targeted
to sequential programs only, and experiments show that they indeed scale badly
for multi-threaded programs.

In this paper, we present Arctor (Abstraction Refinement of Concurrent
Temporal Orderings), the first termination checker that scales to a large number
of concurrent threads. On typical multi-threaded programs such as the Producer-
Consumer benchmark shown in Fig. 1, where the CEGAR-based tools and, like-
wise, termination provers based on classic techniques for term rewrite systems,

* This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

Producer 1 Producer 2 Consumer 1 Consumer 2

while (p1>0) { while (p2>0) { while (true) { while (true) {
if (%) ql++; if (%) ql++; await(q1>0); await(q2>0);
else Q2++; else q2++; skip; //step 1 skip; //step 1
pl--; p2--; skip; //step 2 skip; //step 2
} } qt-=; 92--;
} }

az:q=q+1

c1:q1>0 c2 : true cs : true

a4:p'1:p171 c;;:q{:qlfl

Fig. 1. The Producer-Consumer benchmark, shown here for 2 producers and 2 con-
sumers (Top: pseudocode; Bottom: control flow graphs with labeled transitions for
Producer 1 and Consumer 1). The producer threads draw tasks from individual pools
and distribute them to nondeterministically chosen queues, each served by a dedicated
consumer thread; two steps are needed to process a task. The integer variables p;
and p2 model the number of tasks left in the pools of Producers 1 and 2, the integer
variables ¢1 and g2 model the number of tasks in the queues of Consumers 1 and 2.

such as AProVE [3,13], can handle no more than two threads, Arctor proves
termination for 100 threads in less than three minutes. Table 1 shows the ex-
perimental data for the Producer-Consumer benchmark, the full experimental
evaluation is presented in Section 7.

The CEGAR-based termination provers Terminator and T2 build on the
Ramsey-based approach, introduced by Podelski and Rybalchenko [21], which
searches for a termination argument in the form of a disjunction of wellfounded
relations. If the transitive closure of the transition relation is contained in the
union of these relations, we call the disjunction a transition invariant; Ramsey’s
theorem then implies that the transition relation is wellfounded as well. The
approach is attractive, because it is quite easy to find individual relations: one
can look at the available program statements and take any decreasing transitions
as hints for new relations. In the Producer-Consumer example, the termination
can be proved with the disjunction of the relations p| < p1, ph < p2, ¢; < q1,
and ¢4 < ¢2. The bottleneck of this approach is the containment check: with an
increasing number of relations it becomes very expensive to check the inclusion
of the transitive closure of the program transition relation in the transition
invariant.

Similar to the Ramsey-based approach, Arctor works with multiple well-
founded relations that are individually quite simple and therefore easy to dis-
cover. The key difference is that we avoid disjunctive combinations, which would
require us to analyze the transitive closure of the transition relation, and instead
combine the relations only either conjunctively or based on a case-split analysis.
Intuitively, our proof in the Producer-Consumer example makes a case distinc-
tion based on which thread might run forever. The case that Producer 1 runs

Terminator T2 AProVE Arctor

Threads Time(s)‘l\lem.(MB) Time(s)‘Mem.(MB) Time(s)‘l\rlem.(MB) Time(s)‘Mem.(MB)‘Vertices
1 3.37 26 2.42 38 3.17 237 0.002 2.3 6
2 1397 1394 3.25 44 6.79 523 0.002 2.6 11
3 X MO U(29.2) 253 U(26.6) 1439 0.002 2.6 21
10 X MO 73-TO X X MO 0.027 3.0 135
20 X MO 73-TO X X MO 0.30 4.2 470
60 X MO 73-TO X X MO 20.8 35 3810
100 X MO 73-TO X X MO 172 231 10350

Table 1. Running times of the termination provers Terminator, T2, AProVE, and
Arctor on the Producer-Consumer benchmark. MO stands for memout; the time spent
until memout was in all cases more than 1 hour. U indicates that the termination
prover returned “unknown”; Z3-TO indicates a timeout in the Z3 SMT solver.

forever is ruled out by the ranking function p;. Analogously, Producer 2 can-
not run forever because of the ranking function ps. To rule out that one of the
consumers, say Consumer 1, runs forever, we introduce the ranking function ¢,
which allows an infinite execution of the while loop in Consumer 1 only if the
while loop of Producer 1 or the while loop of Producer 2 also run forever, which
we have already ruled out with the ranking functions p; and p,. We discuss this
example in more detail in Section 3; the informal reasoning should already make
clear, however, that the case split has significantly simplified the proof: not only
is the termination argument for the individual cases simpler than a direct argu-
ment for the full program, the cases also support each other in the sense that the
termination argument from one case can be used to discharge the other cases.

