
An Optimal Strategy Improvement Algorithm

for Solving Parity and Payoff Games⋆

Sven Schewe

Universität des Saarlandes and University of Liverpool

Abstract. This paper presents a novel strategy improvement algorithm
for parity and payoff games, which is guaranteed to select, in each im-
provement step, an optimal combination of local strategy modifications.
Current strategy improvement methods stepwise improve the strategy
of one player with respect to some ranking function, using an algorithm
with two distinct phases: They first choose a modification to the strategy
of one player from a list of locally profitable changes, and subsequently
evaluate the modified strategy. This separation is unfortunate, because
current strategy improvement algorithms have no effective means to pre-
dict the global effect of the individual local modifications beyond classify-
ing them as profitable, adversarial, or stale. Furthermore, they are com-
pletely blind towards the cross effect of different modifications: Applying
one profitable modification may render all other profitable modifications
adversarial. Our new construction overcomes the traditional separation
between choosing and evaluating the modification to the strategy. It thus
improves over current strategy improvement algorithms by providing the
optimal improvement in every step, selecting the best combination of lo-
cal updates from a superset of all profitable and stale changes.

1 Introduction

Solving parity games is the central and most expensive step in many model
checking [1–5], satisfiability checking [3, 1, 6, 7], and synthesis [8, 9] algorithms.
More efficient algorithms for solving parity games will therefore foster the de-
velopment of performant model checkers and contribute to bringing synthesis
techniques to practice. The quest for performant algorithms [1, 10–25] for solv-
ing them has therefore been an active field of research during the last decades.

Traditional forward techniques (≈ O(n
1

2
c) [16] for parity games with n posi-

tions and c colors), backward techniques (≈O(nc) [12, 10, 15]), and their combi-

nation (≈O(n
1

3
c) [25]) provide good complexity bounds. However, these bounds

are sharp, and techniques with good complexity bounds [25, 16] frequently dis-
play their worst case complexity on practical examples.

Strategy improvement algorithms [17–20], on the other hand, are fast simplex
style algorithms that perform well in practice. While their complexity is wide
open, they are often considered the best choice for solving large scale games.

⋆ This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).



(a)

5 1

4

2 3

(b)

0 9 7 5 3 1

Fig. 1. The examples show situations where ignoring global effects (a) and cross effects
between different updates (b) perturb the pivot rule of current strategy improvement
algorithms. States of Player 0 and 1 are depicted as boxes and circles, respectively. The
current strategy of Player 0 (and all options of Player 1) are depicted as full arrows,
the improvement edges of Player 0 are represented by dashed arrows.

State of the Art. Strategy improvement algorithms are closely related to the
simplex algorithm for solving linear programming problems. Strategy improve-
ment algorithms assign a value to each infinite play of a parity or payoff game,
and the objective of the two participating players (Player 0 and 1) is to minimize
and maximize this value, respectively.

In strategy improvement algorithms for parity and payoff games [17–20],
the memoryless strategies of Player 0 define the corners of a simplex. For each
memoryless strategy of Player 0, her opponent has an optimal counter strategy.
This pair of strategies defines a pointwise ranking function that assigns to each
game position p the value (or rank) v(p) of the play that starts in p.

The two distinguishing differences between strategy improvement techniques
compared to the simplex algorithm are a weak pivot rule and the option to apply
multiple modifications in every strategy improvement step.

Weak Pivot Rule. Different to simplex techniques for linear programming prob-
lems, current strategy improvement algorithms do not take the global effect of a
step to an adjacent corner of the simplex into account. When estimating the im-
provement attached to modifying the strategy locally, they presume that chang-
ing the strategy for one game position has no influence on the rank of any other
game position. In the situation depicted in Figure 1a, Player 0 can choose be-
tween two improvements of her strategy from her position colored by 1; she can
either move to the position with color 2, or to the position with color 4. While
the latter choice is obviously better (because Player 0 asserts the parity con-
dition), the local analysis considers only the value of the positions for the old
strategy [17–20]. A valuation function based on the old strategy, however, will
favor the change to the position with color 2, because the dominating color in
the infinity set for this position is 3 (for the old strategy), while the dominating
color in the infinity set of the position colored by 4 is 5. In the whole, the local
analysis alone does not provide much more information than a classification into
locally profitable, adversarial, and stale modifications.

Multiple Modifications. An advantage of strategy improvement techniques over
the simplex algorithm for linear programming problems is the option to consider
several locally profitable modifications at the same time [18, 19]. This advantage,
however, must be considered with care, because current strategy improvement
algorithms are blind towards the cross effect between different local updates.

While any combination of profitable changes remains profitable, it frequently
happens that applying one modification turns all remaining modifications ad-



Current Strategy Improvement Algs Game-Based Strategy Improvement Algorithm

1. pick initial strategy 1. pick and evaluate initial strategy
2. evaluate current strategy 2. adjust evaluation, increasing #profitable/stale mods
3. chose from profitable modifications 3. find and evaluate optimal combination of p/s mods
4. goto 2 4. goto 2

Fig. 2. Comparison between traditional strategy improvement algorithms and the pro-
posed optimal improvement algorithm. While current techniques first choose a par-
ticular update from profitable modifications and subsequently evaluate it, our novel
technique concurrently considers all combinations of profitable and stale modifications.

versarial. In the small singleton parity game depicted in Figure 1b, Player 0 is
only one step away from her optimal strategy. (It suffices to update the strategy
in the position with color 9.) All local changes lead to an improvement, but after
updating the strategy at the position with color 9, all remaining changes become
harmful. Given this shortcoming, it is unclear whether or not simultaneous up-
dates are a step forward for current strategy improvement algorithms.

