
Deductive Veri�cation of Modular Systems
?

Bernd Finkbeiner, Zohar Manna and

Henny B. Sipma

finkbein|manna|sipma@cs.stanford.edu

Computer Science Department, Stanford University

Stanford, CA. 94305

Abstract. E�ective veri�cation methods, both deductive and algorith-

mic, exist for the veri�cation of global system properties. In this paper,

we introduce a formal framework for the modular description and veri�-

cation of parameterized fair transition systems. The framework allows us

to apply existing global veri�cation methods, such as veri�cation rules

and diagrams, in a modular setting. Transition systems and transition

modules can be described by recursive module expressions, allowing the

description of hierarchical systems of unbounded depth. Apart from the

usual parallel composition, hiding and renaming operations, our mod-

ule description language provides constructs to augment and restrict the

module interface, capablilities that are essential for recursive descrip-

tions. We present proof rules for property inheritance between modules.

Finally, module abstraction and induction allow the veri�cation of re-

cursively de�ned systems. Our approach is illustrated with a recursively

de�ned arbiter for which we verify mutual exclusion and eventual access.

1 Introduction

In this paper we introduce a formal framework for the modular description and

mechanical, modular veri�cation of parameterized fair transition systems. The

framework provides a system description language that allows concise, modu-

lar, possibly recursive and parameterized system descriptions. It is su�ciently

expressive to represent various modes of communication between modules, and

enables the reuse of code, that is, transition modules can be described once and

referred to multiple times in a system description. The framework supports a

variety of analysis techniques, such as veri�cation rules, veri�cation diagrams,

model checking, abstraction and re�nement, the results of which can be seam-

lessly combined in the course of a single proof.

Our framework extends the principles for modular veri�cation presented in

[MP95b] and those formulated for I/O automata [LT89, LT87]. The basic build-

ing block of our system description language is a transition module, consisting

? This research was supported in part by the National Science Foundation under

grant CCR-95-27927, the Defense Advanced Research Projects Agency under NASA

grant NAG2-892, ARO under grant DAAH04-95-1-0317, ARO under MURI grant

DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA).

W.-P. de Roever, H. Langmaack, and A. Pnueli (Eds.): COMPOS’97, LNCS 1536, pp. 239-275, 1998.
 Springer-Verlag Berlin Heidelberg 1998

of an interface that describes the interaction with the environment, and a body

that describes its actions. Communication between a module and its environ-

ment can be asynchronous, through shared variables, and synchronous, through

synchronization of transitions. More complex modules can be constructed from

simpler ones by (recursive) module expressions, allowing the description of hier-

archical systems of unbounded depth. Module expressions can refer to (instances

of parameterized) modules de�ned earlier by name, thus enabling the reuse of

code and the reuse of properties proven about these modules. Apart from the

usual hiding and renaming operations, our module description language provides

a construct to augment the interface with new variables that provide a summary

value of multiple variables within the module. Symmetrically, the restrict oper-

ation allows the module environment to combine or rearrange the variables it

presents to the module. As we will see later, these operations are essential for

the recursive description of modules, to avoid an unbounded number of variables

in the interface.

The basis of our proposed veri�cation methodology is the notion of modular

validity, as proposed in [Pnu85, Cha93, MP95b]. An ltl property holds over

a module if it holds over any system that includes that module (taking into

account variable renamings). That is, no assumptions are made about the mod-

ule's environment. Therefore, modular properties are inherited by any system

that includes the module. Many useful, albeit simple properties can be proven

modularly valid. However, as often observed, not many interesting properties

are modularly valid, because most properties rely on some cooperation by the

environment.

The common solution to this problem is to use some form of assumption-

guarantee reasoning, originally proposed by Misra and Chandy [MC81] and

Jones [Jon83]. Here, a modular property is an assertion that a module satis-

�es a guarantee G, provided that the environment satis�es the assumption A.

An assumption{guarantee property can be formulated as an implication of ltl

formulas with past operators [BK84, GL94, JT95]. Thus in ltl there is no need

for compositional proof rules dealing with the discharge of assumptions as for

example in [AL93]. In our framework these rules are subsumed by property in-

heritance rules: systems that are composed of modules by parallel composition

directly inherit properties of their components. In this way assumptions can be

discharged either by properties of other components, or by the actual implemen-

tation of the composite module. If the assumption cannot be discharged, it is

simply carried over to the composite module. This
exibility in our approach

as to when and how assumptions are discharged is similar to the one described

by Shankar [Sha93]. In particular it does not require the veri�er to anticipate

assumptions that could be made on a module by other modules [Sha98].

Our veri�cation methodology supports both composition and decomposition,

as de�ned by Abadi and Lamport [AL93]. In compositional reasoning, we ana-

lyze a component without knowing the context it may be used in. We therefore

state and prove properties that express explicitly under what assumptions on the

environment a certain guarantee is given. This approach is taken by our mod-

240 B. Finkbeiner, Z. Manna, H.B. Sipma

ular proof rule and the property inheritance rules. In decompositional reasoning

the composite system is analyzed by looking at one module at a time. In our

experience both methods can be used during a system veri�cation e�ort. Com-

positional reasoning is used to establish invariants and simple liveness properties

about components. Then the system is analyzed from the top down, using the

previously proven modular properties, and using abstraction to hide details that

are irrelevant to the property at hand. We provide a modular inheritance rule

that allows modules in expressions to be replaced with simpler modules, such

that properties proven over the system containing the simpler module are also

valid over the system containing the actual module. Alternatively this can also

be used in the other direction, in design. Any (underspeci�ed) module may be

re�ned into a more detailed one, while preserving the properties proven so far.

A convenient abstraction, which can be constructed automatically, is the

interface abstraction, which represents only the information in the interface and

ignores all implementation details. Using the interface abstraction in place of a

module is especially useful when we consider recursively described systems of

unbounded depth: in this case the implementation details are in fact unknown.

Such systems �t in naturally in our framework: we combine the decompositional

interface abstraction with a compositional induction rule.

1.1 Example

We illustrate our description language and veri�cation methodology with the

veri�cation of a recursively de�ned binary arbiter that guarantees mutual exclu-

sion to a critical resource. A number of clients can each request access, and the

arbiter gives a grant to one client at a time. Our design, shown in Figure 1, is

based on a similar example in [Sta94]. The arbiter is described as a tree of nodes,

Arbiternode

req gr

grL reqL grR reqR

Fig. 1. A Hierarchical Arbiter.

241Deductive Verification of Modular Systems

where a tree consists of two subtrees and a node that guarantees mutual exclu-

sion between the two subtrees. Thus while the simple algorithm represented in

the nodes deals with two clients at a time, a tree of height h ensures mutual ex-

clusion for 2h clients. Local correctness proofs for implementations of the nodes

are discussed in [Dil88], and safety properties of arbiter trees are veri�ed in

[GGS88].

1.2 STeP

Part of the framework presented here has been implemented in STeP (Stan-

ford Temporal Prover), a tool for the deductive and algorithmic veri�cation of

reactive, real-time and hybrid systems [BBC+96, BBC+95, BMSU97]. STeP im-

plements veri�cation rules and veri�cation diagrams for deductive veri�cation.

A collection of decision procedures for built-in theories, including integers, reals,

datatypes and equality is combined with propositional and �rst-order reason-

ing to simplify veri�cation conditions, proving many of them automatically. The

proofs in the arbiter example, presented in Section 5, have been performed with

STeP.

1.3 Outline

The rest of the paper is organized as follows. In Section 2 we introduce our

computational model, fair transition systems, and speci�cation language, ltl.

In Section 3 we de�ne transition modules and parameterized transition modules,

and present the syntax and semantics of our module description language. Here

we give a full description of the arbiter example. In Section 4 we propose a

modular veri�cation rule and devise veri�cation rules for property inheritance

across the operations of our module description language. We discuss modular

abstraction and induction as techniques that can be used to prove properties

over recursively de�ned modules. In Section 5 we verify mutual exclusion and

eventual access for the arbiter using the rules presented in Section 4.

2 Preliminaries

2.1 Computational Model: Transition Systems

As the underlying computational model for veri�cation we use fair transition

systems (fts) [MP95b].

De�nition 1 Fair transition System. A fair transition system � =

hV;�; T ;J ; Ci consists of

{ V : A �nite set of typed system variables. A state is a type-consistent in-

terpretation of the system variables. The set of all states is called the state

space, and is designated by �. We say that a state s is a p-state if s satis�es

p, written s q p.

242 B. Finkbeiner, Z. Manna, H.B. Sipma

{ �: The initial condition, a satis�able assertion characterizing the initial

states.

{ T : A �nite set of transitions. Each transition � 2 T is a function

� : � 7! 2�

mapping each state s 2 � into a (possibly empty) set of � -successor states,

�(s) � �. Each transition � is de�ned by a transition relation �� (V; V
0),

a �rst-order formula in which the unprimed variables refer to the values

in the current state s, and the primed variables refer to the values in the

next state s0. Transitions may be parameterized, thus representing a possibly

in�nite set of similar transitions.

{ J � T : A set of just transitions.

{ C � T : A set of compassionate transitions.

