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Abstract. We introduce EAHyper, the first tool for the automatic check-
ing of satisfiability, implication, and equivalence of hyperproperties. Hy-
perproperties are system properties that relate multiple computation
traces. A typical example is an information flow policy that compares
the observations made by an external observer on execution traces that
result from different values of a secret variable. EAHyper analyzes hyper-
properties that are specified in HyperLTL, a recently introduced exten-
sion of linear-time temporal logic (LTL). HyperLTL uses trace variables
and trace quantifiers to refer to multiple execution traces simultaneously.
Applications of EAHyper include the automatic detection of specifica-
tions that are inconsistent or vacuously true, as well as the comparison
of multiple formalizations of the same policy, such as different notions of
observational determinism.

1 Introduction

HyperLTL [3] is a recently introduced temporal logic for the specification of
hyperproperties [4]. HyperLTL characterizes the secrecy and integrity of a system
by comparing two or more execution traces. For example, we might express that
the contents of a variable is secret by specifying that an external observer makes
the same observations on all execution traces that result from different values
of the variable. Such a specification cannot be expressed as a standard trace
property, because it refers to multiple traces. The specification can, however, be
expressed as a hyperproperty, which is a set of sets of traces.

HyperLTL has been used to specify and verify the information flow in com-
munication protocols and web applications, the symmetric access to critical re-
sources in mutex protocols, and Hamming distances between code words in error
resistant codes [8, 9, 13]. The logic is already supported by both model check-
ing [8] and runtime verification [1] tools. In this paper, we present the first tool
for HyperLTL satisfiability. Our tool, which we call EAHyper, can be used to au-
tomatically detect specifications that are inconsistent or vacuously true, and to
check implication and equivalence between multiple formalizations of the same
requirement.

? This work was partially supported by the German Research Foundation (DFG) in
the Collaborative Research Center 1223 and by the Graduate School of Computer
Science at Saarland University.



HyperLTL extends linear-time temporal logic (LTL) with trace variables
and trace quantifiers. The requirement that the external observer makes the
same observations on all traces is, for example, expressed as the HyperLTL
formula ∀π.∀π′. G(Oπ = Oπ′), where O is the set of observable outputs. A
more general property is observational determinism [12, 14, 17], which requires
that a system appears deterministic to an observer who sees inputs I and out-
puts O. Observational determinism can be formalized as the HyperLTL formula
∀π.∀π′. G(Iπ = Iπ′)→ G(Oπ = Oπ′), or, alternatively, as the HyperLTL formula
∀π.∀π′. (Oπ = Oπ′) W (Iπ 6= Iπ′). The first formalization states that on any
pair of traces, where the inputs are the same, the outputs must be the same
as well; the second formalization states that differences in the observable out-
put may only occur after differences in the observable input have occurred. As
can be easily checked with EAHyper, the second formalization is the stronger
requirement.

EAHyper implements the decision procedure for the ∃∗∀∗ fragment of Hyper-
LTL [7]. The ∃∗∀∗ fragment consists of all HyperLTL formulas with at most one
quantifier alternation, where no existential quantifier is in the scope of a univer-
sal quantifier. Many practical HyperLTL specifications are in fact alternation-
free, i.e., they contain either only universal or only existential quantifiers. The
∃∗∀∗ fragment is the largest decidable fragment. It contains in particular all
alternation-free formulas and also all implications and equivalences between
alternation-free formulas.

In the remainder of this paper, we give a quick summary of the syntax and
semantics of HyperLTL, describe the implementation of EAHyper, and report
on experimental results.

2 HyperLTL

HyperLTL Syntax. HyperLTL extends LTL with trace variables and trace quan-
tifiers. Let V be an infinite supply of trace variables, AP the set of atomic propo-
sitions, and TR the set of infinite traces over AP . The syntax of HyperLTL is
given by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕ Uϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. The derived
temporal operators F, G, and W are defined as for LTL. Logical connectives,
i.e., ∧, →, and ↔ are derived in the usual way. We also use syntactic sugar like
Oπ = Oπ′ , which abbreviates

∧
a∈O aπ ↔ aπ′ for a set O of atomic propositions.

The ∃∗ fragment of HyperLTL consists of all formulas that only contain
existential quantifiers. The ∀∗ fragment of HyperLTL consists of all formulas
that only contain universal quantifiers. The union of the two fragments is the
alternation-free fragment. The ∃∗∀∗ fragment consists of all formulas with at
most one quantifier alternation, where no existential quantifier is in the scope of
a universal quantifier.



HyperLTL Semantics. A HyperLTL formula defines a hyperproperty, which
is a set of sets of traces. A set T of traces satisfies the hyperproperty if it is
an element of this set of sets. Formally, the semantics of HyperLTL formulas is
given with respect to trace assignment Π from V to TR, i.e., a partial function
mapping trace variables to actual traces. Π[π 7→ t] denotes that π is mapped
to t, with everything else mapped according to Π. Π[i,∞] denotes the trace
assignment that is equal to Π(π)[i,∞] for all π.