Contribution. We introduce a strategy improvement algorithm that is based
on a reduction to simple update games, which can be solved in a single sweep. It
provides substantial advantages over current strategy improvement algorithms:

1. The reduction is more natural. It reduces solving parity (or mean payoff)
games to solving a series of simplified games, where the options of Player 0
are restricted, but not to the extreme of a singleton game. It thus preserves
and exploits the game character of the problem to improve a strategy.

2. The improvements are greater. The game-based approach allows us to take
the global and cross effects of different local modifications to the strategy into
account. We thus overcome the blind spot of current strategy improvement
algorithms and can make full use of simultaneous modifications.

3. The game-based analysis is cheaper. Reductions to graph-based algorithms
need to exclude stale cycles. Both, for parity and payoff games, the codomain
of the pointwise ranking function needs to be increased by a factor linear
in the size n of the game, which raises the estimation for the amount of
iterations by a factor of n and slows down the arithmetic operations.

From Graph-Based to Game-Based Updates. The suggested optimal strategy
improvement algorithm reduces solving parity games to solving a series of sim-
pler two player games. Turning to a game-based (rather than to a graph-based)
approach allows for considering all combinations of profitable and stale modifi-
cations in every update step, taking all global and cross effects into account.

This advancement is achieved by a novel technique that resolves the sepa-
ration between choosing and evaluating the modifications to a strategy. Where
current strategy improvement algorithms first update the strategy and then eval-
uate the resulting singleton game, our game-based approach exploits a natural
preorder for the evaluation of game positions that allows for simultaneously con-
structing optimal strategies for both players, such that every game position is
considered only once. Following this preorder, the evaluation of each individual
position can be reduced to a cheap local analysis.



The intuition for the preorder is that, in most cases, the game-based approach
allows for fixing an optimal decision for a game position after all of its successors
have been reevaluated. If all positions do have unevaluated successors, we can
immediately determine the optimal choice for some position of Player 1.

The Ranking Function. We change the rules of parity games by allowing one
player, say Player 0, to terminate the game in her positions. This is related to
the finite unraveling of mean payoff games [13] and the controlled single source
shortest path problem from the reduction of Björklund and Vorobyov [20].

The objective of Player 0 remains to assert an infinite path with even maxi-
mal priority in the infinity set. However, we add the natural secondary objective
for the case that she has not yet found (or there is no) such strategy. If Player 0
cannot assert such a path, she eventually stops the unraveling of the game,
optimizing the finite occurrences of the different priorities, but disregarding the
number of positions with priority 0. (Disregarding this number leads to a coarser
ranking function, and thus to an improved estimation of the number of improve-
ment steps. It also leads to greater improvements by increasing the number of
profitable or stale modifications.) Second, if the highest occurring priority is odd,
there is no need to keep track of the number of occurrences of this priority. It
suffices to store the information that this maximal number occurs on a finite
path, resulting again in a coarser ranking function.

For parity games with n positions, m edges, and c colors, the coarser ranking
function leads to an improved estimation of the number of updates from the
currently best bound O

(
n (n+c

c
)c+1

)
[20] for the number of arithmetic operations

needed by strategy improvement algorithms to O
(
n (n+c

c
)c−1

)
for parity games

with an even number of colors, and to O
(
n (n+c

c
)c

)
if the numbers of colors is

odd, reducing the bound by a factor quadratic and linear in the number of states,
respectively. The bound is reduced further by decreasing the discounted cost of
arithmetic operations from O(c) to O(1) when the number of iterations is high.

2 Parity Games

A game is composed of a finite arena and an evaluation function. We will first
discuss arenas, and then turn to the evaluation functions for parity games.

Arena. A finite arena is a triple A = (V0, V1, E), where V0 and V1 are disjoint
finite sets of positions, called the positions of Player 0 and 1, and E ⊆ V0 ×
V1 ∪ V1 × V0 is a set of edges; that is, (V0 + V1, E) is a bipartite directed graph.
For infinite games, the arena is also required not to contain sinks; that is, every
position p ∈ V = V0 ∪ V1 has at least one outgoing edge (p, p′) ∈ E.

Plays. Intuitively, a game is played by placing a pebble on the arena. If the
pebble is on a position p0 ∈ V0, Player 0 chooses an edge e = (p0, p1) ∈ E from p0

to a position p1 ∈ V1 and moves the pebble to p1. Symmetrically, Player 1 chooses
a successor if the pebble is on a position p1 ∈ V1. This way, they successively
construct an infinite play π = p0p1p2p3 . . . ∈ V ω.



