
Coordination Logi
?Bernd Finkbeiner1 and Sven S
hewe21 Universit�at des Saarlandes2 University of LiverpoolAbstra
t. We introdu
e Coordination Logi
 (CL), a new temporal logi
that reasons about the interplay between behavior and informedness indistributed systems. CL provides a logi
al representation for the dis-tributed realizability problem and extends the game-based temporal log-i
s, in
luding the alternating-time temporal logi
s, strategy logi
, andgame logi
, with quanti�
ation over strategies under in
omplete infor-mation. We show that the stru
ture in CL that results from the nestingof the quanti�ers is suÆ
ient to guarantee the de
idability of the logi
and at the same time general enough to subsume and extend all previ-ously known de
idable 
ases of the distributed realizability problem.1 Introdu
tionAn intriguing aspe
t of the design of a distributed system is the interplay betweenbehavior and informedness: the behavior of a distributed system is determinedby the 
ombination of lo
al de
isions, made by pro
esses that only have partialinformation about the system state. To ensure that the behavior of the fullsystem is 
orre
t, the pro
esses must 
arefully 
oordinate so that ea
h pro
essobtains the information needed for the right de
ision.Histori
ally, spe
i�
ation languages for distributed systems, in parti
ular thetemporal logi
s, have fo
used on spe
ifying the a

eptable behavior and ignoredthe question whi
h level of informedness is needed to implement it. This is notsurprising, be
ause the main appli
ation of these logi
s has been veri�
ation,where one proves that the behavior of a 
omplete system, with all implementa-tion de
isions already made, is 
orre
t. More re
ently, however, a lot of attentionhas shifted towards analyzing distributed systems at early design stages, whereone has requirements but not yet a 
omplete implementation [1{9℄. At su
h apoint in the design pro
ess, one is interested in realizability [6{9℄ (is there animplementation that satis�es the requirements?) and other game-based proper-ties [1{5℄, su
h as: 
an a given 
oalition of pro
esses a

omplish a 
ertain goalagainst all possible a
tions of the other pro
esses?In the game-based setting, the 
onne
tion between behavior and informa-tion be
omes 
ru
ially important, be
ause the strategi
 
apabilities of a pro
essstrongly depend on its informedness. Realizability and other game-based prop-erties have therefore been investigated with respe
t to spe
i�
 system ar
hite
-tures, that is, graphs of the 
ommuni
ation topology, where the nodes represent? This work was supported by DFG TR AVACS and by EPSRC grant EP/H046623/1.



pro
esses and edges represent 
ommuni
ation links. Unfortunately, very few sys-tem ar
hite
tures 
an be analyzed algorithmi
ally: even for simple ar
hite
tures,like the two-pro
ess ar
hite
ture of a distributed arbiter, the realizability prob-lem for the standard temporal logi
s LTL, CTL, and CTL*, as well as the model
he
king problems for the game-based extensions, in
luding the alternating-timetemporal logi
s [1, 4℄, strategy logi
 [2℄, and game logi
 [1℄, are unde
idable. Mostpra
ti
al approa
hes therefore 
on
entrate on the simple but unrealisti
 spe
ial
ase where all pro
esses have 
omplete information.In this paper, we re-investigate the interplay of behavior and informednessfrom a logi
al perspe
tive. We introdu
e Coordination Logi
 (CL), the �rst spe
i-�
ation language that de�nes behavior and informedness within the logi
 insteadof by referring to an external system ar
hite
ture. CL uses two types of variables.Coordination variables represent knowledge, dire
tly observed from the exter-nal environment or obtained through 
oordination with other system pro
esses.Strategy variables en
ode the result of strategi
 
hoi
es that are made based onthe values of the 
oordination variables. Either type of information 
an be hiddenfrom other pro
esses by quanti�
ation. As we will see, CL is a de
idable logi
 thatis not only suÆ
iently expressive to en
ode all queries over system ar
hite
turesfor whi
h the game-based logi
s are de
idable, but 
an additionally, be
ause be-havior and informedness are represented in the same logi
al framework, answermany queries over systems with otherwise unde
idable ar
hite
tures.We motivate CL with a simple example. Consider the \statement" fun
tion-ality of an automated banking terminal, where the user 
an 
hoose to either showthe statement on the s
reen or get a printout. We model this system with three
oordination variables, a for a

ount number, s for s
reen, p for printout, andtwo strategy variables, d for data, modeling the 
ontent of the statement sentfrom a 
entral server to the terminal, and o for output, modeling the terminal'soutput. CL in
ludes linear-time temporal logi
 (LTL) as a sublogi
 for the spe
i-�
ation of behavioral requirements, so let us assume that the fun
tionality of theterminal has been spe
i�ed by an LTL formula '. The CL spe
i�
ation now pre-
isely identi�es what information is visible to the terminal and what informationis visible to the server. For example, the formula `a; s; p 9d; o ' spe
i�es that thefun
tionality spe
i�ed in ' 
an be realized by 
ommuni
ating the full informa-tion to the server: the existential quanti�
ation 9d; o over the strategy variablesd and o expresses the existen
e of a strategy for the server and the terminal;the existential quanti�
ation `a; s; p over the 
oordination variables a; s; and pintrodu
es the information on whi
h the de
isions on d and o are based. Clearly,however, full information is not needed in this example: the server does not needto know whether the 
lient wants the statement on the s
reen or on the printer.This is expressed by the alternative spe
i�
ation `a 9d `s; p 9o', whi
h hides the
oordination variables s and p from the strategy variable d. The example 
aneasily be extended to systems with multiple terminals, resulting in the 
onjun
-tion Vi=1;:::;n `ai 9di `si; pi 9oi 'i. The resulting star topology (many terminals
ommuni
ate with a single server) is an example of a system ar
hite
ture where2



