
Causality-based Verification
of Multi-threaded Programs ?

Andrey Kupriyanov and Bernd Finkbeiner

Universität des Saarlandes, Saarbrücken, Germany

Abstract. We present a new model checking procedure for concurrent
systems against safety properties such as data races or atomicity vi-
olations. Our analysis sidesteps the state space explosion problem by
inferring causal dependencies for concurrent traces instead of searching
over a space of reachable states, and can be understood as an interplay
between local trace inference and termination analysis based on causal
loops. Local trace inference introduces new actions anywhere in the trace
if they causally follow from the context. Our procedure terminates if we
either find a complete error trace or the whole space of potential er-
ror traces is covered by causal loops. The causality-based verification of
multi-threaded programs can be dramatically faster than the standard
state space traversal. In particular, we show that the complexity of ver-
ifying multi-threaded programs with locks reduces from exponential to
polynomial.

1 Introduction

Causality, the relationship between two events where the first event is recognized
as a necessary requirement for the occurrence of the second, is a key concept
in our understanding of complex computer systems. Processes in a concurrent
system proceed independently until they establish causal dependence through
synchronization. Modeling formalisms like Petri nets [10] explicitly capture the
causal dependence between transitions through the flow of tokens.

Not surprisingly, causality has also proven useful in the automatic verifica-
tion of concurrent systems. Petri net unfoldings [4], for example, avoid a total
temporal ordering of the events and instead unwind the causality relation. In
partial order reduction [5], causally independent events are forced into a fixed
temporal order. Traditionally, however, the role of causality in automatic ver-
ification has always been secondary compared to the state-based reachability
analysis: in Petri net unfoldings, we unwind the causality relation forward until
we are certain that no more reachable markings can be found; in partial order
reduction, we avoid the exploration of computation paths that lead to the same
states that have already been seen on some other path with a different ordering
of the causally independent events.

? This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

In this paper, we upgrade the role of causality in automatic verification to
that of a first-class citizen. The approach is based on the observation that reach-
ing an error state often causally depends on a small number of certain key events,
which, in a correct system, contradict each other. For example, a violation of
mutual exclusion between two processes requires that previously both processes
have entered the critical section and, during one of these events, the other pro-
cess was already in the critical section. Intuitively, our verification procedure
identifies such necessary steps on a trace from initial to error states and then
either completes the partial trace into a full error trace or proves that no such
completion exists.

In our algorithm, we capture the causal dependencies as Mazurkiewicz-style
concurrent traces. Starting with a default initial trace, which only captures the
initial and error states, we capture, step by step, more dependencies by applying
special graph transformations, which we call causal transitions: the causal tran-
sitions include, for example, the necessary action transition, which uses Craig
interpolation to find a necessary intermediate action. A full exploration of the
causal dependencies leads to an in general infinite tree, which we call the causal
trace unwinding. If all branches of the causal trace unwinding are either contra-
dictory (meaning that the causal requirements of reaching the error cannot be
satisfied) or infinite (meaning that no finite number of actions suffices to reach
the error), we can conclude that the error is, in fact, unreachable. The verifica-
tion algorithm builds finite prefixes of the causal trace unwinding and terminates
as soon as the two conditions can be established for the full tree.

The causality-based verification of multi-threaded programs can be dramati-
cally faster than the standard state space traversal. In the paper, we demonstrate
this effect for multi-threaded programs with locks. It turns out that our algo-
rithm verifies the most general class of these programs in polynomial time. This
answers an open question originally posed by Alexander Malkis [7].

The remainder of the paper is structured as follows. After a brief discussion of
related work, we consider a motivating example from the class of multi-threaded
programs with locks in Section 2. We discuss the necessary preliminaries in Sec-
tion 3 and define the central structure of our approach, causal trace unwinding,
in Section 4. The causality-based verification algorithm, which allows us to ex-
plore only a finite prefix of the unwinding, is described in Section 5. Finally,
in Section 6 we show how our verification algorithm settles the open question
regarding the verification of multi-threaded programs with locks, reducing the
complexity from exponential to polynomial.

Related work. Causality-based verification can be understood as a gener-
alization of standard model checking [1], because the next-state relation usually
explored in model checking captures the causal dependencies between successor
states: a trace from some arbitrary non-error state to an error state can only
exist if there is a trace from one of the state’s successors. However, it is usually
easy to obtain additional elements of the causality relation, for example based on
a cheap analysis of the control flow graph. Such additional elements are exploited

2

by our procedure, but not by standard model checking based on a forward or
backward traversal of the state space.

Our method is related to approaches based on partial orders, such as partial
order reduction [5], Mazurkiewicz traces [9], and Petri net theory [10]. Similar
to causality-based verification, these approaches exploit the independence that
results from the combination of separate processes. Unlike these approaches, we
do not require, however, that the system is given a-priori as a partial order.
Our rules extract causal dependencies from the system description and use such
dependencies to contradict the existence of an error trace. Finally, causality-
based verification is a tableau-based decision procedure, related to the tableau-
based approaches for modal and temporal logics [8].

