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Abstract—Modern medicine increasingly relies on med-
ical cyber-physical systems for diagnosis and treatment
of patients. Yet, misbehavior can have dire consequences
raising the need for formal guarantees on the runtime be-
havior. Static verification would provide such guarantees,
but is infeasible due to the complexity of the systems and
the human physiology. In these cases, more light-weight
verification techniques such as runtime monitoring are
still applicable. The monitor analyzes a single execution
of the system and raises an alarm as soon as it detects
unexpected behavior. The shape of unexpected behavior is
described in a formal specification language such as the
one provided by the STREAMLAB framework, which can
express complex real-time constraints. Yet the language
is sufficiently restrictive to allow for static analyses deter-
mining an upper bound on the memory consumption. As a
result, the underlying monitoring framework STREAMLAB
can synthesize an embedded runtime monitor on an FPGA.
The practicality of this approach is validated by current
case studies on avionics. Moreover, the low memory
and energy consumption indicate that a deployment on
implantable devices is possible. In this abstract we thus
showcase the practicality of STREAMLAB in the medical
domain and suggest it as a suitable candidate for runtime
monitoring on medical devices.

Medical cyber-physical systems (MCPS) are ubiqui-
tous, ranging from large magnetic resonance imaging
scanners to implantable artificial cardiac pacemakers.
While they constitute an indisputable advancement in
diagnosis and treatment, even minor mistakes can lead
to unforeseen ramifications. This can be seen in the
Therac-2 incident. A quick handling of the machine
by experienced technicians triggered a data race that
lead to severe radiation poisoning in patients, causing
multiple cases of debilitation and three deaths. Formal
verification of the system’s control software could have
prevented the incident. However, the complexity of such
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systems coupled with incomplete knowledge about the
patient’s physiology and the exact workings of the hu-
man body render a static verification infeasible. More-
over, the control logic is often based on empirical data.
As an example, consider the detection and subsequent
treatment of seizures based on brain waves collected in
an electroencephalogram (EEG). Precise identification
and description of seizure patterns can be a hard task
even for specialists who rely on their long experience.
Yet, treatment of epilepsy requires manual tweaking
of parameters until they fit the patient. The resulting
controllers perform reasonably well, but are based on
the doctor’s experience and thus hard to explain and
reason about. Similarly, recent successes in whole-brain
seizure detection with a trained classifier [1]] indicate that
machine learning can help in seizure detected. However,
the resulting controller is similarly hard to explain, as
per usual for machine learned components. Static veri-
fication requires insight into the decision logic, so such
incomprehensible controllers exacerbate the verification
process further. While control logic based on empirical
data — either designed by an experienced doctor or
machine learned — performs well in practice, it is neigh
impossible to verify it. However, controllers that are
simple enough to verify perform poorly in practice.
The avionics industry faces a similar problem. Soft-
ware based on machine learning performs extraordinarily
well but cannot be verified statically. This hinders the
certification of the aircraft and thus prevents it from
getting a permission to fly. As a remedy, dynamic veri-
fication techniques such as runtime monitoring are com-
monly used. Here, a specification written in a language
with formal semantics describes the desired behavior of
a system on an abstract level. A monitor then assesses
the system’s state based on sensor values. As soon as the
specification is violated, an alarm is raised and the sys-
tem can initiate mitigation measures such as switching
to a less effective, verified controller. The monitor treats
the control logic as a blackbox: it sees which decision



input CSL: Float

input rec, stim: Bool

output twich := abs(derive (3,CLS))

output avg_long @100mHz := twich.aggregate (over:2000s,
output avg_short @1lkHz := twich.aggregate (over:2ms,
output spike := avg_short - avg_long.hold() > €

trigger (@1kHZ spike A —rec.aggregate (over:2ms,

trigger (@1kHZ rec.aggregate(over:5ms, using:any)

using:any)

using:avg)
using:avqg)

"seizure not recognized"
A —stim.aggregate (over:3ms, using:any)
"stimulation not triggered"

Figure 1: A simplified RTLOLA specification to monitor an implantable responsive neurostimulator.

has been made but does not require information on how
it was made. There are already efforts in transferring
runtime verification techniques to the medical domain:
Chen et al. [[2] monitored a glucose control unit to reg-
ulate the insulin infusion and Abbas et al. [|3] monitored
EKGs to detect cardiac arrhythmias.

We propose using the STREAMLAB [4] framework on
MCPS, which has been applied to unmanned aerial vehi-
cles by the German Aerospace Center (DLR). STREAM-
LAB revolves around the stream-based specification lan-
guage RTLOLA [5] in which samples of sensors are
modeled as input streams and transformed into output
streams containing statistical information. These are used
to identify undesired behavior. The language design
focusses on providing simple primitives for complex
computations, such as a sliding real-time window over an
input stream computing the discrete integral. RTLOLA
has a formal semantics allowing for formal guarantees
on the runtime behavior as well as static analyses deter-
mining the space and time requirements to monitor the
specification. These analyses enable a compilation of a
specification into a VHDL monitor that is synthesizable
on a field-programmable gate array (FPGA) [6]. As a
result, the monitor can be deployed on embedded devices
such as drones or medical implants.

We showcase the expressiveness of the language by
presenting a significantly simplified specification that at-
tempts to monitor an implantable responsive neurostimu-
lator for epilepsy treatment. The RTLOLA specification
in monitors whether a seizure was correctly
recognized based on the EEG of a single cortical channel
and whether a stimulation was triggered subsequently.
The first line declares the readings of the cortical strip
lead as input stream as 64-bit wide floating point number.
The second line declares boolean streams indicating the
recognition of a seizure and an ongoing stimulation,
respectively. Line 3 computes the absolute twitch, i.e.,
the third derivation of the amplitude measured over the
CSL. The next two lines compute the running long-
term and short-term average twitch over 2000s and 2ms,

respectively. Both streams are annotated with a compu-
tation frequency: avg_long is computed every 10s and
avg_short every lms. A spike is then defined as a
signification difference between the long- and the short-
term average twitch, indicating the onset of a seizure.
Lastly, triggers declare desirable properties; violations
are reported to the controller. The first trigger checks
whether a spike led to a recognition signal, the second
trigger asserts that a recognition leads to a stimulation.

The specification showcases the simplicity of RT-
LoLA specifications; even complex computations can be
expressed in a concise way. Moreover, the interpretation
of the specification requires only 3us per event on
general-purpose hardware. Coupled with the recently
presented compilation to an FPGA, we want to initiate
a discussion regarding the applicability of STREAMLAB
on medical cyber-physical systems.
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