game-based properties are in general unde
idable [9℄; the representation as a CLformula reveals, however, that this parti
ular query is in fa
t de
idable.The remainder of the paper is stru
tured as follows. After reviewing somebasi
 notation on trees and tree automata in Se
tion 2, we formally de�ne CLin Se
tion 3. Se
tion 4 is devoted to a thorough study of the expressivenessof CL: we show that CL subsumes the usual linear and bran
hing-time logi
sLTL, CTL, and CTL*, as well as the game-based logi
s ATL and ATL* [1℄,strategy logi
 [2℄, and game logi
 [1℄. We furthermore show that the distributedrealizability problem [6{9℄ 
an be en
oded in CL for all system ar
hite
tureswhere the problem is de
idable. In fa
t, we show that CL makes it easier toidentify de
idable 
ases. For example, in the spe
ial 
ase of lo
al spe
i�
ations,where the LTL spe
i�
ation 
onsists of a separate 
onjun
t for ea
h pro
ess,the doubly 
anked pipeline ar
hite
ture, in whi
h the otherwise least informedpro
ess has an additional input, is also de
idable [10℄. We give a new, simpleproof of the de
idability of doubly-
anked pipelines and lo
al spe
i�
ations byen
oding the realizability problem as a CL formula.Related work. There is a ri
h literature on game-based extensions of temporallogi
, in
luding the alternating-time temporal logi
s [1, 4℄, strategy logi
 [2℄, andgame logi
 [1℄. Model 
he
king algorithms for these logi
s typi
ally assume thatall pro
esses are fully informed; however, versions with in
omplete informationhave been de�ned, in parti
ular for the alternating-time temporal logi
s [1, 11℄.Unlike CL, none of these logi
s 
ombine the spe
i�
ation of behavior and in-formedness in the same formula.There are several variations of the alternating-time temporal logi
s thatare orthogonal to our study of the interplay of behavior and informedness.Alternating-time temporal epistemi
 logi
 [12℄ extends strategi
 properties withknowledge modalities. Hen
e, while CL spe
i�es the existen
e of strategies thatare based on in
omplete information, this logi
 spe
i�es the existen
e of strategiesto obtain 
ertain knowledge. Sin
e the strategies itself are based on full informa-tion, a
tions that require 
ertain knowledge must be restri
ted individually withexpli
it knowledge pre
onditions. Other notable variations of the alternating-time temporal logi
s in
lude the extension to strategy 
ontexts [13, 5℄ and therestri
tion to bounded resour
es [3, 5℄.Our de
ision pro
edure for CL builds on standard automata 
onstru
tionsused in synthesis algorithms for distributed systems, in parti
ular for pipelineand, more generally, weakly-ordered system ar
hite
tures [6{9℄. Sin
e distributedrealizability 
an be en
oded in CL, our de
ision pro
edure subsumes the de
id-able realizability problems. Moreover, sin
e we study behavior and informednessin a 
ommon logi
al representation, new 
ases 
an be identi�ed as de
idablesimply by en
oding the queries in CL.2 PreliminariesTrees. We use trees as a representation for strategies and 
omputations. Asusual, a (full) tree is given as the set � � of all �nite words over a given set of3



dire
tions � . For given �nite sets � and � , a �-labeled � -tree is a pair h� �; liwith a labeling fun
tion (or strategy) l : � � ! � that maps every node of � � toa letter of �. For a set � � � of dire
tions and a node x 2 (� � � )�, hide� (x)denotes the node in �� obtained by repla
ing (�; �) by � in ea
h letter of x.For a � � �-labeled � -tree h� �; li we de�ne the �-proje
tion of h� �; li,denoted by proj�(h� �; li), as the �-labeled � -tree h� �; pr1 Æli. That is,proj�(h� �; li) is obtained from h� �; li by proje
ting away the �-part from thelabel in every node of � �.For a �-labeled �-tree h��; li we de�ne the � -widening of h��; li, denotedby wide� (h��; li), as the �-labeled � � � -tree h(� � � )�; l0i with l0(x) =l(hide� (x)). By abuse of notation, we use wide� (l) for l0. In wide� (h��; li),nodes that are indistinguishable for someone who 
annot observe �|that is,nodes x; y with hide� (x) = hide� (y)|have the same label.If � = 2X and � = 2Y are power-sets of disjoint sets X and Y , we identify� � � with 2X _[Y , and use the widening operator wide� a

ordingly. Let Xand Y be sets with Z = X [ Y , and let M and N be disjoint set. Then wedenote with h(2Z)�; lM : (2Z)� ! 2M i _[h(2Z)�; lN : (2Z)� ! 2Ni the 2M _[N -labeled tree h(2Z)�; li with l(x) = lM (x) _[lN (x), and use h(2X)�; li�h(2Y )�; l0i =wide2ZrX (h(2X )�; li) _[wide2ZrY (h(2Y )�; l0i).For a �-labeled � -tree h� �; li and a word x 2 � �, we denote with h� �; lijxthe sub-tree rooted in x, that is, the tree h� �; l0i with l0(y) = l(x � y).Automata. An (alternating parity) automaton A = (�;Q; q0; Æ; �) runs on�-labeled � -trees (for a prede�ned �nite set � of dire
tions). Q denotes a �niteset of states, q0 2 Q denotes a designated initial state, Æ denotes a transitionfun
tion Æ : Q�� ! B+ (Q� �") for �" = � _[f"g, and � : Q! C is a fun
tionthat maps the states of A to a �nite set of 
olors C � N. If C = f0; 1g, we 
allA a 
o-B�u
hi automaton.A run tree on a given �-labeled � -tree h� �; li is a Q�� �-labeled tree wherethe root is labeled with (q0; ") and where for a node n with a label (q; x) and aset of 
hildren 
hild (n), the labels of these 
hildren have the following properties:{ for all m 2 
hild (n) : the label of m is (qm; x � �m), qm 2 Q; �m 2 �" su
hthat (qm; �m) is an atom of Æ(q; l(x)), and{ the set of atoms de�ned by the 
hildren of n satis�es Æ(q; l(x)).A path is a