De�nition 2 Runs and Computations. A run of an fts � = hV;�; T ;J ; Ci

is an in�nite sequence of states � : s0; s1; s2; : : :, such that

{ Initiation: s0 is initial, that is, s0 q �.

{ Consecution: For each j = 0; 1; : : :, sj+1 is a � -successor of sj , that is, sj+1 2

�(sj) for some � 2 T . We say that � is taken at si if Si+1 is a � -successor

of si.

A computation of an fts � is a run � of � such that

{ Justice: For each transition � 2 J , it is not the case that � is continuously

enabled beyond some point in � without being taken beyond that point.

{ Compassion: For each transition � 2 C, it is not the case that � is in�nitely

often enabled beyond a certain point in � without being taken beyond that

point.

De�nition 3 Parameterized Transition System. Let F be the class of all

fair transition systems, and P = hp1; : : : ; pni a tuple of parameters with type

t1; : : : ; tn. Then a parameterized transition system F : tp1 � : : : � tpn 7! F is a

function from the input parameters to fair transition systems. Given a parame-

terized fair transition system F, and a list of values a1; : : : ; an, type consistent

with p1; p2; : : : ; pn, then the instance F(a1; a2; : : : ; an) denotes the fair tran-

sition system where all the references to p1; p2; : : : ; pn have been replaced by

a1; a2; : : : ; an.

An in�nite sequence of states � : s0; s1; : : : is a computation of a parameter-

ized transition system F if � is a computation of F(a) for some a. Thus the set of

computations of a parameterized system is the union of the sets of computations

of all its instances.

243Deductive Verification of Modular Systems

2.2 Speci�cation Language

We use linear-time temporal logic (ltl) with past operators to specify properties

of reactive systems. ltl formulas are interpreted over in�nite sequences of states.

The truth-value of a formula for a given model is evaluated at the initial position

of the model. We say that a temporal formula holds at a particular state of a

model if it is true of the sequence which starts at that state. Below we only

de�ne those temporal operators used in the rest of the example. For the full set,

the reader is referred to [MP91].

Given a model � = s0; s1; : : :, the temporal operators 0 ; 1 ; � are de�ned

as follows:

0 p holds at state sj i� p is true for all states si, i � j;

1 p holds at state sj i� p is true for some state si, i � j;

� p holds at state sj i� sj is not the �rst state and p holds at state sj�1;

0 and 1 are called future operators, while � is a past operator. We will

refer to formulas that contain only past operators as past formulas. In this paper

we do not allow temporal operators to appear within the scope of a quanti�er.

A formula containing no temporal operators is called a state-formula or an as-

sertion.

Given an fts S, we say that a temporal formula ' is S-valid if every com-

putation of S satis�es ', and write S q '.

3 Transition Modules and Systems

A transition system describes a closed system, that is, a system that does not

interact with its environment. To enable reasoning about individual components

of a transition system, we de�ne transition modules. A transition system is then

constructed from interacting transition modules. Transition modules can com-

municate with their environment via shared variables or via synchronization of

transitions.

A transition module consists of two parts: an interface and a body. The in-

terface describes the interaction between the module and its environment; it

consists of a set of interface variables and a set of transition labels. We distin-

guish four types of interface variables. Constants in the interface are often used

as parameters for the module; they have a �xed value throughout a computa-

tion. Input variables belong to the environment, they cannot be changed by the

module. Output variables are owned by the module and cannot be changed by

the environment. Finally, shared variables can be modi�ed by both the module

and the environment.

The transition labels in the interface refer to transitions in the body. Such

exported transitions can synchronize with other transitions with the same label

in the environment. The result of synchronization is a new transition whose

transition relation is the conjunction of the transition relations of the original

transitions. One transition may have multiple labels, so it may synchronize with

multiple transitions.

244 B. Finkbeiner, Z. Manna, H.B. Sipma

The module body is similar in structure to a fair transition system; it has

its own set of private variables that cannot be observed nor modi�ed by the

environment. The transitions in the body have to respect the interface: they may

modify private variables, output and shared variables, but not input variables

or constants. Similarly, the initial condition cannot constrain the input variables

or constants.

To be able to prove properties about modules we associate with each module

a transition system such that the set of computations of the associated transition

system is a superset of the set of computations of any system that includes the

module. Having these semantics for modules allows us to \lift" properties of

modules to properties of the whole system, that is, if a property has been proven

valid over a module, then a corresponding property can be inferred for any

system that includes that module.

Transition modules can be described directly, by giving its interface and body,

or they can be constructed from other modules using module expressions.

3.1 Transition Module: De�nition

The basic building block of a transition module system is the transition module.

Vocabulary We assume that all variables in a transition module description

are taken from a universal set of variables V , called the variable vocabulary , and

that all transition labels are taken from a universal set of labels called Tid.

De�nition 4 Transition Module. A transition module M = hI; Bi consists

of an interface declaration I = hV; T i and a body B = hVp; �; T ; �;J ; Ci. The

interface components are

{ V � V : the set of interface variables, partitioned in four subsets as follows:

� Vc: constants, possibly underspeci�ed, which cannot be modi�ed;

� Vi: input variables, which can only be modi�ed by the environment;

� Vo: output variables, which can only be modi�ed by the module;

� Vs: shared variables, which can be modi�ed by both the module and the

environment.

{ T � Tid: a set of transition labels. The transitions corresponding to these

labels may synchronize with transitions in the environment.

A transition module is called closed if both the set of shared variables and the

set of exported transitions are empty.

The components of the body are:

{ Vp: a set of private variables, which can neither be modi�ed nor observed by

the module's environment.

{ �: the initial condition, an assertion over Vp [Vo.

245Deductive Verification of Modular Systems

{ T : a set of transitions, speci�ed in the same way as described in Section 2;

we require that

�� !
^
v2Vc

v0 = v for all � 2 T

{ � � T �Tid: a transition labeling relation, relating transitions to their labels.

Note that multiple transitions can have the same label, and that a single

transition may have multiple labels. We require that the labeling relation �

relates every label in the exported transitions T to at least one transition in

T , that is

8id 2 T : 9� 2 T : (�; id) 2 �

For internal transitions, i.e., transitions that do not have a label in T , we

require that they do not modify the input variables, that is,

�� !
^
v2Vi

v0 = v for all � 2 f� j8id 2 T : (�; id) 62 �g

{ J � T : the set of just transitions.

{ C � T : the set of compassionate transitions.

Modules can be parameterized, to represent, similar to the parameterized

transition systems introduced in Section 2, functions from the parameters to

transition modules.

De�nition 5 Parameterized Transition Module. Let M be the class of all

modules, and P = hp1; : : : ; pni a set of parameters with type t1; : : : ; tn. Then a

parameterized transition module (ptm)M : t1� : : :� tn 7! M is a function from

parameters to transition modules.

3.2 Example: Arbiternode

As described in Section 1, an arbiter is a device that guarantees mutual exclu-

sion to a critical resource. Figure 1 shows the hierarchical design for an arbiter

dealing with 2n clients, which repeatedly uses the module ArbiterNode (shown

enlarged). An ArbiterNode establishes mutual exclusion between two clients:

its \left" and \right" client. In this section we only discuss the ArbiterNode

module; in Section 3.7 we will return to the complete arbiter design.

The two clients of the ArbiterNode can request the grant by setting their

request bits, reqL and reqR for the left and right client, respectively. If the

ArbiterNode owns the grant, that is, if the gr bit is set, it can pass the grant

on to a client by setting the client's grant bit, grL or grR. The client can sub-

sequently release the grant by resetting its request bit, which causes the arbiter

to reset the grant bit (grL, grR) and either give the grant to its other client, or

release its own grant by resetting req.

Figure 2 shows the description of the ArbiterNode module in STeP input

format. In STeP, variables declared as external in, out, external out refer

246 B. Finkbeiner, Z. Manna, H.B. Sipma

Module ArbiterNode:

external in gr, reqL, reqR : bool

out req, grL, grR : bool where !req /\ !grL /\ !grR

Transition RequestGrant Just:

enable !gr /\ (reqL \/ reqR)

assign req:=true

Transition GrantLeft Just:

enable gr /\ req /\ reqL /\ !grR

assign grL:=true

Transition GrantRight Just:

enable gr /\ req /\ reqR /\ !grL /\ !reqL

assign grR:=true

Transition ReleaseLeft Just:

enable gr /\ req /\ !reqL /\ grL

assign grL:=false, grR:=reqR, req:=reqR

Transition ReleaseRight Just:

enable gr /\ req /\ !reqR /\ grR

assign grR:=false, req:=false

EndModule

Fig. 2. ArbiterNode module.

to input, output and shared variables, respectively. The keywords enable and

assign allow a description of the transition relation in a programming-like no-

tation: the transition relation is the conjunction of the enabledness condition, a

relation a' = b for each assignment a := b, and c' = c for any variable c that

is not explicitly assigned a new value.

The left client enjoys a slightly higher priority than the right client: if the

node has the grant, and both the left and the right client request it, the grant

will be given to the left client, by transition GrantLeft. On the other hand, the

node releases the grant after it is released by the right client, even if the left

client requests it. This is to make sure that the node does not keep the grant

forever: the grant is given at most once to each client before it is released again.