Our termination checking algorithm is an extension of the causality-based
proof technique for safety properties from our previous work [15]. To prove a
safety property, we build a tableau of Mazurkiewicz-style concurrent traces, which
capture causal dependencies in the system. The root of the tableau is labeled by
a default initial trace, which expresses, by way of contradiction, the assumption
that there exists a computation from the initial to the error configuration of the
system. We then unwind the tableau by following proof rules that capture, step
by step, more dependencies; for example, the necessary action rule uses Craig
interpolation to find necessary intermediate transitions. We terminate as soon
as all branches are found to be contradictory.

In Arctor, we show termination with a similar proof by contradiction that
is also guided by the search for an erroneous computation. The difference to
the safety case is that, instead of assuming the existence of a computation that
leads to an error configuration, we start by assuming the existence of a non-
terminating execution, and then pursue the causal consequences that follow from
this assumption. In this way, we build a tableau of potentially non-terminating
traces. The discovery of a ranking function for the currently considered trace
may either close the branch, if the rank decreases along all transitions, or result
in one or more new traces, if the rank remains equal or increases along some
transitions: in this case, we conclude that the existence of an execution for the
current trace implies the existence of an execution for some other trace, in which
at least one of these transitions occurs infinitely often.

Related work. In addition to the approaches discussed above, there is a sub-
stantial body of techniques for automated termination proofs, in particular for
term rewrite systems. Many of these techniques, including simplification orders,
dependency pairs, and the size-change principle, are implemented in AProVE [3,
13]. Arctor is the first termination checker that is capable of handling multi-
threaded programs with a substantial number of threads. Arctor is based on
three key innovations: a novel notion of modular reasoning, a novel composition
of ranking functions, and a novel tableau construction based on causality. In
the following we point to related work in each of these areas. Modular reason-
ing. The case split in Arctor is a new type of modularity, where the verification
task is split according to different causal explanations of a hypothetical error.
Other termination provers apply different types of modular reasoning, such as
the traditional split according to threads [7], or a split according to ranking
functions, by eliminating, after each discovery of a new ranking function, those
computations from the program that can now be classified as terminating [12, 2].
Composition of ranking functions. Similar to the lexicographic combination of
ranking functions, constructed for example by T2 [2, 8], Arctor combines ranking
functions within a branch of the tableau conjunctively. The key difference is that
Arctor only imposes a partial order, not a linear order, on the individual ranking
functions: the same ranking function may be combined independently with mul-
tiple other ranking functions from further splits or previously discharged cases.
Causality-based tableauzr. Concurrent traces and the causality-based tableaux
are related to other partial-order methods, such as partial order reduction [14],
Mazurkiewicz traces [19], and Petri net theory [24]. As explained above, the
tableau construction in Arctor is based on our previous work on the causality-
based verification of safety properties [15].

2 Concurrent Traces

We begin by introducing concurrent traces, which are the basic objects that our
verification algorithm constructs and transforms. Concurrent traces capture the
dependencies in a transition system.

2.1 Transition Systems

We consider concurrent systems described in some first-order assertion language.
For a set of variables V, we denote by &(V) the set of first-order formulas over V.
For each variable # € V we define a primed variable 2’ € V', which denotes the
value of z in the next state. We call formulas from the sets ¢(V) and ¢(V U V')
state predicates and transition predicates, respectively.

A transition system is a tuple S = (V,T,init) where V is a finite set of
system variables; T C (V' UV’) is a finite set of system transitions; init € $(V)
is a state predicate, characterizing the initial system states. A fair transition
system is enriched with two sets of just and compassionate transitions J,C C T.

The requirement is that a just (compassionate) transition that is continuously
(infinitely often) enabled, should be infinitely often taken.

A state of S is a valuation of system variables V. We call an alternating
sequence of states and transitions sg, t1, $1,%2,... a run of S, if init(sg) holds,
and for all 4 > 1, t;(s;—1,s;) holds. We say that S is terminating if there does
not exist an infinite run; otherwise S is non-terminating. We denote the set of
runs by £(S), and the set of non-terminating runs by £,(S) C L(S).

Transition systems are well suited for the representation of multi-threaded
programs with interleaving semantics: the set of transitions of the system consists
of all the transitions of the individual threads.

2.2 Finite Concurrent Traces

Finite concurrent traces were introduced in our previous work on causality-based
proofs of safety properties [15].

A finite concurrent trace is a labeled, directed, acyclic graph A = (N, E, v,),
where (N, E) is a graph with nodes N, called actions, and edges F; v : N —
VUV, n: E— &V UV’) are labelings of nodes and edges with transition
predicates. The source and target functions s,¢ : £ — N map each edge to its
first and second component, respectively. We denote the set of finite concurrent
traces by A.

A concurrent trace describes a set of system runs. For a particular concurrent
trace its actions specify which transitions should necessarily occur in a run, while
its edges represent the (partial) ordering between such transitions and constrain
the transitions that occur in-between.