Π |=T ∃π.ψ iff there exists t ∈ T : Π[π 7→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π 7→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]

Π |=T ¬ψ iff Π 6|=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T Xψ iff Π[1,∞] |=T ψ

Π |=T ψ1 Uψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ψ1

A HyperLTL formula ϕ is satisfiable if and only if there exists a non-empty trace
set T , such that Π |=T ψ, where Π is the empty trace assignment. The formula
ϕ is valid if and only if for all non-empty trace sets T it holds that Π |=T ψ.

3 EAHyper

The input of EAHyper is either a HyperLTL formula in the ∃∗∀∗ fragment, or an
implication between two alternation-free formulas. For ∃∗∀∗ formulas, EAHyper
reports satisfiability; for implications between alternation-free formulas, validity.
EAHyper proceeds in three steps:

1. Translation into the ∃∗∀∗ fragment: If the input is an implication between
two alternation-free formulas, we construct a formula in the ∃∗∀∗ fragment
that represents the negation of the implication. For example, for the impli-
cation of ∀π1 . . . ∀πn. ψ and ∀π′1 . . . ∀π′m. ϕ, we construct the ∃∗∀∗ formula
∃π′1 . . . ∃π′m∀π1 . . . ∀πn. ψ ∧ ¬ϕ. The implication is valid if and only if the
resulting ∃∗∀∗ formula is unsatisfiable.

2. Reduction to LTL satisfiability: EAHyper implements the decision procedure
for the ∃∗∀∗ fragment of HyperLTL [7]. The satisfiability of the HyperLTL
formula is reduced to the satisfiability of an LTL formula:
– Formulas in the ∀∗ fragment are translated to LTL formulas by dis-

carding the quantifier prefix and all trace variables. For example,
∀π1.∀π2. Gbπ1 ∧ G¬bπ2 is translated to the equisatisfiable LTL formula
Gb ∧ G¬b.

– Formulas in the ∃∗ fragment are translated to LTL formulas by intro-
ducing a fresh atomic proposition ai for every atomic proposition a and
every trace variable πi. For example, ∃π1.∃π2. aπ1 ∧ G¬bπ1 ∧ Gbπ2 is
translated to the equisatisfiable LTL formula a1 ∧ G¬b1 ∧ Gb2.



– Formulas in the ∃∗∀∗ fragment are translated into the ∃∗ fragment (and
then on into LTL) by unrolling the universal quantifiers. For example,
∃π1.∃π2.∀π′1.∀π′2. Gaπ′

1
∧Gbπ′

2
∧Gcπ1 ∧Gdπ2 is translated to the equisat-

isfiable ∃∗ formula ∃π1.∃π2. (Gaπ1 ∧Gbπ1 ∧Gcπ1 ∧Gdπ2)∧ (Gaπ2 ∧Gbπ1 ∧
Gcπ1

∧Gdπ2
)∧ (Gaπ1

∧Gbπ2
∧Gcπ1

∧Gdπ2
)∧ (Gaπ2

∧Gbπ2
∧Gcπ1

∧Gdπ2
).

3. LTL satisfiability: The satisfiability of the resulting LTL formula is checked
through an external tool. Currently, EAHyper is linked to two LTL satisfia-
bility checkers, pltl and Aalta.

– Pltl [15] is a one-pass tableaux-based decision procedure for LTL, which
not necessarily explores the full tableaux.

– Aalta 2.0 [11] is a decision procedure for LTL based on a reduction to
the Boolean satisfiability problem, which is in turn solved by minisat [6].
Aalta’s on-the-fly approach is based on so-called obligation sets and out-
performs model-checking-based LTL satisfiability solvers.

EAHyper is implemented in OCaml and supports UNIX-based operating sys-
tems. Batch-processing of HyperLTL formulas is provided. Options such as the
choice of the LTL satisfiability checker are provided via a command-line inter-
face.

4 Experimental Results

We report on the performance of EAHyper on a range of benchmarks, including
observational determinism, symmetry, error resistant code, as well as randomly
generated formulas. The experiments were carried out in a virtual machine run-
ning Ubuntu 14.04 LTS on an Intel Core i5-2500K CPU with 3.3 GHZ and 2 GB
RAM. We chose to run EAHyper in a virtual machine to make our results easily
reproducible; running EAHyper natively results in (even) better performance.1

– Observational Determinism [12, 14, 17]. Our first benchmark compares the
following formalizations of observational determinism, with |I| = |O| = 1:
(OD1 ) : ∀π1.∀π′1. G(Iπ1

= Iπ′
1
) → G(Oπ1

= Oπ′
1
), (OD2 ) : ∀π2.∀π′2. (Iπ2

=
Iπ′

2
) → G(Oπ2

= Oπ′
2
), and (OD3 ) : ∀π3.∀π′3. (Oπ3

= Oπ′
3
)W (Iπ3

6= Iπ′
3
).

