Coordination Logic*

Bernd Finkbeiner! and Sven Schewe?

! Universitiat des Saarlandes
2 University of Liverpool

Abstract. We introduce Coordination Logic (CL), a new temporal logic
that reasons about the interplay between behavior and informedness in
distributed systems. CL provides a logical representation for the dis-
tributed realizability problem and extends the game-based temporal log-
ics, including the alternating-time temporal logics, strategy logic, and
game logic, with quantification over strategies under incomplete infor-
mation. We show that the structure in CL that results from the nesting
of the quantifiers is sufficient to guarantee the decidability of the logic
and at the same time general enough to subsume and extend all previ-
ously known decidable cases of the distributed realizability problem.

1 Introduction

An intriguing aspect of the design of a distributed system is the interplay between
behavior and informedness: the behavior of a distributed system is determined
by the combination of local decisions, made by processes that only have partial
information about the system state. To ensure that the behavior of the full
system is correct, the processes must carefully coordinate so that each process
obtains the information needed for the right decision.

Historically, specification languages for distributed systems, in particular the
temporal logics, have focused on specifying the acceptable behavior and ignored
the question which level of informedness is needed to implement it. This is not
surprising, because the main application of these logics has been verification,
where one proves that the behavior of a complete system, with all implementa-
tion decisions already made, is correct. More recently, however, a lot of attention
has shifted towards analyzing distributed systems at early design stages, where
one has requirements but not yet a complete implementation [1-9]. At such a
point in the design process, one is interested in realizability [6-9] (is there an
implementation that satisfies the requirements?) and other game-based proper-
ties [1-5], such as: can a given coalition of processes accomplish a certain goal
against all possible actions of the other processes?

In the game-based setting, the connection between behavior and informa-
tion becomes crucially important, because the strategic capabilities of a process
strongly depend on its informedness. Realizability and other game-based prop-
erties have therefore been investigated with respect to specific system architec-
tures, that is, graphs of the communication topology, where the nodes represent

* This work was supported by DFG TR AVACS and by EPSRC grant EP/H046623/1.

processes and edges represent communication links. Unfortunately, very few sys-
tem architectures can be analyzed algorithmically: even for simple architectures,
like the two-process architecture of a distributed arbiter, the realizability prob-
lem for the standard temporal logics LTL, CTL, and CTL*, as well as the model
checking problems for the game-based extensions, including the alternating-time
temporal logics [1, 4], strategy logic [2], and game logic [1], are undecidable. Most
practical approaches therefore concentrate on the simple but unrealistic special
case where all processes have complete information.

In this paper, we re-investigate the interplay of behavior and informedness
from a logical perspective. We introduce Coordination Logic (CL), the first speci-
fication language that defines behavior and informedness within the logic instead
of by referring to an external system architecture. CL uses two types of variables.
Coordination variables represent knowledge, directly observed from the exter-
nal environment or obtained through coordination with other system processes.
Strategy variables encode the result of strategic choices that are made based on
the values of the coordination variables. Either type of information can be hidden
from other processes by quantification. As we will see, CL is a decidable logic that
is not only sufficiently expressive to encode all queries over system architectures
for which the game-based logics are decidable, but can additionally, because be-
havior and informedness are represented in the same logical framework, answer
many queries over systems with otherwise undecidable architectures.

We motivate CL with a simple example. Consider the “statement” function-
ality of an automated banking terminal, where the user can choose to either show
the statement on the screen or get a printout. We model this system with three
coordination variables, a for account number, s for screen, p for printout, and
two strategy variables, d for data, modeling the content of the statement sent
from a central server to the terminal, and o for output, modeling the terminal’s
output. CL includes linear-time temporal logic (LTL) as a sublogic for the speci-
fication of behavioral requirements, so let us assume that the functionality of the
terminal has been specified by an LTL formula ¢. The CL specification now pre-
cisely identifies what information is visible to the terminal and what information
is visible to the server. For example, the formula da, s, p3d, o ¢ specifies that the
functionality specified in ¢ can be realized by communicating the full informa-
tion to the server: the existential quantification 3d, o over the strategy variables
d and o expresses the existence of a strategy for the server and the terminal;
the existential quantification da, s, p over the coordination variables a, s, and p
introduces the information on which the decisions on d and o are based. Clearly,
however, full information is not needed in this example: the server does not need
to know whether the client wants the statement on the screen or on the printer.
This is expressed by the alternative specification da 3d 4s, p o, which hides the
coordination variables s and p from the strategy variable d. The example can
easily be extended to systems with multiple terminals, resulting in the conjunc-
tion Ai:l,---m da; 3d; ds;, pi Jo; p;. The resulting star topology (many terminals
communicate with a single server) is an example of a system architecture where

game-based properties are in general undecidable [9]; the representation as a CL
formula reveals, however, that this particular query is in fact decidable.