Trace language. For a transition system S = (V, T, init), the language of a
concurrent trace A = (N, E,v,n) is defined as a set L(A) of finite system runs
such that for each run sg,t1,$1,%2,...,tn,Sn € L(A) there exists an injective
mapping o : N — {t1,...,t,} such that:

1. for each action a € N and ¢; = o(a) the formula v(a)(s;_1,s;) holds.
2. for each edge e = (a1,a2) € E, and t; = o(a1), t; = o(az), we have that

a) i < j, and b) for all i < k < j, the formula n(e) (sk—1,) holds.

We call a concurrent trace A = (N, E,v,n) contradictory if any of its actions
is labeled with an unsatisfiable predicate, i.e. if there exists n € N such that
v(n) implies L. Obviously, the language of such a trace is empty.

Given two concurrent traces A = (N, E,v,n) and A’ = (N, E',v/,7'), a trace
morphism f: A — A'isapair f = (fy : N = N, fg : E — E’) of injective
mappings for nodes and edges of one trace to those of another, preserving sources
and targets: fy ot =1t o fg, and fy o s =5 o fg.

Trace inclusion. For any two concurrent traces A = (N, E,v,n) and A’ =
(N',E', V' ,n') we define the trace inclusion relation C as follows: A C A’ iff
there exists a trace morphism A = (Ay : N’ = N, Ag : E/ — E) such that for
alln’ € N .v(An(n')) = V' (n), and for all ¢ € E' . n(Ag(e')) = n'(¢).

We write AC, A’ if trace inclusion holds for a particular trace morphism .

Proposition 1 ([15]). For A, A’ € A, if A C A’ then L(A) C L(A").

2.3 Infinite Concurrent Traces

In order to reason about potentially non-terminating computations, we need infi-
nite traces. We define an infinite concurrent trace as a tuple I = (Ag, A¢, ¢s, dc)
where A,, A. are two finite concurrent traces, which we call the stem and the
cycle, and ¢4, ¢. are two transition predicates. They define the set of infinite
system runs in the following way: the stem should occur once in the beginning
of the run, while the cycle should occur infinitely often after the stem. Transi-
tion predicates ¢ and ¢, restrict the transitions that are allowed to appear in
the stem and cycle part of the run, respectively. We denote the set of infinite
concurrent traces by I, and in the following call them simply (concurrent) traces.

Trace language. For a transition system S = (V, T, init), the language of
an infinite concurrent trace I = (A;, A., ¢, dc) is defined as a set L(I) of infinite
system runs such that for each run sg, ¢, s1,t2,... € L(I) there exists an infinite
sequence of indices i1, i, . .. such that:

1. so,t1,...ti, 8 € L(As), and for all 0<j <iy the formula ¢ (sj_l, sj) holds.
2. for all k > 2 it holds that s;,_,,ti,_1+1,---tiy, i, € L(Ae), and for all
ir_1 <j <ip the formula gbc(sj,l, sj) holds.

Trace inclusion. We lift the trace inclusion relation to infinite concurrent
traces. For any two infinite concurrent traces I = (Ag, A., ds, ¢c) and I’ =
(AL, AL ¢., @L) we define the trace inclusion relation C as follows: I C I’ iff
there exists a pair of trace morphisms A = (\;, Ac), where Ay : AL — A and
Ae ¢ AL — A, written also A : I’ — I, such that A, Cy, A, A. Ci, AL,
¢s = ¢.,and . = ¢.. For a particular pair of trace morphisms A we write
also I Cy I'.

Proposition 2. For I,I' € I, if I C I’ then L(I) C L(I').

Graphical Notation. We show action identities in circles, and labeling
formulas in squares. We omit any of these parts when it is not important or
would create clutter in the current context. The cycle part of the trace is depicted
in round brackets, superscripted with w. The predicate ¢. is shown under the
edge, connecting opening and closing brackets.

3 Motivating Example

In the introduction, we gave an informal sketch of the termination proof for the
Producer-Consumer benchmark from Fig. 1. Using the concept of concurrent
traces from the previous section, we can now explain the termination argument
more formally.

Our analysis starts with the assumption (by way of contradiction) that there
exists some infinite run. The assumption is expressed as the concurrent trace at
Position 1 in Fig. 2: infinitely often some transition should occur. The transition
is so far unknown, and therefore characterized by the predicate T. Our argu-
ment proceeds by instantiating this unknown action with the transitions of the

W

Action Sp/ \Aciion Split
w w
2 (@) .. (@)
Necessary Action \\\\\ l Necessary Action

i (@=@)° b 0 (@a@——d)”

Terminating : p ,‘,y Terminating : q

! l Invariance Split

(@)

Invariance Split l .

(OO (0000
/ % lAction Split

€1 0

(WH ee)

P D2 u

I><I \ j’ Necessary Action
Q1 Q2 5
()
(a0 —>{(a—>(s0)

Fig. 2. Termination proof for the Producer-Consumer example. Bottom left: partially

ordered ranking function discovered in the analysis.

transition system, resulting in one new trace per transition. The Action Split
proof rule represents a case distinction, and we will need to discharge all cases.

