
Synthesis and Control of

Infinite-State Systems with

Partial Observability

Rayna Dimitrova

Fachrichtung Informatik, Fakultät 6

Universität des Saarlandes

Dissertation zur Erlangung des Grades des Doctors der Naturwissenschaften der

Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

Saarbrücken 2013

frontmatter/figures/logo-neu.eps

Tag des Kolloquiums 12.06.2014

Dekan Prof.Dr. Markus Bläser

Prüfungsausschuss

Vorsitzender Prof. Dr. Christoph Weidenbach

Berichterstattende Prof. Bernd Finkbeiner, Ph.D.

Prof. Rupak Majumdar, Ph.D.

Prof. Ufuk Topcu, Ph.D.

Akademischer Beisitzer Dr. Martin Zimmermann

ii

Abstract

Complex computer systems play an important role in every part of every-

day life and their correctness is often vital to human safety. In light of the

recent advances in the area of formal methods and the increasing availabil-

ity and maturity of tools and techniques, the use of verification techniques

to show that a system satisfies a specified property is about to become

an integral part of the development process. To minimize the develop-

ment costs, formal methods must be applied as early as possible, before the

entire system is fully developed, or even at the stage when only its spec-

ification is available. The goal of synthesis is to automatically construct

an implementation guaranteed to fulfill the provided specification, and, if

no implementation exists, to report that the given requirements cannot be

realized. When synthesizing an individual component within a system and

its external environment, the synthesis procedure must take into account

the component’s interface and deliver implementations that comply with it.

For example, what a component can observe about its environment may

be restricted by imprecise sensors or inaccessible communication channels.

In addition, sufficiently precise models of a component’s environment are

typically infinite-state, for example due to modeling real time or unbounded

communication buffers. This thesis presents novel synthesis methods that

respect the given interface limitations of the synthesized system components

and are applicable to infinite-state models.

The studied computational model is that of infinite-state two-player games

under incomplete information. The contributions are structured into three

parts, corresponding to a classification of such games according to the inter-

face between the synthesized component and its environment. In the first

part, we obtain decidability results for a class of game structures where the

iii

player corresponding to the synthesized component has a given finite set

of possible observations and a finite set of possible actions. A prominent

type of systems for which the interface of a component naturally defines a

finite set of observations are Lossy Channel Systems. We provide symbolic

game solving and strategy synthesis algorithms for lossy channel games un-

der incomplete information with safety and reachability winning conditions.

Our second contribution is a counterexample-guided abstraction refinement

scheme for solving infinite-state under incomplete information in which the

actions available to the component are still finitely many, but no finite set

of possible observations is given. This situation is common, for example, in

the synthesis of mutex protocols or robot controllers. In this setting, the ob-

servations correspond to observation predicates, which are logical formulas,

and their computation is an integral part of our synthesis procedure. The

resulting game solving method is applicable to games that are out of the

scope of other available techniques. Last we study systems in which, in ad-

dition to the possibly infinite set of observation predicates, the component

can choose between infinitely many possible actions. Timed games under

incomplete information are a fundamental class of games for which this is

the case. We extend the abstraction-refinement procedure to develop the

first systematic method for the synthesis of observation predicates for timed

control. Automatically refining the set of candidate observations based on

counterexamples demonstrates better potential than brute-force enumera-

tion of observation sets, in particular for systems where fine granularity of

the observations is necessary.

iv

Zusammenfassung

Komplexe Computer Systeme spielen eine wichtige Rolle in jedem Teil des

Alltags und ihre Korrektheit ist oft entscheidend für die menschliche Sicher-

heit. Angesichts der neuesten Fortschritte auf dem Gebiet der formalen

Methoden und die zunehmende Verfügbarkeit und Reife von Tools und

Verfahren, wird die Verwendung von Techniken zur Prüfung, dass ein Sys-

tem eine bestimmte Eigenschaft erfüllt, zu einem integralen Bestandteil des

Entwicklungsprozesses. Um die Entwicklungskosten zu minimieren, sollen

formale Methoden so früh wie möglich angewendet werden, bevor das Sys-

tem vollständig entwickelt ist, oder sogar in der Phase, wenn nur seine

Spezifikation zur Verfügung steht. Das Ziel von Synthese ist, automatisch

eine Implementierung zu konstruieren, die garantiert die gegebene Spezi-

fikation erfüllt. Falls keine solche Implementierung existiert, soll die Unre-

alisierbarkeit der Spezifikation ausgewiesen werden. Bei der Synthese einer

einzelnen Komponente innerhalb eines Systems und seiner äußeren Umge-

bung müssen synthetisierte Implementierungen die Schnittstelle der Kom-

ponente berücksichtigen. Beispielsweise kann eine Komponente ihre Umge-

bung nur über wenige, unpräzise Sensoren beobachten. Darüber hinaus

haben präzise Modelle einer Umgebung einer Komponente normalerweise

einen unendlichen Zustandsraum, z.B. durch die Modellierung von Realzeit

oder durch unbegrenzte Kommunikationspuffer. Diese Dissertation stellt

neuartige Syntheseverfahren für Modelle mit unendlichem Zustandsraum

vor, die die Einschränkungen berücksichtigen, die durch die Schnittstelle

der synthetisierten Systemkomponenten gegeben sind.

Das grundlegende Berechnungsmodell sind Spiele mit zwei Spielern und

einem unendlichen Zustandsraum. Der Beitrag der Dissertation ist in drei

v

Teile gegliedert. Der erste Teil der Dissertation liefert Entscheidbarkeitsre-

sultate für eine Klasse von Spielen, in der der Spieler, der die Systemkom-

ponente repräsentiert, eine endliche Menge von Beobachtungen und Aktio-

nen hat. Ein prominenter Repräsentant dieser Klasse sind Lossy Channel

Systeme. Es werden symbolische Algorithmen zur Strategiesynthese für

Lossy Channel Spiele unter unvollständiger Information mit Sicherheits-

und Erreichbarkeits-Gewinnzielen präsentiert.

Der zweite Beitrag besteht aus einem Gegenbeispiel-geführten Abstraktions-

verfeinerungs-Schema zum Lösen von Spielen mit unendlichem Zustand-

sraum unter unvollständiger Information, in denen die Komponente endlich

viele Aktionen hat aber keine endliche Menge von möglichen Beobach-

tungen gegeben ist. Diese Situation ist weit verbreitet z.B. bei der Syn-

these von Mutex-Protokollen oder Robotersteuerungen. In diesem Kontext

entsprechen die Beobachtungen Beobachtungsprädikaten, die durch logis-

che Formeln repräsentiert sind, wobei deren Berechnung ein integraler Be-

standteil des Syntheseverfahrens ist. Das resultierende Verfahren kann zum

Lösen von Spielen benutzt werden, die mit keiner verfügbaren Technik gelöst

werden können.

Letztlich werden Systeme untersucht, in denen die Komponente unendlich

viele Beobachtungsprädikate hat und zwischen unendlich vielen Aktionen

auswählen kann. Gezeitete Spiele unter unvollständiger Information sind

eine grundlegende Klasse von Spielen, bei denen dies der Fall ist. Wir er-

weitern das Abstraktionsverfeinerungs-Schema, um die erste systematische

Methode zur Synthese von Beobachtungsprädikaten für gezeitete Controller

zu entwickeln. Es wird demonstriert, dass eine Verfeinerung der Beobach-

tungen, basierend auf Gegenbeispielen, ein höheres Potential aufzeigt als

eine Brute-Force-Aufzählung der Beobachtungen, insbesondere für Systeme,

bei denen eine feine Granularität der Beobachtungen notwendig ist.

vi

Dedicated to my parents Liliya and Vasil.

vii

viii

Acknowledgements

First and foremost I wish to express my sincere gratitude to my supervisor

Bernd Finkbeiner. I am thankful for his guidance, inspiration, unconditional

support and patience. He taught me the value of high quality research, and

I will always look up to him as a model for researcher and supervisor. He

gave me the freedom to pursue my ideas and encouraged me to work on

interesting problems and not to give up if they would turn out to be hard.

I am honored and grateful to have Rupak Majumdar and Ufuc Topcu on

my thesis committee. I am deeply thankful to Rupak for giving me the

excellent opportunity to continue my academic path as a postdoc in his

group at MPI-SWS.

I am furthermore grateful for having had the opportunity to work with

remarkable people such as Andreas Podelski, Helmut Seidl and Ufuk Topcu.

I want to thank the International Max Planck Research School for Computer

Science (IMPRS-CS) and Microsoft Research Cambridge for funding my

research with scholarships and the German Science Foundation (DFG) for

funding my research as part of the AVACS project.

I want to thank all current and former members of the Reactive Systems

group that I had the pleasure to interact with: Jérôme Creci, Klaus Dräger,

Rüdiger Ehlers, Peter Faymonville, Michael Gerke, Felix Klein, Lars Kuhtz,

Andrey Kupriyanov, Hans-Jörg Peter, Markus Rabe, Christa Schäfer, Sven

Schewe, Leander Tentrup, Hazem Torfah, Martin Zimmermann.

A special thanks goes to the members of the Mathematical Logic and Appli-

cations group at Sofia University where I did my bachelor studies. Without

them opening for me the door to the amazing world of logic and automata

theory, I probably would have never come to be where I stand today. This

ix

I mostly own to Ivan Soskov, who will continue to live in the memory of the

students whose lives he has enlightened.

Furthermore I would like to thank the members of the Rigorous Software

Engineering group at MPI-SWS in Kaiserslautern for welcoming me with

an inspiring research environment after my doctoral studies.

For all the fun I had throughout the years that I spent in Saarbrücken, I

am incredibly thankful to the great friends I made there (a.k.a. m7++):

Laura, Evangelia, Konstantin, André, Yassen, Stefan, Vitaly. A big thanks

to another great friend goes to Ruzica for the fun trips, cultural events and

other exciting adventures she organized a plenty.

Above all, my most special thanks go to my parents for their faith in me,

for the love and encouragement that they have given me, and the valuable

lessons that they have taught me.

Thank you all!

x

Contents

1 Introduction 1

1.1 Related Work . 6

1.2 Contribution . 8

1.3 Publications . 10

1.4 Organization of the Thesis . 10

2 Infinite-State Games under Incomplete Information 13

2.1 Game Model and Representation . 13

2.1.1 Preliminaries . 13

2.1.2 Two-Player Games . 15

2.1.3 Symbolic Representation . 20

2.1.4 Discussion of the Game Model 23

2.2 Games under Incomplete Information 24

2.2.1 Observation-based Strategies . 24

2.2.2 Determinacy and Counterexamples 27

2.2.3 Knowledge-Based Subset Construction 30

2.2.4 The Game Solving and Strategy Synthesis Problems 33

2.2.5 Discussion of the Knowledge-Based Subset Construction 34

2.3 Game Abstractions . 34

3 Lossy Channel Games under Incomplete Information 43

3.1 Preliminaries . 46

3.2 Lossy Channel Games under Incomplete Information 49

3.3 Algorithms for Safety and Reachability Games 56

3.3.1 Monotonicity Properties of the Transition Relations 56

xi

CONTENTS

3.3.2 Effective Representation of Upward and Downward-Closed Sets . 57

3.3.3 Effective Successor and Predecessor Operations 59

3.3.4 Solving Safety Lossy Channel Games 62

3.3.5 Solving Reachability Lossy Channel Games 70

3.4 Undecidability of Parity LC-Games under Incomplete Information . . . 77

4 Games with Fixed Observations 83

4.1 Monotonic and Downward-Closed BQO Games 83

4.2 R-stable Games . 89

5 Counterexample-Guided Abstraction Refinement

for Games under Incomplete Information 97

5.1 Abstraction for Incomplete-Information Games 99

5.1.1 Abstraction Predicates . 99

5.1.2 Abstract Game Structure with Perfect Information 101

5.1.3 Soundness of Predicate Abstraction 106

5.1.4 From Abstract Strategies to Finite-State Concrete Strategies . . 107

5.2 Counterexample Tree Analysis . 108

5.2.1 Counterexample Concretization 109

5.2.2 Trace formulas . 109

5.2.3 Tree formula . 111

5.2.4 Concretizability Characterization 112

5.2.5 Sources of Spuriousness . 114

5.3 Interpolation for Observation Refinement 115

5.3.1 Craig Interpolation . 115

5.3.2 Observation Equivalence Refinement 116

5.3.3 Localized Interpolants for Linear Rational Arithmetic 122

5.4 Abstraction Refinement Loop . 128

5.4.1 Transition Relation Refinement 128

5.4.2 CEGAR Loop . 131

5.4.3 Soundness and Progress . 134

5.4.4 Relative Completeness . 135

5.5 Experiments . 142

5.5.1 Prototype implementation . 142

xii

CONTENTS

5.5.2 Experimental Results . 142

5.5.3 Discussion . 147

6 Timed Control with Partial Observation 151

6.1 Preliminaries . 154

6.2 Timed Controller Synthesis . 155

6.3 Observations for Timed Control . 158

6.3.1 Undecidability Results . 158

6.3.2 Timed Control with Fixed Observations 159

6.3.3 Finite Control Strategies . 161

7 Synthesis of Observation Predicates for Timed Control 165

7.1 Await-Time Games . 165

7.2 Fixed-Observations Abstraction . 172

7.2.1 Abstraction with Fixed Action Points 172

7.2.2 Predicate Abstraction . 181

7.2.3 Existence of Finite-State Strategies 185

7.3 Observation Refinement . 185

7.3.1 CEGAR Loop . 186

7.3.2 Concretizability Characterization 188

7.3.3 Computing Observation Predicates 193

7.3.3.1 Computing Decision Predicates 194

7.3.3.2 Computing Action Points 194

7.3.4 Progress . 198

7.4 Experiments . 199

7.4.1 Prototype implementation . 199

7.4.2 Experimental Results . 199

7.4.3 Discussion . 201

8 Conclusion & Outlook 203

References 205

xiii

CONTENTS

xiv

Chapter 1

Introduction

Complex computer systems play an important role in every part of everyday life. No-

table examples include fly-by-wire and drive-by-wire technologies, plant controllers,

medical devices, smart cards and authentication systems. It is apparent that the cor-

rectness of such systems is vital to human safety, privacy and well-being.

To increase the confidence in the correctness of a given system, formal verification

techniques can be used to show that the system satisfies some specified properties.

Synthesis methods, on the other hand, start with a formal specification of the system’s

behavior, or a partial implementation, and automatically construct an implementation

guaranteed to fulfill the specification, or report that the given requirements cannot be

realized, if no such implementation exists. Often, the goal is to synthesize an individual

component within a system, such as controller or an individual process in a network of

communicating processes, such that the overall system satisfies the specification.

The pioneering works on synthesis of finite-state closed [MW80, CE81] and open

[PR89a] systems were published in the late 80’s and the beginning of the 90’s. An

open, also called reactive system is a system whose execution is not supposed to ter-

minate, and which during its execution interacts with an external environment. The

synthesis of reactive systems from linear time temporal specifications (LTL formu-

las) is closely related to Church’s solvability problem [Chu63] and is also solved using

automata-theoretic techniques. The automata-theoretic approach to the synthesis of

finite-state reactive systems extends also to branching time specifications and to the

incomplete information setting [KV97]. In this setting one drops the assumption that

the synthesized system can perfectly observe its environment. Therefore, the synthe-

1

1. INTRODUCTION

sized implementation is required to only depend on information available to the system,

e.g., on its input signals. The positive results from the works above do not transfer to

the synthesis of distributed systems. Already early on Pnueli and Rosner established

in [PR90] that unfortunately the distributed synthesis problem is undecidable.

Now, more than two decades later, synthesis is a very active and promising area of

research. Below we give a, by far not complete, overview of the most notable results in

the area. These include semi-decision procedures for undecidable synthesis problems,

efficient algorithmic solutions and synthesis techniques for important application areas.

Schewe and Finkbeiner [SF07] proposed a semi-decision procedure for the undecid-

able distributed synthesis problem, which is based on bounding the size of the sought

implementation and gradually increasing this bound until an implementation is found.

The approach encodes the requirement that the implementation of each process of

the distributed system may only use information which is accessible to this process.

Furthermore, if an implementation is found, it is guaranteed to have minimal size.

Although decidable, the synthesis of monolithic systems from temporal logic spec-

ifications has been considered prohibitively expensive (LTL synthesis is 2EXPTIME-

complete). In [PPS06] an expressive fragment of LTL, called GR(1) was identified, for

which the synthesis problem can be solved in polynomial time. The specification lan-

guage and algorithmic approach have found a large number of applications, for example

in robotics and autonomous vehicle navigation [KGFP09, WTM10].

In practice, it is not always feasible to synthesize a large system in its entirety

from a high-level logical specification. Sometimes, one is interested in repairing an

incorrect system, resolving the remaining implementation decisions in a partial pro-

gram, or synthesizing a certain intricate aspect of the system’s behavior, for example

synchronization. Automata-theoretic and game-based synthesis techniques were suc-

cessfully applied to the repair of finite-state programs (possibly the result of the ab-

straction of complex programs) [JGB05, GBC06, JSGB12, vEJ13]. The game-theoretic

approach has also been applied to the synthesis of converters for incompatible proto-

cols [PAHSv02].

The mentioned works on synthesis of monolithic systems, repairs or individual com-

ponents in a larger system, assume that the system/component can perfectly observe

its environment. While dropping this assumption does not increase the complexity of

2

the synthesis problem when the synthesis problem is presented succinctly as a logi-

cal formula (for example LTL synthesis under incomplete information is 2EXPTIME-

complete [KV97]), when the partial system and its environment are represented as

finite-state machines considering incomplete information incurs an exponential blow-

up [Rei84]. This is caused by the fact that the synthesis algorithm has to keep track

of the set of global states that are possible given the current local state. To avoid

the high complexity, some practical methods look for implementations that do not

add extra state to the partial program and hence cannot track the execution his-

tory [VYY09]. In the same way methods applied to the synthesis of multi-process

programs [CCH+11, CRKB11] avoid the undecidable distributed synthesis problem.

Another application area is discrete controller synthesis, which is closely related to

supervisory control of discrete event dynamic systems [RW89]. In supervisory control,

partial observability is typically defined using a mask, which is a mapping from the

(possibly infinite) state space to a (possibly infinite) space of observations [KGM93].

For general infinite-state systems, the control problem is undecidable [KG05].

The synthesis problem has been studied for some important classes of infinite-state

systems used in formal analysis and verification. Timed automata are one such class,

used to model systems with quantitative timing information. The game-based algo-

rithm for discrete controller synthesis was extended to the real-time setting in [MPS95].

Later timed control with partial observability was shown too be undecidable [BDMP03].

Other classes of infinite-state systems for which the synthesis problem has been

investigated are push-down systems [Cac02] and lossy channel systems [ABd08].

We identify the following two major challenges in reactive systems synthesis.

(I) Partial observability. The distributed synthesis problem is undecidable since

individual processes in a system have incomplete information and can therefore

have incomparable information. Even when the synthesis problem asks for the

construction of a single monolithic component, incomplete information is the

cause for increased complexity of the synthesis problem. Finally, as already

mentioned, partial observability renders undecidable the synthesis problem for

otherwise well behaved classes of infinite-state systems like timed automata. Nev-

ertheless, in order to deliver realistic implementations, synthesis algorithms must

3

1. INTRODUCTION

take into account the interface limitations of the synthesized system or compo-

nent that determine what can be observed. For example, the information re-

ceived by the controller is limited by the precision of its sensors, and a process

in a concurrent system cannot access the local variables of the other processes.

(II) Infinite-state systems. It is not surprising that the undecidability of a given

verification problem for a class of infinite-state systems transfers to the corre-

sponding synthesis problem. Furthermore, in some cases even if the verifica-

tion problem is decidable, the respective synthesis problem becomes undecid-

able. For example, the synthesis problem for Petri nets is undecidable even for

safety properties with upward-closed sets of error states. However, the preci-

sion of infinite-state models is necessary for modeling data from possibly infinite

domains, real-time or unbounded communication buffers.