The remainder of the paper is structured as follows. After reviewing some
basic notation on trees and tree automata in Section 2, we formally define CL
in Section 3. Section 4 is devoted to a thorough study of the expressiveness
of CL: we show that CL subsumes the usual linear and branching-time logics
LTL, CTL, and CTL*, as well as the game-based logics ATL and ATL* [1],
strategy logic [2], and game logic [1]. We furthermore show that the distributed
realizability problem [6-9] can be encoded in CL for all system architectures
where the problem is decidable. In fact, we show that CL makes it easier to
identify decidable cases. For example, in the special case of local specifications,
where the LTL specification consists of a separate conjunct for each process,
the doubly flanked pipeline architecture, in which the otherwise least informed
process has an additional input, is also decidable [10]. We give a new, simple
proof of the decidability of doubly-flanked pipelines and local specifications by
encoding the realizability problem as a CL formula.

Related work. There is a rich literature on game-based extensions of temporal
logic, including the alternating-time temporal logics [1, 4], strategy logic [2], and
game logic [1]. Model checking algorithms for these logics typically assume that
all processes are fully informed; however, versions with incomplete information
have been defined, in particular for the alternating-time temporal logics [1, 11].
Unlike CL, none of these logics combine the specification of behavior and in-
formedness in the same formula.

There are several variations of the alternating-time temporal logics that
are orthogonal to our study of the interplay of behavior and informedness.
Alternating-time temporal epistemic logic [12] extends strategic properties with
knowledge modalities. Hence, while CL specifies the existence of strategies that
are based on incomplete information, this logic specifies the existence of strategies
to obtain certain knowledge. Since the strategies itself are based on full informa-
tion, actions that require certain knowledge must be restricted individually with
explicit knowledge preconditions. Other notable variations of the alternating-
time temporal logics include the extension to strategy contexts [13,5] and the
restriction to bounded resources [3, 5].

Our decision procedure for CL builds on standard automata constructions
used in synthesis algorithms for distributed systems, in particular for pipeline
and, more generally, weakly-ordered system architectures [6-9]. Since distributed
realizability can be encoded in CL, our decision procedure subsumes the decid-
able realizability problems. Moreover, since we study behavior and informedness
in a common logical representation, new cases can be identified as decidable
simply by encoding the queries in CL.

2 Preliminaries

Trees. We use trees as a representation for strategies and computations. As
usual, a (full) tree is given as the set 7 of all finite words over a given set of

directions 7. For given finite sets X and 7', a Y-labeled T-tree is a pair (1, 1)
with a labeling function (or strategy) ! : 7* — X that maps every node of T* to
a letter of X. For a set = x 1" of directions and a node z € (£ x 1)*, hidey(x)
denotes the node in =* obtained by replacing (£, v) by & in each letter of z.

For a ¥ x Z-labeled T-tree (Y*,l) we define the =-projection of (T*,I),
denoted by projz((Y*,1)), as the X-labeled 7-tree (T*, pr;ol). That is,
proj =({T*,1)) is obtained from (I"*,1) by projecting away the Z-part from the
label in every node of T*.

For a Y-labeled =-tree (5£*,1) we define the T-widening of (£*,1), denoted
by widey({Z*,1)), as the Y-labeled = X T-tree ((Z x 1)*,l') with I'(z) =
I(hidey(z)). By abuse of notation, we use widey(l) for I'. In widey({Z*,1)),
nodes that are indistinguishable for someone who cannot observe T—that is,
nodes .,y with hider(xz) = hider(y)—have the same label.

If = =2%X and T = 2Y are power-sets of disjoint sets X and Y, we identify
= x T with 2XUY, and use the widening operator widey accordingly. Let X
and Y be sets with Z = X UY, and let M and N be disjoint set. Then we
denote with ((22)*,1a @ (22)* — 2MYU((2%)*,In : (27)* — 2V) the 2MUN_
labeled tree ((27)*,1) with I(z) = lar(z)Uln (), and use ((2%)*, 1) D ((2V)*,I') =
widegz\x (((QX)*, l))Uwidegz\Y (((QY)*, l'))

For a Y-labeled T-tree (T'*,1) and a word = € T7*, we denote with (I™*,1)|x
the sub-tree rooted in z, that is, the tree (T'*,1") with I'(y) = I(z - y).

Automata. An (alternating parity) automaton A = (X, Q, qo,d,) runs on
XY-labeled T-trees (for a predefined finite set 7" of directions). @) denotes a finite
set of states, go € @ denotes a designated initial state, d denotes a transition
function § : Q x X — BT (Q x 1%.) for 7. = YU{e}, and a : Q — C' is a function
that maps the states of A to a finite set of colors C C N. If C' = {0,1}, we call
A a co-Biichi automaton.

A run tree on a given Y-labeled T-tree (Y*,1) is a @ x T*-labeled tree where
the root is labeled with (go,e) and where for a node n with a label (g,) and a
set of children child(n), the labels of these children have the following properties:

— for all m € child(n) : the label of m is (gm, T - Um), ¢m € @,Um € T such
that (gm,vm) is an atom of §(q,l(z)), and
— the set of atoms defined by the children of n satisfies d(q, (z)).

A path is accepted if the highest color appearing infinitely often is even.
A run tree is accepting if all its paths are accepted, and a X-labeled T-tree is
accepted by A if it has an accepting run tree. The set of trees accepted by an
automaton A is called its language L(A).