For example, transition a; of Producer 1, gives us the trace shown in Position
2. A consequence of the decision that a; occurs infinitely often is that a4 must
also occur infinitely often: after the execution of a;, the program counter of
producer 1 equals 2, and the precondition for the execution of a; is that it is equal
to 1. The only transition, that can achieve that goal, is a4 (here we oversimplify to
make the presentation clearer; in the algorithm we derive the necessity of action
a4 by an interpolation-based local safety analysis). The requirement that both aq
and a4 occur infinitely often is expressed as the trace in Position 3, obtained from
the trace in Position 1 by the Necessary Action proof rule. The edge between a
and a4 specifies an ordering between the two transitions; between them, there
may be an arbitrary number of other transitions. The trace in Position 3 is
terminating: p; is decreased infinitely often and is bounded from below; it is
therefore a ranking function. The only remaining situation in which an infinite
run might exist is if some transition increases p1, i.e., that satisfies the predicate

P} > p1, is executed infinitely often. This situation is expressed by the trace in
Position 4, obtained by the application of the Invariance Split proof rule. Since
there is no transition in the program transition relation that satisfies pj > pi,
we arrive at a contradiction.

Let us explore another instantiation of the unknown action in the trace at
Position 1, this time with transition c¢; of Consumer 1: we obtain the trace
of Position 5. Again, exploring causal consequences, local safety analysis gives
us that actions ca, c3, and ¢4 should also occur infinitely often in the trace:
we insert them, and get the trace at Position 6. Termination analysis for that
trace gives us the ranking function g¢;: it is bounded from below by action c¢;
and decreased by action ¢4. Again, we conclude that the action increasing ¢;
should occur infinitely often, and introduce it in the trace of Position 7. Next,
we try all possible instantiations of the action characterized by the predicate
q, > qi: there are two transitions that satisfy the predicate, namely as and
by. We explore the instantiation with as in the trace at Position 8; for by, the
reasoning proceeds similarly. The local safety analysis allows us to conclude that,
besides ag, transitions a; and a4 should occur infinitely often (Position 9). At
this point, we realize that the trace at Position 9 contains as a subgraph the trace
at Position 2, namely the transition a;. We can conclude, without repeating the
analysis done at Positions 2—4, that there is no infinite run corresponding to the
trace at Position 9.

We call the graph of traces corresponding to this analysis the causal trace
tableau. The tableau for the Producer-Consumer benchmark is (partially) shown
in Fig. 2. The analysis can also be understood as the construction of a partially-
ordered composition of ranking functions; the final ranking for the Producer-
Consumer example is shown at the bottom left of Fig. 2.

We study causal trace tableaux in more detail in the following Section 4. The
proof rules driving the analysis are presented in Section 5.

4 Causal Trace Tableaux

We prove termination by constructing a graph labeled by concurrent traces. We
call such graphs causal trace tableauzx.

4.1 Initial Abstraction

At the root of the tableau, we start with a single infinite concurrent trace,
containing two actions: the initial action ¢ in the stem part, marked with init’,
and the infinitely repeating action w in the cycle part, marked with T. The
marking ensures that all possible non-terminating system traces are preserved.
Initial Abstraction. For a transition system & = (V,T,init) we define
InitialAbstraction(S) as an infinite concurrent trace I = (Ag, A., ¢s, ¢c), where
— Ay = (Ns, Es,vs,m5), and N = {i}, E =0, v = {(i,init")}, n = 0.
- A= <NcaEcaVca776>a and N = {U}}, E = @, V= {(wa T)}7 n= 0.
— ps=¢p.=T.

Proposition 3. £, (S) C L(InitialAbstraction(S)).

4.2 Causal Transitions

The children of a node in the tableau are labeled with traces that refine the trace
of the parent node. We call the rules that construct the children traces from the
parent trace causal transitions. Technically, causal transitions are special graph
morphisms, as described below.

We follow [9,11] and use the so-called single-pushout (SPO) and double-
pushout (DPO) approaches to describe graph transformations. All graph trans-
formations that we use are non-erasing and lie at the intersection of both ap-
proaches.

Trace Productions. A finite trace production p : (L = R) is a trace mor-
phism r : L — R, where L, R € A are finite concurrent traces. The traces L and
R are called the left-hand side and the right-hand side of p, respectively. A given
production p : (L 5 R) can be applied to a trace A if there is an occurrence of
L in A, i.e. a trace morphism X : L — A, called a match. The resulting trace A’
can be obtained from A by adding all elements of R with no pre-image in L.

An infinite trace production p : (L < R) where L, R € I are infinite concur-
rent traces and r = (rg,r.) is a pair of trace morphisms, describes a transfor-
mation of trace L into trace R as a composition of two finite trace productions.
In the following we denote the set of infinite trace productions by II, and call
them simply trace productions. We denote the result of the application of a trace
production p to a trace I under a pair of morphisms A = (A, A.) by p*(I).