Let us now continue with a simple motivating example illustrating the above points.

−1 0 1 2 3 4 5 6 7 8 9
−4

−3

−2

−1

0

1

2

3

4

initial positions

of robot

Figure 1.1: A toy example of a robot moving on a plane, navigating in two rooms.

Motivating example. Consider a robot moving on a plane, whose position is de-

scribed by the coordinates x ∈ R and y ∈ R. The set of initial states is described by a

4

formula ϕInit , and the property that the synthesized robot controller must satisfy is of

the form �¬ϕErr, meaning that the robot should avoid some set of error states.

In this setting there is a room that consists of two parts separated by a wall with a

passage, as shown in Figure 1.1. The robot starts in a given position (or set of possible

initial positions) in the left part of the room and should move to the right side of the

room with 4 moves or less. From there on, the robot should move only in the right

part of the room. The robot should not crash into the external or internal walls.

At each step the robot chooses to move in one of the four directions: north, south,

east or west, indicated by the value of the controllable variable move, whose domain

{N,S,E,W} defines the possible choices of the controller. We assume w.l.o.g. that

each action of the robot is enabled in each state. At each step, after the robot selects

a direction, the environment executes the choice of the robot, namely the coordinates

(x, y) are updated based on the robot’s current position and in accordance with the

value of the variable move. The position y of the robot cannot be observed by the

controller (for example, due to sensors imprecision). In this example, there is initial

uncertainty about the value of y, but moving south or north is by exactly 1 unit.

However, we will see that even this uncertainty is sufficient to result in the inability

to control the system in a way that the error states are avoided. The reason is that the

value of y cannot be observed by the controller, and although in a perfect-information

game between the controller and its environment the controller has a strategy to win

the game by avoiding the error states, there is no control strategy that does not depend

on the (initial) value of y. If, on the other hand, we introduce an additional observable

variable yo, whose value is initially equal to the value of y, the controller is able to

deduce information about the current value of y from the prefix that leads to the state.

The problem scenario described in the example above can be formalized as an

infinite-state two-player game under incomplete information.

Two-player games of infinite duration are commonly used as a natural model of the

ongoing an non-terminating interaction of a reactive system with its environment. The

game is between Player∃ representing the system/component/controller and Player∀

that represents its environment. The synthesis problem then reduces to finding a win-

ning strategy for Player∃ in this game (or determining that one does not exist). In

5

1. INTRODUCTION

order for such a strategy to correspond to an actual implementation, it might be re-

quired to have some additional properties. If the controller cannot perfectly observe its

environment, the requirement is that the strategy of Player∃ must be consistent, that

is,depend only on what the controller can observe about the global system’s execution.

Thus, in this case the game is played by Player∃ under incomplete information.

1.1 Related Work

The classical solution for finite-state reachability games under incomplete information

is due to Reif [Rei84]. He describes a knowledge-based subset construction, similar

to automata determinization, that transforms games under incomplete information

to perfect-information games. A knowledge-based subset construction for zero-sum

games with observable ω-regular winning conditions based on this idea was defined

in [CDHR06]. A powerset construction for not necessarily observable ω-regular objec-

tives and also in the asynchronous setting was developed in [Puc10]. Algorithms that

carry out this construction explicitly are in general not effective for infinite-state games.

Symbolic fixed-point algorithms based on antichains that avoid Reif’s determiniza-

tion procedure were proposed in [DWDR06, CDHR06]. These methods are effective for

special classes of infinite-state games like discrete games on rectangular automata with

a fixed finite set of observations [DWDR06]. In such cases they are applied to a given

finite region algebra for the input infinite-state game.

The typical approach to treat infinite state spaces in software verification is abstrac-

tion, where a complex, possibly infinite-state system is mapped to a simpler finite-state

one. Such an abstraction is required to be sound, meaning that if the abstract system

is determined to be correct, the original system is guaranteed to be correct as well. For

a detailed overview of state of-the-art abstraction techniques and in particular abstrac-

tion for perfect-information games ([HMMR00]), we refer the reader to Section 2.3.

In addition to the transition relations of the two players in a game under incomplete

information, an abstraction procedure for such games must definitely ensure that the

observation equivalence is abstracted in a sound manner as well.

While for infinite-state systems that belong to specific classes one can consider an

a priori fixed abstraction that is sufficiently precise to prove many properties of in-

terest (e.g., the region graph of a timed automaton), this is not the case in general.

6

1.1 Related Work

The key to effective construction of sufficiently precise abstraction is abstraction refine-

ment. The most successful and widely used methodology for this is counterexample-

guided abstraction refinement (CEGAR) [CGJ+00]. Chapter 5 provides pointers to the

prominent works on this topic, as well as a comprehensive discussion of related liter-

ature on abstraction refinement for perfect-information games ([HJM03]). For games

with complete information, one builds abstractions that overapproximate the power

of the environment (i.e., the hostile player) and underapproximate the power of the

controller (or the system’s component to be synthesized). Thus, if the controller wins

the abstract game it is guaranteed to also win the original one. Otherwise, an abstract

counterexample, generated by the solving algorithm, is analyzed to determine whether

the controller indeed cannot win the original game, or this counterexample results from

the coarseness of the abstraction. In the latter case, the abstraction is refined to ensure

the necessary precision that rules out this counterexample from the refined abstraction.

For games under incomplete information, the situation is more complicated, because

the strategic capabilities of a player depend not only on the available actions, but also

on the knowledge about the current state of the game. If the abstract game provides

less information to the system than the original one, then the controller might not be

able to win the abstract game, because there it is unable to distinguish a certain pair

of states and therefore is forced to apply the same action in the two states, where in

the original game different moves could be selected. Therefore, the desired refinement

procedure is one that is capable of distinguishing such states to allow for more precise

observations which the controller can make in the refined abstraction.

Timed automata are an important class of infinite-state systems that enjoys a num-

ber of nice decidability and algorithmic properties, which readily transfer to the timed

games setting under the perfect information hypothesis. However, computing a suffi-

cient set of observations (if such exists) in a timed game under incomplete information

is a challenging problem, since timed control under partial observability is in general

undecidable ([BDMP03]). Therefore all known timed synthesis algorithms (discussed

in detail in Chapter 6) had assumed an a priori given, fixed, finite set of observations.

For games under incomplete information defined by another well-known class of

infinite-state systems, a fixed finite set of observations is defined by the given game,

due to the nature of the class of system models. This is the class of Lossy Channel

Systems (LCSs), where it is natural to assume that a process has access to one symbol

7

1. INTRODUCTION

(at the head) of a channel, which is the symbol it may read from that channel. Thus,

since the number of channels is finite, and the message alphabet is also assumed to be

finite, the set of possible observations a process can make is guaranteed to be finite.

Works on games for LCSs, however, had not considered the incomplete information

setting, as it can be seen in the overview of relevant literature given in Chapter 3.

1.2 Contribution

This thesis investigates the problem of automatically synthesizing correct by construc-

tion infinite-state systems under the partial observability hypothesis. We study the

relation between the phenomenon of partial observability and the possibly infinite size

of the sets of possible observations and possible actions of the existential player in the

synthesis game. We use the characteristics of the synthesis problem that this relation

provides to derive synthesis techniques for the respective types of infinite-state systems.

We begin with the simplest case, when the existential player in an infinite-state syn-

thesis game has an a priori fixed finite set of observations and has a finite set of possible

actions. In many cases the interface of a component naturally defines a finite set of

observations. This holds, for example, for LCSs, where components are finite-state and

communicate via a finite set of lossy unbounded FIFO channels whose message alpha-

bets are finite. We first study the synthesis problem for this class of systems and define

lossy channel games under incomplete information. We show, that games with safety

and reachability winning conditions are decidable and finite-state observation-based

strategies for the player who has incomplete information can be effectively computed.

We describe symbolic game solving and strategy synthesis algorithms based on sym-

bolic representations of upward and downward-closed sets of states. Then, we generalize

these decidability results by identifying conditions that define classes of game struc-

tures for which incomplete information games with safety and reachability conditions

respectively are decidable. We show that the new classes of game structures are not

subsumed by classes for which these problems were previously known to be decidable.

In the second part of the thesis we drop the assumption that a finite set of observa-

tions is provided as input to the synthesis procedure. Thus, the task of computing a set

of observations that suffice for realizability (existence of an implementation) becomes

the main challenge. Here we consider systems whose sets of transitions are represented

8

1.2 Contribution

symbolically by formulas in a logical theory, for example linear real arithmetic. In

this framework, observations correspond to observation predicates, which are boolean

expressions that can be used in conditionals in the resulting implementation (thus, we

also call such observation predicates decision predicates). To address this challenge,

we propose the first CEGAR scheme for solving infinite-state two-player safety games

under incomplete information. The key idea is to start with some initial finite set of

observation predicates and use an iterative procedure to extend it. By making the set

of observation predicates a subset of the set of predicates used to construct the abstrac-

tion, we incorporate its refinement as part of the procedure for refining the abstraction.

The abstraction phase integrates predicate abstraction and the knowledge-based subset

construction. The result is a finite-state perfect-information game that soundly approx-

imates the informedness of the component player. We provide a characterization of the

concretizability of an abstract counterexample, which is a winning strategy for the

environment player, by a first-order strategy-tree formula. In the refinement phase,

our approach relies on extracting predicates from Craig interpolants computed for an

unsatisfiable strategy-tree formula. In order to refine the informedness of the compo-

nent player in the abstract game with observable refinement predicates, we develop a

novel constraint-based interpolation technique which provides interpolants that meet

arbitrary variable partitioning requirements. We establish a progress property of the

refinement procedure and identify sufficient conditions that the games and the predi-

cate generation methods need to satisfy to ensure the termination of the CEGAR loop.

The resulting method for solving infinite-state two-player safety games under incom-

plete information is applicable to games that are out of the scope of other techniques

available at the time of writing of this thesis.

In the third part of the thesis we turn to a class of systems in which, in addition

to the possibly infinite set of observation predicates, the controller has infinitely many

possible actions at each point. More specifically, we extend the CEGAR-based method

to the synthesis of real-time controllers, where the controller has the power to decide

how much time should elapse before taking a discrete transition. The main difficulty

in this extension lies in the fact that the quantifier alternation resulting from the alter-

nating choices of the two players in the corresponding game can no longer be handled

by a straightforward replacement of the quantifiers over the variables whose domains

are finite. We address this problem by developing a two-stage abstraction-refinement

9

1. INTRODUCTION

procedure. To this end, we interpret the possible timing decisions of the controller as

a type of observation predicates over clock variables that describe points in time where

the controller does a discrete transition. We term these predicates action points, and

thus the set of observation predicates is now partitioned into action points and decision

predicates. The new abstraction-refinement layer is concerned with the action points

and relies on extracting predicates from models of quantified first-order formulas. This

is the first systematic method for the synthesis of observation predicates for timed

control. Automatically refining the set of candidate observations based on counterex-

amples demonstrates better potential than brute-force enumeration of observation sets,

in particular for systems where fine granularity of the observations is necessary.

1.3 Publications

The contents of this thesis is partially based on the following publications.

• Rayna Dimitrova and Bernd Finkbeiner. Abstraction Refinement for Games

with Incomplete Information. Proceedings of the IARCS Annual Confer-

ence on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2008).

• Rayna Dimitrova and Bernd Finkbeiner. Counterexample-guided Synthesis

of Observation Predicates. Proceedings of 10th International Conference on

Formal Modeling and Analysis of Timed Systems (FORMATS 2012).

• Rayna Dimitrova and Bernd Finkbeiner. Lossy Channel Games under In-

complete Information. Proceedings of 1st International Workshop on Strategic

Reasoning (SR 2013).

1.4 Organization of the Thesis

• We begin the next Chapter 2 by introducing the necessary preliminaries. We

continue with the description of the computational model used throughout this

thesis for specification and analysis of open systems, namely, two-player zero-

sum games under incomplete information. Then we introduce symbolic game

structures used to finitely and effectively represent infinite game structures.

10

1.4 Organization of the Thesis

We proceed with a discussion of the different ways in which a process of a

distributed system observes the execution of its environment. We then give the

definition of important notions such as strategy automata and counterexample

trees for games with safety winning conditions, and recall the knowledge-based

subset construction that transforms a game under incomplete information into a

game with perfect information. We define the game solving problem and recall

the scheme for solving finite-state safety games with perfect information.

Finally we define abstractions of games under incomplete information and the

notion of soundness for such abstraction that takes observability into account.

• The first part of the thesis consists of Chapters 3 and 4, where we consider

infinite-state games under incomplete information where the set of observations

is a priori fixed, for example by the underlying system model. In Chapter 3 we

study games defined by Lossy Channel Systems(LCSs) establishing decidability

of incomplete-information games with safety and reachability winning conditions.

• In Chapter 4 we generalize the decidability results from the previous chapter by

identifying lasses of game structures for which incomplete information games with

safety and reachability conditions respectively are decidable.

• Chapter 5 contains the second major contribution of the thesis. It begins by

presenting a sound predicate abstraction procedure for game structures under

incomplete information. We describe a procedure for checking if a counterex-

ample in the corresponding abstract safety game has a concretizaton or results

from the abstraction being too coarse. In the latter case, the abstraction is re-

fined in a way depending on the cause for the counterexample. We provide an

interpolation-based refinement procedure that is used to refine the abstract ob-

servation equivalence relation in the case when its approximation is the reason

for a nonconcretizable counterexample. We then give the CEGAR loop for safety

games under incomplete information and reason about its progress and termina-

tion properties. We conclude the chapter with experimental results.

• Chapters 6 and 7 constitute the third part of the thesis, which is devoted to the

question of automatically discovering observation predicates for timed control.

11

1. INTRODUCTION

Chapter 6 provides the necessary definitions and introduces the timed controller

synthesis problem with partial observability.

• Chapter 7 presents the key contribution of this part, namely a systematic method

for the automatic synthesis of observation predicates for timed control, which

extends the CEGAR approach described in the second part of the thesis.

12

Chapter 2

Infinite-State Games under

Incomplete Information

2.1 Game Model and Representation

In this section we first introduce some basic notions and notation. Then, we describe

the computational model, two-player zero-sum games under incomplete information

used throughout this thesis for specification and analysis of open systems. Finally we

introduce symbolic game structures as means to finitely represent games over infinite

game structures as they arise for example in synthesis of controllers for infinite-state

plants, mutex protocols, real-time systems and communication protocols.

2.1.1 Preliminaries

Notation. We denote with N and N>0 the sets of natural numbers and positive

natural numbers, and B = {0, 1} is the set of boolean values. The sets Q, Q≥0 and Q>0

consist of the rational numbers, the non-negative rational numbers and the positive

rational numbers respectively. R, R≥0 and R>0 are the respective sets of real numbers.

For a set A we denote with A∗, A+, Aω the sets of finite, finite and nonempty and

infinite sequences of elements of A. For a finite or infinite sequence π of elements from

a set A we denote with |π| its length, which is the number of elements of π when π is

finite and is |π| = ∞ when π is infinite. For n ∈ N with n < |π|, we denote with π[n]

and with π[0, n] the n+ 1-th element of π and the prefix of length n+ 1, respectively.

For π ∈ A+, we denote with last(π) the last element of π.

13

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

For a variable x we denote with Dom(x) the domain of x. For a set X of variables,

we define Vals(X) = X → Dom(X) to be the set all total functions that map each

variable x ∈ X to a value in its domain, i.e., the set of valuations of the variables

in X. For each variable x, we assume a variable x′ with Dom(x′) = Dom(x) and for

each i ∈ N a variable xi with Dom(xi) = Dom(x). Given a set X of variables, we let

X ′ = {x′ | x ∈ X} and Xi = {xi | x ∈ X} for i ∈ N. Since the primed and the

indexed versions of a variable have the same domain, we often use elements of Vals(X),

Vals(X ′) and Vals(Xi) for i ∈ N interchangeably, with the obvious interpretation.

Logical formulas. A theory Th is a set of models over a given signature Ξ. We

consider only theories in which all symbols in Ξ are interpreted. Furthermore, in the

first part of the thesis we are concerned only with quantifier-free formulas over Ξ.

We denote with LFΞ the set of quantifier-free first order formulas over the signature

Ξ and with LFΞ[X] those of them whose variables are elements of the set X of variables.

When Ξ is fixed and clear form the context, we write LF and LF[X] respectively.

A formula ϕ over Ξ is satisfiable w.r.t. a theory Th if there exists a model of Th

in which ϕ is true. The formula ϕ implies a formula ψ w.r.t. Th if in every model of

Th in which ϕ is true, ψ is also true.

For a formula ϕ, we denote with Vars(ϕ) the set of free variables of ϕ. For sets

X and X ′ of variables with X ∩ X ′ = ∅, writing ϕ[X] means that Vars(ϕ) ⊆ X and

ϕ[X,X ′] means that Vars(ϕ) ⊆ (X ∪̇ X ′). For a formula ϕ[X] and s ∈ Vals(X) we

write s |= ϕ iff ϕ is true for the valuation s of its variables. We define JϕK = {s ∈

Vals(X) | s |= ϕ}. Similarly, for a formula ϕ[X,X ′], s ∈ Vals(X) and s′ ∈ Vals(X ′) we

write (s, s′) |= ϕ iff ϕ is true for the valuation s ∪̇ s′ of its variables. In this case we

define JϕK = {(s, s′) ∈ Vals(X)× Vals(X ′) | (s, s′) |= ϕ}.

For a formula ϕ, variables x1, . . . , xn and terms e1, . . . , en, ϕ[e1/x1, . . . , en/xn] de-

notes the formula obtained from simultaneously substituting each free occurrence of

xi in ϕ by ei for all 1 ≤ i ≤ n. For a formula ϕ and set of variables X we denote

with ϕ[X ′/X] the formula obtained by replacing each free occurrence of x by x′ for all

x ∈ X and if i ∈ N we denote with ϕ[Xi/X] the formula obtained by replacing each

free occurrence of x by xi for all x ∈ X.

14

2.1 Game Model and Representation

Linear arithmetic. The theory of linear rational (real) arithmetic is defined by the

signature ΞLRA = {0, 1,−,+,≤}, where 0 and 1 have arity zero, − has arity one and

+ and ≤ have arity two, and a set axioms. The signature can be extended by further

symbols while preserving expressiveness. We assume that the symbols <, ≥, >, =, 6=,

− with arity two, c. with arity one and c with arity zero, for c ∈ Q (c ∈ R), are also part

of the signature ΞLRA. A linear inequality is a formula of the form a1x1+ . . .+anxn⊳a,

where n ∈ N, x1, . . . , xn are variables, a ∈ Q, a1, . . . , an ∈ Q and ⊳ ∈ {<,≤}.

Given a set X of variables such that Dom(x) = R≥0 for each x ∈ X, B[X] is the set

of formulas, where x ∈ X, c ∈ Q, that are generated by the following grammar:

ϕ := true | x < c | x ≤ c | x > c | x ≥ c | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

C[X] is the subset of B(X) that is defined by the grammar:

ϕ := true | false | x < c | x ≤ c | x > c | x ≥ c | ϕ ∧ ϕ.

Finally, D[X] is the set of formulas, where x, x1, x2 ∈ X, c ∈ Q and ∼∈ {<,≤, >,≥},

that are generated by the following grammar:

ϕ := true | x ∼ c | x1 − x2 ∼ c | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

2.1.2 Two-Player Games

The computational model that we consider is that of two-player zero-sum games under

incomplete information. The games are played for an infinite duration which makes

them a suitable model for open reactive systems, which never terminate. The two

players in such a game correspond to a system (or a component of a system) and its

environment. Player∃ stands for the system (component) and resolves the friendly

nondeterminism, playing the game under incomplete information. Player∃, who rep-

resents the environment, on the other hand, has complete (perfect) information. This

asymmetric situation is quite common, for example in controller synthesis, where the

controller observes the plant via imprecise sensors and thus has incomplete informa-

tion about the global state. The plant, on the other hand, has perfect information,

since the controller must guarantee the property against all possible behaviors of its

environment, and this is not influenced by the observation capabilities of the plant.