Strategies. For a finite arena A = (V0, V1, E), a (memoryless) strategy for
Player 0 is a function f : V0 → V1 that maps every position p0 ∈ V0 of Player 0
to a position v1 ∈ V1 such that there is an edge (p0, p1) ∈ E from p0 to p1. A
play is called f -conform if every decision of Player 0 in the play is in accordance
with f . For a strategy f of Player 0, we denote with Af = (V0, V1, Ef ) the arena
obtained from A by deleting the transitions from positions of Player 0 that are
not in accordance with f . The analogous definitions are made for Player 1.

Parity Games. A parity game is a game P = (V0, V1, E, α) with arena A =
(V0, V1, E) and a surjective coloring function α : G∪R → C ⊂ N that maps each
position of P to a natural number. C denotes the finite set of colors. For technical
reasons we assume that the minimal color of a parity game is 0 = min{C}.

Each play is evaluated by the highest color that occurs infinitely often. Player
0 wins a play π = p0p1p2p3 . . . if the highest color occurring infinitely often in
the sequence α(π) = α(p0)α(p1)α(p2)α(p3) . . . is even, while Player 1 wins if the
highest color occurring infinitely often in α(π) is odd.

A strategy f of Player 0 or 1 is called p-winning if all f -conform plays starting
in p are winning for Player 0 or 1, respectively. A position of P is p-winning for
Player 0 or 1 if Player 0 or 1, respectively, has a p-winning strategy. We call
the p-winning positions for Player 0 or 1 the winning region of Player 0 or 1,
respectively. Parity games are memoryless determined:

Theorem 1. [11] For every parity game P, the game positions are partitioned
into a winning region W0 of Player 0 and a winning region W1 of Player 1.
Moreover, Player 0 and 1 have memoryless strategies that are p-winning for
every position p in their respective winning region. ⊓⊔

3 Escape Games

Escape games are total reward games that are tailored for the game-based im-
provement method. They generalize parity games by allowing Player 0 to termi-
nate every play immediately on each of her positions. Technically this is done
by extending the arena with a fresh escape position ⊥, which forms a sink of
the extended arena, and can be reached from every position of Player 0. Every
play of an escape game either eventually reaches the escape position and then
terminates, or it is an infinite play in the non-extended arena.

Extended Arena. In an escape game, the finite arena A = (V0, V1, E) is ex-
tended to the directed graph A′ = (V0, V

′

1 , E′), which extends the arena A by
a fresh position ⊥ of Player 1 (V ′

1 = V1 ⊎ {⊥}) that is reachable from every
position of Player 0 (E′ = E ∪ V0 × {⊥}). The escape position is a sink in A′.

Finite Plays. Since the escape position ⊥ is a sink, every play terminates
when reaching ⊥. The set of plays is therefore extended by the finite plays
π = p0p1p2p3 . . . pn⊥ ∈ V ∗ · {⊥}.



Escape Games. An escape game is a game E = (V0, V1, E, α), where A =
(V0, V1, E) is a finite arena, and α : V → C ⊂ N is a coloring function. An escape
game is played on the extended arena A′ = (V0, V

′

1 , E′).
An infinite play π = p0p1p2 . . . ∈ V ω of an escape game is evaluated to ∞

if the highest color occurring infinitely often is even, and to −∞ otherwise. A
finite play π = p0p1p2 . . . pn⊥ is evaluated by a function ρ(π) : C0 → Z (where
C0 = C r {0} is the codomain of the coloring function without 0) that maps an
element c′ of C0 to the number of positions pi in π with i > 0 that are colored by
c′ = α(pi). (Disregarding the color of the first position is technically convenient.)

The potential values of a path are ordered by the obvious alphabetic order >

that sets ρ > ρ′ if (1) the highest color c′ with ρ(c′) 6= ρ′(c′) is even and ρ(c′) >

ρ′(c′), or (2) if the highest color c′ with ρ(c′) 6= ρ′(c′) is odd and ρ′(c′) > ρ(c′).
Additionally, we define ∞ > ρ > −∞. The objective of Player 0 is to maximize
this value, while it is the objective of Player 1 to minimize it.

We introduce an operator ⊕ for the evaluation of finite paths. For R = (C0 →
Z) ∪ {∞}, ⊕ : R × C → R maps a function ρ and a color c′ to the function ρ′

that deviates from ρ only by assigning the respective successor ρ′(c′) = ρ(c′)+1
to c′ (and leaves ρ′(d) = ρ(d) for d 6= c′). We fix ∞⊕ c′ = ∞ and ρ ⊕ 0 = ρ.

Estimations. We introduce estimations v : V ′ → R for an escape game
E = (V0, V

′

1 , E, α) as witnesses for the existence of a memoryless strategy f

of Player 0, which guarantees that every f -conform play π starting in some po-
sition p is evaluated to ρ(π) ≥ v(p). Formally, an estimation v has to satisfy the
following side conditions:

– v(⊥) = 0 (0 denotes the constant function that maps all colors in C0 to 0),
– for every p1 ∈ V1 and every edge e = (p1, p0) ∈ E, v(p1) ≤ v(p0) ⊕ α(p0)

holds true,
– for every position p0 ∈ V0 there is an edge e = (p0, p1) ∈ E′ such that

v(p0) ≤ v(p1) ⊕ α(p1) holds true, and
– Player 0 has a strategy f∞ that maps every position p0 ∈ V0 with v(p0) = ∞

to a position v1 = f∞(p0) with v(p1) = ∞, and which guarantees that every
f∞-conform play π starting in g is evaluated to ρ(π) = ∞.