3.3 Associated Transition System

As mentioned before, it is our objective to reason about modules and use the

results as lemmas in the proof of properties that use these modules. To do

247Deductive Verification of Modular Systems

so, we relate modules to transition systems: we de�ne the associated transition

system of a module, such that the set of computations of the associated transition

system is a superset of the set of computations of any system that includes the

module. We say that the set of computations of a module is equal to the set of

computations of its associated transition system.

To ensure that the set of computations of a module includes all computations

of a system including that module, we cannot make any assumptions about

the environment of the module, except that it will not modify the module's

private and output variables, and that it will not synchronize with the module's

internal transitions. We model this environment by a single transition, called the

environment transition, �env with transition relation

��env :
^

v2Vc[Vo[Vp

v0 = v

where Vc are the constants of the module, and Vo and Vp are its output and

private variables, respectively.

Given a transition module M = hI; Bi, with I = hV; T i and B =

hVp; �; T ; �;J ; Ci we de�ne its associated transition system

SM = hVp [V;�; T �;J � Texp; C � Texpi

where T � denotes the set of associated transitions, i.e.,

T � =

(
��

����� 9� 2 Tint : ��� = �� ^
^
v2Vi

v0 = v

)
[Texp [f�envg

and Texp is the set of exported transitions, i.e., transitions in T , that have an

exported label
Texp = f� j 9id 2 T : (�; id) 2 �g

Tint is the set of internal transitions, i.e., transitions in T , that have no exported

label
Tint = f� j 8id 2 T : (�; id) 62 �g

The transition relation of the internal transitions is modi�ed to account for the

fact that these transitions, in contrast to the exported transitions, are guaran-

teed to preserve the values of the input variables, since they cannot synchronize

with the environment. The fairness conditions are removed from the exported

transitions, because we cannot make any assumptions about the enabling condi-

tion of the transitions with which they may synchronize (the enabling condition

may be false), and therefore we can no longer assume that a just transition must

eventually be taken as long as the local enabling condition continues to hold.

Example: The ArbiterNode presented in the previous section has three output

variables: grL, grR and req, and no private variables. All transitions are inter-

nal. The associated transition system therefore consists of the module transitions

shown in Figure 2 and the environment transition with the transition relation

��env : grL = grL0 ^ grR = grR0 ^ req = req0

248 B. Finkbeiner, Z. Manna, H.B. Sipma

Parameterized transition modules. Parameterized transition modules have

associated parameterized transition systems: Let M : P 7! M be a parameter-

ized module, then the associated parameterized transition system SM : P 7! M

maps each parameter value p to the transition system associated with M(p).

3.4 Module Systems: De�nition

We de�ned the notion of transition modules. In modular veri�cation, however,

we are not interested in single modules, but rather in a collection of modules

that, together, describe the system behavior. For this purpose we de�ne module

systems.

Vocabulary We assume a universal set of module identi�ers Mid. Let M de-

note the set of all modules.

De�nition 6 Module System. A module system 	 = hMenv;Mmaini con-

sists of a module environmentMenv :Mid 7! M and a designated main module

Mmain.

3.5 Module Systems: Syntax

Module systems are described by a list of module declarations that de�ne the

module environment, followed by a module expression that de�nes the main

module. The module declarations assign modules, also de�ned by module ex-

pressions, to module identi�ers.

Module expressions

If E , E1 : : : En, are well-formed module expressions, then so are the following:

{ hI; Bi, a direct module description, de�ning the interface I and the body B

of a transition module.

{ id(e), where id is a module identi�er, and e is a (possibly empty) list of

expressions over constant symbols and variables, indicating a reference to

another module.

{ (g1 : E1); : : : ; (gn : En), where g1 : : : gn are �rst-order formulas, denoting a

case distinction: This allows to describe di�erently structured modules for

di�erent parameter values.

{ (E1 jj E2). The parallel composition operator merges two modules into one

module, keeping private variables apart, merging the interfaces, and syn-

chronizing transitions that have the same label.

{ Hide(X; E), where X is a set of variables, or a set of transition labels.

The Hide operator removes variables or transition labels from a module's

interface. Removing variables from the interface makes them unavailable

249Deductive Verification of Modular Systems

for reading or writing by the module's environment. Removing transition

labels makes the corresponding transitions unavailable for synchronization

under that label (a single transition may have multiple labels, so it may still

synchronize under other labels).

{ Rename(�; E), where � is a variable substitution � : V 7! V , or a transition

label substitution � : Tid 7! Tid. The Rename operator renames variables

or transition labels in the interface.

{ Augment(�; E), where � is a mapping from variables to expressions over

variables and constants.

The purpose of the augmentation operation is to create new variables in

the interface that maintain the same value as the corresponding value of

the expression. To ensure that the module can maintain these values, the

expression may contain only private and output variables.

{ Restrict(�; E), where � is a mapping from variables to expressions over

variables and constants.

The purpose of the restrict operation is to replace input variables in the

interface by expressions over other input variables.

Module Systems

If E1 : : : En; Emain are well-formed module expressions, id1 : : : idn are module

identi�ers and P1 : : : Pn are (possibly empty) lists of formal parameters, then

id1(P1) = E1 ; : : : ; idn(Pn) = En ; Emain

is a well-formed module system.

3.6 Module Systems: Semantics

A description of a module system de�nes both a modular environment Menv

and a main module. We will �rst de�ne the semantics of module expressions,

assuming the existence of a modular environment Menv. The semantics of a

module system will be de�ned at the end of this section.

Module Expressions

A module expression E denotes a transition module. To be able to resolve ref-

erences to other modules and to evaluate guards, the meaning of module ex-

pressions is relative to a module environment Menv and variable environment

Venv. In the following we assume that these are given.

Direct descriptions The semantics of module expressions is de�ned induc-

tively. As the base case we have the expression that describes a module directly;

in this case

[[E]]Menv;Venv = hhV; T i; hVp; �; T ; �;J ; Cii

250 B. Finkbeiner, Z. Manna, H.B. Sipma

Reference If the expression is a reference to another module, that is E = id(A),

then the expression is well-de�ned if the module environment Menv assigns a

parameterized module M to id, and A is type consistent with M's parameters.

Then:
[[id(A)]]Menv;Venv =M([[A]]Venv)

De�nitions and Conventions Before we de�ne the semantics of the other op-

erations we will introduce some de�nitions and conventions. To ensure that the

result of composing two modules is again a transition module, we have to impose

some conditions on their interfaces, in particular that they do not make incon-

sistent assumptions about their environments. We also require that transitions

that will be synchronized in the composition have the same fairness conditions.

De�nition 7 Compatible Modules. Two modules are compatible if:

1. Their interfaces I1 = hV1; T1i and I2 = hV2; T2i are compatible, that is, an

output variable of one module is not a shared or output variable of the other

module.

2. Their exported transitions Texp;1 and Texp;2 have compatible fairness condi-

tions. That is, for �1 2 Texp;1 and �2 2 Texp;2 with the same label, we require

that �1 2 J1 $ �2 2 J2 and �1 2 C1 $ �2 2 C2.

In the de�nition of the operators we frequently will have to rename part or all

of the variables. In the de�nitions we will use the following convention. Given an

expression E(v1; : : : ; vn) and a variable renaming function � : V 7! V , we denote

by �(E(v1; : : : ; vn) the expression E(�(v1); : : : ; �(v2)). We assume that for every

v 2 V if � maps v into v̂, then it also maps v0 into v̂0. We will occasionally

write �(T) to represent the set of transitions such that all variables and primed

variables in the transition relation are renamed according to �.

Case distinction Let E1 : : : En be well-de�ned module expressions denoting the

modules
[[E1]]Menv;Venv; : : : ; [[En]]Menv;Venv =M1; : : : ;Mn

and g1; : : : ; gn be �rst-order formulas. The expression g1 : E1 : : : gn : En is well-

de�ned if

{ M1 : : :Mn have identical interfaces, and

{ the free variables of g1 : : : gn do not appear in the input, output, shared or

private variables of M1 : : :Mn, and

{ for every variable environment Venv there exists exactly one i, 1 � i � n

such that [[gi]]Venv is true.

If well-de�ned, the module expression g1 : E1 : : : gn : En denotes the module

[[g1 : E1 : : : gn : En]]Menv;Venv =

8<
:
M1 if [[g1]]Venv is true

: : :

Mn if [[gn]]Venv is true

251Deductive Verification of Modular Systems

Parallel composition Let E1 and E2 be two well-de�ned module expressions

denoting

[[E1]]Menv;Venv =M1 = hhV1; T1i; hVp;1; �1; T1; �1;J1; C1ii

[[E2]]Menv;Venv =M2 = hhV2; T2i; hVp;2; �2; T2; �2;J2; C2ii

Then [[E1 jj E2]]Menv;Venv is well-de�ned if the interfaces hV1; T1i and hV2; T2i

are compatible. If well-de�ned, the expression [[E1 jj E2]]Menv;Venv denotes

[[E1 jj E2]]Menv;Venv = hhV; T i; hVp; �; T ; �;J ; Cii

where

{ Interface Variables: V = V1 [V2. The partitioning of V into input, output,

and shared variables is shown in Figure 3, where X denotes combinations

that are not allowed.

v2 2

Vi;2 Vo;2 Vs;2

Vi;1 Vi Vo Vs
v1 2 Vo;1 Vo X X

Vs;1 Vs X Vs

Fig. 3. Combination of interface variables.