15

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

We first define game structures with perfect information, in which both players can

completely observe the state of the game, and later extend these with an observation

equivalence relation that defines the observations that Player∃ is able to make.

Definition 2.1.1. A game structure with perfect information G = (S∃, S∀, I,Σ∃, T∃, T∀)

consists of a set S∃ of Player∃ states, a set S∀ of Player∀ states, a set I ⊆ S of ini-

tial states, where S = S∃ ∪̇ S∀, a set Σ∃ of Player∃ actions and transition relations

T∃ ⊆ S∃ × Σ∃ × S∀ and T∀ ⊆ S∀ × S for Player∃ and Player∀ respectively.

We define T = {(s, s′) ∈ S × S | (s, s′) ∈ T∀ or (s, σ, s′) ∈ T∃ for some σ ∈ Σ∃}.

The games that we consider are turn-based, that is, the game proceeds in discrete

steps, where at each step one of the players makes a move. The game starts in some

nondeterministically chosen initial state, and the moves made by the two players build

up a play which is a finite or infinite sequence of states. If the current state is in S∃,

then it is Player∃’s turn to make a move and if the current state is in S∀, then it is

Player∀’s turn. Note that the target states of a Player∃ transitions are always Player∀

states, while the target states of Player∀ transitions can belong to either player. This

allows us to model the interaction from the point of view of a controller (system com-

ponent), where (a possibly unbounded number of) multiple steps can happen between

the controller’s transitions, without summarizing sequences of environment transitions.

A move of Player∀ at a state s ∈ S∀ consists of choosing a successor of s w.r.t. the

transition relation T∀, from where the game will continue. Moves of player Player∃ in

a state s ∈ S∃, on the other hand, consist of choosing an action σ ∈ Σ∃, for which a

σ-successor, that is a state s′ with (s, σ, s′) ∈ T∃, exists. The next state of the play is

then nondeterministically chosen among the σ-successors of s.

A game structure G = (S∃, S∀, I,Σ∃, T∃, T∀) is Σ∃-deterministic iff for every s ∈ S∃,

σ ∈ Σ∃ and s′1, s
′
2 ∈ S, if (s, σ, s′1) ∈ T∃ and (s, σ, s′2) ∈ T∃, then s′1 = s′2. A game

structure is deterministic if it is Σ∃-deterministic and the set I is a singleton.

Definition 2.1.2. A game structure with incomplete information G = (S∃, S∀, I,=o

,Σ∃, T∃, T∀) additionally specifies an observation equivalence =o⊆ S × S on the set of

states S. The components S∃, S∀, I, Σ∃, T∃ and T∀ are as in game structures with

perfect information. The relation =o is required to satisfy the following conditions:

(i) For s1, s2 ∈ S, if s1 =o s2, then either s1 ∈ S∃ and s2 ∈ S∃ or s1 ∈ S∀ and s2 ∈ S∀.

That is, the relation =o respects the partitioning of S into S∃ and S∀.

16

2.1 Game Model and Representation

(ii) For s ∈ S∃, σ1, σ2 ∈ Σ∃ and s′1, s
′
2 ∈ S∀, if (s, σ1, s

′
1) ∈ T∃, (s, σ2, s

′
2) ∈ T∃ and

σ1 6= σ2, and s
′
1 6= s′2 then s

′
1 6=o s

′
2, i.e., Player∃ distinguishes different successors.

(iii) For s1, s2 ∈ S∃ and σ ∈ Σ∃, if s1 =o s2 and there exists s′1 ∈ S∀ such that

(s1, σ, s
′
1) ∈ T∃, then there exists a s′2 ∈ S∀ such that (s2, σ, s

′
2) ∈ T∃. That is, the

set of available actions is the same for all observation-equivalent Player∃ states.

Conditions (i)-(iii) specify our requirements on the observation abilities of Player∃.

Let Obs be the set of equivalence classes of =o in G . For a state s ∈ S we denote

with obs(s) the equivalence class to which s belongs. In a game under incomplete

information Player∃ does not observe the current state s of the game, but only obs(s).

When =o is the quality relation, the game structure is essentially with perfect

information. When it is irrelevant or clear from the context, we write simply game

structure. Often, we use a tuple (S∃, S∀, I,=o,Σ∃, T∃, T∀) to describe a game structure

with perfect information, which we explicitly mention, meaning that =o is equality.

Definition 2.1.3. Given a game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀), we define

the following successor and predecessor functions on sets of states.

• Post∃ : 2S × Σ∃ → 2S , where

Post∃(R,σ) = {s′ ∈ S | ∃s ∈ S. s ∈ R and (s, σ, s′) ∈ T∃},

• Post∀ : 2S → 2S , where

Post∀(R) = {s′ ∈ S | ∃s ∈ S. s ∈ R and (s, s′) ∈ T∀},

• Post : 2S → 2S , where Post(R) =
(⋃

σ∈Σ∃
Post∃(R,σ)

)
∪ Post∀(R),

• Pre∃ : 2S × Σ∃ → 2S , where

Pre∃(R,σ) = {s ∈ S∃ | ∃s′ ∈ S. s′ ∈ R and (s, σ, s′) ∈ T∃},

• Pre∀ : 2S → 2S , where

Pre∀(R) = {s ∈ S∀ | ∃s′ ∈ S. s′ ∈ R and (s, s′) ∈ T∀}.

The function Enabled : Σ∃ → S∃ is defined as Enabled(σ) = Pre∃(S, σ).

17

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

Paths, plays and prefixes Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure

with perfect or incomplete information. A path in G is a finite or infinite sequence

π ∈ S∗ ∪Sω of states such that (π[i], π[i+1]) ∈ T for all 0 ≤ i < |π| − 1. A state s ∈ S

for which there is no state s′ ∈ S with (s, s′) ∈ T is called a dead-end. We call a path

π in G maximal iff π is infinite or it is finite and last(π) is a dead-end. A play in G is

a maximal path π in G such that π[0] ∈ I. A prefix in G is a finite path π in G such

that π[0] ∈ I. We denote with Prefs(G) the set of prefixes in G and let Prefs∃(G) =

{π ∈ Prefs(G) | last(π) ∈ S∃} and Prefs∀(G) = {π ∈ Prefs(G) | last(π) ∈ S∀}.

For a path π we denote with π|∃ the projection of π on S∃ and define |π|∃ = |π|∃|.

Winning conditions For a game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀), a winning

condition is a set Ω ⊆ Sω∪S∗ that defines the set of sequences of states that are winning

for Player∃. We consider only zero-sum games, in which a play π is winning for Player∀

iff it is not winning for player Player∃. i.e., the set of sequences of states won by Player∀

is (Sω∪S∗)\Ω. In this thesis we focus mainly on games with safety winning conditions

for Player∃ defined by a set Err of error states that Player∃ has to avoid. In the first

part we will also look at games with reachability winning conditions for Player∃ defined

by a set Goal of goal states that Player∃ has to reach.

Definition 2.1.4. A game structure G with perfect information (incomplete infor-

mation) and a set of states Err in G define a safety game with perfect information

(safety game with incomplete information) Safety(G , Err) = (G ,ΩErr), where the set

of sequences of states winning for Player∃ is ΩErr = {π ∈ Sω | ∀i ≥ 0. π[i] 6∈ Err}.

A play π in G is winning for Player∃ in Safety(G , Err) iff π ∈ ΩErr.

Definition 2.1.5. A game structure G with perfect information (incomplete informa-

tion) and a set of states Goal in G define a reachability game with perfect information

(reachability game with incomplete information) Reach(G , Goal) = (G ,ΩGoal), where

the set of state sequences winning for Player∃ is ΩGoal = {π ∈ Sω ∪ S∗ | ∃0 ≤ i <

|π|. π[i] ∈ Goal}. A play π in G is winning for Player∃ in Reach(G , Err) iff π ∈ ΩGoal.

The classical way to handle finite plays is to treat them separately from the win-

ning condition Ω or to assume that the game structure does not contain dead-ends.

In definitions 2.1.1 and 2.1.2 we do not disallow dead-end states. For the purpose of

considering incomplete-information games in which Player∃ has a safety winning con-

dition, we can assume that the game structure does not contain dead-end states that

18

2.1 Game Model and Representation

belong to Player∀. Note, however that we do not, in general, make such an assumption

for Player∃ dead-end states. The reason is that even if a game structure G is such

that S∃ does not contain dead-ends, an abstraction of G that underapproximates the

possible choices of Player∃ may introduce dead-end sates for Player∃, unless certain

level of precision is required by the abstraction function.

Strategies. Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure.

For a state s ∈ S∃ we define Enabled(s,G) = {σ ∈ Σ∃ | ∃s′ ∈ S. (s, σ, s′) ∈ T∃} and

for a set R ⊆ S of Player∃ states we let Enabled(R,G) =
⋂

s∈R Enabled(s,G). Note

that condition (iii) from Definition 2.1.2 implies that Enabled(s1,G) = Enabled(s2,G)

for every ss, s2 ∈ S∃ with s1 =o s2. Thus, for each set R ⊆ o for some o ∈ Obs it holds

that Enabled(R,G) = Enabled(s,G) for each s ∈ R.

A partial function f∃ : Prefs∃(G) → Σ∃ is non-blocking if it is defined for every prefix

π ∈ Prefs∃(G) for which last(π) is not a dead-end. A partial function f∀ : Prefs∀(G) → S

is non-blocking if it is defined for every π ∈ Prefs∀(G) for which last(π) is not a dead-end.

Definition 2.1.6. A strategy for Player∃ is a partial function f∃ : Prefs∃(G) → Σ∃

that is non-blocking and f∃(π) ∈ Enabled(last(π),G) for every π ∈ Prefs∃(G).

Definition 2.1.7. A strategy for Player∀ is a partial function f∀ : Prefs∀(G) → S that

non-blocking and (last(π), f∀(π)) ∈ T∀ for every π ∈ Prefs∃(G).

A path π in the game structure G complies with a strategy f∃ for Player∃ iff for

every 0 ≤ i < |π| − 1 for which π[i] ∈ S∃ it hods that (π[i], f∃(π[0, i]), π[i + 1]) ∈ T∃.

A path π in the game structure G complies with a strategy f∀ for Player∀ iff for every

0 ≤ i < |π| − 1 for which π[i] ∈ S∀ it hods that π[i+ 1] = f∀(π[0, i]).

For a strategy f∃ for Player∃ we denote with Prefs(f∃) the set of prefixes in Prefs(G)

that comply with f∃ and for a strategy f∀ for Player∀ we denote with Prefs(f∀) the set

of prefixes in Prefs(G) that comply with f∀.

The outcome of a strategy f∃ for Player∃ is a set of plays Outcome(f∃) such that

π ∈ Outcome(f∃) iff π complies with f∃. The outcome of a strategy f∀ for Player∀

is a set of plays Outcome(f∀) such that π ∈ Outcome(f∀) iff π complies with f∀. The

outcome of strategies f∃ and f∀ for Player∃ and Player∀, respectively, is a set of plays

Outcome(f∃, f∀) such that π ∈ Outcome(f∃, f∀) iff π complies with f∃ and f∀.

19

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

Definition 2.1.8. A strategy f∃ for Player∃ in the game Safety(G , Err) is winning

for Player∃ iff every play π ∈ Outcome(f∃) π is winning for Player∃, i.e., π ∈ ΩErr.

A strategy f∀ for Player∀ in Safety(G , Err) is winning for Player∀ iff every play π ∈

Outcome(f∀) is winning for Player∀, that is, π 6∈ ΩErr.

2.1.3 Symbolic Representation

Since the game structures we study in this thesis are potentially infinite graphs, they

are described symbolically, using logical formulas from a fixed theory. In this subsection

we define symbolic game structures that serve as such a finite representation.

The communication between Player∃ and Player∀ is modeled by a finite set V of

variables, which is partitioned into three disjoint sets: V∃, V∀ and {t}. The idea behind

this partitioning is the following. Player∀ updates (and can observe) the variables in

V∀ ∪̇ {t} and Player∃ updates (and can observe) the variables in V∃ ∪̇ {t}. The

subset V o
∀ ⊆ V∀ consists of the input variables for Player∃, i.e., these are variables

whose values Player∃ can read but not update. The remaining variables in V∀, i.e.,

the variables in V∀ \ V
o
∀ are private variables for Player∀ and cannot be observed by

Player∃. The variables in V∃ are the output variables of Player∃ (which Player∀ can

only read). The value of the variable t determines whose turn it is to make a move.

For a set of variables X ⊆ V we denote with Obs(X) = X ∩ (V∃ ∪̇ V o
∀ ∪̇ {t}) the

set of variables in X whose values Player∃ can observe. The function Obs extends to

sets of variables that contain variables from V ′ or indexed versions of the variables V .

Definition 2.1.9. A symbolic game structure G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) consists

of disjoint sets of variables V∃ and V∀, set V
o
∀ ⊆ V∀ of observable variables, a variable

t 6∈ (V∃ ∪̇ V∀), a formula ϕInit over V , and formulas T∃ and T∀ over V ∪ V ′.

A symbolic game structure is well-defined iff it satisfies the following conditions:

(1) For every s ∈ Vals(V) and s′ ∈ Vals(V ′) the following hold:

• if (s, s′) ∈ JT∃K, then s(t) = ∃, s′(t) = ∀ and s(V∀) = s′(V∀) and

• if (s, s′) ∈ JT∀K, then s(t) = ∀ and s(V∃) = s′(V∃).

(2) For every s1, s2 ∈ Vals(V) with obs(s1) = obs(s2) and s
′
1 ∈ Vals(V ′), if (s1, s

′
1) ∈

JT∃K there exists a s′2 ∈ Vals(V ′) such that (s2, s
′
2) ∈ JT∃K and obs(s′1) = obs(s′2).

20

2.1 Game Model and Representation

In this thesis we consider only well-defined symbolic game structures and from now

on, whenever we say that a G is a symbolic game structure we assume it is well-defined.

A well-defined symbolic game structure G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) defines a

game structure with incomplete information G = (S∃, S∀, I,Σ∃, T∃, T∀,=o) as follows:

• S∃ = {s ∈ Vals(V) | s(t) = ∃},

• S∀ = {s ∈ Vals(V) | s(t) = ∀},

• I = {s ∈ Vals(V) | s |= ϕInit},

• Σ∃ = Vals(V∃),

• T∃ = {(s, σ, s′) ∈ Vals(V)×Vals(V∃)×Vals(V ′) | (s, s′) ∈ JT∃K and s′(V∃) = σ},

• T∀ = {(s, s′) ∈ Vals(V)× Vals(V ′) | (s, s′) ∈ JT∀K},

• s1 =o s2 iff s1(Obs(V)) = s2(Obs(V)).

Since G is well-defined, G satisfies the requirements of Definition 2.1.2. Note that

if V o
∀ = V∀, then G is a game structure with perfect information.

Remark. We could, in general, omit the requirement that Player∀ cannot modify the

portion of the state that belongs to Player∃, i.e., the variables V∃, from the definition

of well-defined symbolic game structure. That is, we could leave out the condition

stating that (s, s′) ∈ JT∀K implies s(V∃) = s′(V∃). In this case the above definition of

the corresponding explicit game structure remains the same and the requirements of

Definition 2.1.2 are still met. We would furthermore like to point out that the results

established in this part of the thesis still hold with this more general definition.

The explicit game structure G defined by G has the following property.

Property 1. If s1, s2 ∈ S∃ are such that s1 =o s2 and s′1, s
′
2 ∈ S are such that

(s1, σ, s
′
1) ∈ T∃ and (s2, σ, s

′
2) ∈ T∃ for some σ ∈ Σ∃, then it holds that s′1 =o s

′
2.

If s ∈ S∃ and σ ∈ Σ∃, then there exists at most one s′ ∈ S such that (s, σ, s) ∈ T∃.

If s1, s2 ∈ S∃ are such that s1 =o s2 and s′1, s
′
2 ∈ S are such that (s1, σ1, s

′
1) ∈ T∃

and (s2, σ2, s
′
2) ∈ T∃ for some σ1, σ2 ∈ Σ∃, then σ1 6= σ2 implies that s′1 6=o s

′
2.

Given a symbolic game structure G and a formula ϕErr, the symbolic safety game

Safety(G, ϕErr) is a finite representation of the safety game Safety(G , JϕErrK).

21

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

Example 2.1.1. Let us consider the motivating example from the introduction. The

interaction between the robot controller and its environment is modeled as the symbolic

game structure G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) defined as follows.

The output variables of are V∃ = {move} and the input (observable) variables are

V o
∀ = {x}. The unobservable by the controller variables are V∀ \V

o
∀ = {y, steps , err}.

The set of initial states is described symbolically by the formula

ϕInit := t = ∃ ∧ move = N ∧ x = 0 ∧ y ≥ 0 ∧ y ≤ 1 ∧ steps = 0 ∧ ¬err .

The transition relation of Player∀ is described by the formula

T∀ := t = ∀ ∧ t′ = ∃ ∧move ′ = move ∧ (ϕN ∨ ϕS ∨ ϕE ∨ ϕW)∧

steps ′ = steps + 1 ∧
(
(ϕbad ∧ err ′) ∨ (¬ϕbad ∧ err ′ = err)

)
, where

ϕN := move = N ∧ y′ = y + 1 ∧ x′ = x,

ϕS := move = S ∧ y′ = y − 1 ∧ x′ = x,

ϕE := move = E ∧ x′ = x+ 2 ∧ y′ = y,

ϕW := move =W ∧ x′ = x− 2 ∧ y′ = y,

ϕbad := ϕhit−wall ∨ ϕgo−back , where

ϕhit−wall := (x < 5 ∧ x′ ≥ 5 ∨ x > 5 ∧ x′ ≤ 5) ∧ (y ≤ 0 ∨ y ≥ 2),

ϕgo−back := x > 5 ∧ x′ ≤ 5.

The transition relation of Player∃ is described by the formula

T∃ := t = ∃ ∧ t′ = ∀ ∧ (move ′ = N ∨move ′ = S ∨move ′ = E ∨move ′ =W)∧

x′ = x ∧ y′ = y ∧ steps ′ = steps ∧ err ′ = err .

The winning condition for Player∃ is defined by the formula ϕErr describing error

states ϕErr := err = true ∨ (steps > 3∧ x < 6)∨ x ≥ 9∨ x ≤ −1∨ y ≥ 4∨ y ≤ −4.

Definition 2.1.10. A symbolic game structure G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) is ef-

fective if the following functions can be defined and can be effectively computed.

• Post∃ : LFΞ[V]× Σ∃ → LFΞ[V], where JPost∃(ϕ, σ)K = Post∃(JϕK, σ),

• Post∀ : LFΞ[V] → LFΞ[V], where JPost∀(ϕ)K = Post∀(JϕK),

• Pre∃ : LFΞ[V]× Σ∃ → LFΞ[V], where JPre∃(ϕ, σ)K = Pre∃(JϕK, σ),

22

2.1 Game Model and Representation

• Pre∀ : LFΞ[V] → LFΞ[V], where JPre∀(ϕ)K = Pre∀(JϕK).

If G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) is an effective symbolic game structure and Σ∃ =

Vals(V∃), we can effectively compute the function Enabled : Σ∃ → LFΞ[V] such that

JEnabled(σ)K = {s ∈ Vals(V) | ∃s′ ∈ Vals(V). (s, s′) |= T∃ ∧ ∀x ∈ V∃. σ(x) = s′(x)}.