2 Motivating Example

As a motivating example we consider the class of multithreaded programs with
critical sections protected by shared lock variables, which is described in [7]. A
program in this class consists of n threads, executing in the interleaved fashion,
and m shared boolean lock variables. Each thread contains some finite number
of critical sections, protected by the “acquire lck i” and “release lck i” statements
for one of the lock variables. Critical sections may be arbitrarily nested or in-
tersected, and a thread may have an arbitrary control structure via the use of
“if (ϕ) goto j” statements, where ϕ is any formula over the shared variables.
The only restriction for a correct program is that the control flow may enter one
of the critical sections for the lck i variable only via the “acquire lck i” statement,
and may exit it either by jumping to another critical section for the same lock
variable, or by executing the “release lck i” statement. The syntax and semantics
of such programs are shown in the left part of Figure 1; they can be used to ana-
lyze systems with built-in “test-and-set” primitive. In the following we consider
the example program depicted on the right of Figure 1; we want to verify that
threads 1 and 2 cannot be simultaneously at their critical sections 2, protected
by lock l1.

Our algorithm operates on a causal trace unwinding, where vertices are la-
beled with abstract traces. In Figure 2 we depict the unwinding in the center,
and the labels of its vertices on the left or on the right from a corresponding
vertex (we do not draw some trace edges, which follow from transitivity).

Step 1: We start with an unwinding, containing a single vertex 1, and labeled
with the abstract trace representing all concrete traces from initial state to error
state (initial action i is labeled with pc′1 = 1∧pc′2 = 1∧pc′3 = 1, and error action
e is labeled with pc1 = 2 ∧ pc2 = 2).

Step 2: We check whether the abstract trace of vertex 1 is concretizable. It
is not, for example because of the of the conflict pc′1 = 1 pc1 = 2 between
actions i and e. We conclude that in between of initial and error actions a
necessary action, characterized by the transition predicate pc1 6= 2 ∧ pc′1 = 2,
should happen. There is only one system transition, a1, satisfying this predicate,
and we introduce new vertex 2 in the unwinding, labeled with the abstract trace

3

Syntax Semantics

acquire li li = 0 ∧ l′i = 1 ∧
pc′ = pc + 1

release li l′i = 0 ∧
pc′ = pc + 1

if (ϕ) goto j (ϕ ∧ pc′ = j) ∨
(¬ϕ∧pc′ = pc +1)

1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

Fig. 1. General class of multithreaded programs with binary locks. Left: Syntax and
semantics. Right: Example system consisting of 3 threads with critical sections over 3
lock variables. Initial state vector is (1, 1, 1), and error state vector is (2, 2,).

where transition a1 is inserted. We require that thread 1 does not leave location 2,
and mark the edge a1 → e with the predicate pc1 = 2.

Step 3 is similar to step 2: there is a conflict pc′2 = 1 pc2 = 2, and a single
necessary action, a2, satisfying the transition predicate pc2 6= 2 ∧ pc′2 = 2. We
introduce new vertex 3, where actions a1 and a2 are concurrent: they are both
necessary, but the order of their occurrence is unspecified.

Step 4: We try to linearize the abstract trace from vertex 3; it contains two
concurrent actions, and we choose an arbitrary order between them, for example
a1 before a2. The linear trace contains the conflict l′ = 1 l = 0 (a1 has the
postcondition l = 1, while a2 has the precondition l = 0). But, because the order
between a1 and a2 is not dictated by the abstract trace, we make an order split,
considering both alternatives (vertices 4 and 5).

Step 5: We consider only vertex 5 from the previous step; vertex 4 is analyzed
analogously. The conflict l′ = 1 l = 0 between a1 and a2 is now dictated by the
trace; so a new necessary action, satisfying the predicate l 6= 0∧ l′ = 0 should be
inserted. We instantiate this abstract action with all concrete actions, satisfying
the predicate, namely r1, r2, r3, and r5. Here, for the picture clarity, we show
only vertices 6 (with r1) and 7 (with r2).

Step 6: Consider first the trace of vertex 6: it contains a contradiction,
namely action r1 (labeled with pc1 = 4∧pc′1 = 5∧ l′ = 0) lies in the scope of the
edge a1 → e (labeled with pc1 = 2), and their labels are unsatisfiable together.
Thus, we close this branch as contradictory.

Step 7: For each leaf vertex we try to find whether a “similar” concurrent
trace was already encountered before. For the case of vertex 7, its label is, indeed,
similar to the label of vertex 1: we can find a mapping from all nodes and edges
of the latter to the nodes and edges of the former. More precisely, we can map
node i to node i, and node e to node r2. Moreover, the label of node r2, which
equals to pc2 = 2 ∧ pc′2 = 3 ∧ l′ = 0 ∧ pc1 = 2 due to the restriction from the
edge a1 → e, implies the label of node e. Thus, the trace of vertex 7 is more

4

11i e

2i a1 e
pc1 = 2

3i

a1

a2

e

pc1 = 2

pc2 = 2

4i

a1

a2

e

pc1 = 2

pc2 = 2

5 i

a1

a2

e

pc1 = 2

pc2 = 2

6 i

a1

a2

r1 e

pc1 = 2

pc2 = 2

7 i

a1

a2

r2 e

pc1 = 2

pc2 = 2

.

⊥

Fig. 2. First steps of the causal trace unwinding for the example multi-threaded pro-
gram with binary locks.

restrictive than the trace of vertex 1, and we can cover vertex 7 by vertex 1.
Also, there is node a2 on the right of r2, which the covering “forgets”. The path
1→ 2→ 3→ 5→ 7→ 1 in the unwinding constitutes a causal loop: as long as
we follow the loop, we keep introducing new and new actions a2 on the right.