{ Exported transitions: T = T1 [T2
{ Private variables: Since we do not require Vp;1 and Vp;2 to be disjoint, we

have to rename private variables to ensure that private variables of di�erent

modules are not identi�ed with each other. To do so we let Vp be the disjoint

union of Vp;1 and Vp;2 and de�ne �1 to be the mapping that maps every

variable from Vp;1 into the corresponding variable of Vp, and maps all other

variables to themselves; �2 is de�ned similarly. We assume that Vp \ V = ;.

So we have
Vp = Vp;1 _[Vp;2 = �1(Vp;1) [�2(Vp;2)

{ Initial Condition: Let �i be the renaming functions de�ned before. The initial

condition of the composition is the conjunction of the two initial conditions

after appropriately renaming the private variables:

� = �1(�1) ^ �2(�2)

{ Transitions: The new set of transitions is given by

T = T1;p [T2;p [Tsyn

where T1;p, orM1's private transitions, are the transitions from M1 that do

not synchronize with transitions of module M2, and similarly for T2;p, and

252 B. Finkbeiner, Z. Manna, H.B. Sipma

Tsyn contains the result of synchronizing those transitions in M1 and M2

whose labels appear in both interfaces. Variables in the transition relations

are renamed according to the renaming functions �i as before. For internal

transitions, a conjunct is added to the transition relation stating that the

transition does not modify the private variables originating from the other

module. Formally, for (i; j) = (1; 2); (2; 1):

Ti;p =
�
�
�� 9�� 2 Ti : 9id 2 Tid : ((��; id) 2 �i ^ id 62 idsyn) ^ �� = �

i;j
��

	
where �

i;j
�� is the new transition relation, taking into account the preserva-

tion of the private variables of the other module, that is, �
i;j
�� = �i(���) ^

�j(
V
v2Vj;p

v0 = v), and where idsyn is the set of labels that are exported by

both modules, that is

idsyn = T1 \ T2

The set of synchronized transitions is described by

Tsyn =

�
�

���� 9id 2 idsyn; �1 2 T1; �2 2 T2 :

(�1; id) 2 �1 ^ (�2; id) 2 �2 ^ �� = (�1(��1) ^ �2(��2))

�

Note that if a transition � has a label that synchronizes and a label that

does not synchronize, the composed module will contain the synchronized

transition as well as the unsynchronized version.

{ Labeling function: A synchronized transition has the same label as its con-

stituent transitions, that is, for id 2 syn

�syn =

8<
:(�; id)

������ 9�1; �2 :
2
4 (�1; id) 2 �1 ^ (�2; id) 2 �2

^

�� = (�1(��1) ^ �2(��2))

3
5
9=
;

and unsynchronized transitions keep the same label, that is, for id 62 syn

�un =

8<
:(�; id)

������ 9�� :
2
4 ((��; id) 2 �1 ^ �� = �

1;2
��)

_

((��; id) 2 �2 ^ �� = �
2;1
��)

3
5
9=
;

Finally,

� = �syn [�un

{ Fairness conditions: Since we are assuming that transitions can synchronize

only if their fairness conditions are the same, we can take the union of the

two sets, accounting for the renaming of the transition relations:

J = �1(J1) [�2(J2)

C = �1(C1) [�2(C2)

253Deductive Verification of Modular Systems

Hiding Let E be a well-de�ned module expression denoting

[[E]]Menv;Venv = hI = hV; T i; B = hVp; : : :ii

and X a set of variables. Then

[[Hide(X; E)]]Menv;Venv = hhV �X;T i; hVp [X; : : :ii

If X is a set of transition labels then

[[Hide(X; E)]]Menv;Venv = hhV; T �Xi; Bi

Renaming Let E be a well-de�ned module expression denoting

[[E]]Menv;Venv = hhV; T i; hVp; �; T ; �;J ; Cii

and � : V 7! V a function that maps variables into variables. � is a renaming

on the private variables that ensures that Vp and V are still disjoint after the

renaming. If for some interface variable v 2 V and private variable w 2 Vp,

�(v) = w, then �(w) = z, where z is a new variable, not present in the interface

or in the private variables. Then

[[Rename(�; E)]]Menv;Venv =

hh�(�(V)); T i; hVp; �(�(�)); �(�(T)); �; �(�(J)); �(�(C))ii

If � : Tid 7! Tid is a function that maps transition labels into transition

labels, then

[[Rename(�; E)]]Menv;Venv = hhV; �(T)i; hVp; �; T ; �(�);J ; Cii

where (�; id) 2 �(�) i� 9id� : id = �(id) ^ (�; id�) 2 �.

Augmentation Let E be a well-de�ned module expression denoting

[[E]]Menv;Venv = hhV; T i; hVp; �; T ; �;J ; Cii

and � a partial function mapping variables into expressions over output variables.

Again, � is a renaming of the private variables that keeps V and Vp disjoint.

[[Augment(�; E)]]Menv;Venv = hhV [dom(�); T i; h�(Vp); �
�; T �; �;J �; C�ii

where the variables in dom(�) are added to the output variables. A constraint

on the new variables is added to the initial condition:

�� = �(�) ^
^

v2dom(�)

v = �(v)

and all transition relations are augmented to update of the newly added vari-

ables, that is

T � =

8<
:��

������ 9� 2 T : ��� =

0
@�(��) ^ ^

v2dom(�)

v0 = �(v0)

1
A
9=
;

J � and C� are de�ned analogously.

254 B. Finkbeiner, Z. Manna, H.B. Sipma

Restriction Let E be a module expression denoting [[E]]Menv;Venv =

hhV; T i; hVp; �; T ; �;J ; Cii, Vn a set of fresh variables, and � a partial function,

mapping input variables into expressions over variables in Vn. Then

[[Restrict(�; E)]]Menv;Venv =

hh(V � dom(�) [Vn; T i; h�(Vp); �(�(�)); �(�(T)); �; �(�(J)); �(�(C))ii

where the variables in Vn are added to the input variables. � is applied to the

initial condition and all transition relations. As before, � denotes the renaming

of the private variables necessary to keep Vp and V disjoint.

Module Systems

A module system is described by a list of equations of the form id(Pi) = Ei
de�ning the modular environment, followed by an expression Emain de�ning the

main module. The modular environment Menv is de�ned as follows,

Menv = lfp

0
@�Menv

� :

8<
:
id1 7! �X : [[E1]]Menv�;Venv[P1nX]

id2 7! �X : [[E2]]Menv�;Venv[P2nX]

: : :

1
A

where lfp denotes the least �xpoint. The main module Mmain is the interpre-

tation of Emain in this environment:

Mmain = [[Emain]]Menv;Venv

In the remainder we assume that a given module system is well-de�ned, that

is, the environment has a unique least �xpoint.

3.7 Example: Arbiter

Continuing the arbiter example, we now describe the full hierarchical arbiter.

The Arbiter module is composed from an ArbiterTree and a module named

Top that gives and takes grants. ArbiterTree is a tree of ArbiterNodes that

were de�ned in Figure 2. Both Arbiter and ArbiterTree are parameterized by

their height h.

An ArbiterTree of height h communicates with 2h clients, who can each

request access by setting a request bit. One client at a time will be given access

to the resource, and the Arbiter informs the client about its granted access by

setting the client's grant bit. The leafs of the tree are de�ned by an expression

over ArbiterNode (++ denotes bit-vector concatenation):

Leafnode = Hide(grL, grR,

Augment(grants = grL ++ grR,

Restrict(reqL = requests[0], reqR = requests[1],

ArbiterNode))

255Deductive Verification of Modular Systems

The Restrict operation instantiates its input variables reqL and reqR with the

actual request bits of the clients, and the Augment operation combines the two

output variables grL and grR into a single variable grants. After the augmen-

tation, the output variables grL and grR can be hidden. Thus the interface of

LeafNode is

Vi: gr: bool

requests: bitvector[2]

Vo: req: bool

grants: bitvector[2]

The parameterized module ArbiterTree is described by the module expression

ArbiterTree(h)=

h = 1: LeafNode

h > 1: Hide(grantsL, grantsR, grL, grR, reqL, reqR,

Augment(grants = grantsL ++ grantsR,

(Restrict(requests = requests [0 : 2h�1 � 1],

Rename(gr = grL, req = reqL, grants = grantsL,

ArbiterTree(h-1)))

jj

ArbiterNode

jj

Restrict(requests = requests [2h�1 : 2h � 1],

Rename(gr = grR, req = reqR, grants = grantsR,

ArbiterTree(h-1))))))

Each instance has the interface

Vi: gr: bool

requests: bitvector[0::2h � 1]

Vo: req: bool

grants: bitvector[0::2h � 1]

For any given h, the parameterized module ArbiterTree describes a tree

of height h. The module expression is illustrated by Figure 4, which shows the

three modules that are composed and their input and output variables. Note

that the Augment and Restrict operations are necessary to obtain identical

interfaces for the cases h = 1 and h > 1.