Note that if there exists a quantifier elimination procedure for the underlying logical

theory Th, then the symbolic game structure is effective.

2.1.4 Discussion of the Game Model

The literature on two-player games on graphs contains a variety of definitions of game

structures. In the perhaps most common setting, the game is defined by a directed

graph, usually without labels on the edges, in which the vertices are partitioned among

the players. In this model, at each step of the game the respective player chooses a

successor node from which the game is to continue. Another definition adopted in a

number of works, e.g. [DR11], employs a directed graph whose edges are labeled with

the elements of a finite set of actions. The vertices are not partitioned according to the

players, but at each step the first player selects an action and the second player selects

one of the successors of the current node w.r.t. this action. Here, we chose to consider

another variation, where the edges originating from Player∃ nodes in the game graph

are labeled with actions from a set Σ∃ (the possible choices of Player∃), while the ones

originating from Player∀ nodes are not labeled and Player∀ is responsible for choosing

the actual successor of the node. We decided to define explicitly the choices of Player∃

as a set of actions Σ∃, as this allows us to explicitly refer to these choices and to easily

distinguish the cases when the set of choices of Player∃ is finite or infinite.

Note that, according to the game rules we gave, the successor of a Player∃ state once

Player∃ has selected an action from Σ∃ is chosen nondeterministically. For generality

we have allowed Player∃ states to have multiple successors with a particular action.

However, the games we will consider in this thesis will be Σ∃-deterministic. That, is

the game structures will be defined in such a way that an action of Player∃ that is

enabled in a given state will determine a unique successor of that state. For example,

game structures defined by symbolic game structures are always Σ∃-deterministic.

Definition 2.1.2 states the properties that the observation equivalence is required to

satisfy. Conditions (i) and (ii) are common and are fulfilled by typical game models.

23

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

Condition (iii), namely that Player∃ knows the actions available to him, is sometimes

omitted in definitions from the literature. However, we will see that it is rather natural.

For game structures defined by symbolic game structures this requires that the guards

of Player∃ actions refer only to observable variables, which is usually the case.

2.2 Games under Incomplete Information

2.2.1 Observation-based Strategies

Observations and Synchronization The communication and synchronization be-

tween the processes of a distributed system or a plant and its controller influence

observability. In a synchronous setting a process reads an input at each step, thus ob-

serving each change of its environment. In the asynchronous setting of [PR89b, SF06]

a process performs an input/output operation independently of its environment and

may thus be unaware of some changes of its inputs. In [Puc10], on the other hand,

asynchronism is defined via observability, and a player is aware of exactly those transi-

tions that have an effect that is observable by him. This is also the observation model

used for timed control under partial observability in [CDL+07]. There the controller

is oblivious to the number of stuttering observations arising from sequences of timed

transitions and unobservable changes of the internal state of the plant.

Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure with incomplete information.

Recall that the function obs : S → Obs maps a state s to the corresponding equivalence

class observed by Player∃. The sequence of observations that Player∃ makes during

a play of the game depends on the type of interaction between the two players. In

general, it is given by a function obspref : Prefs(G) → Obs∗, which maps a prefix π to

the sequence of observations made by Player∃ so far. In the special case when Player∃

makes an observation at each step of the game, the sequence of observations is given by

the synchronous observation function obss defined below. If, on the other hand Player∃

observes only the sequence of his own states, the observation of a prefix is defined by

the asynchronous observation function obsa below. Finally, the case when Player∃ can

observe only changes of the state-based observations is modeled by the stuttering-free

observation function obsf whose definition is given below.

24

2.2 Games under Incomplete Information

• obss : Prefs(G) → Obs∗, is defined for π = s0s1 . . . sn as follows

obss(π) = obs(s0)obs(s1) . . . obs(sn);

• obsa : Prefs(G) → Obs∗ is defined for π = s0s1 . . . sn as follows

obsa(π) =

obsa(π) = obs(sn) if n = 0 and sn ∈ S∃,

obsa(π) = ǫ if n = 0 and sn ∈ S∀,

obsa(π) = obsa(s0 . . . sn−1) · obs(sn) if n > 0 and sn ∈ S∃,

obsa(π) = obsa(s0 . . . sn−1) if n > 0 and sn ∈ S∀;

• obsf : Prefs(G) → Obs∗ is defined for π = s0s1 . . . sn as follows

obsf (π) =

obsf (π) = obs(sn) if n = 0,

obsf (π) = obsf (s0 . . . sn−1) · obs(sn) if n > 0 and sn 6=o sn−1,

obsf (π) = obsf (s0 . . . sn−1) if n > 0 and sn =o sn−1.

Definition 2.2.1. Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure with in-

complete information. Given a function obspref : Prefs(G) → Obs∗, a strategy f∃ for

Player∃ in G is obspref -consistent iff for all Player∃ prefixes π1, π2 ∈ Prefs∃(f∃) for

which obspref (π1) = obspref (π2), it holds that f∃(π1) = f∃(π2).

Let us define the equivalence relation =s on Prefs(G) as follows: π1 =s π2 iff

obss(π1) = obss(π2). The relation =s is extended to an equivalence relation on plays

such that π1 =s π2 iff |π1| = |π2| and obss(π1[i]) = obss(π2[i]) for each 0 ≤ i < |π1|.

A winning condition Ω is called observable iff for each pair of plays π1 and π2 with

π1 =s π2 it holds that π1 ∈ Ω iff π2 ∈ Ω. A set R ⊆ S is called observable iff for

every s ∈ R and every s′ ∈ S with obs(s′) = obs(s) it holds that s′ ∈ R. A safety

game under incomplete information Safety(G , Err) for which the set of states Err is

observable has an observable winning condition. Note that in a symbolic game structure

with incomplete information G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀), a formula ϕ[Obs(V)]

that contains only observable variables denotes a set of states that is observable. A

safety game whose winning condition is not observable can be easily transformed into a

safety game with observable winning condition such that Player∃ has an obss-consistent

wining strategy in the transformed game iff he has an obss-consistent winning strategy

in the original game. For finite-state games the transformation is linear.

25

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

Strategy automata As a representation of obspref -consistent strategies we consider

(possibly infinite) Mealy automata that read (input) observations and produce (output)

actions (or ⊥, meaning no output is produced at the current step) at each step, while

also updating the internal (memory) state. The sequence of observations supplied to

the strategy automaton is determined by the observation function obspref .

Definition 2.2.2. A strategy automaton for some set of observations O and some set

of actions Σ∃ is a (Mealy) automaton M = (Q, q0, O × Σ⊥
∃ , ρ) with alphabet O × Σ⊥

∃ ,

where Σ⊥
∃ = Σ∃ ∪̇ {⊥}, and transition relation ρ ⊆ Q× (O × Σ⊥

∃)×Q such that:

(i) for each q ∈ Q and o ∈ O there exist σ ∈ Σ⊥
∃ and q′ ∈ Q with (q, (o, σ), q′) ∈ ρ

(that is, ρ is input enabled for the observations O),

(ii) if (q, (o, σ1), q
′
1) ∈ ρ and (q, (o, σ2), q

′
2) ∈ ρ, then σ1 = σ2 and q′1 = q′2 (meaning

that ρ deterministic in the observations O).

Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure with incomplete information.

A strategy automaton M = (Q, q0,Obs × Σ⊥
∃ , ρ) is called non-blocking if for every

(q, (o, σ), q′) ∈ ρ such that o ⊆ S∃ and Enabled(o,G) 6= ∅, it holds that σ 6= ⊥. The

strategy automaton M is called Σ∃-correct if for every (q, (o, σ), q′) ∈ ρ it holds that

if o ⊆ S∀, then σ = ⊥ and if o ⊆ S∃ and σ 6= ⊥, then o ⊆ Enabled(σ), that is, the

proposed action is enabled in the current state of the game.

Given an observation function obspref : Prefs(G) → Obs∗, a non-blocking and Σ∃-

correct strategy automaton M = (Q, q0,Obs×Σ⊥
∃ , ρ) defines an obspref -consistent strat-

egy f∃ for Player∃. Let π ∈ Prefs∃(G) and obspref (π) = o0 . . . on. According to the

properties of the automaton M there exists a unique sequence σ0 . . . σn−1 such that

there is a run (also unique) of M on the word (00, σ0) . . . (on−1, σn−1). Let q be the last

state of this run. According to conditions (i) and (ii) there is a unique σ ∈ Σ⊥
∃ such

that there is a q′ ∈ Q with (q, (on, σ), q
′) ∈ ρ. If σ 6= ⊥ we define f∃(π) = σ, otherwise

we leave f∃ undefined. Since the strategy automaton M is non-blocking, the function

f∃ is non-blocking as well, and since M is Σ∃-correct, f∃ is a strategy for Player∃.

A strategy f∃ is called memoryless if for all π1, π2 ∈ Prefs(G) with last(π1) = last(π2)

it holds that f∃(π1) = f∃(π2). An obspref -consistent memoryless strategy (for some

observation function obspref) can be defined by a strategy automaton with one state.

Memoryless strategies for Player∀ are defined analogously. A strategy f∃ is finite-state

if it can be defined by a strategy automaton with finite set of states Q.

26

2.2 Games under Incomplete Information

For infinite-state games that are finitely represented by symbolic game structures we

consider also semi-symbolic strategy automata. Finite semi-symbolic strategy automata

can be used to finitely represent Player∃ strategies in infinite-state games. Unlike in

(explicit) strategy automata, here the transition edges are labeled with pairs consisting

of a formula over the variables Obs(V) (called guard) and an action from Σ∃.

Definition 2.2.3. A semi-symbolic strategy automaton for a symbolic game structure

with incomplete information G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) is an automaton M =

(Q, q0,LFΞ[Obs(V)]×Σ⊥
∃ , ρ) with alphabet LFΞ[Obs(V)]×Σ⊥

∃ , where Σ
⊥
∃ = Σ∃ ∪̇ {⊥},

and transition relation ρ ⊆ Q× (LFΞ[Obs(V)]× Σ⊥
∃)×Q such that:

(i) for each q ∈ Q and o ∈ Obs there exist (ϕ, σ) ∈ LFΞ[Obs(V)] × Σ⊥
∃ and q′ ∈ Q

such that o ⊆ JϕK and (q, (ϕ, σ), q′) ∈ ρ (i.e., ρ is defined for each o ∈ Obs),

(ii) if (q, (ϕ1, σ1), q
′
1) ∈ ρ, (q, (ϕ2, σ2), q

′
2) ∈ ρ, and ϕ1 ∧ ϕ2 is satisfiable, then σ1 = σ2

and q′1 = q′2 (implying that ρ deterministic in the observations Obs).

The notions non-blocking and Σ∃-correct are defined similarly as for explicit strategy

automata. The symbolic strategy automaton M is finite when Q and ρ are finite.

2.2.2 Determinacy and Counterexamples

A two-player zero-sum game is called determined if the wining sets for the two players,

that is, the set of states starting from which a player has a winning strategy to win the

game, partitions the set of states. The seminal result by Martin [Mar75] establishes that

every deterministic game with perfect information whose winning set is a Borel set is

determined. As a simple case of Borel games, safety games with perfect information over

deterministic game structures are also determined. Furthermore they are memoryless

determined, that is, even if we require the winning strategies to be memoryless.

Thus, in a safety game with perfect information Safety(G , Err) with deterministic

game structure G , either Player∃ has a (memoryless) winning strategy or Player∀ has

a (memoryless) winning strategy. This does not hold for nondeterministic games.

It is well-known that games under incomplete information are not determined, even

for deterministic game structures and safety winning conditions.

Let (G ,Ω) be a game under incomplete information such that Player∃ does not

have an obss-consistent winning strategy in (G ,Ω). A counterexample in (G ,Ω) is a

27

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

graph with nodes labeled with states of the game and edges labeled with actions that

is a witness for the fact that Player∃ has no obss-consistent winning strategy.

For perfect information safety games it suffices to consider counterexamples repre-

sented as trees in which all paths are finite.

Definition 2.2.4. A counterexample tree for a safety game with perfect information

Safety(G , Err) with game structure G = (S∃, S∀, I,Σ∃, T∃, T∀) is a labeled tree Ct =

(N,E,Ls ,La) with nodes N , edges E ⊆ N × N , function Ls : N → S that labels

each node with a state and a function La : E → Σ∃ ∪ {ǫ} that labels edges with

Player∃-actions or the symbol ǫ, where he following conditions are satisfied:

(i) La(n, n
′) 6= ǫ iff Ls(n) ∈ S∃,

(ii) Ct has a single root node n0 and Ls(n0) ∈ I,

(iii) for every e = (n, n′) ∈ E with Ls(n) ∈ S∃, Ls(n
′) ∈ Post∃(Ls(n),La (e)),

(iv) for every (n, n′) ∈ E with Ls(n) ∈ S∀, Ls(n
′) ∈ Post∀(Ls(n)),

(v) for each n ∈ N with Ls(n) ∈ S∃ \ Err and every σ ∈ Enabled(Ls(n),G) there

exists exactly one n′ ∈ N such that (n, n′) ∈ E and La(n, n
′) = σ,

(vi) for each n ∈ N with Ls(n) ∈ S∀ there is at most one n′ ∈ N with (n, n′) ∈ E′,

(vii) all paths in Ct are finite and for every leaf n, Ls(n) ∈ Err or Ls(n) is a dead-end.

Proposition 2.2.1. Let Safety(G , Err) be a perfect-information safety game with game

structure G = (S∃, S∀, I,Σ∃, T∃, T∀). Then, exactly one of the following holds:

(1) there exists a memoryless winning strategy for Player∃.

(2) there exists a counterexample tree.

Proof. We define a deterministic game structure G ′ = (S∃, S
′
∀, {i

′},Σ∃, T
′
∃, T

′
∀) such

that (i) Player∃ has a winning strategy in Safety(G ′, Err) iff he has a winning strategy

in Safety(G , Err) and (ii) Player∀ has a winning strategy in Safety(G ′, Err) iff there

exists a counterexample tree in Safety(G , Err). Then, the claim follows from these

properties and the fact that deterministic perfect information games with safety winning

conditions are determined. The game structure G ′ is defined as follows:

• S′
∀ = S∀ ∪̇ {(s, σ) | s ∈ S∃, σ ∈ Σ∃} ∪̇ {i′},

• T ′
∃ = {(s, σ, (s, σ)) | σ ∈ Enabled(s,G)},

28

2.2 Games under Incomplete Information

• T ′
∀ = T∀ ∪̇ {((s, σ), s′) | (s, σ, s′) ∈ T∃} ∪̇ {(i′, i) | i ∈ I}.

Clearly the game structureG ′ is deterministic, and it is easy to see that each memoryless

winning strategy for Player∃ in one of the games is a memoryless winning strategy in the

other game. The outcome of a winning strategy for Player∀ in Safety(G ′, Err) contains

a counterexample tree in Safety(G , Err) and the properties of a counterexample trees

imply that it defines a memoryless winning strategy for Player∀ in Safety(G ′, Err).

For a counterexample tree Ct = (N,E,Ls ,La) and a node n ∈ N we denote with

path(n) = n0n1 . . . ni the path in the tree where n0 is the root and ni = n. For n ∈

N we define pref (n) = Ls(n0)La(n0, n1)Ls(n1) . . .La(ni−1, ni)Ls(ni) where path(n) =

n0n1 . . . ni. For n ∈ N and σ ∈ Σ∃ we denote with Children(n) = {n′ | (n, n′) ∈ E} the

set of children of n in Ct, with Children(n, σ) = {n′ | (n, n′) ∈ E and La(n, n
′) = σ}

the set of n’s children for edges labeled with σ, and with Parent(n) the parent of n.

For safety games under incomplete information we consider counterexamples repre-

sented as trees whose nodes are labeled with sets of states representing the knowledge

of Player∃ about the current state of the game, and in which all paths are finite. Now,

the leaf nodes are labeled with state sets that contain an error state or contain a state

that is a dead-end. Note that by condition (iii) in the definition of game structures

under incomplete information, if a set of Player∃-states that are equivalent w.r.t. =o

contains a dead-end state, then all states in this set are dead-ends.

Definition 2.2.5. A knowledge-based counterexample tree for a safety game under in-

complete information Safety(G , Err) with game structureG = (S∃, S∀, I,=o,Σ∃, T∃, T∀)

is a labeled tree Ck = (N,E,Ks ,La) with nodes N , edges E ⊆ N × N , function Ks :

N → (2S \∅) that labels each node with a set of states and a function La : E → Σ∃∪{ǫ}

that labels edges with Player∃-actions or the symbol ǫ, where:

(i) for every n ∈ N there exists o ∈ Obs such that Ks(n) ⊆ o,

(ii) La(n, n
′) 6= ǫ iff Ks(n) ⊆ S∃,

(iii) for the root node n0 ∈ N it holds that Ks(n0) ⊆ I ∩ o for some o ∈ Obs,

(iv) for every e = (n, n′) ∈ E with Ks(n) ⊆ S∃, Ks(n
′) ⊆ Post∃(Ks(n),La (e)),

(v) for every (n, n′) ∈ E with Ks(n) ⊆ S∀, Ks(n
′) ⊆ Post∀(Ks(n)),

(vi) for each node n with Ks(n) ⊆ S∃ \ Err and each σ ∈ Enabled(Ks(n),G) there

exists exactly one edge e = (n, n′) ∈ E such that La(e) = σ,

29

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

(vii) for each node n with Ks(n) ⊆ S∀ there exists at most one n′ ∈ N such that (n, n′),

(viii) all paths in the tree Ck are finite, and if n is a leaf node, then it holds that

Ks(n) ∩Err 6= ∅ or Ks(n) contains a dead-end state.

Proposition 2.2.2. In a safety game under incomplete information Safety(G , Err)

with game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀), if there exists a knowledge-based

counterexample tree, then Player∃ does not have an obss-consistent winning strategy.

Proof. Let Ck = (N,E,Ks ,La) be a knowledge-based counterexample tree in the game

Safety(G , Err). Assume that f∃ is an obss-consistent winning strategy for Player∃

in Safety(G , Err). By the definition of Ck and the fact that f∃ is obss-consistent,

there exists a path π in Ck such that (1) for every prefix π′ = s0, s1, . . . , sn for which

si ∈ Ls(π[i]) for each 0 ≤ i ≤ n, it holds that π′ ∈ Prefs(f∃), and (2) last(π) is a leaf.

Since (2) holds, there exists a state s ∈ Ls(π[i]) such that s ∈ Err or s is a dead-end.

The definition of Ck implies that there exists a prefix π′ = s0, s1, . . . , sn such that for

si ∈ Ls(π[i]) for each 0 ≤ i ≤ n and sn = s. According to (1), π ∈ Prefs(f∃), which

contradicts the assumption that f∃ is a winning strategy for Player∃.

In a safety game Safety(G , Err) with a game structureG = (S∃, S∀, I,=o,Σ∃, T∃, T∀),

if G is finite, then knowledge-based counterexample trees in Safety(G , Err) are always

finite. For infinite game structures, if the set Σ∃ of Player∃ actions is finite, it holds

that if there is a knowledge-based counterexample tree in Safety(G , Err), there exists

also a finite one. If, on the other hand Σ∃ is infinite, it is possible that all possible

knowledge-based counterexample trees in Safety(G , Err) are infinite.

2.2.3 Knowledge-Based Subset Construction

An incomplete-information game can be translated to a perfect-information game in

which Player∃ has a winning strategy if and only if Player∃ has an obss-consistent

winning strategy in the original game with incomplete information.