Causal Transitions. For the purpose of system analysis we use special trace
productions; we call them causal transitions. For a given transition system S,
a causal transition T : {T1,...,T,} is a set of trace productions 7; : (L =% R;),
where all productions share the same left-hand side L; we will denote L by 7,
and call transition premise. We say that a causal transition 7 is sound if the
condition below holds:

VIel.IC\1q = L) C | L7} D))

T, ET

4.3 Causal Trace Tableaux

Causal Trace Tableau. For a transition system S, we define a (causal) trace
tableau as a tuple T = (V, F\,v,d,~+, \), where:

— (V,F) is a directed forest with vertices V' and edges F'. Vertices are parti-
tioned into internal vertices and leaves: V = VywVy, Vy = {v € V |3(v,?’) €
FY, Vi ={veV|Pw,) e F}

— v :V — 1 is a labeling of vertices with concurrent traces.

— 6§ : F — II is a labeling of edges with trace productions. We require that
for all edges with the same source v, the labeling productions have the same
left-hand side. Thus, we have an induced labeling of internal vertices v € Vi
with causal transitions: §(v) = {6((v,v"))]| (v,v") € F}.

— ~: VI, + Vy is a partial covering function; for (v,v’) € ~~ we call v a covered
vertex, and v’ a covering vertex.

— M\ is a labeling of internal or covered vertices with trace morphisms:
Yo € Vi . A(v) : 6(v) g — vy(v); for all (v,v") € ~ . A(v) : y(v') = v(v).
We call a trace tableau " = (V, F,~,d,~>, \) complete if all its leaf vertices are
either contradictory or covered. A trace tableau is said to be correct if:

1. Jv € V. InitialAbstraction(S) C v(v).
2. for all v € Viy we have that a) d(v) is sound, b) v(v) Cx@) 6(v)4, and c) for

all (v,v") € F it holds that 5((1},1}’)))\(”) (v(v)) S ().

3. for all (v,v’) € ~ we have y(v) Cy) Y(v") and (v',v) & (FU ~)*.

A trace tableau is a forest, which can be seen as an unwinding of the system
causality relation from some set of initial vertices. The label v(v) of the vertex v
represents all possible infinite runs for that vertex. The first correctness condition
requires that a tableau contains all non-terminating system runs. The second
one guarantees the applicability of the causal transition §(v) of a vertex v to its
label ~v(v) and the full exploration of the causal transition consequences, thus
preserving the set of system runs. Indeed, we have:

Y(0) Cay 80 = L) € | L6(w,)V () € | £(0)

(v,v")EF (v,v")eF

The last correctness condition ensures that we can apply at the covered
vertex all the causal transitions in the subtree originating from the covering
vertex; additionally, it guarantees that the resulting tableau is acyclic.

5 Proof Rules for Termination

We now present the causal transitions needed for proving termination. We omit
the proof rules for safety properties presented in [15], which can be applied to the
stem part of a concurrent trace without any changes. The infinity-specific causal
transitions are illustrated in Fig. 3; some have so called application conditions,
showed to the right of the causal transition name.

Basic rules. These are the most important causal transitions, sufficient for
the approach completeness in the case of an unconditionally terminating system.

Action Split, given some action a in the cycle part of a trace, and a transition
predicate 1, considers two alternatives: either a satisfies 1) or = infinitely often.

Invariance Split makes a case distinction about the program behavior at
infinity: for a predicate ¢ either all the actions in the cycle part satisfy it, or
a violating action should happen infinitely often. We exploit the rule when we
introduce new actions based on the ranking function: in that case the first branch
is terminating, and we may consider only the second one. But, in general, the
rule is useful without the a priori knowledge of a ranking function: it considers
two cases, where each one is easier to reason about individually.

Local safety rules. The rules in this category make the approach efficient
for the case we cannot find a perfect ranking function in one step.

Necessary Action is applied when there are two ordered actions a and b in the
cycle part of a concurrent trace, and a transition predicate ¢, such that the label

10

Basic Rules

L Ry R» L Ry R»

= (o) (@] ()=) (&)

Action Split Invariance Split: Az € G . sat(n(z) A—¢)

Local Safety Rules

L R L Ry R2
(o-%91) |~ (2195559 (@ of]~[@-0]](l0-al]
Necessary action: fy . (y || a—b V y—a V b—y) Order Split: a || b
Asat(n(y) A=¢ A ¢')
Unrolling Rules
L R L R
(oo | = omofe (o] =] oo
Cycle-to-Stem Unrolling
Fairness Rules
L R L R
(o (e8] (i)~ r
En(a) En(a) @
Justice: fa € G Compassion: oG

Fig. 3. Proof rules for termination. Action identities are arbitrary, and used to show
the context preserved by the application of a causal transition. G stands for the rest
of the trace besides the depicted parts.

of a implies ¢, and the label of b implies ¢/, i.e. there is a contradiction between
these actions (b “ends” in the region —¢, while a “starts” in the region ¢). Given
the repetitive character of the trace, we have that a should follow b again; the
causal transition introduces a new “bridging” action x in between. Actions a
and b can be the same single action, where the precondition contradicts the
postcondition. The predicate ¢ may be obtained by Craig interpolation between
the labels of b and a. The application condition for this causal transition ensures
that there is no other action y in the trace already that could play the role of x.