A trivial estimation is simple to construct: we denote with v0 the estimation
that maps the escape position to v0(⊥) = 0, every position p0 ∈ V0 to v0(p0) = 0,
and every position p1 ∈ V1 of Player 1 to v0(p1) = min{0⊕α(p0) | (p1, p0) ∈ E}1.

Lemma 1. For every estimation v of an escape game E = (V0, V1, E, α) there is
a memoryless strategy f for Player 0 such that every f -conform play π starting
in any position p satisfies ρ(π) ≥ v(p).

Proof. We fix an arbitrary strategy f for Player 0 that agrees with f∞ on every
position p ∈ V0 with infinite estimation (v(p) = ∞ ⇒ f(p) = f∞(p)), and

1 Having a simple-to-construct initial estimation is the reason for the restriction to
bipartite games. Constructing an initial estimation for general games is not hard, and
the improvement algorithm proposed in Section 4 extends to non-bipartite games.



chooses some successor that satisfies v(p) ≤ v
(
f(p)

)
⊕α

(
f(p)

)
otherwise. Every

cycle reachable in an f -conform play has nonnegative weight (that is, weight
0 ⊕ α(p0) ⊕ . . . ⊕ α(pn) of every cycle p0 . . . pnp0 is ≥ 0) by construction of f ;
every infinite f -conform play π is therefore evaluated to ρ(π) = ∞ ≥ v(p).

By induction over the length of finite f -conform plays π that start in some
position p, we can show that ρ(π) ≥ v(p). ⊓⊔

We call an estimation v′ an improvement of an estimation v if v′(p) ≥ v(p)
holds for all positions p ∈ V , and we call an improvement strict if v′ 6= v.

For every estimation v, we define the improvement arena Av = (V0, V
′

1 , Ev)
that contains an edge e = (p, p′) if it satisfies v(p) ≤ v(p′) ⊕ α(p′) (i.e.,
Ev = {(p, p′) ∈ E′ | v(p) ≤ v(p′) ⊕ α(p′)}), and the 0-arena A0

v = (V0, V
′

1 , E0
v )

which contains an edge e = (p, p′) ∈ Ev of the improvement arena if it satisfies
(1) v(p) = v(p′)⊕α(p′), and, if e originates from a position p ∈ V0 of Player 0, if
additionally (2) no edge e′ = (p, p′) with v(p) < v(p′) ⊕ α(p′) originates from p

(E0
v = {(p, p′) ∈ Ev | v(p) = v(p′) ⊕ α(p′) and p ∈ V0 ⇒ ∀(p, p′) ∈ Ev. v(p) =

v(p′) ⊕ α(p′)}).

Attractors. The 0-attractor A ⊆ V of a set F ⊆ V of game positions is the set
of those game positions from which Player 0 has a strategy to force the pebble
into a position in F . The 0-attractor A of a set F can be defined as the least
fixed point of sets that contain F , and that contain a position p ∈ V0 of Player
0 if they contain some successor of p, and a position p ∈ V1 of Player 1 if p

has some successor, and all successors of p are contained in A. The 1-attractor
is defined accordingly. Constructing this least fixed point is obviously linear in
the number of positions and edges in the arena, and we can fix a memoryless
strategy (the attractor strategy) for the respective player to reach F in finitely
many steps during this construction.

Lemma 2. For a given arena A = (V0, V1, E) with n positions and m edges
that may contain sinks, and for a set F ⊆ V of game positions, we can compute
the respective attractor A of F and a memoryless strategy for Player 0 or 1,
respectively, on A r F to reach F in finitely many steps in time O(m + n). ⊓⊔

We call an estimation improvable if the 1-attractor of the escape position in
the 0-arena A0

v does not cover all positions that are not estimated to ∞.

Theorem 2. For every non-improvable estimation v of an escape game E =
(V0, V1, E, α) Player 1 has a memoryless strategy f ′ such that every f ′-conform
play π starting in any position p satisfies ρ(π) ≤ v(p).

Proof. We fix a strategy f ′ for Player 1 that agrees on all positions V1 rv−1(∞)
with some 1-attractor strategy of the escape position ⊥ in the 0-arena A0

v.
For plays starting in some position p that is evaluated to ∞, ρ(π) ≤ v(p) = ∞

holds trivially. For plays starting in some position p that is not evaluated to ∞,
we can show by induction over the length of f ′-conform plays starting in p that
no f ′-conform play can reach a position p′ that is evaluated to v(p′) = ∞. By



construction of f ′, every reachable cycle in an f ′-conform play that does not
reach a position in v−1(∞) has negative weight (that is, a weight < 0), and
every infinite f ′-conform play which starts in a position p that is not evaluated
to ∞ thus satisfies −∞ = ρ(π) < v(p).