Continuing the process, we would find out that all leaf nodes in the trace
unwinding are either contradictory, as in step 6, or are covered by such causal
loops as in step 7. This implies that our system is correct, because any possible
error trace would have infinite length. We will return to the verification of multi-
threaded programs with locks in Section 6.

3 Preliminaries

Transition Systems. We consider concurrent systems described in some first-
order assertion language. For a set of variables V, we denote by Φ(V) the set of
first-order formulas over V. For each variable x ∈ V we define a primed variable
x′ ∈ V ′, which denotes the value of x in the next state. We call formulas from the
sets Φ(V) and Φ(V ∪ V ′) state predicates and transition predicates, respectively.

A transition system is a tuple S = 〈V, T, init, error〉 where V is a finite set of
system variables; T ⊆ Φ(V ∪V ′) is a finite set of system transitions; init ∈ Φ(V)
and error ∈ Φ(V) are state predicates, characterizing initial and error states.

A state of S is a valuation of system variables V. We call an alternating
sequence of states and transitions s0, t1, s1, t2, . . . , tn, sn a trace, if init(s0) holds,
and for all 1 ≤ i ≤ n, ti(si−1, si) holds. We call a trace s0, t1, s1, t2, . . . , tn, sn
an error trace if it ends in some error state, i.e. the predicate error(sn) holds.
We say that the system is safe if there does not exist any error trace for that
system; otherwise the system is unsafe. For a system S we denote the set of its
traces by L(S), and the set of its error traces by Le(S) ⊆ L(S).

5

Transition systems are well suited for the representation of multi-threaded
programs with interleaving semantics: in this case the set of system transitions
is simply a union of transitions of individual processes.

Graph Transformations. We follow [2, 3] and use the so-called single-
pushout (SPO) and double-pushout (DPO) approaches to describe graph trans-
formations. All graph transformations that we use are non-erasing and lie at the
intersection of both approaches; the definitions below are adapted from [2].

A graph is a tuple G = 〈N,E〉, where N is a set of nodes, and E ⊆ N ×N
is a set of edges. The source and target functions s, t : E → N map each edge
to its first and second component, respectively.

Given two graphs G = 〈N,E〉 and G′ = 〈N ′, E′〉, a graph morphism f : G→
G′ is a pair f = 〈fN : N → N ′, fE : E → E′〉 of functions, preserving sources
and targets: fN ◦ t = t′ ◦ fE , and fN ◦ s = s′ ◦ fE .

For our purposes, a graph production p : (L
r−→ R) is an injective graph

morphism r : L → R. The graphs L and R are called the left-hand side and
the right-hand side of p, respectively. A given production p : (L

r−→ R) can be
applied to a graph G if there is an occurrence of L in G, i.e. an injective graph
morphism m : L → G, called a match. In this case the resulting graph H can
be obtained from G by adding all elements of R with no pre-image in L. The
application of a production p to a graph G with a match m is called a direct

derivation; we will denote it interchangeably with G
p,m

===⇒ H and H = pm(G).

4 Causal Trace Unwindings

4.1 Concurrent Traces

We follow the theory of Mazurkiewicz traces, and define concurrent traces
through their dependence graphs. A concurrent trace is a labeled, directed, acyclic
graph A = 〈N,E, ν, η〉, where 〈N,E〉 is a graph with nodes N , called actions,
and edges E; ν : N → Φ(V ∪ V ′), η : E → Φ(V ∪ V ′) are labelings of nodes and
edges with transition predicates. We denote the set of concurrent traces by A.

A concurrent trace describes a set of system traces. For a particular con-
current trace its actions specify which transitions should necessarily occur in
a system trace, while its edges represent the (partial) ordering between such
transitions and constraint the intermediate ones.

Trace language. For a transition system S = 〈V, T, init, error〉, the lan-
guage of a concurrent trace A = 〈N,E, ν, η〉 is defined as a set L(A) of system
traces such that for each trace s0, t1, s1, t2, . . . , tn, sn ∈ L(A) there exists an
injective mapping σ : N → {t1, . . . , tn} such that:

1. for each action a ∈ N and ti = σ(a) the formula ν(a)
(
si−1, si

)
holds.

2. for each edge e = (a1, a2) ∈ E, and ti = σ(a1), tj = σ(a2), we have that
a) i < j, and b) for all i < k < j, the formula η(e)

(
sk−1, sk

)
holds.

We call a concurrent trace A = 〈N,E, ν, η〉 contradictory if some of its actions
is labeled with an unsatisfiable predicate, i.e. if there exists n ∈ N such that
ν(n) implies ⊥. Obviously, the language of such a trace is empty.

6

Trace inclusion. For any two concurrent traces A = 〈N,E, ν, η〉 and A′ =
〈N ′, E′, ν′, η′) we define the trace inclusion relation ⊆ as follows: A ⊆ A′ iff
1. there exists a graph morphism λ = 〈λN : N ′ → N,λE : E′ → E〉.
2. for all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′).
3. for all e′ ∈ E′ . η(λE(e′)) =⇒ η′(e′).

Proposition 1. if A ⊆ A′ then L(A) ⊆ L(A′).