Order Split considers alternative interleavings of two previously concurrent
events. Either one or another ordering should happen infinitely often.

11

Unrolling rules use the infinite repetition of the cycle part of a trace.

Cycle-to-Stem causal transition allows us to shift the cycle part G5 into the
stem part G1, thus going from the reasoning at infinity to the safety reasoning.
This rule is need for the completeness of conditional termination.

Unrolling exploits the infinite repetition: we can unroll the complete graph
G of the cycle part, and the unrolled version should still repeat infinitely often.

Fairness rules allow for the direct account of two well-known concurrent
phenomena: weak and strong fairness (or justice and compassion) [17,18].

Justice causal transition allows to introduce a just transition a in the cycle
part of a trace in case it is continuously enabled and never taken.

Compassion causal transition states that a compassionate transition a which
is infinitely often enabled should be also infinitely often taken.

Proposition 4. The defined above causal transitions are sound.

The following lemma is applied in the combination with the invariance split
causal transition: in case a ranking function can be found for the cycle part of a
concurrent trace, it allows to discard the left branch of the result.

Lemma 1. Assume that a set S is well-ordered by a relation <. If, for an infinite
sequence s1, Sa, ... of elements from S, for an infinite number of pairs (s;, $i+1)
it holds that s; > si41, then there exists an infinite number of pairs (sj,sj+1)
such that s; < s;41.

6 The Termination Analysis Algorithm

Our termination analysis algorithm (see Algorithm 1) operates on the causal
trace tableau defined above. We start with the single vertex in the tableau,
labeled with InitialAbstraction(S). At each iteration of the algorithm main loop
we select some vertex v from the queue @ of unexplored tableau leaves, and
analyze only the cycle part of its label. First, we try to cover v by some other
vertex v’: this can be done if the trace of v is included in the trace of v’ (thus,
all causal transitions at v’ subtree can be repeated). Moreover, we require that
the covering does not create any loops, and the resulting tableau is acyclic.

If the covering attempt was unsuccessful, we unroll and linearize the cyclic
part of the v’s label. The unrolling is necessary in order to detect possible con-
flicts between iterations of the cycle. If the linear trace L is unconcretizable - we
apply the local safety refinement to the cyclic trace: this includes such causal
transitions as order split and necessary action. The refinement procedure is es-
sentially the same as in [15], so we do not repeat it here. After the refinement
step, we put the newly created children of v into the queue and proceed.

On the contrary, if the unrolled cycle is concretizable, we check it for termi-
nation; any ranking function synthesis algorithm such as [1,22] can be used for
that purpose. If we have found a ranking function for the cycle - we apply the
invariance split causal transition and Lemma 1. As a result, we introduce into

12

Algorithm 1: Causality-based Termination Analysis

Input : Transition system S = (V, T, init)
Output: terminating/termination unknown
Data: Termination tableau 1" = (V, F,~,d,~+, A), queue Q C Vy,
Safety tableau Ys = (Vs, Fs, s, 0s, ~s, As), queue Qs C Vi
begin
set V «— {wo}, v(vo) — InitialAbstraction(S), @ «— {vo}
set all of {F, 8, ~, A\, Vs, Fis,vs,0s,~s, As} — 0
while @ not empty do
take some v from @
if 3v' € Vy and X 1 y(v') = y(v) .
v(v) Ca ¥(v") and v is not reachable from v’ by F'U ~ then
add (v,v') to ~
set A(v) «+— X
else
set L «— Linearize(Unroll(y(v)))
if Unconcretizable(L) then
‘ LocalSafetyRefine(v, L)
else if Terminating(L) then
| InvarianceSplit(v, L)
else
L put CycleToStem(v) into Vi and Qs

| put children of v into @

| return SafetyAnalysis(Ys, Q)

the cycle all possible system transitions able to “repair” it: preserve its infinite
repetition despite the existence of a ranking function.

Finally, if the cycle is both concretizable and no ranking function can be
found for it, the termination part of our algorithm gives up and transfers the
analyzed trace to the safety part of the algorithm. For that purpose we con-
catenate the stem and the cycle into the finite concurrent trace, and put the
resulting vertex into the safety tableau for processing. Thus, the safety tableau
is the forest that originates from the vertices of the termination tableau for which
no termination argument can be found. We apply the method of [15] to analyze
it. If all the leaves of the safety tableau are found to be unreachable, we mark
the corresponding leaves of the termination tableau as contradictory, and report
the program as terminating; otherwise we report a possibly non-terminating ex-
ecution. The following theorems show that the proposed approach is sound and
relatively complete for the program termination analysis.