epted if the highest 
olor appearing in�nitely often is even.A run tree is a

epting if all its paths are a

epted, and a �-labeled � -tree isa

epted by A if it has an a

epting run tree. The set of trees a

epted by anautomaton A is 
alled its language L(A).The a

eptan
e of a tree 
an also be viewed as the out
ome of a game, whereplayer a

ept 
hooses, for every pair (q; x) 2 Q� � �, a set of atoms that satisfyÆ(q; l(x)), and player reje
t 
hooses one of these atoms, whi
h is exe
uted. Theinput tree is a

epted i� player a

ept has a strategy to enfor
e a path thatsatis�es the parity 
ondition. 4



Theorem 1 (narrowing). [14℄ For an automaton A = (�;Q; q0; Æ; �) over� � � -trees, we 
an build an automaton An = (�;Q; q0; Æ0; �) that a

epts a�-labeled tree h� �; li i� wide�(h� �; li) is a

epted by A. utTheorem 2 (proje
tion). [15℄ For an automaton A = (���;Q; q0; Æ; �) over� -trees, we 
an build (1) an automaton Abw = (�;Q0; q0; Æ0; �0) that a

epts a�-labeled tree h� �; li i� some � ��-labeled tree h� �; l0i that satis�es h� �; li =proj�(h� �; l0i) is a

epted by A, and (2) an automaton Abs = (�;Q0; q0; Æ0; �0)that a

epts a �-labeled tree h� �; li i� all ���-labeled trees h� �; l0i that satisfyh� �; li = proj�(h� �; l0i) are a

epted by A. utNote that, for te
hni
al 
onvenien
e in the up
oming proofs, we assume thatthe initial state of A and the initial state of the respe
tive transformed automa-ton are the same.We 
all an automaton a word automaton if the set of dire
tions is single-ton, and universal if Æ 
onsists only of 
onjun
tions. By abuse of notation, weinterpret Æ(q) as the set of its 
onjun
ts for universal word automata.3 Coordination Logi
Syntax. CL formulas are de�ned over two types of variables: 
oordination vari-ables C, and strategy variables S. The operators of CL 
onsist of the usual LTLoperators Next 2 , Until U , and the dual Until U , as well as the new subtreequanti�ers `C9s:' j `C8s:'. The syntax of CL is given by the grammar' ::= x j :x j ' _ ' j ' ^ ' j 2 ' j ' U ' j ' U ' j `C9s:' j `C8s:';where x 2 C _[S, C � C, and s 2 S.We 
all a formula well-formed if the sets of 
oordination variables that o

urunder di�erent `-operators are pairwise disjoint, and the same strategy variableis not introdu
ed more than on
e. In the following we assume that all formulasare well-formed. (Well-formedness 
an be ensured by a suitable renaming.)Note that we 
ombine, for te
hni
al 
onvenien
e and to emphasize the 
lose
onne
tion between 
oordination and strategy variables, the introdu
tion of bothtypes of variables into a single subtree quanti�er. We use 8s: ' and 9s: ' asabbreviations for `;8s: ' and `;9s: ', respe
tively, and `C: ' as an abbreviationfor `C8s: ' (or, likewise, `C9s: '), where s is a fresh strategy variable (whi
h inparti
ular does not o

ur in '). We also use the standard abbreviations true �x _ :x, false � x ^ :x, 1 ' � true U ', and 0 ' � false U '.Semanti
s. Coordination variables provide strategy variables with the informa-tion required for their de
isions. Following the stru
ture of a formula, a bound
oordination variable 
 is visible to a bound strategy variable s, if s is in thes
ope of the subtree quanti�er that introdu
ed 
. We denote the set of bound 
o-ordination variables that are visible to s by s
ope(s). The free strategy variables,also 
alled atomi
 propositions, are denoted by � . For all atomi
 propositionsp 2 � it holds that s
ope(p) = ;. 5