We complete our description of a hierarchical arbiter by de�ning the Arbiter

module, the main module of the system. An ArbiterTree of height h guarantees

mutual exclusion among the 2h clients, but the tree will only give a grant to

256 B. Finkbeiner, Z. Manna, H.B. Sipma

6
?

6
?

6
?

6
?

6
?

6?6?: : : : : : : : :| {z }
2h�1

ArbiterTree(h-1)

6?6? 6?6?| {z }
2h�1

: : : : : : : : :

ArbiterTree(h-1)

6?6?

req gr

reqL

req

grL

gr

reqR

req

grR

gr

Fig. 4. Composition of ArbiterNode and a left and right subtree.

Module Top:

out gr : bool where gr=false

external in req :bool

Transition Grant Just:

enable !gr /\ req

assign gr:=true

Transition Retract Just:

enable gr /\ !req

assign gr:=false

EndModule

Fig. 5. Module Top.

some client if it has received the grant from its parent entity. This parent entity

is represented by the module Top, shown in Figure 5.

Top's only actions are to award a grant when one is requested and retract a

grant when one is released.

The main module is described as an instance Arbiter(h) of the parameterized

Arbiter module, which is de�ned as follows:

257Deductive Verification of Modular Systems

Arbiter(h) = Hide(req, gr, (ArbiterTree(h) jj Top))

and has interface

Vi: requests: bitvector[2h]

Vo: grants: bitvector[2h]

4 Deductive Veri�cation

In the previous sections we have developed a formalism for modular system

descriptions. In this section we now move on to the veri�cation of such systems.

We begin with an introduction to available formalisms for the global veri�cation

of transition systems in Section 4.1. Next, we extend the notion of (global)

program validity of temporal formulas to modular validity. For systems with

non-recursive descriptions we give a proof rule in Section 4.2. While this is a

feasible approach to establish the modular validity, we are interested in methods

that make use of the structure given by module descriptions. In Section 4.3

we discuss how modular properties can be inherited by other modules, and in

Section 4.4 we de�ne module abstraction. Finally, in Section 4.5, we discuss the

veri�cation of recursively described modules.

4.1 Veri�cation of Transition Systems

The classical deductive framework for the veri�cation of fair transition systems

is based on veri�cation rules , which reduce temporal properties of systems to

�rst-order or simpler temporal premises [MP95b].

For a past formula ',

1. S q � ! '

2. S q f'g TS f'g

S q 0 '

Fig. 6. Invariance rule inv.

Figure 6 presents the invariance rule, inv, which can be used to establish

the S-validity of formulas of the form 0 p, where p is a past formula. Here

f'g TS f'g stands for 0 (�� ^ ' ! '0) for all transitions � 2 TS . An invariant

' may not be inductive (that is, it may not be preserved by all transitions),

in which case it can be necessary to �nd a stronger, inductive invariant that

implies ', and prove it �rst. An alternative approach is to �rst prove a set of

258 B. Finkbeiner, Z. Manna, H.B. Sipma

simpler invariants p1; :::; pk and then use them to establish the more complicated

invariant '.

Graphical formalisms can facilitate the task of guiding and understanding a

deductive proof. Veri�cation diagrams [MP94, BMS95] provide a graphical rep-

resentation of the veri�cation conditions needed to establish a particular tem-

poral formula over a transition system. In this paper we will use generalized

veri�cation diagrams [BMS95, BMS96] to prove response properties.

Generalized Veri�cation Diagrams A veri�cation diagram is a graph, with

nodes labeled by assertions and propositions and edges labeled by sets of tran-

sitions, that represents a proof that a transition system S satis�es a temporal

property '. A subset of the nodes is marked as initial. First-order veri�cation

conditions associated with the diagram prove that the diagram faithfully rep-

resents all computations of S. The edge labeling is used to express the fairness

properties of the transitions relevant to the property.

Some of the �rst-order veri�cation conditions generated by the diagram are

as follows (for a full description, see [BMS95]):

{ Initiation: At least one initial node satis�es the initial condition of S.

{ Consecution: Any � -successor of a state that satis�es the assertion of a node

n, must satisfy the assertion of some successor node of n.

{ Fairness: If an edge is labeled with a transition, that transition is guaranteed

to be enabled.

To show that the diagram satis�es ' can be checked algorithmically, by view-

ing the diagram as an automaton (considering its propositional labeling only)

and checking that its language is included in the language of the formula. Multi-

ple diagrams can be combined such that the intersection of their (propositional)

languages is included in the language of the formula [BMS96].

4.2 Veri�cation of Modular Properties

The goal of modular veri�cation is to reduce the task of verifying a system as

a whole to the veri�cation of modules. In this section we will de�ne modular

validity and we will describe a proof rule to establish modular properties.

We use the notion of associated transition systems, introduced in Section 3.3,

to de�ne the modular validity of a temporal property:

De�nition 8 Modular Validity. We say that a property ' is modularly valid,

or M-valid for a module M, denoted by

M q ';

if ' is valid over the transition system SM associated with M.

The set of computations of the associated transition system includes any com-

putation of a system that contains the module. A modular property is therefore

valid over any system that contains the module.

259Deductive Verification of Modular Systems

De�nition 9 Module descriptions in normal form. A module description

is in normal form if it is either a direct description or a case distinction where

all subexpressions are direct descriptions.

Figure 7 presents a proof rule that reduces modular validity to a set of system

validities, based on a case distinction on the guards. The rule requires the module

description to be in normal form. Note that any non-recursive description can

be transformed into normal form, by �rst expanding the references and then

reducing module expressions to direct descriptions.

For a module M, described in normal form

g1 :M1 : : : gn :M2

and a temporal formula ',

S[[Mi]]
q gi ! ' for i = 1 : : : n

M q '

Fig. 7. Modular validity rule mod.

4.3 Property Inheritance

Rule mod of Figure 7 allows us to prove the modular validity of properties. The

obvious limitation of the rule lies in the requirement that the module description

be in normal form: transforming the description into normal form means that

all structural information is lost. The inheritance proof rules shown in Figure 8,

by contrast, make explicit use of this structure. Property inheritance allows us

to use properties that were previously proven to be valid over other modules as

lemmas in a modular proof.

Example: In the Arbiter example, assume we have shown that ArbiterNode

establishes mutual exclusion between its two clients:

ArbiterNode q 0 :(grL ^ grR)

LeafNode is described in terms of ArbiterNode. It inherits the corresponding

property

LeafNode q 0 :(grants[0]^ grants[1])

which is in turn inherited by ArbiterTree(1):

ArbiterTree(1) q 0 :(grants[0]^ grants[1])

260 B. Finkbeiner, Z. Manna, H.B. Sipma

For module expressions M;N , a mapping � on variables,

a mapping t on transition identi�ers, and a temporal formula ',

[[M]] q '

[[M jjN]] q �M(')

[[N]] q '

[[M jjN]] q �N (')

[[M]] q '

[[Hide(M;X)]] q '

[[M]] q '

[[Hide(M;T)]] q '

[[M]] q '

[[Rename(M;�)]] q �(�('))

[[M]] q '

[[Rename(M; t)]] q '

[[M]] q '

[[Augment(M;�)]] q �(')

[[M]] q �(')

[[Augment(M;�)]] q �(')

[[M]] q '

[[Restrict(M;�)]] q �(�('))

[[M]]([[A]]) q '

[[M(A)]] q '

[[Mi]] q gi ! ' for i = 1 : : : n

[[g1 : M1 : : : gn : Mn]] q '

Fig. 8. Property inheritance for various operators.

The inheritance rules for the di�erent module operators in Figure 8 can be

justi�ed by showing that a re�nement mapping [AL88] exists between the tran-

sition systems associated with the modules given in the premise and those in the

conclusion. We consider re�nement mappings that are induced by a substitution

relation:

De�nition 10 Re�nement. Let SA and SC be two transition systems, called

the abstract and concrete transition system, respectively, and � : V A 7! E(V C)

a substitution relation mapping variables from SA to expressions over variables

in SC . The transition system SC is an �-re�nement of SA, denoted SC v� SA,

if for every computation �C of SC there exists a computation �A of SA such

that �C = �(�A), where � is extended to a mapping on computations in the

obvious way.

The proof rule in Figure 9 states that if SC is an �-re�nement of SA, prop-

erties of SA are inherited by SC .

Justi�cation: Assume SA q ', and SC v� SA. Let �C be a computation

of SC . By the de�nition of re�nement, there exists a computation �A of SA

261Deductive Verification of Modular Systems

For two transition systems S1; S2
and a temporal formula ',

IH1. SC v� SA

IH2. SA q '

SC q �(')

Fig. 9. General inheritance rule g-inh.

such that �C = �(�A). Because SA q ' we have in particular �A q ', and thus

�(�A) q �(') as required.

Figure 10 presents a proof rule to establish a re�nement relation between

two transition systems. The rule assumes the existence of a surjective transition

mapping
 : T C 7! T A that maps each concrete transition to a corresponding

abstract transition with the same or weaker fairness condition.