We write A ⊆λ A′, if trace inclusion holds for a particular graph morphism
λ. Let λN be the image of λN : λN = {n ∈ N | (n′, n) ∈ λN}. We call the trace
inclusion A ⊆λ A′ left-forgetful (resp. right-forgetful), if for all n ∈ λN there
exists n× ∈ N \ λN such that (n×, n) ∈ E (resp. (n, n×) ∈ E). We call the trace
inclusion forgetful if it is either left- or right-forgetful. Intuitively, when A ⊆λ A′
is a forgetful trace inclusion, we “forget” some action on the left or on the right
when moving from A to A′.

Our intention is to find causal consequences from the information about error
traces, represented in the form of concurrent traces. For that purpose we start
with a single concurrent trace, containing two actions: initial action i, marked
with init ′, and error action e, marked with error , connected with an unrestricted
edge. The marking ensures that all possible error traces are preserved.

Initial Abstraction. For a transition system S = 〈V, T, init, error〉 we
define InitialAbstraction(S) as a concurrent trace A = 〈N,E, ν, η〉, where
N = {i, e}, E = {(i, e)}, ν = {(i, init ′), (e, error)}, η = {((i, e), true)}.

Proposition 2. Le(S) ⊆ L(InitialAbstraction(S)).

Trace Productions. We lift graph morphisms to traces with the same mean-
ing (mappings for nodes and edges of one trace to those of another), and call
them trace morphisms. We generalize graph productions to concurrent traces:
a trace production τ : (L

r−→ R), where L,R are concurrent traces and r is a
trace morphism, describes a transformation of trace L into trace R. The graph-
ical part is transformed by the corresponding graph production, and labels are
transformed by the operations of boolean algebra. Formally trace productions
can be described as graph productions on attributed graphs; for details we refer
the interested reader to [3], pp. 284-288. In the following we denote the set of
trace productions by Π.

4.2 Causal Transitions

Starting from the initial abstraction, we find, step by step, further causal depen-
dencies. For this purpose we introduce in the following special graph productions,
which we call causal transitions:

Causal Transition. For a given transition system S, a causal transition
τ : {τ1, . . . , τn} is a set of trace productions τi : (L

ri−→ Ri), where all productions
share the same left-hand side L; we will denote L by τC, and call transition
premise. We say that causal transition τ is sound if the condition below holds:

∀A ∈ A . A ⊆m τC =⇒ L(A) ⊆
⋃
τi∈τ
L
(
τmi (A)

)
7

The above condition says that if the transition premise τC can be matched to
some concurrent trace A, then the application of the transition should preserve
all possible concrete traces, contained in A. Please note, that causal transitions
can be interpreted both operationally (as transformations of concurrent traces),
and logically (as language inclusion); we employ both interpretations. In the
following we denote the set of causal transitions by ∆.

Below we describe some examples of causal transitions, shown in Figure 3.

Order Split (Figure 3a). The order split causal transition considers alter-
native interleavings of two previously concurrent events.

Action Split (Figure 3b). The action split causal transition, given some
action a in the trace, and a transition predicate ψ, considers two alternatives:
either a satisfies ψ or not.

Transitivity (Figure 3c). The transitivity causal transition, given two se-
quential edges a → b and b → c, allows to introduce edge a → c, which follows
from transitivity, and label it with the disjunction of the constraints in its scope.

Necessary Action (Figure 3d). The necessary action causal transition,
given two ordered actions a and b in a concurrent trace, and a transition pred-
icate φ, such that the label of a implies φ′, and the label of b implies ¬φ, i.e.
there is a contradiction between these actions (a “ends” in the region φ, while
b “starts” in the region ¬φ), introduces a new “bridging” action x in between.
The predicate φ may be obtained by Craig interpolation between the labels of
a and b. The application condition for this causal transition ensures that there
is no other action y in the trace already, that could play the role of x.

Figure 3d shows three causal transitions, which have

φ
¬φ

a

b

x

u

v

w

the same left-hand-side L, but different right-hand sides R,
Rfirst, and Rlast (separated by vertical bars in the figure). In
R we simply insert action x in the concurrent trace. In Rfirst
(resp. Rlast) we require, additionally, that action x is the first
(resp. last) action, that crosses the boundary between φ and
¬φ (see picture on the right). This can be achieved by mark-
ing the corresponding edge with the predicate ¬(φ∧¬φ′) = ¬φ∨φ′; but we can
easily strengthen this requirement. Indeed, suppose we want action x to be the
last in the sequence of possible necessary actions; the only actions allowed by the
above predicate are of the type u (φ∧φ′), v (¬φ∧¬φ′), or w (¬φ∧φ′). But, if an
action of type u or w happens, then an action of type x becomes necessary again,
and it is not allowed: a contradiction. Thus, we can safely allow only actions of
type v to happen, and strengthen the above predicate to ¬φ ∧ ¬φ′.

Action/Edge Restriction (Figures 3e, 3f). The action restriction (resp.
edge restriction) causal transition allows us to restrict the label of an action
(resp. edge), if it happens to be in the scope of some edge (for example, as a
result of order split application).