The set of free 
oordination variables is denoted by F . Free 
oordina-tion variables are visible to all strategy variables. We 
all the set of 
oor-dination variables visible to a strategy variable s the s
ope of s, denotedS
ope(s) = s
ope(s) _[F . By abuse of notation, we use s
ope(S) = Ss2S s
ope(s)and S
ope(S) = Ss2S S
ope(s) for a set S � S of strategy variables, andS
ope(`CQs:') = S
ope(s), for Q 2 f9;8g.The meaning of a strategy variable s is a strategy fs : (2S
ope(s))� ! 2fsg,i.e., a mapping from the information available to s, whi
h 
onsists of the historyof the valuations of the 
oordination variables in the s
ope of s, to a (Boolean)valuation of s.For a subset S � S of the strategy variables, we 
all the tree T =Ls2Sh(2S
ope(s))�; fsi de�ned by their joint valuation a frame over S. CL for-mulas are interpreted over frames T =Lp2�h(2F )�; fpi over the atomi
 propo-sitions, 
alled 
omputation trees.As usual, a path in the tree T is an !-word � = �0�1�2 : : : 2 (2F )!, andwe denote the related labeled path by �T = (l(") [ �0)(l(�0) [ �1)(l(�0�1) [�2)(l(�0�1�2) [ �3) : : : 2 (2F[�)!.A tree T satis�es a CL formula ', denoted by T � ', i� all paths satisfy ',i.e., 8� 2 (2F)!: �; 0 �T ', where the satisfa
tion of a CL formula ' on a path� at position i � 0, denoted by �; i �T ' , is de�ned indu
tively as follows:{ for the strategy and 
oordination variables x 2 S _[C,� �; i �T x :, x 2 �T (i), and�; i �T :x :, x =2 �T (i) for all x 2 S [ C;{ for the boolean 
onne
tives, where ' and  are CL formulas,� �; i �T ' _  :, �; i �T ' or �; i �T  , and� �; i �T ' ^  :, �; i �T ' and �; i �T  ;{ for the temporal path operators, where ' and  are CL formulas,� �; i �T 2 ' :, �; i+ 1 �T ',� �; i �T ' U  :, 9n � i: �; n �T  and 8m 2 fi; : : : ; n� 1g: �;m �T ',� �; i �T ' U  :, 8n � i: �; n �T  or9n � i: �; n �T ' and 8m 2 fi; : : : ; ng: �;m �T  ;{ for the subtree quanti�ers, where C � C; s 2 S, and ' is a CL formula,� �; i �T `C9s:' :, 9f : (2S
ope(s))� ! 2fsg: (T j�i)�h(2S
ope(s))�; fi � ',where �i is the initial sequen
e of length i of �,� �; i �T `C8s:' :, 8f : (2S
ope(s))� ! 2fsg: (T j�i)�h(2S
ope(s))�; fi � '.4 Expressive Power of Coordination Logi
Coordination logi
 is suÆ
iently expressive to subsume the model-
he
king prob-lem for all other popular temporal logi
s, in parti
ular for LTL, CTL, CTL*,ATL, ATL*, and strategy logi
. Moreover, it 
an also express the satis�abilityof these logi
s, as long as the bran
hing degree of the models is �xed and 
antherefore be en
oded using a �nite set of variables. For logi
s like ATL*, wheremodels of �xed bran
hing degree are known to be suÆ
ient [16℄, the satis�abilityproblem 
an thus be expressed in CL. 6



p1 p2 p3x3x1;x2 y1 x2 x3y2 x3y3(a) p1 p2 p3x1 y1 y2 y3a(b) p1 p2x1 x2y1 y2(
)Fig. 1. Distributed ar
hite
turesProposition 1. The de
ision problem for strategy logi
, game logi
, and ATL*and its sub-logi
s over models with a �xed bran
hing degree 
an be en
oded in CL.The distributed realizability problem is de�ned with respe
t to a system ar-
hite
ture, whi
h is a dire
ted �nite graph whose nodes 
orrespond to pro
essesand whose edges are labeled with sets of variables: ea
h pro
ess 
an read thevariables on in
oming edges and write to variables on the outgoing edges. Thereis a distinguished pro
ess, 
alled the environment pro
ess, that provides the in-put to the system. Given su
h a system ar
hite
ture, the distributed realizabilityproblem [6{9℄ 
he
ks for the existen
e of a set of strategies, one for ea
h pro
ess,su
h that the 
ombination of these strategies satis�es the spe
i�
ation. We nowdes
ribe an en
oding of the realizability problem in CL for the two known de
id-able 
ases, the weakly-ordered ar
hite
tures and the doubly-
anked pipelines.We begin with a simple spe
ial 
ase of the weakly-ordered ar
hite
tures, thelinear ar
hite
tures (
f. Figure 1a).Realizability in linear ar
hite
tures. In a linear ar
hite
ture, ea
h pro
essreads only inputs from the external environment, not any outputs of other pro-
esses. Furthermore, we assume that the sets of variables visible to the pro
essesare pairwise 
omparable (
f. Figure 1a) and, hen
e, de�ne a linear `informedness'pre-order on the output variables.In the following, we will reuse the variables from the ar
hite
ture as 
oordi-nation and strategy variables in CL, denoting a ve
tor x1; x2; : : : ; xi of variablesby a single symbol x. The realizability of an LTL formula ' in a linear ar
hite
-ture 
an be en
oded as the CL formula `xn9yn : : :`x29y2`x19y1', where thestrategy variables yi represent the output of the i-th best informed pro
esses,and the 
oordination variables xi represent the inputs from the environmentthat are available to the ith best informed pro
esses, but not the i + 1st bestinformed pro
esses.Realizability in weakly-ordered ar
hite
tures. Weakly-ordered ar
hite
-tures generalize linear ar
hite
tures by allowing the pro
esses to also read theoutput of other pro
esses, while still requiring that ordering the pro
esses a

ord-ing to their informedness results in a linear pre-order on the output variables.The realizability of temporal spe
i�
ations in weakly-ordered ar
hite
tures isde
idable. In fa
t, the 
lass of weakly-ordered ar
hite
tures 
onsists exa
tly ofthose ar
hite
tures for whi
h the realizability problem is de
idable [9℄.In a weakly-ordered ar
hite
ture, we 
an assume w.l.o.g. that ea
h pro
essreads all inputs of less-informed pro
esses dire
tly as its own input [9℄. In our7