The acceptance of a tree can also be viewed as the outcome of a game, where
player accept chooses, for every pair (¢,z) € Q@ x T*, a set of atoms that satisfy
d(q,1(z)), and player reject chooses one of these atoms, which is executed. The
input tree is accepted iff player accept has a strategy to enforce a path that
satisfies the parity condition.

Theorem 1 (narrowing). [1/] For an automaton A = (X,Q,qo,0,q) over
Z x T-trees, we can build an automaton A, = (X,Q,qo,0',a) that accepts a
Y-labeled tree (Y*,1) iff wides({T*,1)) is accepted by A. O

Theorem 2 (projection). [15] For an automaton A = (¥'x=,Q, qo, d,) over
T -trees, we can build (1) an automaton A’ = (£,Q’,q0,8', ') that accepts a
Y-labeled tree (T*,1) iff some X' x =Z-labeled tree (Y*,1') that satisfies (T*,1) =
proj =((Y*,1")) is accepted by A, and (2) an automaton A’ = (X,Q’,qo,d",a')
that accepts a X-labeled tree (1'*,1) iff all X x Z-labeled trees (Y*,1') that satisfy
(Y=, 1) = proj =({T*,1I")) are accepted by A. |

Note that, for technical convenience in the upcoming proofs, we assume that
the initial state of A and the initial state of the respective transformed automa-
ton are the same.

We call an automaton a word automaton if the set of directions is single-
ton, and universal if consists only of conjunctions. By abuse of notation, we
interpret d(q) as the set of its conjuncts for universal word automata.

3 Coordination Logic

Syntax. CL formulas are defined over two types of variables: coordination vari-
ables C, and strategy variables S. The operators of CL consist of the usual LTL
operators Next (O, Until &, and the dual Until I/, as well as the new subtree
quantifiers 4C3s.p | 4CVs.. The syntax of CL is given by the grammar

pu=x|-zloVeloAe|OvlelUoleU | IC3s.p | ICYs.p,

where z € CUS, C CC, and s € S.

We call a formula well-formed if the sets of coordination variables that occur
under different d-operators are pairwise disjoint, and the same strategy variable
is not introduced more than once. In the following we assume that all formulas
are well-formed. (Well-formedness can be ensured by a suitable renaming.)

Note that we combine, for technical convenience and to emphasize the close
connection between coordination and strategy variables, the introduction of both
types of variables into a single subtree quantifier. We use Vs. ¢ and ds. ¢ as
abbreviations for 4PVs. ¢ and 4(3s. ¢, respectively, and 4C. ¢ as an abbreviation
for 4CVs. ¢ (or, likewise, 4C'3s.), where s is a fresh strategy variable (which in
particular does not occur in ¢). We also use the standard abbreviations true =
xV -z, false = x A -z, > @ = true U ¢, and [= false U .

Semantics. Coordination variables provide strategy variables with the informa-
tion required for their decisions. Following the structure of a formula, a bound
coordination variable c¢ is wvisible to a bound strategy variable s, if s is in the
scope of the subtree quantifier that introduced ¢. We denote the set of bound co-
ordination variables that are visible to s by scope(s). The free strategy variables,
also called atomic propositions, are denoted by II. For all atomic propositions
p € IT it holds that scope(p) = 0.

The set of free coordination variables is denoted by F. Free coordina-
tion variables are visible to all strategy variables. We call the set of coor-
dination variables visible to a strategy variable s the scope of s, denoted
Scope(s) = scope(s)UF. By abuse of notation, we use scope(S) = J, g scope(s)
and Scope(S) = [J,cq Scope(s) for a set S C S of strategy variables, and
Scope(4CQs.) = Scope(s), for Q € {3,V}.

The meaning of a strategy variable s is a strategy f, : (25¢0re(s))* — 2{s}
i.e., a mapping from the information available to s, which consists of the history
of the valuations of the coordination variables in the scope of s, to a (Boolean)
valuation of s.

For a subset S C S of the strategy variables, we call the tree 7 =
@ses((QS””e(s))*, fs) defined by their joint valuation a frame over S. CL for-
mulas are interpreted over frames 7 = P, 1{(2%)*, f,) over the atomic propo-
sitions, called computation trees.

As usual, a path in the tree 7 is an w-word o = ogo109... € (29)%, and
we denote the related labeled path by o7 = (I(¢) U ao)(I(00) U o1)(I(0901) U
0'2)(l(0'00'10'2) U 0’3) ... E (QfUH)w-

A tree T satisfies a CL formula ¢, denoted by 7 E ¢, iff all paths satisfy ¢,
ie., Vo € (27). 0,0 ET ¢, where the satisfaction of a CL formula ¢ on a path
o at position i > 0, denoted by o,i E7 ¢ , is defined inductively as follows:

— for the strategy and coordination variables = € SUC,
e 0,iET z:= 2 €0’ (i), and
0,i ET =z ez ¢ o (i) for all 2 € SUC;
for the boolean connectives, where ¢ and ¢ are CL formulas,
e 0,iET oV 0,iET poroikET 4, and
e 0, i ET pAY:e0,i ET pand o,i ET ;
— for the temporal path operators, where ¢ and v are CL formulas,
e 0,iET Qy:eo,i+1ET
e o0,iET Uy In>i.omET YpandVme {i,...,n—1}. o,mE7T o,
e 0, iET pU Y :=Vn>i. onkET ¢ or
In>i.onE” pand Vm € {i,...,n}. o,m ET o
for the subtree quantifiers, where C' C C,s € S, and ¢ is a CL formula,
o 0,i ET 403s.p 12 3f : (25core(s))x 5 208} (T'|oy) @ ((25¢0Pe())* f) E o,
where o; is the initial sequence of length i of o,
o 0,i ET 40Vs.p :& Vf : (25c0re())x 5 205} (T|oy) @ ((250Pe())* £ E o