Theorem 1 (Soundness). If there exists a correct and complete causal trace
tableau for a transition system S, then S is terminating.

Theorem 2 (Relative Completeness). If a transition system S is terminat-
ing, then a correct and complete causal trace tableau for S can be constructed,
provided that all necessary first-order formulas are given.

13

| Terminator | T2 | AProVE | Arctor |
Benchmark HTime(s) ‘Mem. (MB) HTime(s) ‘ Mem.(MB) ‘ ‘ Time(s) ‘Mem. (MB) HTime(s) ‘ Mem.(MB) ‘Vertices‘

Chain 2 0.65 20 0.52 20 1.58 131 0.002 2.0 3

Chain 4 1.45 25 0.54 22 2.13 153 0.002 2.2 7

Chain 6 24.4 57 0.58 24 2.58 171 0.002 2.5 11
Chain 8 X MO 0.63 26 3.48 210 0.002 2.5 15
Chain 20 X MO 2.36 55 16.5 941 0.007 2.5 39
Chain 40 x MO 40.5 288 536 1237 0.023 2.8 79
Chain 60 X MO Z3-TO X X MO 0.063 3.0 119
Chain 100 x MO 73-TO X X MO 0.320 3.9 199
Phase 1 X MO U(4.53) 48 1.60 132 0.002 2.4 7

Phase 2 X MO U(4.53) 48 2.16 144 0.002 2.4 7

Phase 3 X MO U(30.6) 301 3.83 199 0.002 2.5 16
Phase 8 x MO X MO 47.0 1506 0.003 2.6 61
Phase 10 X MO X MO X MO 0.012 2.7 79
Phase 20 x MO X MO x MO 0.061 3.3 169
Phase 60 X MO X MO X MO 1.18 4.2 529
Phase 100 X MO X MO X MO 7.38 6.1 889
Semaphore 1 3.05 26 2.81 46 3.22 230 0.002 2.6 8

Semaphore 2 622 691 U(20.7) 219 U(6.52) 465 0.002 2.6 16
Semaphore 3 X MO U(15.8) 239 U(10.42)| 1138 0.003 2.6 24
Semaphore 10 x MO U(83.5) 470 U(246) 1287 0.023 2.8 80
Semaphore 20 X MO X MO X MO 0.073 3.3 160
Semaphore 60 X MO X MO X MO 0.58 4.0 480
Semaphore 100 X MO X MO X MO 1.59 5.1 800

Table 2. Detailed experimental evaluation for the set of multi-threaded benchmarks.
MO stands for memout; the time spent until memout was in all cases more than 1
hour. U indicates that the termination prover returned “unknown”; Z3-TO indicates a
timeout in the Z3 SMT solver.

As the termination problem is, in general, undecidable, our approach has its
limitations. In particular, it heavily depends on the power of termination proving
techniques for simple loops such as [1,22], and on the methods for reachability
analysis. For the latter we apply our previous work [15], which is limited to
theories, supporting Craig interpolation.

7 Experimental Evaluation

We have implemented the termination analysis algorithm in a model checker
called Arctor!. The implementation consists of approximately 1500 lines of
Haskell code and can currently handle multi-threaded programs with arbitrary
control flow, finite data variables, and unbounded counters.

Table 2 shows experimental results obtained with the termination provers
Terminator, T2, AProVE, and Arctor on the benchmarks described below, ex-
cept for the results on the Producer-Consumer benchmark, which were discussed
already in the introduction (see Table 1). All experiments were performed on an
Intel Core i7 CPU running at 2.7 GHz.

Producer-Consumer. The Producer-Consumer benchmark from the intro-
duction (see Fig. 1) is a simplified model of the Map-Reduce architecture
from distributed processing: producers model the mapping step for separate

! available at http://www.react.uni-saarland.de/tools/arctor/

14

data sources, consumers model the reducing step for different types of input
data. The natural requirement for such an architecture is that the distributed
processing terminates for any finite amount of input data.

Chain. The Chain benchmark consists of a chain of n threads, where each
thread decreases its own counter z;, but the next thread in the chain can
counteract, and increase the counter of the previous thread. Only the last
thread in the chain terminates unconditionally.

Phase. The Phase benchmark is similar to the Chain benchmark, except that
now each thread can either increase or decrease its counter x;. Each such
phase change is, however, guarded by the next thread in the chain, which
limits the number of times the phase change can occur.

Semaphore. The Semaphore benchmark represents a model of a concurrent
system where access to a critical resource is guarded by semaphores. We
verify individual accessibility for a particular thread (i.e., the system with-
out the thread should terminate) under the assumption of a fair scheduler.
Since other tools do not support fairness, we have eliminated the fairness
assumption for all tools including Arctor using the transformation from [20],
which enriches each wait statement with a decreasing and bounded counter.