en
oding, we introdu
e additional 
oordination variables that simulate the inputfor the pro
esses and then restri
t the LTL formula to those paths where the trueinput and the mo
k input we introdu
ed 
oin
ide. We obtain the CL formula`xn9yn : : : `x29y2`x19y1(0 xmo
k = yreal) ! ', where xi are the (mo
k)input variables, and 0 xmo
k = yreal is the restri
tion to the paths in whi
h themo
k input 
orresponds to the true input.Proposition 2. The realizability problem for weakly-ordered ar
hite
tures 
anbe en
oded in CL.This en
oding also demonstrates the 
on
iseness of CL: The en
oding 
on-sists only of the LTL spe
i�
ation from the distributed realizability problem,and at most four 
opies of ea
h variables. De
iding CL is thus at least as ex-pensive as the realizability problem for weakly-ordered ar
hite
tures, whi
h isnon-elementary [7℄.Proposition 3. The de
ision and model 
he
king problem of CL are non-elementary.Sin
e CL is de
idable (
f. Corollary 1 in Se
tion 5), it is 
lear that the realiz-ability problem of unde
idable ar
hite
tures 
annot be en
oded in CL, but thisdoes by no means imply that CL is restri
ted to en
oding problems for de
idablear
hite
tures. An interesting example are doubly-
anked pipeline ar
hite
tures,for whi
h the realizability of lo
al LTL spe
i�
ations is de
idable.Lo
al spe
i�
ations and doubly-
anked pipelines. A spe
i�
ation is 
alledlo
al if it only reasons about the variables of a single pro
ess, and a doubly
anked pipelines is, as shown in Figure 1b, a pipelines in whi
h the otherwiseleast informed pro
ess has an additional input. The realizability of lo
al LTLspe
i�
ations in doubly-
anked pipelines is de
idable [10℄. In our en
oding, wedivide the realizability problem into two parts: one for the pipeline (minus pro-
ess pn) and one for pn, and then 
ouple these problems logi
ally. This 
an bedone by extending both pipelines (the one of length n� 1 and the one of length1) by a shadow pro
ess pe whi
h 
ontrols a Boolean variable e and reads a mo
kinput xn re
e
ting yn�1 (whi
h is regarded as a true environment input for theshort pipeline from the right); if  is the lo
al spe
i�
ation for the rightmostpro
ess, and ' the 
onjun
tion over the spe
i�
ations of the remaining pro
esses,then we 
an simply strengthen ' to ' ^ 0 e, for
ing e to be true on all possibleruns of yn�1, and weaken  to 0 e !  , whi
h restri
ts  to paths marked asexisting. Now, both of these sub-spe
i�
ations start with `xn9e, and it is easyto see that applying a 
onjun
tion after this operator provides the right level oflight entanglement between the two sub-spe
i�
ations.In 
ase of the example ar
hite
ture from Figure 1b, this spe
i�
ation reads`x39e�`x29y2`x19y1(0 x2 = y1 ^ x3 = y2)! (' ^ 0 e)�^ `a9y3(0 e!  ).Proposition 4. The distributed realizability problem for doubly 
anked pipelines
an be en
oded in CL.In fa
t, this en
oding 
an easily be generalized to larger 
lasses of spe
i�
a-tions. In the full version of this paper [17℄ we des
ribe su
h an extension.8



5 Automata-based De
ision Pro
edureOur de
ision pro
edure for 
oordination logi
 draws from the ri
h tool box of!-automata transformations available in the literature for satis�ability 
he
kingand synthesis. As a preparation for the development of the de
ision pro
edure,we �rst rephrase the semanti
s for 
oordination logi
 as a model-
he
king game,whi
h 
he
ks the 
orre
tness of T � '.Model-Che
king Game. For a CL formula ', we denote with dqsf (') theset of dire
t quanti�ed sub-formulas de�ned by dqsf (`CQs:') = ddqsf (') forddqsf (x) = ddqsf (:x) = ; for x 2 C [ S, ddqsf (' Æ  ) = ddqsf (') [ ddqsf ( ) forÆ 2 f^;_;U ;Ug, ddqsf (2 ') = ddqsf ('), and ddqsf (`CQs:') = f`CQs:'g.With b , we denote the formula derived from  by repla
ing its dire
t quan-ti�ed sub-formulas dqsf (') by variables that re
e
t their 
orre
tness.A model-
he
king game 
an, starting with the 
andidate T under 
onsider-ation, expand T along the spe
i�
ation. A

eptan
e is determined by a gamebetween two players, a

ept and reje
t. For unquanti�ed formulas, the model-
he
king for T � ' starts in a state (T ; ') and pro
eeds as follows:1. player a

ept guesses the 
orre
tness of the state formulas dqsf ('), expand-ing the labeling fun
tion of T to T1,2. player reje
t either (a) 
hooses an in�nite path � in T1 and test if it satis�esb' and stop the game, or she (b) 
hooses a �nite path � in T1 and a formula`CQs: 2 b' that is marked valid in this position in T1, and pro
eeds inT2 = T1j�,3. T2 is widened by 2C to T3 = wide2C (T2)4. for a formula `C9s: player a

ept, and for a formula `C8s: player reje
textends the labeling of T3 by a valuation of s to T4, and the game pro
eedsin (1) from state (T4;  ).For quanti�ed formulas ' = `CQs: , we 
hoose initially T3 = T and startin Step (3).Player a

ept wins if the path evaluated at the end of the game in Step (2)satis�es b', while player reje
t wins otherwise. (Note that the game goes downin the formula tree in ea
h round, and player reje
t must eventually 
hoose tovalidate a path.)Proposition 5. The model-
he
king game is won by player a

ept i� T � '.Proof. The game simply follows the stru
tural de�nition of the semanti
s.`)': Let T � '. For the 
hoi
es in Step (1), we 
an assume that player a
-
ept uses a perfe
t ora
le, whose 
hoi
e 
an be 
hallenged by player reje
t. Bythe perfe
t 
hoi
es of the ora
le, player a

ept won the valuation of any pathplayer reje
t 
hose in Step (2a), whi
h might leave player reje
t with 
hoosinga sub-formula that is 
laimed to be valid|and is therefore valid as the ora
le isperfe
t|in Step (2b). By the de�nition of validity, this means that any (for a9



universally quanti�ed sub-formula `C8s: ) or some (for an existentially quanti-�ed sub-formula `C9s: ) extension of the proper widening of the tree 
ontainsonly paths that satisfy  , whi
h is re
e
ted by Steps (3) and (4). This argument
an then be repeated with the 
hosen sub-formula, until the a sub-formula 'with an empty set dqsf (') = ; of dire
t quanti�ed sub-formulas is rea
hed.`(': Let T 2 '. For the 
hoi
es player a