4 Expressive Power of Coordination Logic

Coordination logic is sufficiently expressive to subsume the model-checking prob-
lem for all other popular temporal logics, in particular for LTL, CTL, CTL*,
ATL, ATL*, and strategy logic. Moreover, it can also express the satisfiability
of these logics, as long as the branching degree of the models is fixed and can
therefore be encoded using a finite set of variables. For logics like ATL*, where
models of fixed branching degree are known to be sufficient [16], the satisfiability
problem can thus be expressed in CL.

T, 272l71»’3 mzlws lws la 11'1 lxz
Y1 Y2 Y3

(b)
(a) (c)

Fig. 1. Distributed architectures

Proposition 1. The decision problem for strategy logic, game logic, and ATL*
and its sub-logics over models with a fized branching degree can be encoded in CL.

The distributed realizability problem is defined with respect to a system ar-
chitecture, which is a directed finite graph whose nodes correspond to processes
and whose edges are labeled with sets of variables: each process can read the
variables on incoming edges and write to variables on the outgoing edges. There
is a distinguished process, called the environment process, that provides the in-
put to the system. Given such a system architecture, the distributed realizability
problem [6-9] checks for the existence of a set of strategies, one for each process,
such that the combination of these strategies satisfies the specification. We now
describe an encoding of the realizability problem in CL for the two known decid-
able cases, the weakly-ordered architectures and the doubly-flanked pipelines.
We begin with a simple special case of the weakly-ordered architectures, the
linear architectures (cf. Figure 1a).

Realizability in linear architectures. In a linear architecture, each process
reads only inputs from the external environment, not any outputs of other pro-
cesses. Furthermore, we assume that the sets of variables visible to the processes
are pairwise comparable (cf. Figure 1a) and, hence, define a linear ‘informedness’
pre-order on the output variables.

In the following, we will reuse the variables from the architecture as coordi-
nation and strategy variables in CL, denoting a vector x1, s, ..., z; of variables
by a single symbol . The realizability of an LTL formula ¢ in a linear architec-
ture can be encoded as the CL formula dx,3y,, ... dx33ys 4z, Iy, where the
strategy variables y; represent the output of the i-th best informed processes,
and the coordination variables a; represent the inputs from the environment
that are available to the ith best informed processes, but not the 7 + 1st best
informed processes.

Realizability in weakly-ordered architectures. Weakly-ordered architec-
tures generalize linear architectures by allowing the processes to also read the
output of other processes, while still requiring that ordering the processes accord-
ing to their informedness results in a linear pre-order on the output variables.
The realizability of temporal specifications in weakly-ordered architectures is
decidable. In fact, the class of weakly-ordered architectures consists exactly of
those architectures for which the realizability problem is decidable [9].

In a weakly-ordered architecture, we can assume w.l.o.g. that each process
reads all inputs of less-informed processes directly as its own input [9]. In our

encoding, we introduce additional coordination variables that simulate the input
for the processes and then restrict the LTL formula to those paths where the true
input and the mock input we introduced coincide. We obtain the CL formula
A2, Yy, . .. ATy Az Iy (O 2™k = yeol) — p, where x; are the (mock)
input variables, and []2™°°% = y"** is the restriction to the paths in which the

mock input corresponds to the true input.

Proposition 2. The realizability problem for weakly-ordered architectures can
be encoded in CL.

This encoding also demonstrates the conciseness of CL: The encoding con-
sists only of the LTL specification from the distributed realizability problem,
and at most four copies of each variables. Deciding CL is thus at least as ex-
pensive as the realizability problem for weakly-ordered architectures, which is
non-elementary [7].

Proposition 3. The decision and model checking problem of CL are non-
elementary.

Since CL is decidable (cf. Corollary 1 in Section 5), it is clear that the realiz-
ability problem of undecidable architectures cannot be encoded in CL, but this
does by no means imply that CL is restricted to encoding problems for decidable
architectures. An interesting example are doubly-flanked pipeline architectures,
for which the realizability of local LTL specifications is decidable.

Local specifications and doubly-flanked pipelines. A specification is called
local if it only reasons about the variables of a single process, and a doubly
flanked pipelines is, as shown in Figure 1b, a pipelines in which the otherwise
least informed process has an additional input. The realizability of local LTL
specifications in doubly-flanked pipelines is decidable [10]. In our encoding, we
divide the realizability problem into two parts: one for the pipeline (minus pro-
cess pp) and one for p,, and then couple these problems logically. This can be
done by extending both pipelines (the one of length n — 1 and the one of length
1) by a shadow process p. which controls a Boolean variable e and reads a mock
input @, reflecting y,,—; (which is regarded as a true environment input for the
short pipeline from the right); if ¢ is the local specification for the rightmost
process, and ¢ the conjunction over the specifications of the remaining processes,
then we can simply strengthen ¢ to @ A [Je, forcing e to be true on all possible
runs of y,,_1, and weaken 1 to []e — 1, which restricts ¢ to paths marked as
existing. Now, both of these sub-specifications start with dx,3e, and it is easy
to see that applying a conjunction after this operator provides the right level of
light entanglement between the two sub-specifications.