For every finite f ′-conform play π starting in some position p, we can show
by induction over the length of π that ρ(π) ≤ v(p) holds true. ⊓⊔

The non-improvable estimation of an escape game can be used to derive the
winning regions (v−1(∞) for Player 0) and the winning strategy for Player 1
on his winning region in the underlaying parity game. f∞ defines the winning
strategy of Player 0 on her winning region.

4 Solving Escape Games

In this section we introduce a game-based strategy improvement algorithm for
the fast improvement of estimations of escape games. Every estimation (for ex-
ample, the trivial estimation v0) can be used as a starting point for the algorithm.

Optimal Improvement. The estimations we construct intuitively refer to
strategies of Player 0 for the extended arena. (Although estimations are a more
general concept; not all estimations refer to a strategy.) The edges of the im-
provement arena Av = (V0, V1, Ev) of an escape game E = (V0, V1, E, α) and an
estimation v refer to all promising strategy updates, that is, all strategy modi-
fications that locally lead to a—not necessarily strict—improvement (profitable
and stale modifications). We call an improvement v′ of v optimal if it is the
non-improvable estimation for the restricted escape game Ev = (V0, V1, Ev, α).
v′ is optimal in the sense that it dominates all other estimations v̂ that refer to
strategies of Player 0 for Ev, that is, to strategies that contain only improvement
edges. Finding this optimal improvement v′ thus relates to solving an update
game Ev, which deviates from the full escape game E only by restricting the
choices of Player 0 to her improvement edges.

Basic Update Step. Instead of computing the optimal improvement v′ of an
estimation v directly, we compute the optimal update u = v′ − v. (The operator
+ : R ×R → R maps a pair ρ, ρ′ of functions to the function ρ′′ that satisfies
ρ′′(c′) = ρ(c′) + ρ′(c′) for all c′ ∈ C0. − : R×R → R is defined accordingly.)

For a given escape game E = (V0, V1, E, α) with estimation v, we define the
improvement potential of an edge e = (p, p′) ∈ Ev in the improvement arena
Av as the value P (e) = v(p′) ⊕ α(p′) − v(p) ≥ 0 by which the estimation would
locally be improved when the respective player chose to turn to p′ (disregarding
the positive global effect that this improvement may have). To determine the
optimal update, we construct the improvement arena, and evaluate the optimal
update of the escape position to u(⊥) = 0. We then evaluate the improvement of
the remaining positions successively by applying the following evaluation rule:

1. if there is a position p ∈ V1 of Player 1 that has only evaluated successors, we
evaluate the improvement of p to u(p) = min{u(p′)+P

(
(p, p′)

)
| (p, p′) ∈ E},



2. else if there is a position p ∈ V1 of Player 1 that has an evaluated successor p′

with u(p′) = P
(
(p, p′)

)
= 0, we evaluate the improvement of p to u(p) = 0,

3. else if there is a position p ∈ V0 of Player 0 that has only evaluated successors,
we evaluate its improvement to u(p)=max{u(p′)+P

(
(p, p′)

)
| (p, p′)∈Ev}2,

4. else we choose a position p ∈ V1 of Player 1 with minimal intermediate
improvement u′(p) = min{u(p′)+P

(
(p, p′)

)
| p′ is evaluated and (p, p′)∈E}

and evaluate the improvement of p to u(p) = u′(p). (Note that min{∅} = ∞.)

Correctness. The basic intuition for the optimal improvement algorithm is
to re-estimate the value of a position only after all its successors have been
re-estimated. In this situation, it is easy to determine the optimal decision for
the respective player. In a situation where all unevaluated positions do have a
successor, we exploit that every cycle in Av has non-negative weight (weight
≥ 0), and every infinite play in Av is evaluated to ∞. An optimal strategy of
Player 1 will thus turn, for some position of Player 1, to an evaluated successor.
It is safe to chose a transition such that the minimality criterion on the potential
improvement u′ is satisfied, because, independent of the choice of Player 1, no
better potential improvement can arise at any later time during this update step.
Following these evaluation rules therefore provides an optimal improvement.

Theorem 3. For every estimation v of an escape game E = (V0, V1, E, α), the
algorithm computes the optimal improvement v′ = v+u. If v is improvable, then
the optimal improvement v′ 6= v is strictly better than v.

Proof. During the reevaluation, we can fix optimal strategies f and f ′ for Player
0 and 1, respectively, by fixing f(p) or f ′(p), respectively, to be some successor of
p that satisfies the respective maximality or minimality requirement. (In Rule 2,
we implicitly apply the same minimality requirement as in Rule 4.)

Every infinite f -conform play is evaluated to ∞, and for every finite
f -conform play π that starts in some position p, we can show by induction
over the length of π that ρ(π) ≥ v′(p) holds true.

No f ′-conform play π = p0p1p2 . . . in Av (that is, under the restriction that
Player 0 can chose only transitions in Ev), which does not start in a position
p0 that is evaluated to ∞, can contain a cycle, because pi+1 has been evaluated
prior to pi by construction. Thus, every such f ′-conform play in Av is finite. For
every finite f ′-conform play π in Av that starts in some position p, we can show
by induction over the length of π that ρ(π) ≤ v′(p) holds true.