Forward/Backward Unrolling (Figures 3g, 3h). The forward unrolling
(resp. backward unrolling) causal transition, given two actions in a concurrent
trace, which cannot follow immediately one after another and do not have any
other actions in between, unrolls the transition relation one step forward or

8

L

a

b

R1

a

b

a) Order Split: a ‖ b

R2

a

b

L

a
{φ}

R1

a
{φ ∧ ψ}

b) Action Split

R2

a
{φ ∧ ¬ψ}

L

a

b

c

{χ}
{φ}

{ψ}

R

a

b

c

{χ}
{φ}

{ψ}

{φ∨
χ∨
ψ}

c) Transitivity

L

a{φ′}

b{¬φ}

R

a{φ′}

b{¬φ}

x{φ ∧ ¬φ′}

Rfirst

a{φ′}

b{¬φ}

x{φ ∧ ¬φ′}

{φ ∧ φ′}

Rlast

a{φ′}

b{¬φ}

x{φ ∧ ¬φ′}
{¬φ
∧¬φ′}

d) Necessary Action: @y . y ‖ a→ b ∧ sat(η(y) ∧ φ ∧ ¬φ′)

L

a

b

{φ} x{ψ}

R

a

b

{φ} x{ψ ∧ φ}

e) Action Restriction

L

a

b

{φ}
x

y
{ψ}

R

a

b

{φ}
x

y
{ψ ∧ φ}

f) Edge Restriction

L

a{φ}

b{ψ}

R

a{φ}

b{ψ}

x{postT (
postφ(>))′}

{⊥}

g) Forward Unrolling:

L

a{φ}

b{ψ}

R

a{φ}

b{ψ}

x{preT (
preψ(>))}

{⊥}

h) Backward Unrolling:

unsat(φ ∧ ψ′) ∧ @y . y ‖ a→ b

Fig. 3. Examples of causal transitions

backward. Let φ[V/V′] denote the substitution of V ′ variables in formula φ by

corresponding variables V. Then postτ (φ) =
(
∃V φ(V)∧τ(V∪V ′)

)
[V/V′]

is a post-

image of φ with respect to transition relation τ , while preτ (φ) = ∃V′ τ(V ∪V ′)∧
φ(V)[V′/V] is a pre-image of φ with respect to τ . For the case of forward unrolling,
to calculate the label of the newly introduced action x, we first compute the
post-image of the preceding action a, and then the post-image of the result with
respect to the whole transition relation T (treated here, by abuse of notation, as
a disjunction of all transitions from T). The label ⊥ on the edge a→ x ensures
that there are no other actions between a and x. Calculations for the case of
backward unrolling are done similarly.

Proposition 3. The defined above causal transitions are sound.

9

4.3 Causal Trace Unwindings

Causal Trace Unwinding. For a transition system S, we define a (causal)
trace unwinding as a tuple Υ = 〈V, F, γ, δ, λ〉, where:
– (V, F) is a directed tree with vertices V , root vertex v0 ∈ V , and edges
F . Vertices are partitioned into internal vertices and leaves: V = VN] VL,
VN = {v ∈ V | ∃(v, v′) ∈ F}, VL = {v ∈ V | @(v, v′) ∈ F}.

– γ : V → A is a labeling of vertices with concurrent traces.
– δ : F → Π is a labeling of edges with trace productions. We require that

for all edges with the same source v, the labeling productions have the same
left-hand side. Thus, we have an induced labeling of internal vertices v ∈ VN
with causal transitions: δ(v) = {δ((v, v′)) | (v, v′) ∈ F}.

– λ is a labeling of internal vertices with trace morphisms:
∀v ∈ VN . λ(v) : δ(v)C → γ(v).

A trace unwinding is said to be correct if it satisfies the following criteria:
1. InitialAbstraction(S) ⊆ γ(v0).
2. for all internal vertices v ∈ VN we have: a) δ(v) is sound, b) γ(v) ⊆λ(v) δ(v)C,

and c) for all (v, v′) ∈ F it holds that δ
(
(v, v′)

)λ(v)(
γ(v)

)
⊆ γ(v′).

A trace unwinding is a tree, which can be seen as an unwinding of the trace
causality relation. The label γ(v) of the vertex v represents all possible error
traces for that vertex; the first condition above ensures that the root vertex v0
contains all error traces of the given system. The second condition guarantees
the applicability of the causal transition δ(v) of a vertex v to its label γ(v) and
full exploration of the causal transition consequences, thus preserving the set of
concrete traces. Indeed, we have:

γ(v) ⊆λ(v) δ(v)C =⇒ L
(
γ(v)

)
⊆

⋃
(v,v′)∈F

L
(
δ
(
(v, v′)

)λ(v)(
γ(v)

))
⊆

⋃
(v,v′)∈F

L
(
γ(v′)

)
We call causal path a finite or infinite sequence v0, v1, v2, . . . of vertices, start-

ing from the root v0, such that for all i ≥ 0, (vi, vi+1) ∈ F . We call a causal
path contradictory if it is finite and ends in a vertex labeled with a contradictory
trace. We call a causal path unbounded if it is infinite and the number of actions
in the labeling of its vertices increases beyond any bound: for any n ∈ N there
exists i ≥ 0 such that |γ(vi)| > n.

Theorem 1 (Soundness of Trace Unwinding). If there exists a correct
causal trace unwinding for a transition system S, where every causal path is
either contradictory or unbounded, then S is safe.

5 Causality-based Verification Algorithm

The causal trace unwinding, described in the preceding section, is easy to con-
struct, but in most cases it will be infinite. In this section we provide an algo-
rithm that explores only a finite prefix of an infinite unwinding and, based on
that prefix, establishes the desired properties for the whole unwinding.