In case of the example architecture from Figure 1b, this specification reads
:IngIe(_-IngIy2:lmlEly1(D To=y1 ANx3=y2) = (pA[] e)) Adadys (e —).
Proposition 4. The distributed realizability problem for doubly flanked pipelines
can be encoded in CL.

In fact, this encoding can easily be generalized to larger classes of specifica-
tions. In the full version of this paper [17] we describe such an extension.

5 Automata-based Decision Procedure

Our decision procedure for coordination logic draws from the rich tool box of
w-automata transformations available in the literature for satisfiability checking
and synthesis. As a preparation for the development of the decision procedure,
we first rephrase the semantics for coordination logic as a model-checking game,
which checks the correctness of 7 F .

Model-Checking Game. For a CL formula ¢, we denote with dqsf(<p) the
set of direct quantified sub-formulas defined by dgsf (_-IC’Qs) = dqsf (p) for
dgsf (v) = dgsf(=z) = 0 for z € CUS, dgsf(p o ¥) = dgsf () U dgsf () for
o€ {A,V,U,U}, dqsf(O p) = dqsf(), and dqsf(jCQs.go) = {4CQs.p}.

With w, we denote the formula derived from 1) by replacing its direct quan-
tified sub-formulas dgsf (¢) by variables that reflect their correctness.

A model-checking game can, starting with the candidate 7 under consider-
ation, expand 7 along the specification. Acceptance is determined by a game
between two players, accept and reject. For unquantified formulas, the model-
checking for T E ¢ starts in a state (7,) and proceeds as follows:

1. player accept guesses the correctness of the state formulas dgsf (), expand-

ing the labeling function of 7 to Ti,

2. player reject either (a) chooses an infinite path o in 7; and test if it satisfies
© and stop the game, or she (b) chooses a finite path 7 in 7; and a formula
4CQs.4p € @ that is marked valid in this position in 77, and proceeds in
To =Tilm,

. T> is widened by 2¢ to T3 = widesc (T3)

4. for a formula 4C3s.¢) player accept, and for a formula 4CVs.¢) player reject

extends the labeling of 73 by a valuation of s to 74, and the game proceeds
in (1) from state (71,v).

w

For quantified formulas ¢ = 4CQs.y, we choose initially 73 = T and start
in Step (3).

Player accept wins if the path evaluated at the end of the game in Step (2)
satisfies @, while player reject wins otherwise. (Note that the game goes down
in the formula tree in each round, and player reject must eventually choose to
validate a path.)

Proposition 5. The model-checking game is won by player accept iff T E .

Proof. The game simply follows the structural definition of the semantics.

‘=": Let T F ¢. For the choices in Step (1), we can assume that player ac-
cept uses a perfect oracle, whose choice can be challenged by player reject. By
the perfect choices of the oracle, player accept won the valuation of any path
player reject chose in Step (2a), which might leave player reject with choosing
a sub-formula that is claimed to be valid—and is therefore valid as the oracle is
perfect—in Step (2b). By the definition of validity, this means that any (for a

universally quantified sub-formula 4CVs.1)) or some (for an existentially quanti-
fied sub-formula 1C3s.1)) extension of the proper widening of the tree contains
only paths that satisfy 1, which is reflected by Steps (3) and (4). This argument
can then be repeated with the chosen sub-formula, until the a sub-formula ¢
with an empty set dgsf(p) = 0 of direct quantified sub-formulas is reached.

‘<": Let T ¥ . For the choices player accept makes in Step (1), player reject
uses a perfect oracle to find a position and direct quantified sub-formula, such
that the sub-formula is claimed to be true. If no such position exists, there must
be a trace that contradicts ¢ by our assumption, and player reject wins. (Note
that claiming that a satisfied direct quantified sub-formula does not hold cannot
help the acceptance of a path, because our specification is in positive form.) If
such a position exists, the choice of the perfect oracle shows that some (for a
sub-formula 4CVs.¢) or all (for a sub-formula 4CVs.1)) extensions of the proper
widening of the tree is contains a path that does not satisfy 1. This argument
can again be repeated with the chosen sub-formula, until a sub-formula 1 with
an empty set dgsf(¢) = 0 of direct quantified sub-formulas is reached.

To bridge the remaining gap between this game and working with trees, we
can obviously change the second step of the game to checking all paths and, for
each direct quantified sub-formula and each position in the tree, constructing a
copy of the tree. For each position in the tree, the respective proof obligation
is handed down to the copies spawned for the direct quantified sub-formulas
that are marked valid (but not for those marked invalid), and the procedure is
continued for each copy as if it was chosen in the game described above.