It remains to show that the algorithm guarantees progress for improvable
estimations. If at least one improvement edge e that originates from a position of
Player 0 has a positive improvement potential P (e) > 0, the claim holds trivially.
Let us consider the case that the improvement potential is P (e) = 0 for every
improvement edge e that originates from a position of Player 0. According to
the update rules, the algorithm will successively assign u′(p) = 0 to all positions
in the 1-attractor of ⊥ in the 0-arena A0

v. If the attractor covers all positions of
E , v is non-improvable by Theorem 2. Otherwise, u′(p) > 0 holds by definition

2 We could also choose u(p) = max{u(p′)+P
`

(p, p′)
´

| p′ is evaluated and (p, p′)∈E}.



for every remaining position p ∈ V1 of Player 1 that is not in the 1-attractor of
the escape position ⊥. This implies u > 0 and thus v′ = v + u > v. ⊓⊔

Complexity. In spite of the wide variety of strategies that are considered
simultaneously, the update complexity is surprisingly low. The optimal improve-
ment algorithm generalizes Dijkstra’s single source shortest path algorithm to
two player games. The critical part of the algorithm is to keep track of the
intermediate update u′, and the complexity of the algorithm depends on the
used data structure. The default choice is to use binary trees, resulting in an
update complexity of O(m log n). However, using advanced data structures like
2-3 heaps (cf. [26]) reduces this complexity slightly to O(m + n log n).

Theorem 4. For an escape game with n positions and m edges, the optimal
improvement can be computed using O(m+ δ log δ) arithmetic operations, where
δ ≤ n is the number of positions of Player 1 for which the improvement is strict.

Proof. Let us consider a run of our algorithm that, when applying rule 3, gives
preference to updates of positions with improvement 0. Keeping track of these
updates is cheap, and giving them preference guarantees that all positions with
0-update are removed before the remainder of the graph is treated.

Let us partition the operations occurring after these 0-updates into

1. operations needed for keeping track of the number of unevaluated succes-
sors for positions of Player 1 and for finding the direction with maximal
improvement for positions of Player 0, and

2. all remaining operations.

Obviously, (1) contains only O(m) operations, while the restriction to (2) co-
incides with a run of Dijkstra’s algorithm on a subgraph of the improvement
arena. (On the subgraph defined by the strategy f of Player 0 referred to in
Theorem 3.) Dijkstra’s algorithm can be implemented to run in O(m + δ log δ)
arithmetic operations [26]. ⊓⊔

Theorem 5. The algorithm can be implemented to solve a parity game with n

positions, m edges, and c colors in time O
(
m

(
n+c

c

)c′)
, where c′ = c − 1 if c is

even, and c′ = c if c is odd.

Proof. If both players follow the strategies f and f ′ from the proof of Theorem 3
starting in a position p0 that is not evaluated to ∞ 6= v′(p0), they reach the
escape position ⊥ on a finite acyclic path p0p1 . . . pi⊥. By induction over the
length of this path we can show that v(p0) = 0⊕α(pi)⊕ . . .⊕α(p0). Note that,
for odd highest color c−1 (and thus for even c), only pi may be colored by c−1.

Thus, the number of updates is, for each position, in O
((

n+c
c

)c′−1)
.

Let us, for the estimation of the running time, assume that only one small
update occurs in every step. ‘Only one’ leads to a small δ (removing the δ log δ

part from the estimation), while ‘small update’ can be used to reduce the dis-
counted cost for the arithmetic operations on R to O(1): Before computing the



improvement potential P , the update u, and the intermediate update u′, we first
compute an abstraction a : R → Z of these values that maps a function ρ ∈ R
to 0 if ρ = 0, and to ± the highest integer h with ρ(h) 6= 0 otherwise (+ if and
only if r > 0). Computing the concrete value is then linear in the absolute value
of the abstraction (rather than in c). For every edge e = (p, p′), updating the im-
provement potential a◦P (e) to its new value requires O(max{a◦u(p), a◦u(p′)})
steps (using the old u). All other operations on abstract values are in O(1).

To compute u′, we proceed in two steps. In a first step, we maintain a 2-3
heap that stores only the abstraction of u′, and that contains all positions where
u′ is above a threshold t that is initialized to t = 0. For positions with abstract
value t, we keep a 2-3 heap with concrete values for u′. Every time we use rule
4 and find an empty concrete 2-3 heap, we increase t to the minimal value of
the abstract 2-3 heap, remove all positions with this abstract value from the
abstract heap, and add them (with concrete value) to the concrete heap. The
required concrete arithmetic operations are linear in the value of the abstraction
a ◦ u(r) of the concrete update (rather than in c). In the worst case scenario,
‘small updates’ implies that the discounted cost of the operations is in O(1). ⊓⊔

Extended Update Step. The basic update step can be improved to an
extended update step by three simple and cheap additional computation steps:

1. Recursively remove all positions from E that have no predecessors, and push
them on a solve-me-later stack.

2. Adapt the valuation function v to v′ such that the values of positions of
Player 1 are left unchanged (v′(p) = v(p) ∀p ∈ V1), and the values of all
positions of Player 0 are maximally decreased (v′(p) = max{v′(p′) ⊖ α(p) |
(p′, p) ∈ E} ∀p ∈ V0). (This step again exploits that the game is bipartite.)