ept makes in Step (1), player reje
tuses a perfe
t ora
le to �nd a position and dire
t quanti�ed sub-formula, su
hthat the sub-formula is 
laimed to be true. If no su
h position exists, there mustbe a tra
e that 
ontradi
ts ' by our assumption, and player reje
t wins. (Notethat 
laiming that a satis�ed dire
t quanti�ed sub-formula does not hold 
annothelp the a

eptan
e of a path, be
ause our spe
i�
ation is in positive form.) Ifsu
h a position exists, the 
hoi
e of the perfe
t ora
le shows that some (for asub-formula `C8s: ) or all (for a sub-formula `C8s: ) extensions of the properwidening of the tree is 
ontains a path that does not satisfy  . This argument
an again be repeated with the 
hosen sub-formula, until a sub-formula  withan empty set dqsf (') = ; of dire
t quanti�ed sub-formulas is rea
hed.To bridge the remaining gap between this game and working with trees, we
an obviously 
hange the se
ond step of the game to 
he
king all paths and, forea
h dire
t quanti�ed sub-formula and ea
h position in the tree, 
onstru
ting a
opy of the tree. For ea
h position in the tree, the respe
tive proof obligationis handed down to the 
opies spawned for the dire
t quanti�ed sub-formulasthat are marked valid (but not for those marked invalid), and the pro
edure is
ontinued for ea
h 
opy as if it was 
hosen in the game des
ribed above.This adjustment indi
ates the relation of the CL model-
he
king problemwith 
urrent synthesis pro
edures [6{9℄ and outlines the required 
hanges. Indistributed synthesis, 
ausal bound variables are usually existentially quanti�edand o

ur in a prenex. For su
h prenex quanti�ers, the truth of sub-formulasis only relevant in the root ", and the set of dire
t quanti�ed sub-formulas issingleton or empty. Hen
e, while we need to expand the tree by 
opying therespe
tive sub-tree and perform widening operations on all 
opies individually forCL, it suÆ
es for 
urrent synthesis pro
edures to 
ope with widening operationsfor the 
omplete tree.Our automata-based de
ision pro
edure performs the inverse to the fun
tionso

urring in the adjusted a

eptan
e game: narrowing [14℄ as the inverse ofwidening (Step 3 of the adjusted game), friendly and hostile proje
tion [15℄ of astrategy as the inverse of friendly and hostile 
ausal 
hoi
e (Step 1 and 4), andre-routing the test-automaton for 
orre
tness of a dire
t quanti�ed sub-formulafrom the 
opy to its blueprint (Step 2b). We therefore have to introdu
e a moreintri
ate tree stru
ture, to reason about sub-trees instead of full trees, and tore-route intermediate test-automata.Down-trees. Our 
onstru
tion is based on down-trees (
f. Figure 2), whi
hfollow the stru
ture of a CL spe
i�
ation. Down-trees are trees of trees thatrefer to a quanti�ed sub-formula. Down-trees 
an be viewed as the out
ome ofthe model 
he
king game, where the operations are applied in all pla
es at the10



Fig. 2. Example down-tree: In a down tree, we start out with a slim tree that onlybran
hes by the valuations of the free 
ommuni
ation variables, like the tree in bla
k(full lines). This tree is labeled by the free strategy variables. An operator `
9s spawnsa new wider sub-tree (dashed lines) with a ri
her labeling fun
tion that additionallyin
ludes truth values of the bound strategy variable s. After proje
ting the new strategyvariable s away, the new sub-tree is a widening of the sub-tree rooted in the respe
tivenode. That is, when restri
ted to the free strategy variables, the labeling of everypath that is indistinguishable by the free 
oordination variables in the resulting treeis similar, as indi
ated by the blue-green-bla
k path in the initial tree and its many
opies of its ending sequen
es in the newly spawned sub-trees.same time, and serve as a stru
ture to run an automata based te
hnique thatstep-wise undoes the de
isions in su
h a game. Viewed as a 
on
urrent versionof the game, the bla
k (full) basi
 tree spawns siblings in ea
h node, whi
h are�rst widened, and whose label is then extended, using a friendly guess in 
ase ofexistential quanti�er, and a hostile guess in 
ase of a universal quanti�er. Theautomata-based 
onstru
tion introdu
ed below puts a weak proje
tion againstthe friendly guess, a strong proje
tion against the hostile guess, and a narrowingoperation against the widening.Let � be the set of quanti�ed sub-formulas of ' plus ' itself. We 
all a subset	 � � of � sub-formula 
losed if (1)  0 2 	 and  2 dqsf ( 0) \ � imply  2 	 ,and if (2) 	 6= ; implies ' 2 	 . A formula  2 	 is 
alled minimal if none of itssub-formulas is in 	 (dqsf ( ) \ 	 = ;).For ea
h formula  2 	 , we introdu
e a setD = f g�2S
ope( ) of dire
tions,and denote their union by D	 = S 2	 D . We 
all a sequen
e d = Æ0Æ1 : : : Æn 2D	� falling if, for all i � 0, Æi 2 D and Æi+1 2 D 0 implies that  0 is a(not ne
essarily true) sub-formula of  . We 
all the set #D	 � D	� of fallingsequen
es in D	 a down-tree, and denote, for a  0 2 	 and a  2 dqsf ( 0) \ 	that has no sub-formulas in 	 (dqsf ( ) \ 	 = ;), with #D 	 the down-treeobtained when using D = f g�2S
ope( 0) (that is, we intuitively hide the freshinformation from the variable bound by the leading quanti�er of  ).We 
all the formula  from the �rst proje
tion of the last letter Æn = ( ; V )of d = Æ0Æ1 : : : Æn the head of a node d, and de�ne ' to be the head of the emptyword ".A

ording to our demands, the labeling fun
tion for our down-trees has anamorphous 
o-domain that depends on the head of the node. A node with head is labeled by a validity 
laim for all quanti�ed super- and sub-formulas of  in 	 (in
luding  itself), the de
isions of all bound strategy variables that arebound by a leading quanti�er of these super- and sub-formulas, and the atomi
propositions. We 
all down-trees with this amorphous 
o-domain �	 -labeleddown-trees. For the 
o-domain obtained by removing, for a minimal formula11