This adjustment indicates the relation of the CL model-checking problem
with current synthesis procedures [6-9] and outlines the required changes. In
distributed synthesis, causal bound variables are usually existentially quantified
and occur in a prenex. For such prenex quantifiers, the truth of sub-formulas
is only relevant in the root £, and the set of direct quantified sub-formulas is
singleton or empty. Hence, while we need to expand the tree by copying the
respective sub-tree and perform widening operations on all copies individually for
CL, it suffices for current synthesis procedures to cope with widening operations
for the complete tree.

Our automata-based decision procedure performs the inverse to the functions
occurring in the adjusted acceptance game: narrowing [14] as the inverse of
widening (Step 3 of the adjusted game), friendly and hostile projection [15] of a
strategy as the inverse of friendly and hostile causal choice (Step 1 and 4), and
re-routing the test-automaton for correctness of a direct quantified sub-formula
from the copy to its blueprint (Step 2b). We therefore have to introduce a more
intricate tree structure, to reason about sub-trees instead of full trees, and to
re-route intermediate test-automata.

Down-trees. Our construction is based on down-trees (cf. Figure 2), which
follow the structure of a CL specification. Down-trees are trees of trees that
refer to a quantified sub-formula. Down-trees can be viewed as the outcome of
the model checking game, where the operations are applied in all places at the

10

RRPLPQP PP P RAP P R-PH O QRS D
\ \ \ \

/ \ /
\\ I/ A A A A \\ I/

Fig. 2. Example down-tree: In a down tree, we start out with a slim tree that only
branches by the valuations of the free communication variables, like the tree in black
(full lines). This tree is labeled by the free strategy variables. An operator 1c3s spawns
a new wider sub-tree (dashed lines) with a richer labeling function that additionally
includes truth values of the bound strategy variable s. After projecting the new strategy
variable s away, the new sub-tree is a widening of the sub-tree rooted in the respective
node. That is, when restricted to the free strategy variables, the labeling of every
path that is indistinguishable by the free coordination variables in the resulting tree
is similar, as indicated by the blue-green-black path in the initial tree and its many
copies of its ending sequences in the newly spawned sub-trees.

same time, and serve as a structure to run an automata based technique that
step-wise undoes the decisions in such a game. Viewed as a concurrent version
of the game, the black (full) basic tree spawns siblings in each node, which are
first widened, and whose label is then extended, using a friendly guess in case of
existential quantifier, and a hostile guess in case of a universal quantifier. The
automata-based construction introduced below puts a weak projection against
the friendly guess, a strong projection against the hostile guess, and a narrowing
operation against the widening.

Let @ be the set of quantified sub-formulas of ¢ plus ¢ itself. We call a subset
U C & of @ sub-formula closed if (1) ' € ¥ and ¢ € dgsf (v') N ® imply ¢ € &,
and if (2) ¥ # () implies p € ¥. A formula ¢ € ¥ is called minimal if none of its
sub-formulas is in @ (dgsf () N& = 0).

For each formula i) € ¥, we introduce a set Dy, = {1/} x25¢¢(¥) of directions,
and denote their union by Dy = ey Dy- We call a sequence d = dod1 ... 0y, €
Dyg* falling if, for all i > 0, 6; € Dy and d;41 € Dy implies that ¢’ is a
(not necessarily true) sub-formula of). We call the set |[Dg C Dyg”* of falling
sequences in Dy a down-tree, and denote, for a ¢’ € ¥ and a ¢ € dgsf (') N¥
that has no sub-formulas in ¥ (dgsf(s)) N ¥ =), with [DY the down-tree
obtained when using Dy, = {¢} x 25°°P°(¢") (that is, we intuitively hide the fresh
information from the variable bound by the leading quantifier of).

We call the formula ¢ from the first projection of the last letter §,, = (v, V)
of d = 601 - . .0, the head of a node d, and define ¢ to be the head of the empty
word €.

According to our demands, the labeling function for our down-trees has an
amorphous co-domain that depends on the head of the node. A node with head
¥ is labeled by a validity claim for all quantified super- and sub-formulas of
in ¥ (including v itself), the decisions of all bound strategy variables that are
bound by a leading quantifier of these super- and sub-formulas, and the atomic
propositions. We call down-trees with this amorphous co-domain Yg-labeled
down-trees. For the co-domain obtained by removing, for a minimal formula

11

4CQs.9 € ¥, the 205} part from the amorphous co-domain, we refer to P
labeled trees.

For ¢ # ¢ and a down-tree | Dg, we call a sub-trees ® = d - Dy, C IDg, for
which 4 is a true sub-formula of the head of d € Dy, a 1-tree in [Dg. We call
D in |Dg reachable if, for all d' - § € D, the following holds: for the head ¢’ of
d" and the head ' of d' - §, all quantified true sub-formulas of ¢’ that contain
" as their sub-formula are marked as valid in I(d"). D, is the only ¢-tree, and
always reachable.

For a reachable ¢-tree ® = d- D}, C |Dg of a labeled down-tree (IDg,1),
a path in ® is an w-word d,d - (Y,v1),d - (¢,v1) - (¢¥,v2),..., and its trace is
the w-word (I(d)Uvy), (I(d)Uvs), The reachable ¢-trees directly relate to the
trees constructed in the adjusted model-checking game:

Observation 3 For a given 2 -labeled 27 -tree T and a given formula ¢, the
outcome of the adjusted acceptance game is a labeled down-tree intersected with
the reachable trees.