10

The idea behind the finite unwinding prefix is simple: as soon as we encounter
a new vertex, labeled with some concurrent trace we have seen before, we would
like to cut the unwinding at that vertex and loop back. There are two problems
with this simple-minded approach. First, the exact match of one trace to another,
like in step 7 of the motivating example, is rarely achievable. We solve this
problem by tracking for each vertex the most general trace, sufficient to repeat all
causal transitions in the subtree of that vertex; in that way we significantly relax
the matching requirement. Second, we should ensure that every infinite path in
the unwinding is unbounded; we achieve that by requiring that a forgetful trace
inclusion holds between the trace of the leaf vertex and the most general trace of
the vertex where the back loop leads to. We call such a finite unwinding prefix
causal trace tableau, and such back loops covering.

Causal Trace Tableau. A (causal) trace tableau for a transition system S
is a tuple 〈Υ, , α, µ, σ〉 where:

– Υ = 〈V, F, γ, δ, λ〉 is a causal trace unwinding.
– : VL 7→ VN is a partial covering function; for (v, v′) ∈ we call v a covered

vertex, and v′ a covering vertex.
– α : V → A is a labeling of vertices with (abstract) concurrent traces.
– µ and σ are labelings of vertices with trace morphisms: µ(v) : δ(v)C → α(v)

and σ(v) : α(v)→ γ(v) such that σ(v) ◦ µ(v) = λ(v).

We call a trace tableau 〈Υ, , α, µ, σ〉 complete if all its leaf vertices are either
contradictory or covered. We call it correct if Υ is correct and, additionally:

1. for all vertices v ∈ V we have γ(v) ⊆σ(v) α(v) ⊆µ(v) δ(v)C.

2. for all (v, v′) ∈ F we have δ
(
(v, v′)

)µ(v)(
α(v)

)
⊆ α(v′).

3. for all (v, v′) ∈ we have that α(v) ⊆µ(v) α(v′) is a forgetful trace inclusion.
4. for all v ∈ VL such that γ(v) is contradictory, α(v) is also contradictory.

Theorem 2 (Soundness of Trace Tableau). If there exists a correct and
complete causal trace tableau for a transition system S, then S is safe.

Theorem 3 (Completeness of Trace Tableau). If a transition system S
with finite-state quotient is safe, then there exists a correct and complete causal
trace tableau for S.

Our causality-based verification algorithm (see Algorithm 1), operates on
the trace tableau defined above. Each vertex v in the tableau is labeled with
two concurrent traces: a concrete trace γ(v), and an abstract trace α(v); we
always have that γ(v) ⊆σ(v) α(v). Initially the unwinding contains only the root
v0, labeled with the concrete trace InitialAbstraction(S). Concrete label γ(v)
is obtained as a result of a chain of applications of causal transitions on the
path from v0 to v. Abstract label α(v), on the other hand, represents conditions,
sufficient to repeat all unwinding steps in the subtree, originating at v; it is
obtained by propagating up the premises of causal transitions, applied at the
subtree vertices.

At each iteration of the algorithm main loop we select some vertex v from
the queue Q of unexplored tableau leaves. First, we try to cover v by some

11

Algorithm 1: Causality-based Verification

Input : Transition system S = 〈V, T, init, error〉
Output: safe/unsafe
Data: Trace tableau 〈Υ, , α, µ, σ〉, where Υ = 〈V, F, γ, δ, λ〉, queue Q ⊆ VL,

premise of last causal transition τC ∈ A, trace morphism ξ : τC → A
begin

set V ←− {v0}, γ(v0)←− InitialAbstraction(S)
set Q←− {v0}, all of {F, , α, µ, σ, δ, λ} ←− ∅
while Q not empty do

take some v from Q
if ∃ v′ ∈ VN , σ′ : α(v′)→ γ(v) . γ(v) ⊆σ′ α(v′) is forgetful then

add (v, v′) to
set δ(v)C ←− α(v′), τC ←− α(v′), ξ ←− σ′

else
set L←− Linearize(γ(v))
if Concretizable(L) then

return unsafe
else

set 〈τC, ξ〉 ←− Refine(v, L)

put children of v into Q
PropagateUp(v, τC, ξ)

return safe

In: vertex v, linear trace L = 〈N,E, ν, η〉
Out: 〈premise τC, trace morphism ξ〉
begin
〈N ′ ⊆ N,E′ ⊆ E〉 ←−

ExtractConflict(L)
if ∃ o1, o2 ∈ N ′ ∪ E′ . o1‖o2 then

OrderSplit(o1, o2)

else
switch |N ′| do
case 1

Contradiction(v, n1)

case 2
φ = Interpolate(η(n1) ; η(n2)′)
NecessaryAction(v, n1, n2, φ)

otherwise
φ = Interpolate(η(n1) ∧ . . .