The original powerset construction for games with partial information was proposed

by Reif [Rei84] for games in which both players have reachability winning conditions

and in which every infinite play is a draw. A knowledge-based subset construction

for zero-sum games with observable ω-regular winning conditions based on this idea

was defined in [CDHR06]. While in [Rei84] a player cannot detect private moves of

30

2.2 Games under Incomplete Information

the opponent, the setting of [CDHR06] is that of synchronous observability. A pow-

erset construction for not necessarily observable ω-regular objectives and also in the

asynchronous setting was developed in [Puc10]. While in principle the translation to

perfect information games can be defined also for games over infinite graphs (in the

case of [Rei84] and [CDHR06] for graphs with finite branching degree), the construction

of the perfect information game is in general not effective for infinite game structures.

For completeness of the exposition and in order to make the connection to the

constructions presented further in this thesis, we define here the knowledge based subset

construction for the case of synchronous observation functions and games with infinite

game structures and safety winning conditions that are not necessarily observable.

The synchronous knowledge-based subset construction of a game structure with in-

complete information G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) is a game structure with perfect

information Gk, where Gk = (Sk
∃ , S

k
∀ , I

k,Σk
∃, T

k
∃ , T

k
∀) is defined as follows:

• Sk
∃ = {sk ∈ 2S∃ \ {∅} | ∃o ∈ Obs. sk ⊆ o},

• Sk
∀ = {sk ∈ 2S∀ \ {∅} | ∃o ∈ Obs. sk ⊆ o},

• Sk = Sk
∃ ∪ Sk

∀ ,

• Ik = {sk ∈ Sk | ∃o ∈ Obs. sk = I ∩ o},

• Σk
∃ = Σ∃,

• T k
∃ = {(sk, σ, s

′
k) ∈ Sk

∃ × Σ∃ × Sk
∀ | ∃o ∈ Obs. s′k = Post∃(sk, σ) ∩ o},

• T k
∀ = {(sk, s

′
k) ∈ S

k
∀ × Sk | ∃o ∈ Obs. s′k = Post∀(sk) ∩ o}.

Condition (iii) from Definition 2.1.2 guarantees that under the assumption that the

game structure G does not contain dead-end states, the game structure Gk obtained

from G via the above construction does not contain dead-ends either.

The following result was established in each of the works [Rei84, CDHR06, Puc10]

for the respective game model, types of winning conditions and construction. Here we

give in the following theorem the proof for game model defined in Section 2.1.

Theorem 2.2.1. Let Safety(G , Err) be a safety game under incomplete information

and let Errk = {sk ∈ Sk | sk ∩ Err 6= ∅}. Player∃ has a winning strategy in

Safety(Gk, Errk) iff he has an obss-consistent winning strategy in Safety(G , Err).

31

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

Proof. Let fk∃ be a winning strategy for Player∃ in Safety(Gk, Errk). We define the

function f∃ as follows. For a prefix π ∈ Prefs∃(G), if there exists a prefix πk ∈ Prefs(fk∃)

such that |π| = |πk| and π[i] ∈ π[k] for all 0 < i < |π|, then we define f∃(π) = f∃(π
k)

(note that there can be at most one such πk). Otherwise, f∃(π) is undefined. Since

fk∃ is a strategy for Player∃ and is winning, by condition (iii) from Definition 2.1.2 we

have that the function f∃ is a strategy for Player∃. Since the strategy fk∃ is winning

for Player∃ and for each π ∈ Prefs(f∃) there exists a corresponding πk ∈ Prefs(fk∃), it is

easy to see that f∃ is winning for Player∃ in Safety(G , Err). From the definition of f∃ it

is clear that it is also obss-consistent. Now let f∃ be an obss-consistent winning strategy

for Player∃ in Safety(G , Err). It is easy to see that for each prefix πk ∈ Prefs(Gk) there

exists a prefix π ∈ Prefs(G) such that |π| = |πk| and π[i] = πk[i] for each 0 < i ≤ |π|. For

each πk ∈ Prefs∃(G
k) we define fk∃ (π

k) = f∃(π) for some such prefix π. Since f∃ is obss-

consistent, the function f∃ is well defined. From condition (iii) from Definition 2.1.2

it follows that fk∃ (π
k) ∈ Enabled(last(πk)). As f∃ is non-blocking, fk∃ is non-blocking

as well. It is easy to show that for each πk ∈ Prefs(fk∃) and each s ∈ last(πk) there

exists π ∈ Prefs(f∃) such that s = last(π). Thus, since f∃ is winning for Player∃ in

Safety(G , Err), it holds that f∃ is winning for Player∃ in f∃(G
k, Errk).

From the definitions of the game Safety(Gk, Errk) and knowledge-based counterex-

ample tree in Safety(G , Err) it is clear that a counterexample tree in Safety(Gk, Errk)

directly corresponds to a knowledge-based counterexample tree in Safety(G , Err). We

thus establish the following proposition, which together with Proposition 2.2.1 and

Theorem 2.2.1 yields Theorem 2.2.2 below.

Proposition 2.2.3. Let Safety(G , Err) be a safety game under incomplete information

and let Errk = {sk ∈ Sk | sk ∩ Err 6= ∅}. There exists a counterexample tree in the

perfect-information game Safety(Gk, Errk) iff there exists a knowledge-based counterex-

ample tree in the game under incomplete information Safety(G , Err).

Theorem 2.2.2. Let Safety(G , Err) be a safety game under incomplete information

and obss be the synchronous observation function. Exactly one of the following holds:

(1) there exists an obss-consistent winning strategy for Player∃.

(2) there exists a knowledge-based counterexample tree.

Unlike in the perfect information case, winning strategies for Player∃ in a game

under incomplete information may in general need memory.

32

2.2 Games under Incomplete Information

2.2.4 The Game Solving and Strategy Synthesis Problems

Given a game (under incomplete information) (G ,Ω) and an observation function

obspref : Prefs(G) → Obs(G)∗ the game solving problem is the decision problem that

asks to determine whether there exist an obspref -consistent winning strategy for Player∃

in (G ,Ω). The strategy synthesis problem is to construct such a strategy if one exists.

The game solving and strategy synthesis problems for a class of games C and a

class of Player∃ strategies Λ restrict the input games to the ones that belong to the

class C and the strategies of Player∃ to the ones that belong to the class Λ.

In this thesis we consider classes of games that can be finitely represented. In the

first two parts of the thesis we restrict our attention to safety winning conditions.

Solving Finite-State Safety Games with Perfect Information. For the class

of finite-state safety games with perfect information the game solving and strategy

synthesis problems can be solved by a simple fixpoint computation that yields the set

of states from which Player∃ has a winning strategy. More precisely, given a per-

fect information safety game Safety(G , Err) with a finite-state game structure G =

(S∃, S∀, I,Σ∃, T∃, T∀), the algorithm computes the set of states W∃ such that s ∈

W∃ iff Player∃ has a winning strategy in the game Safety(Gs, Err), where Gs =

(S∃, S∀, {s},Σ∃, T∃, T∀). Player∃ has a winning strategy in Safety(G , Err) iff I ⊆ W∃.

We let W∃ = S \ Fn, where n ≥ 0 is such that Fn+1 ⊆ Fn, where:

F 0 = Err ∪D,where D is the set of dead-ends in G,

F i+1 = Pre∀(F
i) ∪

⋂
σ∈Σ∃

((
S \ Enabled(σ)

)
∪ Pre∃(F

i, σ)
)
.

The strategy synthesis problem is then also easily solved. The memoryless strategy

that maps each s ∈ W∃ ∩ S∃ to a σ ∈ Σ∃ such that each s′ ∈ S∃ with (s, σ, s′) ∈ T∃ is

in W∃ (such σ exists by the construction of W∃) is a winning strategy for Player∃.

For finite-state safety games under incomplete information the knowledge-based

subset construction from Section 2.2.3 is effective and can be combined with the fixpoint

algorithm to solve the game and effectively construct a finite-state strategy. Clearly,

the same can be done for finite-state incomplete-information games with more gen-

eral winning conditions. To avoid the determinization-like powerset construction of

the straightforward algorithm for solving games under incomplete information outlined

above, [DWDR06, CDHR06] propose a symbolic algorithm based on antichains as a

33

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

data structure to represent downward-closed sets of sets of states. Their fixpoint com-

putation is directed by the objective and avoids the explicit powerset construction.

2.2.5 Discussion of the Knowledge-Based Subset Construction

We defined knowledge-based counterexample trees and presented the knowledge-based

subset construction with respect to the synchronous observation function obss. Since

the object of study of this thesis are infinite-state games under incomplete information,

this construction will only be used as a correctness argument and in these cases we

will be reasoning about obss-consistent strategies for Player∃ (in a possibly modified

game structure, corresponding to strategies in the original game structure, satisfying

stronger consistency requirements). The knowledge-based subset construction of Reif

was extended to asynchronous games in [Puc10] using a construction similar to the

one given in [CDL+07] for timed games with fixed observations. While in principle we

could use a similar idea for the predicate abstraction technique that we present, our

reasoning about the relation between abstract and concrete games relies on the fact

that a step of the abstract game corresponds to a step of the concrete game, which

would no longer be the case for a construction that treats asynchronism directly.

In [Rei84] and [CDHR06] the game graphs have finite branching degree. Here we

make no such assumption and neither do we require that the winning condition is ob-

servable, as done in [CDHR06]. Such assumptions are not necessary for the correctness

of the knowledge-based subset construction given here with respect to games in which

the partially informed player has a safety objective.

2.3 Game Abstractions

Abstraction [CGL94, CC00, DGG97] is the key to effective verification of systems with

infinite or very large state spaces. The abstract-interpretation theory for temporal

specifications for transition systems was first extended to synthesis and control – more

precisely to (multi-player) concurrent game structures and alternating µ-calculus prop-

erties – by Henzinger et al. in their work [HMMR00]. An abstraction is sound w.r.t.

a given property if whenever the property is established for the abstract system it

is guaranteed to hold for the original concrete system as well. In the case of game

properties we can formulate soundness as: if there exists a strategy for the component

34

2.3 Game Abstractions

(controller) player in the abstract game, then there must exist one in the concrete game.

This can be achieved by restricting the possible moves of the component (controller)

and allowing more behaviors of its environment. This approach has been followed in

a number of works [HMMR00, HJM03]. An alternative abstraction methodology for

two-player games follows the paradigm of three-valued abstraction used for the verifi-

cation branching time properties of transition systems [HJS01, SG04]. A three-valued

abstraction framework for two-player turn-based games was proposed in [dAGJ04].

Unlike the aforementioned works on game abstraction that allow for proving the exis-

tence of a strategy of only one of the players, the three-valued abstraction preserves all

alternating µ-calculus formulas and treats the two players symmetrically.

The first abstraction technique for game structures with incomplete information

was developed in [DF08]. In the case of incomplete information, restricting the power

of the existential player involves overapproximating the observation equivalence – or,

equivalently, restricting the observation power of the existential player. While in the

perfect information case [HMMR00, HJM03] the relation between the abstract and the

concrete game structures is alternating simulation [AHKV98], in [DF08] the alternating

simulation relates the abstract game and corresponding knowledge-based game.

An abstraction of a game structure under incomplete information is a game struc-

ture that satisfies a set of conditions relating the abstract game structure and the

corresponding pair of concretization functions. The abstract game structure can be

a game structure with incomplete information or one with perfect information. The

formalization of the soundness of the abstraction includes the concrete and abstract

observation functions, which in the case of game structures with perfect information is

the identity. The set of conditions we require an abstraction to satisfy do not define the

abstract game structure uniquely, and also do not imply soundness of the abstraction.

Definition 2.3.1. An abstraction of a game structure with incomplete information

G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) is a game structure G# = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀)

together with the concretization functions γ : S# → 2S and γ∃ : Σ# → 2Σ∃ such that

the following conditions are satisfied:

(i) the sets {γ(s#) | s# ∈ S#} cover the set S,

(ii) the sets {γ∃(σ
#) | σ# ∈ Σ#} cover the set Σ∃,

(iii) γ(s#) ⊆ S∃ for each s# ∈ S#
∃ and γ(s#) ⊆ S∀ for each s# ∈ S#

∀ ,

35

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

(iv) the sets {γ(s#0) | s
#
0 ∈ I#} cover the set I,

(v) if (s#1 , σ
#, s#2) ∈ T#

∃ , then for every s1 ∈ γ(s#1) there exist σ ∈ γ∃(σ
#) and

s2 ∈ γ(s#2) such that (s1, σ, s2) ∈ T∃,

(vi) if (s#1 , s
#
2) ∈ T#

∀ , then there are s1 ∈ γ(s#1) and s2 ∈ γ(s#2) such that (s1, s2) ∈ T∀,

(vii) if s1 =o s2 then, for some s#1 , s
#
2 ∈ S#

∃ , s1 ∈ γ(s#1), s2 ∈ γ(s#2) and s
#
1 =#

o s#2 .

When the concrete game structureG is not clear from the context, we write γ(s#,G)

and γ∃(σ
#,G) for s# ∈ S# and σ# ∈ Σ#

∃ , respectively.

Condition (iii) requires that the abstraction respects the partitioning of the states

into S∃ and S∀. Conditions (v) and (vi) ensure that transitions in the abstract game

structure correspond to transitions in the concrete game structure. Finally, condition

(vii) guarantees that the abstract observation equivalence relation is coarser than the

concrete one. Note that conditions (v) and (vi) do not imply that the transitions of

the abstract game structure are such that is simulates the concrete one.

To illustrate the definition above, we define the abstract game structure obtained

via predicate abstraction from a symbolic game structure with perfect information, i.e.

in the special case when =o is the equality relation. The resulting game structure and

its concretization functions will satisfy the conditions of Definition 2.3.1.

Let G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) be a symbolic game structure with perfect

information, that is, V o
∀ = V∀. Let P be a finite set of predicates, which are atomic

formulas over the set X of variables in G. The set Vals(P) = BP consists of all truth

valuations of the elements of P. For each a ∈ Vals(P) and ϕ ∈ P we write a |= ϕ

iff a(ϕ) = true. Additionally, we associate with each a ∈ Vals(P) the formula [a] =
(∧

ϕ∈P,a|=ϕ ϕ
)
∧
(∧

ϕ∈P,a6|=ϕ ¬ϕ
)
, describing a set of states in G, and let JaK = J[a]K.

We define the concretization function γ : S# → 2S as γ(s#) = Js#K for each

s# ∈ S#, where S# = Vals(P) is the set of abstract states. By abuse of notation,

γ can be extended to the set 2S
#

such that for A ⊆ S# we have γ(A) =
⋃

a∈A γ(a).

Clearly, taking the abstraction function α : 2S → 2S
#
defined such that α(C) =

⋂
{A ∈

2S
#
| C ⊆ γ(A)} gives us the standard Galois connection (2S ,⊆)

α
⇄
γ

(2S
#
,⊆) (i.e., the

functions α and γ satisfy the properties α(γ(A)) = A and C ⊆ γ(α(C))).

The game structure AbstractPerfect(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀), which

is the abstraction of the perfect-information symbolic game structureG w.r.t. a set P

such that (t = ∀) ∈ P is a finite-state game structure defined as follows.

36

2.3 Game Abstractions

• S#
∃ = {s# ∈ Vals(P) | s# |= t = ∃},

• S#
∀ = {s# ∈ Vals(P) | s# |= t = ∀},

• S# = S#
∃ ∪̇ S#

∀ ,

• I# = {s# ∈ S# | Js#K ∩ JϕInitK 6= ∅},

• =#
o is the equality relation,

• Σ#
∃ = S#

∀ ,

• (s#1 , s
#
2) ∈ T#

∃ iff ∀s1 ∈ Js#1 K.∃s2 ∈ Js#2 K. (s1, s2) |= T∃,

• (s#1 , s
#
2) ∈ T#

∀ iff ∃s1 ∈ Js#1 K.∃s2 ∈ Js#2 K. (s1, s2) |= T∀.

The concretization function γ∃ : Σ#
∃ → 2Σ∃ maps an abstract action σ# ∈ Σ#

∃ to

the set of concrete actions γ∃(σ
#) = {σ ∈ Σ | ∃s ∈ γ(σ#). σ(V∃) = s(V∃)}.

Example 2.3.1. We now consider a variation G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) of the

symbolic game structure from Example 2.1.1, in which V o
∀ = V∀ = {x, y, steps , err}.

Let the set P of predicates consist of the atomic formulas occurring in ϕErr:

PErr = {(t = ∀), (x < 6), (x ≥ 9), (x ≤ −1),

(steps > 3), (err = true), (y ≥ 4), (y ≤ −4)}.

The set of initial states is I# = {s0}, where s
#
0 = (0, 1, 0, 0, 0, 0, 0, 0) is a valuation

of the predicates in PErr in the same order as listed above. The only successor in T#
∃ of

state s#0 , belonging to Player∃, is s
#
1 = (1, 1, 0, 0, 0, 0, 0, 0). We have (s#0 , σ

#, s#1) ∈ T#
∃ ,

where σ# = s#1 , and γ∃(σ) = {N,S,E,W}. The set of successors of state s#1 in T#
∀ is

{
(0, p1, 0, p2, 0, p3, p4, p5) | p1, p2, p3, p4, p5 ∈ {0, 1} ∧ (p1 ∨ ¬p2) ∧ (¬p4 ∨ ¬p5)

}
.

The abstraction of T∀ is a classical existential overapproximation of the concrete

transition relation for Player∀. The abstraction of T∃, on the other hand, restricts

the possible choices of Player∃. In the example above the initial state of the abstract

game has a single successor state that groups all concrete successors of all initial states

in the concrete game. If we take as the set of abstraction predicates the set P0 =

PErr ∪ {(move = N), (move = E), (move = S)}, then the initial state will have four

successors, corresponding to the four possible values of the variablemove in the concrete

37

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

AbstractPerfect(G,PErr)

s#0

s#1

AbstractPerfect(G,P0)

s0

sN sS

ŝ#0

s#N s#S s#E s#W

s0 s′0

sN s′N
sS

Figure 2.1: Successors of the initial states in the abstract game structures w.r.t. sets

of predicates PErr and P0. The state s0 is a concrete state in γ(s#0) and sN and sS are

successors of s0 such that sN (move) = N and sS(move) = S. Due to the imprecision of

the abstraction, both sN and sS are in γ(s#1). The abstract game AbstractPerfect(G,PErr)

is more precise and sN and sS are in the concretization of different abstract states. The

state s′0 is another concrete state, and both s0 and s′0 are in γ(ŝ#0). Thus, in the abstract

game Player∃ must choose the same value for the variable move in both s0 and s′0.

game. The power of Player∃ will still be limited in the corresponding abstract game,

since he is required to make the same choice in a all the possible concrete initial states.

Figure 2.1 depicts the abstract initial states and their successors in the game struc-

tures AbstractPerfect(G,PErr) and AbstractPerfect(G,P0) respectively.

We now formulate precisely what it means for an abstraction of a given game

structure with incomplete information to be sound (with respect to safety winning

conditions). The soundness definition is parametrized by the observation functions for

Player∃ in the concrete and in the abstract abstract games.

Definition 2.3.2. Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure with incom-

plete information and G# = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀) be an abstraction of G and

let Err ⊆ S and Err# ⊆ S# be sets of concrete and abstract error states. Let obspref

be an observation function for G and obs#pref be an observation function for G#. We

say that (Safety(G#, Err#), obs#pref) is a sound abstraction of (Safety(G , Err), obspref)

iff when Player∃ has an obs#pref -consistent winning strategy Safety(G#, Err#) then

Player∃ has an obspref -consistent winning strategy in Safety(G , Err).

Suppose that Safety(G, ϕErr) is a perfect-information safety game with symbolic

game structure G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and P is a finite set of predicates that

38

2.3 Game Abstractions

contains the predicate t = ∀. Let G# = AbstractPerfect(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o

,Σ#
∃ , T

#
∃ , T

#
∀). If Err# = {s# ∈ S# | Js#K∩JϕErrK 6= ∅}, then (Safety(G#, Err#), obs#s)

is a sound abstraction of (Safety(G , Err), obss). Formally, this claim follows easily as

a corollary of the soundness property (proven as Theorem 5.1.1) of the abstraction of

games under incomplete information described in Section 5.1.