Player accept wins if, for all ¢ € &, the trace of every labeled path of every
reachable 1 -tree satisfies .

We call a labeled down-tree where, for all ¢» € @, the trace of every labeled
path of every reachable 1-tree satisfies v, path accepting.

Automata-Based Decision Procedure. Building on the above observation,
we construct an automaton that accepts a labeled down-tree iff it is path ac-
cepting.

The simple path acceptance condition can be encoded in a universal co-Biichi
automaton over labeled down-trees.

Lemma 1. We can build a universal co-Biichi automaton that accepts a labeled
down-tree iff it is path accepting.

Construction: We first build, for every formula ¢ € &, a universal co-Biichi
automaton Uy = (X, Qy,qy,dy,) for the claim-formula ¢ of ¢, using the
standard translation for LTL. (The valuation of variables not in the language of
Uy do not affect §.) Using these automata as building blocks, we then build the
universal automaton U? = (X, Q, P, d, «), where @) consists of the disjoint union
of the states of the individual Uy, a fresh initial state @, and two fresh states,
{5 and 1, for all other formulas 1) # ¢ in . All fresh states have color 0, while
each other state ¢ € Qy keeps its color a(q) = ay(q).
The transition function § is defined by

= 5@,0) = (66) A Ayroragegion 8056,
— 6(@?, o) = /\dGDﬂ(@E, d) for ¢ € dgsf (9) if ¢ ¢ o and
6(t,0) = Ngep, (@, d) A (1,¢€) otherwise, and
= 6(0,0) = Nw,vyeny, Noresy (g,o00) (¢, (1,v)) for all ¢ € Qy. a

12

The role of the fresh states is to ensure that checking is initiated at the root
of exactly the reachable -trees, and the transition functions from the last line
ensure that the correct paths are checked for the correct properties from there.

We call the states in @@y of UY¥ 1)-states, the respective state gy the initial
-state, and 1 and J fresh states.

Using this automaton as a starting point, we can construct an alternating
automaton that accepts the models of a specification by successively applying
the inverse operations of widening and guessing operations from the adjusted
acceptance game.

The widening and projection operation for standard trees naturally extend to
down-trees. For a Y-labeled down-tree (| Dw,1), proj = ({} Dw,1)) denotes the X'-
labeled down-tree (|.Dyg,l') that results from node-wise projecting =, provided
the co-domain for the node is &' x = for some Z'.

For a minimal formula ¢y = 4CQs.¢' of ¥, a X§-labeled down-tree 7 =
({Dw,1) is the -widening of a Xj-labeled down-tree 7' = (inﬁ, Iy, denoted
widef&”’w(T’) =T,iff I(d-d) =1'(d-d") holds for all d € J,D$ NlDyg, d €
({p} x 28core()=Cy= gt ¢ Dy, and d' = hideyc (d").

Let v = 4CQs.9' be a minimal formula of ¥ and a direct quantified sub-
formula of ¥ € ¥, ¥' = ¥ ~ {¢}, and (| Dyg,l) a Xj-labeled down-tree. Then
we denote with copy,,(} Dy, 1) the Xg-labeled down-tree (¢D$, Iy with l'(zy) =
I(zy), where zy is derived from z, by changing every letter (¢, V') to (¢, V).

Theorem 4. For a given CL specification o, we can build an alternating au-
tomaton that accepts a 2" -labeled 27 -tree iff it is a model of .

Construction: The starting point of our construction is the automaton A} =
U? from Lemma 1 that accepts a Yg-labeled down-tree (}Dg,l) iff it is path
accepting. Following the reverse of the structure of the adjusted acceptance game,
we stepwise transform Ag into an automaton Aj (for quantified) or Ay , (for
unquantified formulas) that recognizes the models of (.

For a non-empty subset ¥ C & of @, we first choose a sub-formula ¢y € ¥ such
that no true sub-formula of 9 is in ¥ (dgsf () "W =), and set ¥’ =¥ \ {¢}.

Let » = 4CQs.¢)'. Note that s occurs only in the labels of ¢-trees, and only
influences their acceptance, because they are only interpreted by the automaton
Al iff it is in a ¢-state.

The first transformation refers to the Vs. or ds. part of the specification,
or to the fourth step of the adjusted acceptance game. Using Theorem 2, we
construct an automaton Ay, that accepts a Xj-labeled down-tree ([Dy, 1) iff

— all Xg-labeled down-trees ({Dg,l") with proj, (({Dw,l')) = (| Dg,l) are
accepted by A, (for Q =V)), or

— some Yy-labeled down-tree (| Dg,1") with proj,.y (({ Dw,l'Y) = (} Dg,l) are
accepted by AL, (for @ = 3)), respectively,

by applying the respective projection to the standard tree automaton that results
from restricting A}, to the t-states, with the initial ¢)-state as initial state, and
then replacing the old -states (and transitions from there) by the new ones.