3. Apply a basic update step.
4. Remove the 0-attractor of all positions that are evaluated to ∞ from E .

Step 1 simplifies the game—positions without predecessors have no impact on
the value of other game positions, and their evaluation can safely be postponed
until after the remainder of the game has been evaluated—and strengthens the
second step. In Step 2, we exploit the fact that the basic update step benefits from
a high number of improvement edges that originate from positions of Player 0.
This number is increased by changing the estimation v such that the estimations
of positions of Player 1 remain unchanged, while the estimation of positions of
Player 0 is decreased. The last step is again used to simplify the game.

An interesting side effect of Step 4 is that our game-based improvement
algorithm behaves like standard fixed point algorithms [12, 10, 15] on Büchi and
CoBüchi games (parity games with only two colors, w.l.o.g. 0 and 1). Like in these
standard algorithms, we iteratively compute the set of states from which Player 0
can stay forever in positions with color 0, and then remove their 0-attractor from
the game. The game-based approach described in this section can therefore also
be viewed as an alternative generalization of the well accepted algorithms for
Büchi and CoBüchi games to general parity games, which preserves different
properties than McNaughton’s generalization [12, 10, 15].



5 Benchmarks and Results

To evaluate the applicability of the game-based strategy improvement algorithm,
a prototype of the algorithm was implemented and evaluated on different bench-
marks, including random games with and without structure as well as other
benchmarks for parity games. This section provides an overview on the results.

A first estimation of the performance of our algorithm on random games
showed that the expected number of update games depends mainly on the num-
ber of colors and the outdegree, but it seems to be constant in the number of
positions. This low expected number of updates has been confirmed by the fol-
lowing benchmarks. This restricts the potential competitors: The randomized
subexponential algorithms of Ludwig [17], and Björklund and Vorobyov [20]
change the strategy in exactly one position in every update step. It is therefore
almost sure that the required number of update steps is at least linear in the
size of the game. Ludwig’s algorithm also has a much higher update complexity.

For the first benchmark, we therefore focused on the algorithm of Vöge and
Jurdziński [19], and a (not subexponential) variant of Björklund and Vorobyov’s
algorithm [20] that chooses, in every step, a locally profitable modification uni-
formly at random for every position, for which a profitable modification exists.

The following table compares the expected number of iterations of our algo-
rithm (game) with the variant of Björklund and Vorobyov (rand) and Vöge and
Jurdziński’s algorithm (VJ) for random games with 3 colors and outdegree 6.

positions 30 100 300 1000 3000 10000 30000 100000 300000
game 1.1 1.4 1.7 1.7 1.9 2.0 2.0 2.0 2.0
rand 2.5 2.9 3.1 3.0 3.0 3.1 3.2 3.7 4.0

VJ 5.3 12.2 26.1 66.1 182.0 573.1 1665.33 —– —–

The algorithm of Vöge and Jurdziński was not considered in the following
benchmarks, because it took several days even for small random game with only
30000 positions and outdegree 6. This is partly due to the fact that the observed
number of iterations grows linearly in the size of the game, and partly due to
the much higher update complexity of O(m n).

Different to the algorithm of Vöge and Jurdziński, the performance of the
variant of Björklund and Vorobyov’s algorithm (rand) is, on random games, close
to the performance of our game-based strategy improvement algorithm. The cost
of the individual updates for rand is slightly higher, because 0 cycles need to be
excluded in their approach, which results in higher numbers (by a factor linear
in the size of the game). Together with the smaller number of iterations, the
running time of our algorithm improves over theirs by a factor of approximately
2 on the considered random games.

The difference between the two algorithms becomes apparent once structure
is added to the game. Figure 5 compares the behavior of game and rand on
different benchmarks. Benchmark 1 adds very little structure (favoring edges to

3 For 30000 positions, each sample took approximately four days on a 2.6 GHz Dual
Core AMD Opteron machine (compared to 1.5 seconds for the game-based strategy
improvement algorithm); the experiment was therefore terminated after ten samples.



rand6
game6
rand3
game3
rand2
game2
rand1
game1

10.10.010.0010.0001

60

50

40

30

20

10

0

rand5
game5
rand4
game4
rand2
game2

10.80.60.40.20

10000

8000

6000

4000

2000

0

Fig. 3. The tables compare the performance of the variant of game (solid lines) and
rand (dashed lines) on various benchmarks, measured in the number of iterations. The
maximal size of all benchmarks is normalized to 1 (x-axis) for better readability.
For all benchmarks, the number of iterations (y-axis) needed by game is significant
below the number needed by rand. The difference is particularly apparent in examples
with much structure (Benchmarks 2 through 5).

‘close’ vertices in the randomized construction of the samples), while Benchmark
2 adds much structure (random chains of sparsely linked subgames). Benchmark
3 is a bipartite version of the games used in [16] to estimate the worst case
complexity of Jurdziński’s algorithm. Benchmark 4 refers to medium hard Büchi
games, and Benchmark 5 is a test for the sensitivity of strategy improvement
algorithms to ‘traps’ that lure them to a wrong direction (as in the example of
Figure 1b). Finally, Benchmark 6 refers to the analysis of mean payoff games
with small payoffs4. The results indicate that the more structure is added to
the game, the greater becomes the advantage of game over rand. The detailed
results are omitted due to space restrictions; they can be found in [27].