`CQs:# 2 	 , the 2fsg part from the amorphous 
o-domain, we refer to �s	 -labeled trees.For ' 6=  and a down-tree #D�, we 
all a sub-trees D = d �D� � #D�, forwhi
h  is a true sub-formula of the head of d 2 D�, a  -tree in #D�. We 
allD in #D� rea
hable if, for all d0 � Æ 2 D, the following holds: for the head '0 ofd0 and the head  0 of d0 � Æ, all quanti�ed true sub-formulas of '0 that 
ontain 0 as their sub-formula are marked as valid in l(d0). D'� is the only '-tree, andalways rea
hable.For a rea
hable  -tree D = d � D� � #D� of a labeled down-tree h#D�; li,a path in D is an !-word d; d � ( ; v1); d � ( ; v1) � ( ; v2); : : :, and its tra
e isthe !-word (l(d) _[v1); (l(d) _[v2); : : :. The rea
hable  -trees dire
tly relate to thetrees 
onstru
ted in the adjusted model-
he
king game:Observation 3 For a given 2�-labeled 2F-tree T and a given formula ', theout
ome of the adjusted a

eptan
e game is a labeled down-tree interse
ted withthe rea
hable trees.Player a

ept wins if, for all  2 �, the tra
e of every labeled path of everyrea
hable  -tree satis�es  .We 
all a labeled down-tree where, for all  2 �, the tra
e of every labeledpath of every rea
hable  -tree satis�es  , path a

epting.Automata-Based De
ision Pro
edure. Building on the above observation,we 
onstru
t an automaton that a

epts a labeled down-tree i� it is path a
-
epting.The simple path a

eptan
e 
ondition 
an be en
oded in a universal 
o-B�u
hiautomaton over labeled down-trees.Lemma 1. We 
an build a universal 
o-B�u
hi automaton that a

epts a labeleddown-tree i� it is path a

epting.Constru
tion: We �rst build, for every formula  2 �, a universal 
o-B�u
hiautomaton U = (�;Q ; q ; Æ ; � ) for the 
laim-formula b of  , using thestandard translation for LTL. (The valuation of variables not in the language ofU do not a�e
t Æ.) Using these automata as building blo
ks, we then build theuniversal automaton U' = (�;Q; '; Æ; �), where Q 
onsists of the disjoint unionof the states of the individual U , a fresh initial state ', and two fresh states,e and  , for all other formulas  6= ' in �. All fresh states have 
olor 0, whileea
h other state q 2 Q keeps its 
olor �(q) = � (q).The transition fun
tion Æ is de�ned by{ Æ( ; �) = (q ; ") ^V 0�\dqsf ( ) Æ( e 0; "),{ Æ( e ; �) = Vd2D#( e ; d) for  2 dqsf (#) if  =2 � andÆ( e ; �) = Vd2D#( e ; d) ^ ( ; ") otherwise, and{ Æ(q; �) = V( ;v)2D Vq02Æ (q;� _[v) �q0; ( ; v)� for all q 2 Q . ut12



The role of the fresh states is to ensure that 
he
king is initiated at the rootof exa
tly the rea
hable  -trees, and the transition fun
tions from the last lineensure that the 
orre
t paths are 
he
ked for the 
orre
t properties from there.We 
all the states in Q of U'  -states, the respe
tive state q the initial -state, and  and e fresh states.Using this automaton as a starting point, we 
an 
onstru
t an alternatingautomaton that a

epts the models of a spe
i�
ation by su

essively applyingthe inverse operations of widening and guessing operations from the adjusteda

eptan
e game.The widening and proje
tion operation for standard trees naturally extend todown-trees. For a �-labeled down-tree h#D	 ; li, proj�(h#D	 ; li) denotes the �0-labeled down-tree h#D	 ; l0i that results from node-wise proje
ting �, providedthe 
o-domain for the node is � 0 �� for some � 0.For a minimal formula  = `CQs:#0 of 	 , a �s	 -labeled down-tree T =h#D	 ; li is the  -widening of a �s	 -labeled down-tree T 0 = h#D 	 ; l0i, denotedwideD 2C ; (T 0) = T , i� l(d � d0) = l0(d � d00) holds for all d 2 #D 	 \ #D	 , d0 2(f g � 2S
ope( )rC)�, d00 2 D� , and d0 = hide2C (d00).Let  = `CQs:#0 be a minimal formula of 	 and a dire
t quanti�ed sub-formula of # 2 	 , 	 0 = 	 r f g, and h#D	 0 ; li a �s	 -labeled down-tree. Thenwe denote with 
opy h#D	 0 ; li the �s	 -labeled down-tree h#D 	 ; l0i with l0(x ) =l(x#), where x# is derived from x by 
hanging every letter ( ; V ) to (#; V ).Theorem 4. For a given CL spe
i�
ation ', we 
an build an alternating au-tomaton that a

epts a 2�-labeled 2F-tree i� it is a model of '.Constru
tion: The starting point of our 
onstru
tion is the automaton A1� =U' from Lemma 1 that a