13

The second transformation refers to the 4C part of the specification, or to
the third step of the adjusted model-checking game. We build an automaton A3,
that accepts a X5 -labeled down-tree (¢D$, [y iff its widening widefc‘ﬁ ¢((¢D$, 1))
is accepted by A%, . This transformation is the narrowing from Theorem 1 applied
to the standard tree automaton that results from restricting A%, to the y-states.
It only affects the transitions from the ¢-states.

The third transformation refers to binding the extension to the la-
beled sub-tree, or to copying the current sub-tree in the second step of the
adjusted model-checking game. In the first step of this transformation, we con-
struct the automaton Afp,' = (X5,Qu, P, 0w,) with the same states as A},
that accepts a Yg-labeled down-tree (]Dy-,l) if copy, (}Dy,l) is accepted by
A3, by simply replacing every direction (1, V) by (9, V), where ¥ is the formula
in ¥ for which ¢ € dgsf () holds: It obviously makes no difference if we continue
in the blueprint or the copy. In a second step, we apply a minor change to AQW,'
to properly turn the 1)-states into ¥-states. For this change, we consider that
the initial -state qg and 1 are only called from the state ¥ in the transition

8(0,0) = (4§,€) A Ny orragsy 9y 0¥, €)- We can therefore introduce a new ini-
tial ¥-state G2 and call both states, ¢’ and 9, through G¢ by adjusting 8(9, o) to
(@,e) A /\d;’a—ﬂdqsf(ﬁ)ﬂvp’ 3(¢',€), and choosing 6(Gy,0) = (¢3,€) A (¢,). Trans-
forming the winning strategy for either player is trivial for both steps, and {ﬁ,
1, and the former i-states become ¥-states.

The fourth transformation refers to guessing the correctness of ¢, or
to simulating the perfect oracle of the first step of the model-checking game. We
build an automaton A}, that accepts a Xyg/-labeled down-tree (| Dy, 1) iff some
Y& -labeled down-tree (Dy ,1") with proj,wy ({Dw, ")) = ({Dw, 1) is accepted
by AZ, by a transformation similar to the transformation from A}, to Ag,.

These transformations are repeated until we have constructed A% if ¢ is
quantified, and ‘A%w} otherwise. O

Corollary 1. The validity, satisfiability, and model-checking problems for CL
are decidable. O

The proposed decision procedure is non-elementary, and Proposition 3 shows
that this is unavoidable: The complexity of the easily encodable distributed
synthesis problem [6-9] implies this for the restricted class of specifications with
only existential (or only universal) quantification. However, a similar effect can
be observed if we concentrate on the sub-logic without coordination variables;
Disallowing coordination variables leaves us with QPTL, and hence with a tower
of exponents linear in the number of quantifier alternations [18].

Beyond Coordination Logic The power of fragments of Coordination Logic
raises the question if there are natural decidable extensions. The first natural
extension of CL would be to allow for an arbitrary assignment of information to
strategy variables. This can, for example, be done by replacing the quantifiers
4C'@s of the logic by more general quantifiers QC' > s that assign a set, of coor-
dination variables to s. This extension would allow to introduce information in

14

a non-ordered fashion, for example, by introducing the same information multi-
ple times or by withdrawing information. We call the resulting logic Extended
Coordination Logic. While the semantics of CL naturally extends to Extended
CL—it suffices to change the quantifiers in the last two bullet points—Extended
CL is undecidable, because we can encode the realizability problem for the un-
decidable architecture [6,7] of Figure 1c by 3{z1} > y1.3{z2} 1> y2.p for every
system specification .

Proposition 6. The fragment of Extended Coordination Logic with two strategy
variables and only prenex existential (or universal) quantification is undecidable.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49 (2002) 672-713

Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Proc. CONCUR.
(2007) 59-73

Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science 85 (2004) 82 — 93 Proc. of LCMAS 2003.
Pinchinat, S.: A generic constructive solution for concurrent games with expressive
constraints on strategies. In: Proc. of ATVA. (2007) 253-267

Brihaye, T., Lopes, A.D.C., Laroussinie, F., Markey, N.: ATL with strategy con-
texts and bounded memory. In: Proc. of LECS. (2009) 92-106

Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. of FOCS. (1990) 746-757

Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Insti-
tute of Science, Rehovot, Israel (1992)

Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. of LICS.
(2001) 389-398

Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. of LICS.
(2005) 321-330

Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local spec-
ifications. In: Proc. of ICALP. (2001) 396-407

Pinchinat, S., Riedweg, S.: A decidable class of problems for control under partial
observation. Information Processing Letters 95 (2005) 454-460

van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-
time temporal epistemic logic and its applications. Studia Logica 75 (2003) 125-157
Agotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with
irrevocable strategies. In: Proc. of TARK. (2007) 15-24

Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Proc. of
ICTL. (1997)

Schewe, S., Finkbeiner, B.: Semi-automatic distributed synthesis. International
Journal of Foundations of Computer Science 18 (2007) 113-138

Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time p-calculus. In: Proc. of CSL. (2006) 591-605

Finkbeiner, B., Schewe, S.: Coordination logic. Reports of SFB/TR 14 AVACS 63,
SFB/TR 14 AVACS (2010) ISSN: 1860-9821, http://www.avacs.org.

Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Biichi
automata with applications to temporal logic. Theoretical Computer Science 49
(1987) 217-237

15