Arctor verifies all benchmarks efficiently, requiring little time and memory to
handle even 100 threads. We have also tried out our approach on more compli-
cated examples (available from the tool homepage), which represent models of
publicly available industrial programs. These include parallel executions of GNU
make, parallel computations in CUDA programs for GPUs, and Google’s imple-
mentation of the Map-Reduce architecture for its App Engine platform. While
other tools are not able to handle even two concurrent threads in these programs,
Arctor verifies programs with dozens of threads within several minutes.

8 Conclusion

We have presented a new model checking procedure for the termination analysis
of multi-threaded programs. The procedure has been implemented in Arctor, the
first termination prover that scales to a large number of concurrent threads. Our
approach is based on three key innovations: a novel notion of modular reasoning,
a novel composition of ranking functions, and a novel tableau construction based
on causality. With respect to the modular reasoning, the case split in Arctor is
a new, and very effective, type of modularity, where the verification task is split
according to different causal explanations of a hypothetical error. With respect to
the composition of ranking functions, Arctor combines ranking functions within
a branch of the tableau conjunctively, similar to the lexicographic combination in
T2, but Arctor only imposes a partial order, not a linear order, on the individual
ranking functions: the same ranking function may be combined independently
with multiple other ranking functions from further splits or previously discharged
cases. Finally, Arctor explores causal dependencies in a tableau of Mazurkiewicz-
style concurrent traces in order to systematically discover case splits and ranking
functions.

15

References

10.

11.

12.

13.

14.

15.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reach-
ability. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume 3576
of Lecture Notes in Computer Science, pages 491-504. Springer, 2005.

. Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination prov-

ing through cooperation. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of Lecture Notes in Computer Science, pages 413—-429. Springer, 2013.
Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jiirgen
Giesl. Alternating runtime and size complexity analysis of integer programs. In
TACAS, Lecture Notes in Computer Science. Springer, 2014. To appear.

S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient
verification of sequential and concurrent ¢ programs. Formal Methods in System
Design, 25(2-3):129-166, 2004.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E.Allen Emerson and Aravin-
daPrasad Sistla, editors, Computer Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 154-169. Springer Berlin Heidelberg, 2000.
Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. SIGPLAN Not., 41(6):415-426, June 2006.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving thread termi-
nation. ACM SIGPLAN Notices, 42(6):320, June 2007.

Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termina-
tion proving. In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795
of Lecture Notes in Computer Science, pages 47—61. Springer, 2013.

Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Lowe. Algebraic approaches to graph transformation - part i: Basic
concepts and double pushout approach. In Rozenberg [25], pages 163-246.

Klaus Dréger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike Wehrheim. Slab:
A certifying model checker for infinite-state concurrent systems. In Proceedings of
the 16th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science. Springer-Verlag,
2010.

Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Léwe, Leila Ribeiro, Annika
Wagner, and Andrea Corradini. Algebraic approaches to graph transformation -
part ii: Single pushout approach and comparison with double pushout approach.
In Rozenberg [25], pages 247-312.

Pierre Ganty and Samir Genaim. Proving Termination Starting from the End.
Computer Aided Verification, (10):397-412, 2013.

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Au-
tomated termination proofs with aprove. In Vincent van Oostrom, editor, RTA,
volume 3091 of Lecture Notes in Computer Science, pages 210-220. Springer, 2004.
Patrice Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem, volume 1032 of LNCS. Springer-Verlag
Inc., New York, NY, USA, 1996.

Andrey Kupriyanov and Bernd Finkbeiner. Causality-based verification of multi-
threaded programs. In Pedro R. D’Argenio and Herndn C. Melgratti, editors,
CONCUR, volume 8052 of Lecture Notes in Computer Science, pages 257-272.
Springer, 2013.

16

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Zohar Manna. Introduction to Mathematical Theory of Computation. McGraw-Hill,
Inc., New York, NY, USA, 1974.

Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: Re-
sponse. In Zohar Manna and Doron Peled, editors, Fssays in Memory of Amir
Pnueli, volume 6200 of Lecture Notes in Computer Science, pages 279-361.
Springer, 2010.

Antoni Mazurkiewicz. Concurrent program schemes and their interpretations.
Technical Report DAIMI PB 78, Aarhus University, 1977.

Ernst-Riidiger Olderog and Krzysztof R. Apt. Fairness in parallel programs: The
transformational approach. ACM Trans. Program. Lang. Syst., 10(3):420-455,
1988.

A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science, pages 32—41, July 2004.
Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis
of linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors, VM CAI,
volume 2937 of Lecture Notes in Computer Science, pages 239—-251. Springer, 2004.
Andreas Podelski and Andrey Rybalchenko. ARMC: The logical choice for software
model checking with abstraction refinement. In Michael Hanus, editor, Practical
Aspects of Declarative Languages, volume 4354 of Lecture Notes in Computer Sci-
ence, pages 245-259. Springer Berlin Heidelberg, 2007.

W. Reisig. Petri Nets — An Introduction. Springer, 1985.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

17