For two transition systems SC ; SA and a surjective function
 : T C 7! T A,

such that � c 2 J C implies
(� c) 62 CA,

and � c 2 T C � (J C [CC) implies
(� c) 62 J A [CA,

R1. �C ! �(�A)

R2. ��C ! �(�
(�C)) for every �C 2 T C

R3. �(En
(�C))! En�C for every �C 2 T C with
(�C) 2 J A [CA

SC v� SA

Fig. 10. Basic re�nement rule b-ref.

Justi�cation: Assume that �C = so; s1; : : : is a computation of SC . We have

to show that the premises ensure there exists a corresponding computation

�A = �(s0); �(s1); : : : of the abstract system SA. By R1 and s0 q �C , we have

�(s0) q �A. For every two consecutive states si; si+1 in �C , the transition re-

lation of some concrete transition �c must be satis�ed; by R2, the transition

relation of the corresponding abstract transition
(�C) is satis�ed for states

�(si); �(si+1). It remains to show that �A is fair. Since
 is onto, there exists

for every fair transition �A a transition �C with equal or stronger fairness, and

thus by R2 and R3, �A's fairness conditions can only be violated if �C 's fairness

conditions are violated.

Clearly, re�nement under a transition mapping
, denoted by v
 , is a

stronger property than re�nement alone. However, it su�ces for our purposes,

and results in simpler veri�cation conditions than, for example, the more gen-

262 B. Finkbeiner, Z. Manna, H.B. Sipma

eral proof rule presented in [KMP94], where proving re�nement is reduced to

the proof of a number of temporal properties.

4.4 Module Abstraction

It is often the case that some components of a module are irrelevant to the

validity of a property to be proven. Module abstraction allows us to ignore some

or all of the details of those components in the proof, thus simplifying the proof.

The idea is that in a module expression, subexpressions can be replaced by

other expressions denoting simpler modules, provided those modules modularly

simulate the original module, that is, the new module can simulate the original

module in any expression.

De�nition 11 Modular simulation. A module [[MA]] simulates a module

[[MC]], denoted by [[MC]] v [[MA]], if for all modular expressions E(M),

S[[E(MC)]] v S[[E(MA)]]

A proof rule to establish modular simulation between two modules is shown

in Figure 11.

Justi�cation: Consider two modules [[MC]] and [[MA]] with identical interface

I . Assume a surjective transition mapping
 : T C ! T A between the sets of

transitions that ful�lls the condition S1 - S3 (which are identical to the premises

R1-R3 in rule b-ref, with � being the identity) and that is consistent with the

transition labeling, expressed by premises S4 and S5 respectively: each exported

label of a concrete transition � is also a label of
(�), and if a concrete transition

� has an internal label, then so does
(�).

For two modules MC ;MA with a common interface,

and a surjective function
 : T C 7! T A,

such that � c 2 JC implies
(� c) 62 CA,

and � c 2 T C � (J C [CC) implies
(� c) 62 J A [CA,

S1. �C ! �A

S2. ��C ! �
(�C) for every �C 2 T C

S3. En
(�C) ! En�C for every �C 2 T C with
(�C) 2 J A [CA

S4. 8l 2 T : �C(�C ; l)! �A(
(�C); l) for every �C 2 T C

S5.

0
@ 9lC 2 Tid � T : �C(�A; lC)

!

9lA 2 Tid � T : �A(
(�C); lA)

1
A for every �C 2 T C

MC vMA

Fig. 11. Modular simulation rule m-sim.

263Deductive Verification of Modular Systems

We show by induction on expressions that S[[E(MC)]] v S[[E(MA)]]. For the base

case we have to show S[[MC]] v S[[MA]]. As the modules [[MA]] and [[MC]] have

identical interfaces, we can extend
 to a transition mapping
0 on the associated

transition systems as follows:

0(�) =

8>>>>>><
>>>>>>:

� if � = �env

� 0 if �� = ��0 ^
^
v2Vi

v = v0 and �� 0 = �
(�0) ^
^
v2Vi

v = v0

for some transition �0 2 T[[MC]]:

� 0 if �� = ��0 and �� 0 = �
(�0)
for some transition �0 2 T[[MC]]:

For the inductive step, for each of the operations we can show that given

[[MC]] v
 [[MA]], there is a transition mapping
0, such that [[E(MC)]] v
0

[[E(MA)]]. Hence, [[MC]] v
 [[MA]] implies that there is a transition mapping

00, such that S[[E(MC)]] v

00 S[[E(MA)]].

The proof rule m-inh in Figure 12, a specialization of the general proof in-

heritance rule shown in Figure 9, allows us to replace modules in an expression

by simpler modules that simulate them.

For modular expressions M;N , and E(M),

M1. [[E(N)]] q '

M2. [[M]] v [[N]]

[[E(M)]] q '

Fig. 12. Modular inheritance proof rule m-inh.

Interface Abstraction For each class of modules with the same interface there

is a largest element with respect to the simulation preorder, called the interface

abstraction, which can be generated automatically.

De�nition 12 Interface Abstraction. Let M = hI; Bi be a module with in-

terface I = hV; T i. The interface abstraction of M is the module AM = hI; B�i

where B� = hV �
p = ;; �� = true; T � = f�ag; �

� = f�ag � (T [flproxyg);J
� =

;; C� = ;i

The interface abstraction relies solely on information given by the interface.

Using the transition mapping

(�) =

8<
:
�a if 9l 2 TM : �M (�; l)

�� with ��� = ��a ^
^
v2Vi

v = v0 otherwise

264 B. Finkbeiner, Z. Manna, H.B. Sipma

it is easy to show that M v AM . The transition �a can simulate any transi-

tion in B. The labeling function covers all exported transitions, and the proxy

label, which is not exported, ensures that in any composition there is a non-

synchronizing transition.

4.5 Induction for Recursive Descriptions

A natural way to prove properties over a recursively de�ned module is by in-

duction on the parameter value. Let � be a well-founded order over the domain

D of the parameters of a module M. The principle of well-founded induction is

formulated as follows:

To show that M(X) q '(X) for all X 2 D, it su�ces to show that for

an arbitrary value X 2 D

M(A) q '(A) for all A � X (IH)

implies

M(X) q '(X)

The antecedent is called the inductive hypothesis, and the consequent is

called the conclusion of the inductive step.

For unknown parameter values the transition system associated with a recur-

sively described module cannot be computed directly. Module abstraction, e.g.,

interface abstraction, can be used to derive an abstraction with a non-recursive

description.

5 Veri�cation of the Arbiter

The two properties we want to prove about the arbiter system are mutual exclu-

sion: no two clients can hold the grant simultaneously, expressed by

mux(h) : 0 (8i; j : [0::2h � 1] : (grants[i] ^ grants[j])! i = j)

and eventual access: any client who requests a grant will eventually get a grant,

expressed by

acc(h) : 0 (8i : [0::2h � 1] : requests[i]! 1 grant[i])

5.1 Mutual exclusion

The Arbiter system was formally speci�ed in Section 3.7, as a composition of

ArbiterTree and Top. By the property inheritance rules, to prove

Arbiter(h) q mux(h)

it is su�cient to prove

ArbiterTree(h) q mux(h)

265Deductive Verification of Modular Systems

The recursive description of ArbiterTree suggests a proof by induction. For the

base case we have to show

ArbiterTree(1) q mux(1)

which, using the de�nition of ArbiterTree for h = 1, the de�nition of LeafNode

and the property inheritance rules can be reduced to the proof of

ArbiterNode q 0 :(grL ^ grR)

This property is easily established by applying the invariance rule to the associ-

ated transition system of ArbiterNode.

By the induction principle, to prove for h > 1

ArbiterTree(h) q mux(h)

we may make use of the inductive hypothesis, for any h� � h, in particular

h� = h� 1:
ArbiterTree(h� 1) q mux(h� 1)

and thus, by the property inheritance rules, we inherit

ArbiterTree(h) q 0 (8i; j : [0::2(h�1) � 1] : (grants[i] ^ grants[j])! i = j)

ArbiterTree(h) q 0 (8i; j : [2(h�1)::2h � 1] : (grants[i] ^ grants[j])! i = j)

for the left and right subtree respectively. The two properties express that each

subtree establishes mutual exclusion among its set of clients. Unfortunately, they

do not establish mutual exclusion for the tree itself: they do not prohibit the case

in which both subtrees simultaneously have given out a grant. To rule out this

case, we establish two additional properties. The �rst property states that no

client holds a grant unless the tree holds a grant. This property only holds of the

ArbiterTree if we assume that its environment does not retract a grant before

the ArbiterTree releases the grant. Thus we formulate this as an assumption-

guarantee property:

ArbiterTree(h) q

Assumption:

0 (� (gr ^ req)! gr)

Guarantee:

0 :gr! (8i : [0::2h � 1] : :grants[i])

(1)

The second property states that only one of the two subtrees can hold the grant,

expressed by
ArbiterTree(h) q 0 :(grL ^ grR)

The latter property is inherited directly from the same property proven earlier

for the ArbiterNode. From the �rst property, by the property inheritance rules,

we inherit

ArbiterTree(h) q

0
@ 0 (� (grL ^ reqL)! grL)

!