. . . ∧ η(nk−1)k−1 ; η(nk)k)
ActionSplit(v, nk−1, φ)

return 〈premise τC of used causal
transition, trace morphism ξ : τC→L〉

Function Refine

In: vertex v, premise τC,
trace morphism ξ : τC → γ(v)

begin
if @χ = 〈χN , χE〉 :τC → α(v) . ξ = σ ◦ χ
then
foreach o ∈ γ(v) . ∃ o′ ∈ τC . o = ξ(o′)
∧ @ o′′ ∈ α(v) . o = σ(o′′) do

add o′ to α(v), and (o′, o) to σ(v)

let χ = 〈χN , χE〉 : τC → α(v) . ξ = σ ◦ χ
if α(v) 6⊆ χτC then
foreach n . η(χN (n)) 6=⇒ η(n) do

set η(χN (n))←−η(χN (n))∧η(n)

foreach e . ν(χE(e)) 6=⇒ ν(e) do
set ν(χE(e))←−ν(χE(e))∧ν(e)

foreach (vc, v) ∈ do
if α(vc) ⊆µ(vc) α(v) not forgetful
then remove (vc, v) from

put vc into Q

if ∃ parent v′ . (v′, v) ∈ F then
let δ′ : γ(v′)→ γ(v)
set 〈τC, ξ〉 ←− Pullback(δ′, ξ)
PropagateUp(v′, τC, ξ)

Procedure PropagateUp

12

other vertex v′: this can be done if the concrete trace of v is included in the
abstract trace of v′ (thus, all causal transitions at v′ subtree can be repeated),
and, moreover, the inclusion is forgetful, i.e. it “forgets” some action on the left
or on the right from the trace.

If the covering attempt was unsuccessful, we linearize the concrete trace of v.
If the linear trace L is concretizable - we have found a concrete error trace, and
the algorithm terminates with unsafe; otherwise there is a conflict in L, and we
proceed to the refinement phase, where some causal transition is applied to v.

At the end of each iteration we put into queue Q all children of v, added
during the refinement phase, and propagate the premise of the applied causal
transition up the unwinding tree. We finish the main loop of the algorithm as
soon as queue Q becomes empty: in that case the only uncovered leaf vertices
left are contradictory, and the tableau is complete; the algorithm returns safe.

The refinement function Refine is the main point of application of a wide
spectrum of optimizations and specializations possible for causalty-based veri-
fication. Here we show one possible instantiation for Refine, which operates on
a non-linearizable concurrent trace. First, it extracts a conflict from the trace
(for example, by computing an unsatisfiable core): a minimal subtrace, which is
still non-linearizable. If the subtrace contains some unordered actions or edges,
an order split is applied, which forces a particular order. Otherwise we consider
different cases with respect to the number of actions in the non-linearizable sub-
trace. If there is only one action, the trace is surely contradictory. If there are
two actions, we apply the necessary action, which tries to repair the conflict by
introducing new action in the middle. For that purpose we compute the Craig
interpolant between contradictory actions. Finally, if there are more than two
actions in the subtrace we shorten the subtrace by splitting the last but one
action with the Craig interpolant between the last action and the rest of them.
Each of the causal transitions applied returns its premise and the mapping of it
into the concrete trace of the vertex: they are used later for propagation.

The propagation of premises is done in procedure PropagateUp, and ex-
plained graphically in the left part of Figure 4. Given as input the premise τC
and the mapping ξ of it to the concrete label γ(v), the procedure adds missing
components to the abstract label α(v). This is done in two stages: first, the ob-
jects (actions or edges), which are present in τC, but missing in α(v) are inserted
into α(v), producing such α(v)′ that there is a mapping χ : τC → α(v)′; second,
their labels in α(v)′ are adjusted in such a way, that γ(v) ⊆χ α(v)′′ holds. Be-
cause the abstract label α(v) becomes more concrete, previous covering by that
vertex may stop to hold; they are checked and uncovered as needed. Finally,
the premise is propagated up in the tableau to vertex v′, by constructing the
premise τ ′C and the mapping ξ′ : τ ′C → γ(v′) as a pullback object and arrow of
two arrows ξ and δ′, where δ′ is a direct transformation of γ(v′) to γ(v). Then
PropagateUp is called recursively with this new premise and mapping; the prop-
agation process terminates either when the root vertex is reached, or when the
abstract label α(v) already contains all objects used in the premise, i.e. when
the inclusion α(v) ⊆ τC holds.

13

(pc′1 = 1)2
(pc′2 = 1)3
(pc′3 = 1)

i

(pc1 = 2)2
(pc2 = 2)3

e

(pc′1 = 1)7
(pc′2 = 1)3
(pc′3 = 1)

i

(pc1 = 1) ∧ (pc′1 = 2)
(l = 0) ∧ (l′ = 1)5

a1
(pc1 = 2)
(pc2 = 2)3

e
(pc1 = 2)6

(pc′1 = 1)7
(pc′2 = 1)7
(pc′3 = 1)

i
(pc1 = 1) ∧ (pc′1 = 2)

(l = 0) ∧ (l′ = 1)5

(pc2 = 1) ∧ (pc′2 = 2)
(l = 0)5 ∧ (l′ = 1)

(pc1 = 2)
(pc2 = 2)

e(pc1 = 2)6

(pc2 = 2)

a1

a2

τC

γ(v)

α(v)ξ
×××

σ(v)

α(v)′

χ 6⊇

σ(v)′

α(v)′′

χ
⊇

σ(v)′′

τ ′′C

γ(v′′)

τ ′C

γ(v′)

τC

γ(v)

. ξξ′ξ′′

δ′δ′′

Fig. 4. Upward propagation of premises in trace tableau. Top left : calculation of ab-
stract label α(v) in procedure PropagateUp. Bottom left : pullback construction, propa-
gation of premise τC to parent vertices. Right : abstract labels for the first three vertices
of the tableau from motivating example.