We say that the abstraction (Safety(G#, Err#), obs#pref) of (Safety(G , Err), obspref)

preserves the existence of finite-state winning strategies for Player∃ if Player∃ has a

finite-state obspref -consistent winning strategy in Safety(G , Err) iff Player∃ has a finite-

state obs#pref -consistent winning strategy in Safety(G#, Err#).

39

2. INFINITE-STATE GAMES UNDER INCOMPLETE INFORMATION

40

Part I

Infinite-State Games with Fixed

Observations

41

42

Chapter 3

Lossy Channel Games under

Incomplete Information

In this part of the thesis we consider infinite-state games under incomplete information

where the set of observations is a priori fixed, for example by the underlying system

model. We study game structures for which the infinite set of states is ordered by a

quasi ordering which is a Better Quasi Ordering (BQO) [Mil85, Nas65]. One particular

such class of game structures is the class of game structures defined by Lossy Channel

Systems(LCSs) [AJ93]. These are finite-control systems communicating via unbounded

lossy FIFO channels. They are a common model for communication protocols such as

link protocols, a canonical example of which is the Alternating Bit Protocol.

Motivating example. The Alternating Bit Protocol is a protocol for transferring

messages in one direction between two processes, Sender and Receiver respectively,

by retransmitting lost messages. Figure 3.1 shows the protocol modeled as a LCS. Each

message sent from the Sender to Receiver consists of the actual message contents to

be transmitted (ignored here) and a 1-bit sequence counter. The messages are sent on

the unbounded FIFO channel K and acknowledged on the unbounded FIFO channel

L. As we do not model the data part, the message alphabet of each channel is finite,

in this case {0, 1}. However, the set of possible channel contents is infinite. Since the

communication channels are lossy, messages may be lost nondeterministically.

Each sent message is resent by Sender until it receives an acknowledgement with

the same sequence number. Upon this, Sender starts transmitting the next message

43

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

0r 1r

2r3r

0s 1s

2s3s

A0 : Receiver A1 : Sender

K?0

r : L!0

K?1

r : L!1

K?1

L!1

K?0

L!0

s : K!0

L?0

s : K!1

L?1

K!0

L?1

K!1

L?0

Figure 3.1: Alternating Bit Protocol modelled as a Lossy Channel System

with a flipped bit. Receiver initially sends 1s and waits until a message with sequence

number 0 arrives. Upon this it starts sending acknowledgement 0 until a message with

sequence number 1 is received, when the acknowledgement bit is flipped again.

The Alternating Bit Protocol works correctly even when messages and acknowledg-

ments are lost nondeterministically. This means, that the sequence of data messages

passed from Receiver to its client is a prefix of the sequence of data messages gener-

ated by Sender’s client. That is, no data is lost, duplicated or reordered.

Once a communication protocol has been completely specified, such as the Alter-

nating Bit Protocol shown here, one can apply a number of verification and analysis

techniques to check that it satisfies the desired properties. The alternative would be

to automatically synthesize the protocol from a given formal specification. However,

the synthesis problems for decentralized protocols is in general undecidable, as indi-

vidual processes might have access to incomparable information [PR90, Tri04]. We

therefore look at a restriction of the general synthesis problem, where all except one

processes are completely specified. This is not an uncommon situation. For example,

it can be the case that the above protocol is only partially specified in that only the

sender process is given and we wish to synthesize a receiver process such that the re-

sulting protocol fulfills a given property. Another notable example is protocol converter

synthesis [PRSV98, PAHSv02].

When synthesizing LCSs, the interface of the process to be synthesized determines

in a natural way a finite set of observations that the generated implementation of this

44

process can use. This is the case if we make the realistic assumption that a process can

observe only the element at the head of each channel it has (read) access to. In the

above example, we can suppose that Receiver, i.e., the process we want to synthesize

in this case, can only observe the element at the head of channel K. Despite the fact

that a finite set of observations is predefined by the input, the synthesis problem under

partial observability is not trivial. To see this, note that although the set of observations

is finite, the set of possible knowledge sets, i.e., sets of states the system could be in

according to the knowledge of the synthesized process, is still infinite.

Related Work. In the past two decades, the decidability of verification problems

for LCSs has been well studied [AJ93, AJ96] and a large number of works have been

devoted to developing automatic analysis techniques [ABJ98, AAB99, GRV04, GRV05]

for this class of systems. In the control and synthesis setting, where games are the

natural computational model, this class of systems has not yet been so well inves-

tigated. In [ABd08], Abdulla et al. establish decidability of two-player safety and

reachability games where one (or both) player has downward-closed behavior (e.g., can

lose messages), which subsumes games with lossy channels where one player (i.e., the

environment) can lose messages. They, however, assume that the game is played under

perfect information, which assumption disregards the fact that a process has no access

to the local states of other processes or that it has only limited information about

the contents of the channels. Recently, stochastic games on LCSs have been investi-

gated [AHdA+08, BS13, ACMS13], again under the perfect-information hypothesis.

The decidability results and algorithmic solutions for the analysis of LCSs typically

rely on the monotonicity of the transition relation of a LCS w.r.t. the subword relation,

which is a well-quasi ordering (WQO). It is well known that upward and downward-

closed sets of words used in the analysis of lossy channel systems can be effectively rep-

resented by finite sets of minimal elements and simple regular expressions [ACABJ04],

respectively. Algorithms for solving games under incomplete information usually ma-

nipulate explicitly [Rei84] or symbolically represented sets of sets of states [CDHR06].

Thus, unsurprisingly, we employ the fact that the subword relation is in fact a BQO, a

stronger notion than WQO that is preserved by the powerset operation [Mar01].

45

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

Contribution. This chapter is devoted to lossy channel games under incomplete in-

formation defined by Dimitrova and Finkbeiner in [DF13] and describes the results

presented in [DF13]. These games are defined by what we call partially specified LCSs

defined in Section 3.2. We extend the subword relation to a relation on states of the

game structure that is a BQO and provide symbolic representations of upward and

downward-closed sets of states of the game. Based on these representations we provide

algorithms for solving lossy channel games under incomplete information with safety

and reachability winning conditions and for computing finite-memory winning strate-

gies for Player∃ (that corresponds to the synthesized process). Finally, we show that

unfortunately the undecidability results established in [ABd08] for perfect information

lossy channel games with weak parity winning condition in which only one player can

lose messages transfer to the incomplete-information setting considered here.

In Chapter 4 we proceed to generalize the results from Chapter 3 by identify-

ing conditions that define classes of game structures for which incomplete information

games with safety and reachability conditions respectively are decidable. To the best

of the author’s knowledge, the only previously identified generic class of infinite-state

incomplete-information games for which the game solving problem for safety and reach-

ability is known to be decidable is the class of games with finite R-stable quotient. We

demonstrate that there exist game structures that do not have a finite R-stable quotient

but directly translate into game structures that fall into the classes we identified.

3.1 Preliminaries

Lossy channel systems. Lossy channel systems are asynchronous distributed sys-

tems composed of finitely many finite-state processes communicating through a finite

set of unbounded FIFO channels that can nondeterministically lose messages.

Definition 3.1.1. A lossy channel system (LCS) is a tuple L = ({Ai}
n
i=0, C,M, {Σi}

n
i=0),

where for each process identifier p ∈ {0, . . . , n}, Ap is a finite automaton describing

the behavior of process p, C is a finite set of channels, M is a finite set of mes-

sages and Σ =
⋃̇n

i=0Σi is the union of the disjoint finite sets of actions for the pro-

cesses. The automaton Ap = (Qp, q
0
p, δp) for a process p consists of a finite set Qp

of control locations, an initial location q0p and a finite set δ of transitions of the form

(q, a,Gr ,Op, q′), where q, q′ ∈ Qp, a ∈ Σp, Gr : C → {true , (= ǫ),∈ (m ·M∗) | m ∈M}

46

3.1 Preliminaries

and Op : C → {!m, ?m,nop | m ∈M}. Intuitively, the function Gr maps each channel

to a guard, which can be an emptiness test, a test of the letter at the head of the chan-

nel or true. The function Op gives the update operation for the respective channel,

which is either a write, a read or nop, which leaves the channel unchanged.

Remark. Unlike in the classical definition of LCSs, the transitions in the definition

above are allowed to carry guards that test a channel for emptiness or probe its first

letter. An extension of the basic model with regular guards was introduced in [BBS06].

A configuration (q0, . . . , qn, w) ∈ Q × W of L, where Q = Q0 × . . . × Qn and

W = {w | w : C → M∗} is the set of possible channel valuations, is a tuple of the

locations of the processes and a function w : C → M∗ that maps each channel to its

contents. The initial configuration of L is (q00 , . . . , q
0
n, ǫ), where ǫ(c) = ǫ for each c ∈ C.

The strong labeled transition relation →⊆ (Q×W)×Σ× (Q×W) of L consists of

all tuples ((q0, . . . , qn, w), σ, (q
′
0, . . . , q

′
n, w

′)) (denoted (q0, . . . , q1, w)
σ
→ (q′0, . . . , q

′
n, w

′))

such that if σ ∈ Σp, then q
′
p′ = qp′ for each p

′ 6= p, and there is (qp, σ,Gr ,Op, q′p) ∈ δp

such that for each c ∈ C all of the following conditions hold:

(i) if Gr (c) = (∈ m ·M∗) then w(c) ∈ m ·M∗,

(ii) if Gr (c) = (= ǫ) then w(c) = ǫ,

(iii) if Op(c) =!m, then w′(c) = w(c) ·m,

(iv) if Op(c) =?m, then m · w′(c) = w(c),

(v) if Op(c) = nop, then w′(c) = w(c).

Let � denote the (not necessarily contiguous) subword relation on M∗. We extend

� to W as follows: w1 � w2 for w1, w2 ∈W iff w1(c) � w2(c) for every c ∈ C.

The weak labeled transition relation ⇒⊆ (Q×W)×Σ× (Q×W) for L is defined as

follows: (q, w)
σ
⇒ (q′, w′) iff there exist w1 and w2 such that w1 � w and w′ � w2 and

(q, w1)
σ
→ (q′, w2), i.e., the channels can lose messages before and after the transition.

Well-quasi orderings. A well-quasi ordering (WQO) (X,�) consists of a set X and

a reflexive and transitive relation � on X such that for every infinite sequence x0, x1, . . .

of elements of X there exist indices 0 ≤ i < j such that xi � xj. A WQO (X,�) is

decidable, if for each x1 and x2 in X it can be effectively checked that x1 � x2.

47

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

For a finite alphabet M and subword ordering � on M∗, (M∗,�) is a WQO. If �

is the ordering on the set W defined above for a finite set of channels C, (W,�) is a

WQO as well. Furthermore, both of these WQOs are decidable.

Let (X,�) be a WQO. A set U ⊆ X is upward-closed w.r.t. � iff for every x ∈ U

and every x′ ∈ X with x � x′ it holds that x′ ∈ U . A set D ⊆ X is downward-closed

w.r.t. � iff for every x ∈ D and every x′ ∈ X with x′ � x it holds that x′ ∈ D. When

(X,�) is clear from the context we just refer to upward and downward-closed sets. We

denote with U(X) and D(X) the sets of upward-closed and downward-closed subsets of

X respectively. Upward-closed sets of WQOs have the following important property.

Property 2. Any increasing sequence U0 ⊆ U1 . . . of elements of U(X) must eventually

stabilize, i.e., there exists an index k ≥ 0 such that (
⋃

i≥0 Ui) = Uk = Uk+1 =

It is well known that each upward-closed set can be uniquely and finitely represented

by its set of minimal elements. This is the case, since, if U is an upward-closed set and

Min(U) is the set of �-minimal elements of U , then Min(U) is guaranteed to be finite

by the definition of WQO. For a set Y ⊆ X, we define Y ↑= {x′ ∈ X | ∃x ∈ Y. x � x′}.

Thus, U = Min(U) ↑. In the particular case of the subword ordering (M∗,�), upward

closed sets can be also represented by regular expressions (or finite automata), since

they are regular languages over M . This representation readily extends to upward-

closed sets in (W,�) for a LCS, by using indexed regular expressions.

Downward-closed sets are, in the general case, more difficult to represent effectively.

Downward-closed languages over a finite alphabet M , however, are regular and thus

can be represented by regular expressions. Furthermore, they can be represented by

a subclass of regular expressions, called simple regular expressions (SREs) introduced

in [ACABJ04]. For an alphabet M , the SREs are defined by the following grammar:

atom ::= (m+ ǫ) | (m1 + . . .+mn)
∗

product ::= ǫ | atom · product
SRE ::= ∅ | product [+SRE].

For a finite set of channels C and finite message alphabet M , SRE(C,M) is the

set of indexed SREs, which are mappings from C to the set of SREs over M . A

downward-closed subset of W can be represented as a finite union of indexed SREs.

Clearly, membership and inclusion for indexed SREs, as well as for finitely repre-

sented upward-closed sets in (W,�) can be effectively checked.

48

3.2 Lossy Channel Games under Incomplete Information

Let (X,�) be a quasi-ordering and the relation ⊑ on P(X) (the powerset of X)

be defined such that X1 ⊑ X2 iff for every x1 ∈ X1 there exists a x2 ∈ X2 such that

x1 � x2. If (X,�) is a WQO, then (Pfin(X),⊑) is a WQO, where Pfin(X) is the set of

finite subsets ofX. This property does not extend to infinite subsets for the general case

of any WQO. However, we will now see that most natural WQOs enjoy this property.

Better-quasi orderings. The theory of better-quasi orderings (BQOs) is a refine-

ment of the theory of WQOs. Although the notion of BQO is stronger than WQO,

the WQOs typically used in verification are also BQOs. We now recall the definition

of BQO and state the properties that are of interest in the context of this thesis.

The sets N<∗ and N<ω consist of the finite, respectively infinite, strictly increasing

sequences of natural numbers. For ν1 ∈ N<∗ and ν2 ∈ N<∗ ∪N<ω, ν1 < ν2 denotes that

ν1 is a proper prefix of ν2. For ν ∈ N<∗, set(ν) is the set of numbers in ν, and for a non

empty ν ∈ N<∗, tail (ν) is the sequence obtained from ν by removing its first element.

A barrier is an infinite subset β of N<∗ that satisfies the following conditions:

• there do not exist ν1, ν2 ∈ β such that set(ν1) (set(ν2) and

• for every ν ∈ N<ω there exists ν ′ ∈ β such that ν ′ < ν.

A quasi-ordering (X,�) is a BQO if for each function f : β → X where β is a

barrier, there exist ν1, ν2 ∈ β such that tail(ν1) < ν2 and f(ν1) � f(ν2).

By taking the set N as a barrier it is easily shown that each BQO is a WQO [Abd10].

BQOs enjoy the following property, used in Section 3.3 of this thesis.

Property 3. If (X,�) is a BQO then, (U(X),⊇) and (D(X),⊆) are also BQOs.

As for WQOs, if (X,�) is a BQO, then (Pfin(X),⊑) is also a BQO.

Among others, the subword ordering (M∗,�) and the ordering (W,�) on the set of

channel valuations in a LCS are also BQOs.

3.2 Lossy Channel Games under Incomplete Information

Partially specified LCSs. In a partially specified lossy channel system, we distin-

guish between two types of nondeterminism: the ”hostile” nondeterminism due to the

model, and the ”friendly” one resulting from unresolved implementation decisions that

49

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

0r 1r 4s

0s 1s

2s3s

5s6s7s 8s

A0 : Receiver A1 : Sender

a0 : K?0,

a1 : K?1

u

a0 : K?0,

a1 : K?1

b0 : L!0,

b1 : L!1

t : K!0

t : L?0

t : K!1

t : L?1

t : K!0

t : L?1

t : K!1

t : L?0

t : L?0

t : L?1

t : K ∈ 0 · {0, 1}∗, L = ǫ

t : L?1t : L?1

t : K ∈ 1 · {0, 1}∗, L = ǫ
t : L?0 t : L?0

Figure 3.2: A communication protocol with a partially specified Receiver process. For

process Receiver we have Σ0 = {a0, a1, b0, b1, u} and Σ∃ = {b0, b1}. The property that

the implementation must satisfy is that location 4 in Sender is not reachable, i.e., the

receiver does not acknowledge messages that have not been sent, and once all messages and

acknowledgements from previous phases have been consumed, the receiver can only send

one delayed acknowledgement. Note that by using an extra channel and an extra location

in process Receiver we can ensure that the error location is in process Receiver.

can be resolved in a favorable way. We consider the case when these decisions are within

a single process, and thus, w.l.o.g. assume that the system consist of only two processes:

the process under consideration and the parallel composition of the remaining ones.

Definition 3.2.1. A partially specified lossy channel system is tuple (L,Σc, Cobs),

where L = (A0,A1, C,M,Σ0,Σ1) is a LCS, Σc ⊆ Σ0 is a subset of the actions of

the partially specified process A0 and Cobs ⊆ C is a set of observable channels that

includes the set of all channels occurring in guards or read operations in A0.

Example 3.2.1. Figure 3.2 depicts a partially specified communication protocol con-

sisting of two processes, Sender and Receiver, exchanging messages over the unre-

liable channels K and L. Process Sender sends messages to Receiver over channel

K and Receiver acknowledges the receipt of a message using channel L. The two

processes are represented as nondeterministic finite-state automata. Process Sender

essentially runs the Alternating Bit Protocol. Process Receiver, however, is only par-

tially specified: its alphabet of actions Σ0 = {a0, a1, b0, b1, u} is partitioned according

to the unresolved decisions in the process specification: The subset Σ∃ = {b0, b1} of

controllable actions specifies the unresolved implementation decisions concerning the

write operations, i.e., what acknowledgement bit to send on channel L at location 1r.

The the protocol must satisfy the conjunction of the following requirements:

1. Receiver does not acknowledge messages that have not been sent. That is,

when the current location of Sender is 2s, the language of channel L is 0∗ and

50

3.2 Lossy Channel Games under Incomplete Information

for current location 0s, the language of channel L is 1∗.

2. Once all messages and acknowledgements trailing from previous phases have been

consumed (or lost), Receiver sends at most one delayed acknowledgement.

The above property is encoded as the unreachability of location 4s in process

Sender. The transitions from locations 0s and 2s to 4s are enabled when the first

part of the property is violated. When the second pat of the property is violated, the

sequences of transitions 1s, 5s, 6s to 4s and 3s, 7s, 8s to 4s respectively, can be taken.

Note that by adding an extra error location in Receiver and either an extra symbol

to the alphabet of channel K or an extra channel, we can encode the property in a way

that the location that must be avoided is in the partially specified process A0.

Let (L,Σc, Cobs) be a partially specified LCS with L = (A0,A1, C,M,Σ0,Σ1).

We define Hobs = Cobs → (M ∪ {ǫ}). The function obs : (Q ×W) → (Q0 ×Hobs)

maps each configuration (q0, q1, w) to the tuple obs((q0, q1, w)) = (q0, h), where for each

c ∈ Cobs , if w(c) = ǫ, then h(c) = ǫ and if w(c) = m ·w′ for some m ∈M and w′ ∈M∗,

then h(c) = m. That is, for non-empty c ∈ Cobs , h(c) is the letter at the head of w(c).

Let Enabled((q0, q1, w)) = {σ ∈ Σ0 | ∃(q′0, q
′
1, w

′). (q0, q1, w)
σ
→ (q′0, q

′
1, w

′)}. Note

that for configurations (q0, q1, w) and (q′0, q
′
1, w

′) with obs((q0, q1, w)) = obs((q′0, q
′
1, w

′))

it holds that Enabled((q0, q1, w)) = Enabled((q′0, q
′
1, w

′)), and, abusing notation, we de-

note this set of actions with Enabled((q0, h)), where (q0, h) = obs(q0, q1, w).