0 :grL! (8i : [0::2h�1 � 1] : :grants[i])

1
A

266 B. Finkbeiner, Z. Manna, H.B. Sipma

ArbiterTree(h) q

0
@ 0 (� (grR ^ reqR)! grR)

!

0 :grR! (8i : [2h�1::2h � 1] : :grants[i])

1
A

The assumptions are discharged by proving

ArbiterNode q 0 (� (grL ^ reqL))! grL (2)

and

ArbiterNode q 0 (� (grR ^ reqR))! grR (3)

using the invariance rule. These properties are inherited directly by

ArbiterTree(h).

It remains to prove (1). This property is again established by induction. The

case h = 1 is proved using the invariance rule. For the case h > 1 we need, in

addition to (2) and (3), the auxiliary property that a client of a node can have

the grant only if the node owns the grant and has not released it yet, expressed

by

ArbiterNode q

Assumption:

0 (� (gr ^ req)! gr)

Guarantee:

0 ((grL _ grR)! (gr ^ req))

This property is readily established using the invariance rule, and the assump-

tions are again discharged using (2) and (3).

5.2 Eventual Access

To show accessibility for all clients of the arbiter system, we expect we have to

make some assumptions on the environment, for example, that clients will even-

tually release a grant. However, rather than trying to identify these assumptions

up front, we choose to discover them in the course of the proof, and we will add

them to the property as appropriate. As it is more convenient to do the proof

at the level of the ArbiterTree rather than for the arbiter system, assumptions

about the parent of the ArbiterTree (called the server) are added as well. These

will be discharged at the end by the Top module.

To show

Arbiter(h) q acc(h)

it su�ces to show

ArbiterTree(h) q acc(h) (4)

A proof by induction yields as the base case

ArbiterTree(1) q acc(1)

which, by the property inheritance rules can be reduced to

ArbiterNode q 0 (reqL! 1 grL) (5)

267Deductive Verification of Modular Systems

and

ArbiterNode q 0 (reqR! 1 grR) (6)

Figure 13 shows a generalized veri�cation diagram to prove (5). It represents the

desired
ow of the module that establishes the property. The initiation conditions

(all initial states are covered by the diagram) and the fairness conditions (the

assertions on nodes with outgoing labeled edges imply the enabling condition

of the corresponding transition) are readily established. However, consecution

(every � -successor of an assertion is covered) does not hold, for example it fails for

node n1 for the environment transition. Since gr and reqL are input variables of

ArbiterNode, the environment transition may modify them arbitrarily. However,

if we assume that the parent (server) does not retract a grant before it is released,

expressed by

0 (� (gr ^ req)! gr) (server) (7)

and that the (right) client does not retract a request before it receives a grant,

0 (� (:grR ^ reqR)! reqR) (client) (8)

the consecution condition holds for n1. For the consecution condition of n2 we

need to assume that the right client does not request a grant before the previous

one is retracted,

0 (� (grR ^ :reqR)! :reqR) (client) (9)

and for the consecution of node n4 we assume that the parent does not give a

grant unless it is requested.

0 (� (:gr ^ :req)! :gr) (server) (10)

Additional assumptions are necessary to ensure progress. The fairness of

ReleaseRight, RequestGrant and GrantLeft ensure progress from nodes n2,

n4 and n6, however no progress is guaranteed from nodes n1, n3 and n5 (note

that no progress is required from n0 or n7, because in n0 the antecedent of our

property is false, while in n7 the goal is true). Progress from n1 requires the

(right) client to eventually release the grant:

0 (grL! 1 (:reqL _ :grL)) (client) (11)

To guarantee progress from n3 and n5 we have to assume that the server will

eventually retract the grant when it is released,

0 (req! 1 (gr _ :req)) (server) (12)

and that the server will eventually give a grant when one is requested,

0 (:req! 1 (:gr _ req)) (server) (13)

The proof of (6) is similar; it generates the same assumptions for the server

and the symmetrical asssumptions for the clients.

268 B. Finkbeiner, Z. Manna, H.B. Sipma

-

-

-

-

-

-

-

-

?

?

?

?

?

?

?

�n0 : :reqL ^ :grL

reqL ^ :grL

grR

:grR

n1 : gr ^ reqR ^ req

n2 : gr ^ :reqR ^ req

n3 : gr ^ :req

n4 : :gr ^ :req

n5 : :gr ^ req

n6 : gr ^ req

n7 : grL

ReleaseRight

RequestGrant

GrantLeft

Fig. 13. Veri�cation diagram for property (5).

269Deductive Verification of Modular Systems

Generalizing these assumptions about the ArbiterNode clients to the clients

of an ArbiterTree of height h we get,

clients(h) :

8i : [0::2h � 1] : 0 (� (:grants[i] ^ requests[i])! requests[i]);

8i : [0::2h � 1] : 0 (� (grants[i] ^ :requests[i])! :requests[i]);

8i : [0::2h � 1] : 0 (grants[i]! 1 (:requests[i] _ :grants[i]))

We now weaken our accessibility property to include the assumptions:

ArbiterTree(h) q server ^ clients(h)! acc(h) (14)

where server stands for the conjunction of assumptions made about the parent:

server :

0 (� (gr ^ req)! gr)^

0 (� (:gr ^ :req)! :gr)^

0 (:req! 1 (:gr _ req))^

0 (req! 1 (gr _ :req))

To prove the induction step, we make use of the inductive hypothesis for

h� = h� 1,

ArbiterTree(h� 1) q server ^ clients(h� 1)! acc(h� 1)

which is inherited by ArbiterTree(h) as

ArbiterTree(h) q serverL ^ clientsL(h)! accL(h)

and

ArbiterTree(h) q serverR ^ clientsR(h)! accR(h)

where accL and accR stand for accessibility for the clients 0 : : : 2(h�1) � 1 and

2h�1 : : : 2h � 1, respectively,

accL(h) : 8i : [0::2
h�1 � 1] : 0 (requests[i]! 1 grants[i])

accR(h) : 8i : [2
h�1::2h � 1] : 0 (requests[i]! 1 grants[i])

Similarly, clientsL(h) and clientsR refer to the assumptions made about the

clients 0 : : : 2(h�1) � 1 and 2h�1 : : : 2h � 1, respectively; serverL stands for the

server assumptions made by the left subtree:

serverL : ArbiterTree(h) q

0 (� (grL ^ reqL)! grL)^

0 (� (:grL ^ :reqL)! :grL)^

0 (:reqL! 1 (:grL _ reqL))^

0 (reqL! 1 (grL _ :reqL))

that is, req and gr are replaced by reqL and grL. Similarly, serverR stands for

the server assumptions made by the right subtree. It is easy to see that

ArbiterTree(h) q clients(h)! clientsL(h) ^ clientsR(h)

270 B. Finkbeiner, Z. Manna, H.B. Sipma

and

ArbiterTree(h) q accL(h) ^ accR(h)! acc(h)

Thus it remains to discharge serverL and serverR. For serverL we show

ArbiterTree(h) q 0 (� (grL ^ reqL)! grL) (15)

ArbiterTree(h) q 0 (� (:grL ^ :reqL)! :grL) (16)

ArbiterTree(h) q server ! 0 (:reqL! 1 (:grL _ reqL)) (17)

ArbiterTree(h) q server ^ clients(h)! 0 (reqL! 1 grL) (18)

Property (15) is identical to (2), which was established before. We show (16) by

applying inv to the corresponding ArbiterNode property. Property (17) can be

reduced to

ArbiterNode q 0 (� (gr^ req)! gr)! 0 (:reqL! 1 (:grL_ reqL)) (19)

which is proven by the generalized veri�cation diagram shown in Figure 14. The

(server) assumption 0 (� (gr^req)! gr) is necessary to ensure that in node n0
gr is preserved by the environment transition.

-

-

?

�n0 : grL ^ :reqL ^ gr ^ req

n1 :
(reqL _ :grL) ^

(grL ! gr ^ req)

ReleaseLeft

Fig. 14. Veri�cation diagram for property (19).

To show property (18) we make use of property (5), which was proven un-

der the assumptions (7)-(13). The server assumptions, (7), (12), and (13) are

discharged immediately by server in the antecedent. Thus it remains to show

ArbiterTree(h) q server ^ clients(h)! 0 (� (:grR ^ reqR)! reqR) (20)

ArbiterTree(h) q server ^ clients(h)! 0 (� (grR ^ :reqR)! :reqR) (21)

ArbiterTree(h) q server ^ clients(h)! 0 (grL! 1 (:reqL _ :grL)) (22)

Property (20) is shown by case analysis. For h = 1 the consequent is directly

implied by clients(1). For the case h > 1 we prove

ArbiterNode q 0 (� (:gr ^ req)! req) (23)

271Deductive Verification of Modular Systems

using the invariance rule; the desired property is then inherited from the right

child. Property (21) is proven in the same way, by proving

ArbiterNode q 0 (� (grR ^ :reqR)! :reqR) (24)

The proof of (22) proceeds in a similar fashion except here we need to use

induction, where both the base case (h = 1) and the inductive step (h > 1) rely

on the following ArbiterNode property

ArbiterNode q

Assumption:

0 (� (:grL ^ reqL)! reqL);

0 (� (:grR ^ reqR)! reqR);

0 (� (grL ^ :reqL)! :reqL);

0 (� (grR ^ :reqR)! :reqR);

0 (grL! 1 (:reqL _ :grL));

0 (grR! 1 (:reqR _ :grR))

Guarantee:

0 (gr! 1 (:req _ :gr))

(25)

which is proven by the generalized veri�cation diagram shown in Figure 15. The

�rst four assumptions are necessary to ensure the consecution requirement for

nodes n0, n3, n2, and n5 respectively. The last two assumptions are used to

ensure progress from node n1 and n4.