EAHyper needs less then a second to order the formalizations with respect
to implication: OD2 → OD1 , OD2 → OD3 , and OD3 → OD1 .

– Quantitative Noninterference [2]. The bounding problem of quantitative
noninterference asks whether the amount of information leaked by a sys-
tem is bounded by a constant c. This is expressed in HyperLTL as the
requirement that there are no c+ 1 distinguishable traces for a low-security
observer [16].

QN (c) := ∀π0 . . . ∀πc. ¬((
∧
i

Iπi
= Iπ0

) ∧
∧
i6=j

Oπi
6= Oπj

)

1 EAHyper is available online at https://react.uni-saarland.de/tools/eahyper/.



Table 1: Quantitative noninterference benchmark: wall clock time in seconds for
checking whether QN(row) implies QN(column). “–” denotes that the instance
was not solved in 120 seconds.

(a) Aalta

QN 1 2 3 4 5

1 0.04 0.04 0.54 – –
2 0.03 0.09 1.58 – –
3 0.03 0.05 0.68 – –
4 0.03 0.11 0.34 8.68 –
5 0.06 0.34 – – –

(b) pltl

QN 1 2 3 4 5

1 0.05 0.05 0.08 0.13 0.23
2 0.05 0.11 0.25 0.39 0.79
3 0.07 0.25 0.77 2.02 5.12
4 0.16 0.73 3.12 17.73 43.26
5 0.26 2.57 15.67 71.82 –

Table 2: Error resistant codes benchmark: wall clock time in seconds for checking
whether Ham(row) implies Ham(column).

Ham 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.04 0.08 0.10 0.18 0.25 0.46 0.74 1.35 2.62
1 0.03 0.02 0.03 0.03 0.04 0.03 0.05 0.04 0.06 0.08 0.13 0.21 0.40 0.49 0.82 1.50 2.99
2 0.01 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.04 0.07 0.12 0.21 0.36 0.55 0.88 1.59 3.09
3 0.03 0.04 0.04 0.05 0.04 0.04 0.03 0.04 0.05 0.07 0.12 0.23 0.36 0.52 0.87 1.56 3.12
4 0.04 0.04 0.04 0.06 0.10 0.02 0.03 0.05 0.08 0.08 0.16 0.21 0.36 0.52 0.86 1.66 3.05
5 0.03 0.03 0.05 0.07 0.07 0.19 0.14 0.17 0.05 0.08 0.14 0.22 0.30 0.52 0.92 1.55 2.99
6 0.03 0.04 0.05 0.06 0.09 0.22 0.35 0.21 0.25 0.11 0.25 0.26 0.36 0.53 0.87 1.57 3.00
7 0.04 0.05 0.05 0.05 0.14 0.24 0.32 0.37 0.38 0.42 0.14 0.20 0.37 0.52 0.89 1.65 3.05
8 0.05 0.05 0.07 0.10 0.17 0.23 0.26 0.36 0.50 0.56 0.47 0.40 0.53 0.53 1.13 1.61 3.18
9 0.07 0.08 0.08 0.10 0.16 0.19 0.21 0.43 0.70 0.64 0.48 0.52 0.90 0.65 1.03 1.71 3.08
10 0.09 0.13 0.15 0.15 0.21 0.20 0.34 0.43 0.54 0.76 1.38 1.55 0.61 0.89 1.03 1.78 3.22
11 0.16 0.23 0.22 0.24 0.24 0.26 0.41 0.53 0.62 0.81 1.30 1.29 1.81 1.05 1.86 2.33 3.17
12 0.27 0.30 0.36 0.30 0.32 0.41 0.45 0.46 0.85 0.91 1.69 1.28 2.81 2.82 1.14 3.91 4.49
13 0.38 0.46 0.51 0.47 0.57 0.52 0.57 0.86 1.03 1.27 1.47 2.16 3.19 8.22 5.48 8.64 7.08
14 0.69 0.87 0.91 0.84 0.84 0.98 0.94 1.02 1.46 1.30 2.01 3.82 3.96 6.35 7.50 9.06 11.11
15 1.22 1.52 1.58 1.70 1.69 1.65 1.67 1.74 1.87 2.73 3.02 3.08 5.87 7.25 13.04 34.17 12.26
16 2.26 3.04 2.97 3.00 3.10 3.11 3.35 3.29 3.57 4.17 3.76 5.78 7.45 17.31 17.75 31.51 48.09

In the benchmark, we check implications between different bounds. The per-
formance of EAHyper is shown in Table 1. Using Aalta as the LTL satis-
fiability checker generally produces faster results, but pltl scales to larger
bounds.