Let us denote Σ♭
c = Σc ∪̇ {♭}. We define the functions Act∃ : Q0 × Hobs → 2Σ

♭
c

and Act∀ : Q0 ×Hobs × Σ♭
c → 2Σ0 as follows. For o ∈ Q0 ×Hobs we let Act∃(o) be the

smallest subset of Σ♭
c such that (Enabled(o)∩Σ∃) ⊆ Act∃(o) and if Enabled(o)∩Σc = ∅

or Enabled(o)∩(Σ0\Σc) 6= ∅ then ♭ ∈ Act∃(o). For o ∈ Q0×Hobs and σ∃ ∈ Σ♭
c we define

Act∀(o, σ∃) = ({σ∃} ∩Σc) ∪ (Enabled(o) \Σc). The function Act∃ maps an observation

to the set consisting of the enabled controllable actions and the special element ♭, and

the function Act∀, given an observation and a controllable action or ♭, gives the set of

actions that are the provided controllable action, or uncontrollable actions from Σ0.

A controller for the partially specified LCS (L,Σc, Cobs) is a finite automaton Ac =

(Qc, q
0
c , (Q0×Hobs)×(Σ♭

c×Σ0), ρ) with alphabet (Q0×Hobs)×(Σ♭
c×Σ0), whose transition

relation ρ ⊆ (Qc × ((Q0 ×Hobs)× (Σ♭
c × Σ0))×Qc) has the following properties:

(i) for each q ∈ Qc, o ∈ Q0 ×Hobs , σ∃ ∈ Σ♭
c, σ ∈ Σ0, and q

′
1, q

′
2 ∈ Qc, it holds that if

(q, (o, (σ∃, σ)), q
′
1) ∈ ρ and (q, (o, (σ∃, σ)), q

′
2) ∈ ρ, then q

′
1 = q′2 (ρ is deterministic),

51

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

is

0s

1s

(,)/(♭, u)

(0,)/(♭, u),

(0, 0)/(♭, a0),

(1,)/(b0,)

(0,)/(♭, u),

(0, 1)/(♭, a1),

(1,)/(b1,)

(0, 0
)/(♭

, a0
)

(0, 1)/(♭, a1)

(0,1)/(♭,a
1)(0

,0
)/
(♭
,a

0
)

Figure 3.3: A controller for the partially specified LCS shown in Fig. 3.2.

(ii) for each q ∈ Qc and o ∈ Q0 ×Hobs there exist σ∃ ∈ Act∃(o), σ ∈ Σ0 and q′ ∈ Qc

such that (q, (o, (σ∃, σ)), q
′) ∈ ρ (there is a transition for each observation),

(iii) if (q, (o, (σ∃, σ1)), q
′
1) ∈ ρ and σ2 ∈ Act∀(o, σ∃), then (q, (o, (σ∃, σ2)), q

′
2) ∈ ρ for

some q′2 ∈ Qc (ρ does not restrict the actions Act∀(o, σ∃)),

(iv) if (q, (o, (σ∃1, σ1)), q
′
1) ∈ ρ and (q, (o, (σ∃2, σ2)), q

′
2) ∈ ρ, then σ∃1 = σ∃2 (the action

from Σ♭
c depends only on the current state and observation).

Figure 3.3 shows a controller for the partially specified LCS from Example 3.2.1.

Let Ac = (Qc, q
0
c , (Q0 × Hobs) × (Σ♭

c × Σ0), ρ) be a controller for the partially

specified LCS (L,Σc, Cobs). The product of L and Ac, denoted C || L is the LCS

Lc = (Ac
0,A1, C,M,Σ0,Σ1) where the automaton Ac

0 = (Qc
0, q

0
0,c, δ

c) consists of:

• the set of locations Qc
0 = Q0 ×Qc,

• the initial location q00,c = (q00, q
0
c),

• the transition relation δc is the smallest subset of (Q0 × Qc) × Σ0 × GR × OP×

(Q0 × Qc), where GR = (Cobs → {true, (= ǫ),∈ (m · M∗) | m ∈ M}) and

OP = (C → {!m, ?m,nop | m ∈ M}), such that if (q0, σ,Gr ,Op, q′0) ∈ δ0,

(qc, (q0, h)/(σ∃, σ), q
′
c) ∈ ρ and for every c ∈ Cobs one of the following holds:

– h(c) = ǫ, Gr (c) ∈ {(= ǫ), true}, Op(c) ∈ {!m,nop | m ∈M},

– h(c) = m, Gr (c) ∈ {(∈ m ·M∗), true}, Op(c) ∈ {?m, !m′,nop | m′ ∈M},

then (q0, σ,Gr c,Op, q′0) ∈ δc0, where for every c ∈ Cobs we define

Gr c(c) =

{
(= ǫ) if h(c) = ǫ,

(∈ m ·M∗) if h(c) = m.

52

3.2 Lossy Channel Games under Incomplete Information

0, is

1, 0s 0, 0s

1, 1s 0, 1s

u
a0 :

ϕ0,K
?0

a1 : ϕ1 ,K?1

a0 : ϕ0,K?0

a1 : ϕ1,K?1

a0 : ϕ0,K?0,

u

a0 : ϕ0,K?0 a
1
:
ϕ
1 ,K

?1a1
: ϕ1,

K?1

a1 : ϕ1,K?1,

u

a
0
:
ϕ
0
,K

?0

a1 : ϕ1,K?1

a
0 : ϕ

0 ,K?0

b0

b1

Figure 3.4: The nondeterministic finite-state automaton for the Receiver process ob-

tained by the composition of the partially specified process in Fig. 3.2 and the controller

automaton in Fig. 3.3. The result has been simplified by merging transitions. The guards

ϕ0 and ϕ1 stand for K ∈ 0 · {0, 1}∗ and K ∈ 1 · {0, 1}∗ respectively. Note that in this case

we could have omitted the guards as they are implied by those of the read operations.

Figure 3.4 depicts the Receiver process in the LCS obtained by the composition

of the LCS from Example 3.2.1 and the controller in Fig. 3.3.

Given a partially specified LCS (L,Σc, Cobs) with L = (A0,A1, C,M,Σ0,Σ1) and

a set QErr ⊆ Q0 of error locations in A0, the safety synthesis problem for LCSs asks

to construct a controller C for (L,Σc, Cobs) such that the set of locations QErr is

not reachable in C || L. Similarly, for a set QGoal ⊆ Q0 of goal locations in A0, the

reachability synthesis problem for LCSs asks to construct a controller C for (L,Σc, Cobs)

such that the set of locations QGoal is reachable on every path in C || L.

LC-Game structures with incomplete information. Let (L,Σ∃, Cobs) be a par-

tially specified LCS, where L = (A0,A1, C,M,Σ0,Σ1). We define the corresponding

game structure with incomplete informationG(L,Σ∃, Cobs) as the tupleG(L,Σc, Cobs) =

(S∃, S∀, I,=o,Σ∃, T∃, T∀) that consists of the following components:

• S∃ = {∃} × {0, 1} ×Q×W × Σ♭
c × (Σ0 ∪ {♭}),

• S∀ = {∀} × {0, 1} ×Q×W × Σ♭
c × (Σ0 ∪ {♭}),

• I = {(∃, 0, q00 , q
0
1, ǫ, ♭, ♭), (∀, 1, q

0
0 , q

0
1 , ǫ, ♭, ♭)},

• =o, which is such that (t, p, q0, q1, w, σ∃, σ) =o (t
′, p′, q′0, q

′
1, w

′, σ∃
′, σ′) iff

53

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

– p = p′ = 0, t = t′, obs((q0, q1, w)) = obs((q′0, q
′
1, w

′)), σ∃ = σ′∃, σ = σ′; or

– p = p′ = 1, t = t′, q0 = q′0, σ∃ = σ′∃ and σ = σ′.

• Σ∃ = Σ♭
c,

• T∃ = {((∃, 0, q, w, σ∃, σ), (∀, 0, q, w, σ
′
∃ , σ)) | σ

′
∃ ∈ Act∃(obs((q, w)))},

•

T∀ = {((∀, 0, q, w, σ∃, σ), (∃, 0, q
′, w′, σ∃, σ

′)) | σ′ ∈ Act∀(obs((q, w)), σ
∃),

(q, w)
σ′

⇒ (q′, w′)}
∪ {((∀, 0, q, w, σ∃, σ), (∀, 1, q

′, w′, σ∃, σ
′)) | σ′ ∈ Act∀(obs((q, w)), σ

∃),

(q, w)
σ′

⇒ (q′, w′)}

∪ {((∀, 1, q, w, σ∃, σ), (∃, 0, q
′, w′, σ∃, σ)) | ∃σ′ ∈ Σ1.(q, w)

σ′

⇒ (q′, w′)}

∪ {((∀, 1, q, w, σ∃, σ), (∀, 1, q
′, w′, σ∃, σ)) | ∃σ′ ∈ Σ1.(q, w)

σ′

⇒ (q′, w′)}.

The first two components t and p of a state (t, p, q0, q1, w, σ∃, σ) identify the player

to whom the state belongs and the process to be executed, respectively. The tuple

(q0, q1, w) encodes the current configuration of L. Finally, the last two components σ∃

and σ encode the last action chosen by Player∃ and the action of the last transition of

process A0 that was executed. The game starts at one of two initial states depending on

which process is initially scheduled, and the initial state in which process 0 is scheduled

belongs to Player∃ and the initial state in which process 1 is scheduled belongs to

Player∀. The transition relation T∃ allows Player∃ to choose in each state from S∃ an

action in Σ♭
c, that is either an action from Σc of a transition enabled in the current

state, or can be the special element ♭ in case no transition with action in Σc is enabled

or if there exists an enabled transition with action from Σ0 \Σc. The transition relation

T∀ of Player∀ encodes the possible transitions of L respecting the currently scheduled

process and the current choice of Player∃ in case this is process 0. When process 0 is

scheduled, any transition of A0 is with an action either in Σ0 \ Σc or with the action

in Σc that was chosen by Player∃. Note that if in the successor state process 0 is

scheduled, then the turn is given again to Player∃ to make a choice.

Remark. The second component of states in S is used to model the interleaving seman-

tics and is updated by Player∀. For simplicity, in the definition of the game structure

above we do not make any assumptions about the choice of which process to be exe-

cuted. One natural assumption one might make is that the selected process must have

at least one transition enabled in the current state. This and other restrictions on the

scheduling decisions of Player∀ can be easily imposed in the above model.

54

3.2 Lossy Channel Games under Incomplete Information

The observation equivalence =o allows Player∃ to distinguish states in which process

0 is scheduled according to the current process 0 location, the letters at the heads of

the observable channels and the actions. States in which process 1 is scheduled, on the

other hand, cannot be distinguished based on the symbols of the observable channels.

Remark. Here, like in the classical definition of LCSs we allow for message losses both

before and after an actual transition. This differs from the definition of lossy channel

games in [ABd08], where messages can be lost only before a transition, which implies

that player cannot immediately lose the message he just wrote. We considered the

choice we made appropriate in our case, since all message losses are controlled by

Player∀ representing the environment. Note that we allow a message at the head of an

observable channel to be lost after it has been observed but not consumed by Player∃.

LC-Games under incomplete information. Given a partially specified lossy chan-

nel system (L,Σc, Cobs) with L = (A0,A1, C,M,Σ0,Σ1) and a set QErr ⊆ Q0 of

error locations in A0, we define the set Err of error states in the game structure

G(L,Σc, Cobs) = (S∃, S∀, I,=o,Σ∃, T∃, T∀) as Err = {(t, p, q0, q1, w, σ∃, σ) | q0 ∈ QErr ∧

p = 0}. The corresponding safety game under incomplete information is Safety(G,Err).

Similarly, given a set QGoal ⊆ Q0 of goal locations in A0 we define the reachability

game under incomplete information Reach(G,Goal), where the set of goal states is

Goal = {(t, p, q0, q1, w, σ∃, σ) | q0 ∈ QGoal ∧ p = 0}.

Note that each Player∃-state in the game structure G(L,Σc, Cobs) has a successor.

For a safety game, we can easily instrument L and the set of error locations QErr in

a way that every Player∀ state has a successor and still ensure that plays reaching a

state in G that corresponds to a deadlock in L are not winning for Player∃. Thus,

we can assume w.l.o.g. that when we consider lossy channel games with safety winning

conditions, all plays in the game structure are infinite.

Note that by the definition of the observation equivalence =o in G(L,Σc, Cobs), the

sets Err and Goal are observable by construction. Thus, the games Safety(G,Err)

and Reach(G,Goal) have winning conditions that are observable w.r.t. the observation

functions obss, obsa and obsf . The algorithms presented in Section 3.3, however, rely

only on observability w.r.t. the observation function obss.

Proposition 3.2.1. Let (L,Σc, Cobs) be a partially specified lossy channel system with

L = (A0,A1, C,M,Σ0,Σ1) and QF ⊆ Q0 be a set of locations in A0. Let G(L,Σc, Cobs)

55

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

be the game structure with incomplete information defined by (L,Σc, Cobs) and F =

{(t, p, q0, q1, w, σ∃, σ) | q0 ∈ QF ∧ p = 0}. Then, the following properties hold.

1. There exists a finite controller C for (L,Σc, Cobs) such that the set of locations QF

is not reachable in C || L if and only if Player∃ has a finite-state obsa-consistent

winning strategy in the incomplete-information game Safety(G,F).

2. There exists a finite controller C for (L,Σc, Cobs) such that the set of locations QF

is reachable on every path in C || L if and only if Player∃ has a finite-state obsa-

consistent winning strategy in the incomplete-information game Reach(G,F).

3.3 Algorithms for Safety and Reachability Games

3.3.1 Monotonicity Properties of the Transition Relations

Let (L,Σc, Cobs) be a partially specified LCS with L = (A0,A1, C,M,Σ0,Σ1) and

G(L,Σc, Cobs) = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be the corresponding game structure with

incomplete information. As before, we denote with S = S∃ ∪̇ S∀ the set of states of G

and with Obs the set of equivalence classes of S w.r.t. the equivalence relation =o.

We define the relation � on S = S∃ ∪̇ S∀ as follows: for s = (t, p, q0, q1, w, σ∃, σ)

and s′ = (t′, p′, q′0, q
′
1, w

′, σ′∃, σ
′), we have s � s′ iff the following conditions hold:

• t = t′, p = p′, q0 = q′0, q1 = q′1, σ∃ = σ′∃, σ = σ′,

• obs((q0, q1, w)) = obs((q′0, q
′
1, w

′)) and w � w′.

Since all the sets {∃,∀}, {0, 1}, Q0, Q1, Σ0 are finite and the quasi-ordering (W,�)

is a BQO, it holds that (S,�) is a BQO as well.

The definition of (S,�) directly implies that if s � s′ then s =o s
′.

By definition, the transition relation ⇒ of the LCS L enjoys the monotonicity

property of being downward-closed : If for configurations (q0, q1, w) and (q′0, q
′
1, w

′)

and action σ, (q0, q1, w)
σ
→ (q′0, q

′
1, w

′), then for every w′′ with w � w′′ it holds that

(q0, q1, w
′′)

σ
→ (q′0, q

′
1, w

′). Furthermore, if for configurations (q0, q1, w) and (q′0, q
′
1, w

′)

and action σ, (q0, q1, w)
σ
→ (q′0, q

′
1, w

′), then for every w′′ with w′′ � w′ it holds that

(q0, q1, w)
σ
→ (q′0, q

′
1, w

′′). We will now see how these properties extend to G.

The definition of � on S implies that the following properties hold for the functions

Act∃ and Act∀ defined in Section 3.2.

56

3.3 Algorithms for Safety and Reachability Games

• For states s = (∃, p, q0, q1, w, σ∃, σ) and s′ = (∃, p′, q′0, q
′
1, w

′, σ′∃, σ
′) such that

s � s′, it holds that Act∃(obs(q0, q1, w)) = Act∃(obs(q
′
0, q

′
1, w

′)).

• For states s = (∀, p, q0, q1, w, σ∃, σ) and s′ = (∀, p′, q′0, q
′
1, w

′, σ′∃, σ
′) such that

s � s′, it holds that Act∀(obs(q0, q1, w), σ∃) = Act∀(obs(q
′
0, q

′
1, w

′), σ′∃).

As a consequence we can conclude that the transition relation for Player∃ is mono-

tonic and that the transition relation for Player∀ is downward-closed.

Property 4. If (s, σ, s′) ∈ T∃ and s � s′′ for some state s′′ ∈ S∃, then there exists a

state s′′′ ∈ S∀ such that (s′′, σ, s′′′) ∈ T∃ and s′ � s′′′.

Property 5. If (s, s′) ∈ T∀ and s � s′′ for some state s′′ ∈ S∀, then (s′′, s′) ∈ T∀.

Thus, if S′ ⊆ S is a set of states, the set Pre∀(S
′) is an upward-closed set of states.

By the second property of the transition relation ⇒ of L we have the following.

Property 6. If (s, s′) ∈ T∀ and s′′ � s′ for some state s′′ ∈ S, then (s, s′′) ∈ T∀. Thus,

if S′ ⊆ States then Post∀(S
′) is a downward closed set. Furthermore, note that by the

definition of LCSs, if S′ is finite, then so is Post∀(S
′).

By the definition of the relation � it immediately follows that each observable set

of states is both upward-closed and downward-closed. Hence, if the wining condition of

a lossy channel game is defined by an observable set of error or goal states, then clearly

this set of states is both upward-closed and downward-closed.

The above properties tell us, that upward and downward-closed sets of states will

be useful for solving lossy channel games under incomplete information.

Let U ⊆ S be an upward-closed set of states in G and let o ∈ Obs. By the definition

of � we have that the set U ∩ o is also upward-closed. Similarly, for a downward-closed

set D ⊆ S, the set D ∩ o is downward-closed. Let us define the families of state sets

Uobs(G) = {U ⊆ S | U 6= ∅, U = U ↑ and ∃o ∈ Obs.U ⊆ o} and
Dobs(G) = {D ⊆ S | D 6= ∅, D = D ↓ and ∃o ∈ Obs.D ⊆ o}.

3.3.2 Effective Representation of Upward and Downward-Closed Sets

We show how each element of Uobs(G) can be finitely represented as a tuple that has a

part describing an equivalence class in Obs and a part defining an upward-closed set of

states. Similarly we can finitely represent each set in Dobs (G) as a tuple that has a part

describing an equivalence class and a part defining a downward-closed set of states.

57

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

Let ΦUobs
⊆ {∃,∀} × {0, 1} ×Q0 ×Hobs × Σ∃ × (Σ0 ∪ {♭}) × Pfin(Q1 ×W) be such

that (t, p, q0, h, σ∃, σ,R) ∈ ΦUobs
iff the following two conditions are satisfied:

(i) if p = 1, then h = ǫ and

(ii) if p = 0, then for each c ∈ Cobs , h(c) = ǫ implies w(c) = ǫ for each (q1, w) ∈ R.

The idea is that (t, p, q0, h, σ∃, σ) defines an equivalence class and R describes an upward

closed set of states. Formally, the semantics of ΦUobs
is defined as follows.

J(t, p, q0, h, σ∃, σ,R)K = {(t, p, q0, q1, w, σ∃, σ) ∈ S | ∃w′, w′′ ∈W.(q1, w
′) ∈ R∧

(∀c ∈ Cobs .h(c) = ǫ⇒ w′′(c) = ǫ)
w′ � w′′ ∧ w = h⊙ w′′},

where for c ∈ Cobs , (h⊙w
′′)(c) = h(c) ·w′′(c) and for c ∈ C \Cobs , (h⊙w

′′)(c) = w′′(c).

The operation ⊙ : Hobs ×W ×W above prepends the first letters of the nonempty

observable channels to the contents of the respective channel in the valuation.