The right part of Figure 4 depicts the abstract labels of the first three vertices
of the tableau, obtained after the execution of seven steps from the motivating
example. Each conjunct of action or edge labels is marked with the number,
showing at which step of the execution this conjunct was included into the
abstract label; the undescore sign means that this conjunct is not present in
the abstract label after all seven steps. For example, for the top right trace in
Figure 4, the conjuncts (pc′1 = 1) and (pc1 = 2) were included in the abstract
label in the second step, the conjuncts (pc′2 = 1) and (pc2 = 2) in the third step,
and the conjunct (pc′3 = 1) was never used for all seven execution steps.

6 Polynomial-Time Verification for Programs with Locks

To demonstrate the advantages of causality-based verification, let us return again
to the class of multi-threaded programs with locks, which we considered as a mo-
tivating example in Section 2. Standard model checking approaches require ex-
ponential, with respect to the number of threads, time and space to prove safety
of such programs. In [7], a counterexample-guided refinement algorithm based
on cartesian abstraction with exception sets is developed, which is capable to
solve in polynomial time the safety problem for the restricted class of programs
with locks. The restricted class allows only one lock variable, prohibits nest-
ing/intersection of critical sections, and disallows control flow transfers. Alexan-
der Malkis posed the following:

Open Problem ([7], p.65). Is the most general locks class polynomi-
ally verifiable for a fixed number of locks?

14

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

r5

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a5

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [4]

.

OrderSplit
NecessaryAction

NecessaryAction
Transitivity

NecessaryAction
Transitivity

Fig. 5. Part of the causal trace tableau for the example multi-threaded program with
locks.

Here we settle this question affirmatively; moreover, our trace refinement
algorithm finds safety proofs for the most general class of programs with locks
using only polynomial time and space with respect both to the number of threads
and to the number of locks.

Our algorithm starts its computation as shown in Section 2. After several
initial steps, the causal tableau starts looping in the repetitions of the same
concurrent scenario, shown in Figure 5: two threads enter (actions a1, a3) and
stay (restrictions pc1 ∈ [2, 3, 4] and pc3 ∈ [2, 3]) in their critical sections for the
same lock variable. Because all acquire actions satisfy the constrain l = 0∧l′ = 1,
any ordering of them produces the conflict l′ = 1 l = 0. The algorithm applies
the necessary action causal transition, and inserts a release action, which can
be instantiated to transitions r1, r2, r3, and r5; in the example we consider only
transition r5. Now the trace contains the conflict pc′2 = 1 pc2 = 4 between
actions i and r5. There are two possible paths between locations 2 and 4 of the
second trace; by inserting necessary actions on both alternative paths, we finally
introduce actions a2 and a5 respectively. Both are acquire actions and we again
repeat the concurrent scenario with two threads trying to enter critical sections;
thus, the new tableau vertices are covered. Moreover, there is an action (a3 in
this case), which the covering forgets; thus, the covering is forgetful.

It is easy to check, that the number of vertices in the tableau is proportional to
the cubic power of the number of critical sections, while the size of the concurrent
traces, labeling the vertices, is independent of the number of threads, critical
sections, and locks. The execution of our algorithm takes at most quadratic time
with respect to the number of vertices; thus, we have the following:

Theorem 4. Causality-based verification algorithm proves the safety of the most
general class of multi-threaded programs with binary locks in deterministic poly-
nomial time and space with respect to the number of threads and locks.

15

7 Conclusion

We have presented a new verification procedure for concurrent systems, which
analyzes causal chains in the system behavior. In our procedure, we capture the
causal dependencies as Mazurkiewicz-style concurrent traces, and explore the
unwinding tree of the causally related traces. Our procedure terminates as soon
as all the paths in the unwinding tree are either contradictory, or are covered by
other tree vertices, where the same concurrent situation was already examined.

The key ingredient that distinguishes our approach from techniques based on
state space exploration or Petri net unfoldings, is that we do not restrict ourselves
to only forward or backward analysis of all the transitions available at the current
analysis stage. Instead, we try to build a minimal concurrent error trace, which
contains only the necessary transitions on the way from initial to error states.
We have demonstrated that in some cases, such as multi-threaded programs
with locks, our approach reduces the verification complexity from exponential
to polynomial.

The full version of the present paper with all proofs is available in [6].
Acknowledgements. The authors thank the anonymous reviewers for their

valuable comments and suggestions.

References

1. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.
2. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic

approaches to graph transformation - part i: Basic concepts and double pushout
approach. In Rozenberg [11], pages 163–246.

3. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation - part ii: Single pushout approach
and comparison with double pushout approach. In Rozenberg [11], pages 247–312.

4. J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to Model
Checking. EATCS Monographs in Theoretical Computer Science. Springer-Verlag,
2008.

5. P. Godefroid. Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem, volume 1032 of LNCS. Springer-Verlag
Inc., New York, NY, USA, 1996.

6. A. Kupriyanov and B. Finkbeiner. Causality-based verification of multi-threaded
programs. Reports of SFB/TR 14 AVACS 92, SFB/TR 14 AVACS, 2013. ISSN:
1860-9821, http://www.avacs.org.

7. A. Malkis. Cartesian Abstraction and Verification of Multithreaded Programs. PhD
thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2010.

8. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

9. A. Mazurkiewicz. Concurrent program schemes and their interpretations. Technical
Report DAIMI PB 78, Aarhus University, 1977.

10. W. Reisig. Petri Nets – An Introduction. Springer, 1985.
11. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformations, Volume 1: Foundations. World Scientific, 1997.

16