epts a ��-labeled down-tree h#D�; li i� it is patha

epting. Following the reverse of the stru
ture of the adjusted a

eptan
e game,we stepwise transform A1� into an automaton A3; (for quanti�ed) or A1f'g (forunquanti�ed formulas ') that re
ognizes the models of '.For a non-empty subset 	 � � of �, we �rst 
hoose a sub-formula  2 	 su
hthat no true sub-formula of  is in 	 (dqsf ( ) \ 	 = ;), and set 	 0 = 	 r f g.Let  = `CQs: 0. Note that s o

urs only in the labels of  -trees, and onlyin
uen
es their a

eptan
e, be
ause they are only interpreted by the automatonA1	 , i� it is in a  -state.The �rst transformation refers to the 8s: or 9s: part of the spe
i�
ation,or to the fourth step of the adjusted a

eptan
e game. Using Theorem 2, we
onstru
t an automaton A4	 0 that a

epts a �s	 -labeled down-tree h#D	 ; li i�{ all �	 -labeled down-trees h#D	 ; l0i with proj 2fsg(h#D	 ; l0i) = h#D	 ; li area

epted by A1	 (for Q = 8)), or{ some �	 -labeled down-tree h#D	 ; l0i with proj 2fsg(h#D	 ; l0i) = h#D	 ; li area

epted by A1	 (for Q = 9)), respe
tively,by applying the respe
tive proje
tion to the standard tree automaton that resultsfrom restri
ting A1	 to the  -states, with the initial  -state as initial state, andthen repla
ing the old  -states (and transitions from there) by the new ones.13



The se
ond transformation refers to the `C part of the spe
i�
ation, or tothe third step of the adjusted model-
he
king game. We build an automaton A3	 0that a

epts a �s	 -labeled down-tree h#D 	 ; li i� its widening wideD 2C ; (h#D 	 ; li)is a

epted byA4	 0 . This transformation is the narrowing from Theorem 1 appliedto the standard tree automaton that results from restri
ting A4	 0 to the  -states.It only a�e
ts the transitions from the  -states.The third transformation refers to binding the extension to the la-beled sub-tree, or to 
opying the 
urrent sub-tree in the se
ond step of theadjusted model-
he
king game. In the �rst step of this transformation, we 
on-stru
t the automaton A2	 0 0 = (�s	 ; Q	 ; '; Æ	 ; �	 ) with the same states as A3	 0that a

epts a �s	 -labeled down-tree h#D	 0 ; li if 
opy h#D	 0 ; li is a

epted byA3	 0 by simply repla
ing every dire
tion ( ; V ) by (#; V ), where # is the formulain 	 for whi
h  2 dqsf (#) holds: It obviously makes no di�eren
e if we 
ontinuein the blueprint or the 
opy. In a se
ond step, we apply a minor 
hange to A2	 0 0to properly turn the  -states into #-states. For this 
hange, we 
onsider thatthe initial #-state q#0 and e are only 
alled from the state # in the transitionÆ(#; �) = (q#0 ; ")^V 0�\dqsf (#)\	 Æ( e 0; "). We 
an therefore introdu
e a new ini-tial #-state eq#0 and 
all both states, q#0 and e#, through eq#0 by adjusting Æ(#; �) to(eq#0 ; ") ^V 0�\dqsf (#)\	 0 Æ( e 0; "), and 
hoosing Æ(eq#0 ; �) = (q#0 ; ") ^ ( e ; "). Trans-forming the winning strategy for either player is trivial for both steps, and e , , and the former  -states be
ome #-states.The fourth transformation refers to guessing the 
orre
tness of  , orto simulating the perfe
t ora
le of the �rst step of the model-
he
king game. Webuild an automaton A1	 0 that a

epts a �	 0-labeled down-tree h#D	 0 ; li i� some�s	 -labeled down-tree h#D	 0 ; l0i with proj 2f g(h#D	 ; l0i) = h#D	 ; li is a

eptedby A2	 0 by a transformation similar to the transformation from A1	 to A4	 0 .These transformations are repeated until we have 
onstru
ted A3; if ' isquanti�ed, and A1f'g otherwise. utCorollary 1. The validity, satis�ability, and model-
he
king problems for CLare de
idable. utThe proposed de
ision pro
edure is non-elementary, and Proposition 3 showsthat this is unavoidable: The 
omplexity of the easily en
odable distributedsynthesis problem [6{9℄ implies this for the restri
ted 
lass of spe
i�
ations withonly existential (or only universal) quanti�
ation. However, a similar e�e
t 
anbe observed if we 
on
entrate on the sub-logi
 without 
oordination variables;Disallowing 
oordination variables leaves us with QPTL, and hen
e with a towerof exponents linear in the number of quanti�er alternations [18℄.Beyond Coordination Logi
 The power of fragments of Coordination Logi
raises the question if there are natural de
idable extensions. The �rst naturalextension of CL would be to allow for an arbitrary assignment of information tostrategy variables. This 
an, for example, be done by repla
ing the quanti�ers`CQs of the logi
 by more general quanti�ers QC B s that assign a set of 
oor-dination variables to s. This extension would allow to introdu
e information in14



a non-ordered fashion, for example, by introdu
ing the same information multi-ple times or by withdrawing information. We 
all the resulting logi
 ExtendedCoordination Logi
. While the semanti
s of CL naturally extends to ExtendedCL|it suÆ
es to 
hange the quanti�ers in the last two bullet points|ExtendedCL is unde
idable, be
ause we 
an en
ode the realizability problem for the un-de
idable ar
hite
ture [6, 7℄ of Figure 1
 by 9fx1g B y1:9fx2g B y2:' for everysystem spe
i�
ation '.Proposition 6. The fragment of Extended Coordination Logi
 with two strategyvariables and only prenex existential (or universal) quanti�
ation is unde
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