– Symmetry [8]. A violation of symmetry in a mutual exclusion protocol in-
dicates that some concurrent process has an unfair advantage in accessing
a critical section. The benchmark is derived from a model checking case
study, in which various symmetry claims were verified and falsified for the
Bakery protocol. EAHyper checks the implications between the four main
symmetry properties from the case study in 13.86 seconds. Exactly one of
the implications turns out to be true.

– Error resistant code [8]. Error resistant codes enable the transmission of
data over noisy channels. A typical model of errors bounds the number of



Table 3: Random formulas benchmark: instances solved in 120 seconds and aver-
age wall clock time in seconds for 250 random formulas. Size denotes the tree-size
argument for randltl.

size 40 60 40 60 40 60 40 60 40 60 40 60 40 60 40 60 40 60

∃0∀0 ∃1∀0 ∃2∀0 ∃3∀0 ∃4∀0 ∃5∀0 ∃6∀0 ∃7∀0 ∃8∀0

solved 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250

avgt 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

∃0∀1 ∃1∀1 ∃2∀1 ∃3∀1 ∃4∀1 ∃5∀1 ∃6∀1 ∃7∀1 ∃8∀1

solved 250 250 250 250 250 250 250 249 250 250 249 247 250 248 249 247 247 248

avgt 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.05 0.02 0.06 0.02 0.01 0.02 0.01 0.13 0.02 0.04 0.08

∃0∀2 ∃1∀2 ∃2∀2 ∃3∀2 ∃4∀2 ∃5∀2 ∃6∀2 ∃7∀2 ∃8∀2

solved 250 250 250 250 248 249 249 247 247 247 248 246 246 246 244 246 244 247

avgt 0.01 0.01 0.01 0.01 0.03 0.12 0.03 0.01 0.26 0.02 0.32 0.02 0.09 0.02 0.02 0.02 0.05 0.03

∃0∀3 ∃1∀3 ∃2∀3 ∃3∀3 ∃4∀3 ∃5∀3 ∃6∀3 ∃7∀3 ∃8∀3

solved 250 250 250 250 249 247 248 246 247 245 245 246 245 246 244 247 243 246

avgt 0.01 0.01 0.01 0.01 0.03 0.02 0.07 0.02 0.06 0.03 0.14 0.05 0.17 0.08 0.23 0.16 0.45 0.25

∃0∀4 ∃1∀4 ∃2∀4 ∃3∀4 ∃4∀4 ∃5∀4 ∃6∀4 ∃7∀4 ∃8∀4

solved 250 250 250 250 250 246 247 246 245 246 244 247 245 247 244 245 0 0

avgt 0.01 0.1 0.01 0.01 0.02 0.01 0.21 0.03 0.35 0.09 0.23 0.28 0.46 1.01 0.98 2.41 – –

∃0∀5 ∃1∀5 ∃2∀5 ∃3∀5 ∃4∀5 ∃5∀5 ∃6∀5 ∃7∀5 ∃8∀5

solved 250 250 250 250 249 247 248 247 243 245 245 246 0 0 0 0 0 0

avgt 0.01 0.01 0.01 0.01 0.26 0.02 0.18 0.07 0.27 0.37 0.51 2.81 – – – – – –

flipped bits that may happen for a given code word length. Then, error cor-
rection coding schemes must guarantee that all code words have a minimal
Hamming distance. The following HyperLTL formula specifies that all code
words o ∈ O produced by an encoder have a minimal Hamming distance [10]
of d: ∀π. ∀π′. F (

∨
i∈I ¬(iπ ↔ iπ′)) → ¬HamO(d − 1, π, π′). HamO is recur-

sively defined as HamO(−1, π, π′) = false and HamO(d, π, π′) = (
∧
o∈O oπ ↔

oπ′)W (
∨
o∈O ¬(oπ ↔ oπ′) ∧ X HamO(d − 1, π, π′)). The benchmark checks

implications between the HyperLTL formulas for different minimal Hamming
distances. The performance of EAHyper is shown in Table 2.

– Random formulas. In the last benchmark, we randomly generated sets of 250
HyperLTL formulas containing five atomic propositions, using randltl [5]
and assigning trace variables randomly to atomic propositions. As shown
in Table 3, EAHyper reaches its limits, by running out of memory, after
approximately five existential and five universal quantifiers.

5 Discussion

EAHyper is the first implementation of the decision procedure for the ∃∗∀∗
fragment of HyperLTL [7]. For formulas with up to approximately five universal
quantifiers, EAHyper performs reliably well on our broad range of benchmarks,
which represent different types of hyperproperties studied in the literature as
well as randomly generated formulas.
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