6 Discussion

The applicability of strategy improvement algorithms crucially depends on the
quality of the individual improvement step, or, likewise, on the expected amount

4 To extend our game-based approach to finding the 0-mean partition of mean payoff
games, it suffices to replace the codomain R of the ranking function by Z ∪ {∞}.



of improvement steps. Current strategy improvement techniques suffer from de-
ficiencies in estimating the effect of strategy modifications: They cannot pre-
dict their global effect, let alone the cross effect between different modifications.
The introduced game-based strategy improvement algorithm overcomes this de-
ficiency by selecting an optimal combination of these modifications in every
update step. While still greedy in nature, it allows us to make full use of the
advantages attached to concurrent strategy modifications for the first time.

From a practical point of view, the amount of improvement steps used by
simplex style algorithms tends to be linear in the amount of constraints that
define the simplex [28]. For strategy improvement algorithms, these constraints
are defined by the edges that originate from positions of Player 0. In the bench-
marks, approximately 30% (at the end) to 50% (at the beginning) of these edges
are improvement edges, which leads to an exponential number of concurrently
considered improved strategies in every update game, and to a linear number of
applied updates.

While the update complexity of the algorithms is low (O(m + n log n) arith-
metic operations), finding a non-trivial bound on the number of updates remains
an intriguing future challenge. The algorithm inherits the Ω(n) bound on the
required number of updates from Büchi games, while the size of the codomain
implies an O((1 + n

c
)c) upper bound, and either of these bounds may be sharp.

Understanding the complexity of the game-based strategy improvement al-
gorithm would either lead to a proof that parity and/or mean payoff games can
be solved in polynomial time, or would greatly help to understand the hardness
of the problems. Hardness proofs for game-base strategy improvement, however,
will not be simple. It took a quarter of a century to find a family of examples, for
which the improvement complexity of the simplex algorithm is exponential [29].
These classical examples from linear programming, however, do not extend to
game-based improvement methods. The Klee Minty polytope [29], for example,
requires only a single update step from the origin (and at most linearly many
steps from any arbitrary corner of the polytope) if we can consider all combina-
tions of profitable and stale base changes in every improvement step.

References

1. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27 (1983)
333–354

2. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of µ-
calculus. In: Proc. CAV. (1993) 385–396

3. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

4. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, IEEE Computer
Society Press (2001) 279–290

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5) (2002) 672–713

6. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proc. ICALP,
Springer-Verlag (1998) 628–641



7. Schewe, S., Finkbeiner, B.: The alternating-time µ-calculus and automata over
concurrent game structures. In: Proc. CSL, Springer-Verlag (2006) 591–605

8. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. LICS, IEEE Computer Society (2006) 255–264

9. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Proc. LOPSTR,
Springer-Verlag (2006) 127–142

10. Emerson, E.A., Lei, C.: Efcient model checking in fragments of the propositional
µ-calculus. In: Proc. LICS, IEEE Computer Society Press (1986) 267–278

11. Emerson, E.A., Jutla, C.S.: Tree automata, µ-calculus and determinacy. In: Proc.
FOCS, IEEE Computer Society Press (1991) 368–377

12. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2) (1993) 149–184

13. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158(1–2) (1996) 343–359

14. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved algo-
rithm for the evaluation of fixpoint expressions. Theoretical Computer Science
178(1–2) (1997) 237–255

15. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2) (1998) 135–183

16. Jurdziński, M.: Small progress measures for solving parity games. In: Proc. STACS,
Springer-Verlag (2000) 290–301

17. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic
game problem. Inf. Comput. 117(1) (1995) 151–155

18. Puri, A.: Theory of hybrid systems and discrete event systems. PhD thesis, Com-
puter Science Department, University of California, Berkeley (1995)

19. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Proc. CAV, Springer-Verlag (2000) 202–215

20. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2) (2007)
210–229

21. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In:
Proc. CAV, Springer-Verlag (2003) 80–92

22. Lange, M.: Solving parity games by a reduction to SAT. In: Proc. Int. Workshop
on Games in Design and Verification. (2005)

23. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Proc. STACS, Springer-Verlag (2006) 524–436

24. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proc. SODA, ACM/SIAM (2006) 117–123

25. Schewe, S.: Solving parity games in big steps. In: Proc. FSTTCS, Springer-Verlag
(2007) 449–460

26. Takaoka, T.: Theory of 2-3 heaps. In: Proc. COCOON, Springer-Verlag (1999)
41–50

27. Schewe, S.: Synthesis of Distributed Systems. PhD thesis, Saarland University,
Saarbrücken, Germany (2008)

28. Smale, S.: On the average number of steps of the simplex method of linear pro-
gramming. Mathematical Programming 27(3) (1983) 241–262

29. Klee, F., Minty, G.J.: How good is the simplex algorithm? Inequalities III (1972)
159–175