In the base case, when ArbiterTree(1) inherits this property, all assumptions

are discharged by clients(1). For the case h > 1, the �rst four assumptions are

discharged by (23) and (24) and the corresponding properties for the left side,

and the last two properties are discharged by the inductive hypothesis inherited

from the left and right subtree. This concludes the proof of (14).

We now �nish the proof of accessibility for the Arbiter system. It is easy to

show

Top q server

and therefore we can discharge the server assumption for the Arbiter system,

and we have

Arbiter(h) q clients(h)! acc(h)

Thus, as expected, accessibility for the arbiter system relies on the cooperation

of the clients.

6 Conclusions

We have presented a formal framework for the modular description and ver-

i�cation of fair transition systems, and demonstrated its use on an example.

We proposed several deductive proof techniques to establish and re-use modular

properties.

272 B. Finkbeiner, Z. Manna, H.B. Sipma

?
6

?

? ?

?

??
�

6

-

-

- �

-

-

-

req ^ gr

n0 : reqL ^ :grR ^ :grL

n1 : reqL ^ grL

n2 : :reqL ^ grL n3 : :reqL ^ :grL ^ :grR ^ reqR

n4 : reqR ^ grR

n5 : :reqR ^ grR

n6 :
(:req _ :gr) ^

(req ! reqL _ reqR _ grL _ grR)

GrantLeft

ReleaseLeft GrantRight

ReleaseRightReleaseLeft

Fig. 15. Veri�cation diagram for property (25).

{ A modular veri�cation rule to prove properties over modules with non-

recursive descriptions.

{ A property inheritance mechanism that provides an incremental proof

method: properties of a module A can be reused in any module B whose

description refers to A.

{ Modular abstraction, which allows us to focus the proof on relevant compo-

nents.

{ The induction rule, which makes the methodology applicable to recursive

designs.

We illustrated our techniques by verifying an arbiter system. In particular

we demonstrated that our framework allows the use of assumption-guarantee

reasoning without su�ering from its main disadvantage of having to identify

su�ciently strong guarantee properties up front. In the ver�cation of the arbiter

system we showed how assumptions are generated naturally in the course of the

proof. Diagrams were constructed representing the intended
ow of the module,

and veri�cation conditions involving input variables were added as assumptions

to the property we set out to prove. These assumptions were then carried along

273Deductive Verification of Modular Systems

until they either could be discharged by properties proven over other modules,

or they could be proven directly over the larger inheriting module.

Although not considered in this paper, the veri�cation methodology can

be adapted to other veri�cation techniques, such as deductive model checking

[SUM96]. It is also straightforward to extend the framework to real-time and

hybrid systems, modeled by clocked and hybrid transition systems [MP95a]. In

these systems fair, clocked and hybrid parameterized transition modules can be

freely combined into one module system. Extra care has to be taken to ensure

that time steps synchronize for all parallel modules.

Acknowledgements: We thank Nikolaj Bj�rner, Mark Pichora and Tom�as

Uribe for their careful reading and many helpful suggestions.

References

[AH96] R. Alur and T.A. Henzinger, editors. Proc. 8th Intl. Conference on Com-

puter Aided Veri�cation, vol. 1102 of LNCS. Springer-Verlag, July 1996.

[AL88] M. Abadi and L. Lamport. The existence of re�nement mappings. In Proc.

3rd IEEE Symp. Logic in Comp. Sci., pages 165{175. IEEE Computer So-

ciety Press, 1988.

[AL93] M. Abadi and L. Lamport. Conjoining speci�cations. Technical Report

SRC-118, DEC-SRC, December 1993.

[BBC+95] N.S. Bj�rner, A. Browne, E.S. Chang, M. Col�on, A. Kapur, Z. Manna, H.B.

Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover, User's Man-

ual. Technical Report STAN-CS-TR-95-1562, Computer Science Depart-

ment, Stanford University, November 1995.

[BBC+96] N.S. Bj�rner, A. Browne, E.S. Chang, M. Col�on, A. Kapur, Z. Manna, H.B.

Sipma, and T.E. Uribe. STeP: Deductive-algorithmic veri�cation of reactive

and real-time systems. In Alur and Henzinger [AH96], pages 415{418.

[BK84] H. Barringer and R. Kuiper. Hierarchical development of concurrent sys-

tems in a temporal logic framework. In Seminar on Concurrency, vol. 197

of LNCS, pages 35{61. Springer-Verlag, 1984.

[BMS95] A. Browne, Z. Manna, and H.B. Sipma. Generalized temporal veri�cation

diagrams. In 15th Conference on the Foundations of Software Technol-

ogy and Theoretical Computer Science, vol. 1026 of LNCS, pages 484{498.

Springer-Verlag, 1995.

[BMS96] A. Browne, Z. Manna, and H.B. Sipma. Hierarchical veri�cation using ver-

i�cation diagrams. In 2nd Asian Computing Science Conf., vol. 1179 of

LNCS, pages 276{286. Springer-Verlag, December 1996.

[BMSU97] N.S. Bj�rner, Z. Manna, H.B. Sipma, and T.E. Uribe. Deductive veri�ca-

tion of real-time systems using STeP. In 4th Intl. AMAST Workshop on

Real-Time Systems, vol. 1231 of LNCS, pages 22{43. Springer-Verlag, May

1997.

[Cha93] E.S. Chang. Compositional Veri�cation of Reactive and Real-Time Systems.

PhD thesis, Computer Science Department, Stanford University, Stanford,

California, 1993. Tech. Report STAN-CS-TR-94-1522.

[Dil88] D.L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-

Independent Circuits. PhD thesis, Carnegie-Mellon Univ., 1988. Available

as Technical Report CMU-CS-88-119.

274 B. Finkbeiner, Z. Manna, H.B. Sipma

[GGS88] S. Garland, J. Guttag, and J. Staunstrup. Veri�cation of vlsi circuits using

lp. In G.J. Milne, editor, The Fusion of Hardware Design and Veri�cation,

pages 329{345. Elsevier Science Publishers B.V. (North Holland), 1988.

[GL94] O. Grumberg and D.E. Long. Model checking and modular veri�cation.

ACM Trans. Prog. Lang. Sys., 16(3):843{871, May 1994.

[Jon83] C. Jones. Tentative steps toward a development method for interfering pro-

grams. ACM TOPLAS, 5(4):596{619, 1983.

[JT95] B. Jonsson and Y.K. Tsay. Assumption/guarantee speci�cations in linear-

time temporal logic. In TAPSOFT '95, pages 262{276, 1995.

[KMP94] Y. Kesten, Z. Manna, and A. Pnueli. Temporal veri�cation of simulation

and re�nement. In J.W. de Bakker, W.P. de Roever, and G. Rosenberg, ed-

itors, A Decade of Concurrency, vol. 803 of LNCS, pages 273{346. Springer-

Verlag, 1994.

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed

algorithms. In Proceedings of the Sixth Annual Symposium on Principles of

Distributed Computing, pages 137{151. ACM Press, 1987.

[LT89] N.A. Lynch and M. Tuttle. An introduction to input/output automata.

CWI-Quarterly, 2(3):219{246, 1989.

[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans-

actions on Software Engineering, SE-7(4):417{426, 1981.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Speci�cation. Springer-Verlag, New York, 1991.

[MP94] Z. Manna and A. Pnueli. Temporal veri�cation diagrams. In M. Hagiya

and J.C. Mitchell, editors, Proc. International Symposium on Theoretical

Aspects of Computer Software, vol. 789 of LNCS, pages 726{765. Springer-

Verlag, 1994.

[MP95a] Z. Manna and A. Pnueli. Clocked transition systems. In Proc. of the Intl.

Logic and Software Engineering Workshop, August 1995. Beijing, China.

[MP95b] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.

[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about

programs. In K.R. Apt, editor, Logics and Models of Concurrent Systems,

sub-series F: Computer and System Science, pages 123{144. Springer-Verlag,

1985.

[Sei80] C.L. Seitz. Ideas about arbiters. Lambda, pages 10{14, 1980.

[Sha93] N. Shankar. A lazy approach to compositional veri�cation. Technical re-

port, Computer Science Laboratory, SRI International, Menlo Park, Cali-

fornia, December 1993.

[Sha98] N. Shankar. Lazy compositional veri�cation. In this volume, 1998.

[Sta94] J. Staunstrup. A Formal Approach to Hardware Design. Kluwer Academic

Publishers, 1994.

[SUM96] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In Alur

and Henzinger [AH96], pages 208{219.

275Deductive Verification of Modular Systems