In a similar manner, we can represent each set in Dobs(G) using elements of the set

ΦDobs
⊆ {∃,∀} × {0, 1} ×Q0 ×Hobs ×Σ∃ × (Σ0 ∪ {♭})× Pfin(Q1 × SRE(C,M)) defined

such that (t, p, q0, h, σ∃, σ,R) ∈ ΦDobs
iff the following two conditions are satisfied:

(i) if p = 1, then h = ǫ and

(ii) if p = 0, then for each c ∈ Cobs , h(c) = ǫ implies r(c) = ǫ for each (q1, r) ∈ R.

The semantics of ΦDobs
is such that:

J(t, p, q0, h, σ∃, σ,R)K = {(t, p, q0, q1, w, σ∃, σ) ∈ S | ∃r ∈ SRE(C,M). ∃w′ ∈ JrK.
(q1, r) ∈ R ∧ w = h⊙ w′}.

By the definition of � on S, each observable set of states is both upward-closed

and downward-closed. Therefore, each such set can be represented in any of the above

two ways. In particular, this holds for the sets of error and goal states in safety and

reachability lossy channel games under incomplete information.

Since (S,�) is a BQO, by Property 3 it holds that (Uobs(G),⊇) and (Dobs (G),⊆)

are BQOs. Using the above representations, the respective inclusion relations can be

effectively decided, and hence, the BQOs (Uobs(G),⊇) and (Dobs(G),⊆) are decidable.

58

3.3 Algorithms for Safety and Reachability Games

3.3.3 Effective Successor and Predecessor Operations

We define the function Preobs∀ : Uobs(G) → Pfin(Uobs(G)) that maps a set U ∈ Uobs(G)

to a finite set of upward-closed sets that partitions the respective set of ∀-predecessors

of U according to the observations Player∃ makes. Similarly, we define the successor

function Postobs∀ : Dobs (G) → Pfin(Dobs(G)). Since the transition relation of G has finite

branching, if D ∈ Dobs(G) is finite then each D′ ∈ Postobs∀ (D) is finite too. Formally,

Preobs∀ (U) = {U ′ ∈ Uobs(G) | ∃o ∈ Obs. U ′ = Pre∀(U) ∩ o},

Postobs∀ (D) = {D′ ∈ Dobs(G) | ∃o ∈ Obs. D′ = Post∀(D) ∩ o}.

We define Preobs∃ : Uobs(G)×Σ∃ → Pfin(Uobs(G)) and Postobs∃ : Dobs(G)×Σ∃ → Dobs(G):

Preobs∃ (U, σ∃) = {U ′ ∈ Uobs(G) | ∃o ∈ Obs. U ′ = Pre∃(U) ∩ o},

Postobs∃ (D,σ∃) = Post∃(D,σ∃) if D ⊆ S∃.

Based on the representation for Uobs(G) and Dobs(G) we described in Section 3.3.2,

we define in the following two subsections functions for symbolic computation of Preobs∀ (U),

Preobs∃ (U, σ∃), Post
obs
∀ (D) and Postobs∃ (D,σ∃) for U ∈ Uobs(G) and D ∈ Dobs(G).

Predecessor Operations

For the function that maps an element of ΦUobs
to a finite subset of ΦUobs

we use the

same symbol as for the corresponding function Preobs∀ : Uobs(G) → Pfin(Uobs (G)). We

define Preobs∀ : ΦUobs
→ Pfin(ΦUobs

) as follows: for (t′, p′, q′0, h
′, σ′∃, σ

′, R′) ∈ ΦUobs
we let

Preobs∀ ((t′, p′, q′0, h
′, σ′∃, σ

′, R′)) = { (∀, 0, q0, h, σ
′
∃, σ,R) ∈ ΦUobs

| (q1, w) ∈ R iff
σ′ ∈ Act∀((q0, h), σ

′
∃),

∃Gr .∃Op.∃w′.(q0, σ
′,Gr ,Op, q′0) ∈ δ0,

(q1, w
′) ∈ R′, (h,w) ∈ PreL((h

′, w′),Gr ,Op, 0)}
∪ { (∀, 1, q′0, h, σ

′
∃, σ

′, R) ∈ ΦUobs
| (q1, w) ∈ R iff

∃σ ∈ Σ1.∃Gr .∃Op.∃q′1.∃w
′.(q1, σ,Gr ,Op, q′1) ∈ δ1,

(q′1, w
′) ∈ R′, (h,w) ∈ PreL((h

′, w′),Gr ,Op, 1)}.

We define the function PreL : (Hobs ×M∗)× GR × OP× {0, 1} → Pfin(Hobs ×M∗)

such that (h,w) ∈ PreL((h
′, w′),Gr ,Op, p) iff

• for all c ∈ Cobs , (h(c), w(c)) ∈ Extract(p, c, (Gr (c),Op(c)) ⊗−1 (h′(c) · w′(c))) and

• for all c ∈ (C \ Cobs), h
′(c) = ǫ and w′(c) ∈ (Gr (c),Op(c)) ⊗−1 w′(c),

59

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

where the definitions of the operator ⊗−1 and the function Extract : {0, 1} × Cobs ×

Pfin(M
∗) → Pfin((M ∪ {ǫ}) ×M∗) are given below.

For w ∈M∗ and guard g the set Sat(w, g) ∈ Pfin(M
∗) is defined as follows:

Sat(w, g) =

{w} if g = true,

{w} if g = (∈ m ·M∗) and w = m · w′,

{m · w} if g = (∈ m ·M∗) and w 6∈ m ·M∗,

{w} if g = (= ǫ) and w = ǫ,

∅ if g = (= ǫ) and w 6= ǫ.

For w′ ∈M∗, guard g and op we define the set (g, op)⊗−1 w′ as follows:

(g, op)⊗−1 w′ =

Sat(w′′, g) if op = (!m) and w′ = w′′ ·m,

Sat(w′, g) if op = (!m) and last(w′) 6= m,

Sat(m · w′, g) if op = (?m),

Sat(w′, g) if op = (nop).

Finally, the function Extract : {0, 1} × Cobs × Pfin(M
∗) → Pfin((M ∪ {ǫ}) ×M∗) is

defined as Extract(p, c,A) =
⋃

w∈A Extract′(p, c, w), where:

Extract′(p, c, w) =

{(ǫ, w)} if p = 1,

{(ǫ, ǫ)} ∪ {(m, ǫ) | m ∈M} if p = 0 and w = ǫ,

{(m,w′)} ∪ {(m1,m · w′) | m1 ∈M} if p = 0 and w = m · w′.

Similarly as for the respective function for Player∀, we define a function that maps

an element of ΦUobs
to a finite subset of ΦUobs

, corresponding to the function Preobs∃ :

Uobs(G)× Σ∃ → Pfin(Uobs(G)). We define Preobs∃ : ΦUobs
× Σ∃ → Pfin(ΦUobs

) as follows:

Preobs∃ ((t′, p′, q′0, h
′, σ′∃, σ

′, R′), σ∃) =

{(∃, 0, q′0, h
′, σ′′∃, σ

′, R′) | σ′′ ∈ Σ∃} if t′ = ∀,

p′ = 0,

σ′ = σ∃,

∅ otherwise.

Successor Operations

For the function that maps an element of ΦDobs
to a finite subset of ΦDobs

we use the

same symbol as for the corresponding function Postobs∀ : Dobs(G) → Pfin(Dobs (G)). We

60

3.3 Algorithms for Safety and Reachability Games

define Postobs∀ : ΦDobs
→ Pfin(ΦDobs

) as follows: for (t, p, q0, h, σ∃, σ,R) ∈ ΦDobs
we let

Postobs∀ ((t, 0, q0, h, σ∃, σ,R)) = { (t′, p′, q′0, h
′, σ∃, σ

′, R′) | (q′1, e
′) ∈ R′ iff

σ ∈ Act∀((q0, h), σ∃), (t
′ = ∃ ⇔ p′ = 0),

∃Op.∃Gr∃e.(q0, σ
′,Gr ,Op, q′0) ∈ δ0,

(q′1, e) ∈ R, (h′, e′) ∈ PostL((h, e),Gr ,Op, p′)},

Postobs∀ ((t, 1, q0, h, σ∃, σ,R)) = { (t′, p′, q0, h
′, σ∃, σ,R

′) | (q′1, e
′) ∈ R′ iff

(t′ = ∃ ⇔ p′ = 0),
∃σ′∃Op.∃Gr∃q1.∃e.(q1, σ

′,Gr ,Op, q′1) ∈ δ1,
(q1, e) ∈ R, (h′, e′) ∈ PostL((h, e),Gr ,Op, p′)}.

We define the function PostL : (Hobs×SRE(M,C))×GR×OP×{0, 1} → Pfin(Hobs×

SRE(M,C)) such that for an indexed SRE e = e1 + . . . + en, Post((h, e),Gr ,Op, p′) =
⋃n

i=1 Post((h, ei),Gr ,Op, p′) and for a product e, (h′, e′) ∈ PostL((h, e),Gr ,Op, p′) iff

• for all c ∈ Cobs , (h
′(c), e′(c)) ∈ Extract(p′, c, ((h(c) + ǫ) · e(c)) ⊗ (Gr (c),Op(c))),

• for all c ∈ (C \ Cobs), h
′(c) = ǫ and e′(c) = e(c)⊗ (Gr (c),Op(c)),

where the definitions of the operator ⊗ and the function Extract : {0, 1} × Cobs ×

SRE(M,C) → Pfin((M ∪ {ǫ}) × SRE(M,C)) are given below.

For e ∈ SRE(M) and guard g we define the SRE Sat(e, g) as follows:

• Sat(e, true) = e,

• Sat(e, (∈ m ·M∗)) = ∅ if e = ǫ, and otherwise if e = e′ · e′′, then

Sat(e, (∈ m ·M∗)) =

e if e′ = (m′ + ǫ) and m′ = m,

e if e′ = (m1 + . . .+mn)
∗ and

m ∈ {m1, . . . ,mn},

Sat(e′′, (∈ m ·M∗)) otherwise,

• Sat(e, (= ǫ)) = ǫ.

For e ∈ SRE(M), g ∈ Gr and op ∈ Op we define the SRE e⊗ (g, op) as follows:

• e⊗ (g, !m) = Sat(e, g) · (m+ ǫ),

• e⊗ (g,nop) = Sat(e, g),

• e⊗ (g, ?m) = ∅ if Sat(e, g) = ǫ or Sat(e, g) = ∅, and if Sat(e, g) = e′ · e′′, then

e⊗ (g, ?m) =

e′′ if e′ = (m′ + ǫ) and m = m′,

e if e′ = (m1 + . . .+mn)
∗ and m ∈ {m1, . . . ,mn},

∅ otherwise.

61

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

Finally, for Extract : {0, 1} ×Cobs × SRE(M) → Pfin((M ∪ {ǫ}) × SRE(M)):

Extract(p′, c, e) =

{(ǫ, e)} if p′ = 1,

{(ǫ, ǫ)} if p′ = 0 and e = ǫ,

{(m1, e1)} ∪ Extract(0, c, e1) if p′ = 0 and

e = (m1 + ǫ) · e1,

{(mi, e
′) | i ∈ [1, n]} ∪ Extract(0, c, e1) if p′ = 0 and

e = (m1 + . . .+mn)
∗ · e1.

We define a partial function Postobs : ΦDobs
× Σ∃ → ΦDobs

that corresponds to the

function Postobs∃ : Dobs (G)× Σ∃ → Dobs (G) as follows:

Postobs∃ ((t, p, q0, h, σ∃, σ,R), σ
′
∃) =

{
(∀, 0, q0, h, σ

′
∃, σ,R) if t = ∃, p = 0,

undefined otherwise

3.3.4 Solving Safety Lossy Channel Games

In this subsection we describe a decision procedure for safety lossy channel games under

incomplete information, which is based on a backward fixed point computation. The

proposed algorithm is in the spirit of the set-saturation methods for verification of well-

structured systems. The term set-saturation method was used in [FS01] to describe

verification procedures that rely on the fact that each infinite increasing sequence of

upward-closed sets of states eventually stabilizes.

Reducing obsa-consistency to obss-consistency Each step in the fixed point com-

putation presented below corresponds to a step in the game. Thus, this construction

is correct w.r.t. Player∃ strategies that are obss-consistent. However, when Player∃

plays according to a obsa-consistent strategy he only observes the steps at which the

current state belongs to Player∃ (corresponding to states at which process 0 is sched-

uled). To circumvent this problem, our algorithm performs the fixed point computation

on a game structure with incomplete information G̃ obtained from G(L,Σ∃, Cobs) by

adding a skip transition for process 1. In G̃(L,Σ∃, Cobs) = (S∃, S∀, I,=o,Σ∃, T∃, T̃∀),

all components except for the transitions for Player∀ are as in G(L,Σ∃, Cobs), and

T̃∀ = T∀ ∪ {((∀, 1, q, w, σ∃, σ), (∃, 0, q, w
′ , σ∃, σ)) | w′ � w}

∪ {((∀, 1, q, w, σ∃, σ), (∀, 1, q, w
′ , σ∃, σ)) | w′ � w}.

62

3.3 Algorithms for Safety and Reachability Games

The game structure G̃ can be defined by a modified partially specified LCS L̃ =

(A0, Ã1, C,M,Σ0, Σ̃1) as explained in Section 3.2. L̃ is such that Ã1 = (Q1, q
0
1 , δ̃1),

where δ̃1 = δ1 ∪̇ {(q, idle , true ,nop, q) | q ∈ Q1}, and Σ̃1 = Σ1 ∪̇ {idle}.

The game structure G̃(L,Σ∃, Cobs) has the following property.

Property 7. In Safety(G(L,Σ∃, Cobs), Err) Player∃ has an obsa-consistent winning

strategy iff he has an obss-consistent winning strategy in Safety(G̃(L,Σ∃, Cobs), Err).

Proof. To see that for each obsa-consistent winning strategy f∃ for Player∃ in the game

Safety(G , Err), where G = G(L,Σ∃, Cobs), we can define a obss-consistent winning

strategy f̃∃ for Player∃ in Safety(G̃, Err), where G̃ = G̃(L,Σ∃, Cobs), consider the

function deleteskip : Prefs∃(G̃) → Prefs(G) that maps a Player∃-prefix in G̃ to the

prefix in G obtained from it by deleting all skip steps. Then, we define f̃∃(π̃) =

f∃(deleteskip(π̃)). Since for every π̃1, π̃2 ∈ Prefs∃(G̃), if obss(π̃1) = obss(π̃2) then also

obsa(deleteskip(π̃1)) = obsa(deleteskip(π̃2)), f̃∃ is obss-consistent. Since for each π̃ in G̃,

π̃ and deleteskip(π̃) visit exactly the same observations in Obs, f̃∃ is winning.

The other direction follows from Proposition 3.3.3 below where we show that we

can construct a finite-state obsa-consistent winning strategy in the game Safety(G , Err)

whenever Player∃ has a obss-consistent winning strategy in Safety(G̃, Err).

Note that Uobs(G̃) = Uobs(G), and in the following we use them interchangeably.

The input to the game solving algorithm described in the next paragraph is the safety

LC-game Safety(G̃(L,Σ∃, Cobs), Err), where the game structure G̃(L,Σ∃, Cobs) is rep-

resented by the partially specified LCS L̃ defined above.

Algorithm Let us denote with L(G) the set

L(G) = {L ∈ Pfin(Uobs(G)) | L 6= ∅ and ∃o ∈ Obs.∀U ∈ L. U ⊆ o}.

Note that by definition for each L ∈ L(G) there exists a unique o ∈ Obs such that

o ∩ U 6= ∅ for some U ∈ L. We denote this observation with obs(L).

The algorithm for solving safety LC-games under incomplete information that we

present computes a set B ⊆ L(G). Intuitively, each L in the computed set B has

the following property: if K ⊆ S is the set of states that the game can be currently

in according to Player∃’s knowledge, and K ∩ U 6= ∅ for every U ∈ L, then Player∃

cannot win the safety game when his initial (current) knowledge is K. Considering the

63

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

set I of initial states of the game, if for some L ∈ B it holds that I ∩ U 6= ∅ for all

U ∈ L, then Player∃ has no obss-consistent winning strategy in Safety(G̃, Err).

We define a quasi-ordering ⊑ on L(G) such that for L,L′ ∈ L(G), we have

L ⊑ L′ iff for every U ∈ L there exists a U ′ ∈ L′ such that U ⊇ U ′.

Since (Uobs (G),⊇) is a BQO, by the properties of BQOs, ⊑ is also a BQO.

From the definition of ⊑ it is clear that if L ⊑ L′ and for some K it holds that

K ∩ U ′ 6= ∅ for each U ′ ∈ L′, then it also holds that K ∩ U 6= ∅ for each U ∈ L. Thus,

as we will see, it suffices to consider in the fixed point iteration the set B consisting

only of minimal elements. That is, the set B is a finite representation of the possibly

infinite set B ↑. Our algorithm computes a least fixed point by iteratively applying

the function Update(A) = Min(A ∪ UPre(A)), where for a set A, Min(A) is the set of

minimal elements of A w.r.t. ⊑ and the function UPre is defined as follows.

Algorithm:SolveLC-GamesSafety

Input: safety LC-game Safety(G̃(L,Σ∃, Cobs), Err) with

G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) and observable set Err

Output: (winner , strategy) or (winner , counterexample tree)

B := ∅; B′ := {{Err ∩ o} | o ∈ Obs}; /* initialize the set of L-sets */

while B′ 6⊆ B do
B := B′;

if ∃L ∈ B.∀U ∈ L. I ∩ U 6= ∅ then

Ck := ConstructTree(G̃,B);

return (∀, Ck); /* return counterexample tree */

B′ := Min(B ∪ UPre(B)); /* update the set B */

f∃ := ConstructStrategy(G̃,B);

return (∃, f∃); /* return strategy for Player∃ */

Algorithm 1: Solving safety LC-games under incomplete information.

Definition 3.3.1. We define the function UPre : Pfin(L(G)) → Pfin(L(G)) such that

for a finite subset B of L(G), UPre(B) is the smallest (with respect to set inclusion)

finite subset of L(G) that contains each set L ⊆
⋃

L′∈B

⋃
U ′∈L′

(
(
⋃

σ∈Σ0
Preobs∃ (U, σ)) ∪

Preobs∀ (U)
)
that satisfies one of the following two conditions:

64

3.3 Algorithms for Safety and Reachability Games

• L ∈ P(P(S∃)) and for every action σ∃ ∈ Act∃(obs(L)) there exists a set L′ ∈ B

such that for every U ′ ∈ L′ it holds that Preobs∃ (U ′, σ) ∩ L 6= ∅;

• L ∈ P(P(S∀)) and there is L′ ∈ B such that for each U ′ ∈ L′, Preobs∀ (U ′)∩L 6= ∅.

The procedure SolveLC-GamesSafety for solving safety LC-games under in-

complete information is given as Algorithm 1. It updates a set B of elements of

L(G) by applying the function Update, and terminates when one of two possible

conditions is satisfied. If a set L such that I ∩ U 6= ∅ for each U ∈ L is added

to B, SolveLC-GamesSafety returns a finite tree constructed by the procedure

ConstructTree. If the termination condition of the loop is fulfilled without adding

such a set L to the set B, then the procedure returns a finite strategy for Player∃

constructed by the procedure ConstructStrategy.

The procedures ConstructTree and ConstructStrategy are described as

part of the proofs of Proposition 3.3.2 and Proposition 3.3.3 respectively.

Each step of algorithm SolveLC-GamesSafety can be effectively computed. Us-

ing the representation from Section 3.3.2, the elements of L(G) are finite subsets of

ΦUobs
. Thus, equality between elements of L(G) is decidable, and (L(G),⊑) is a de-

cidable BQO. Since the sets B and B′ are finite, the termination condition of the

loop can be effectively checked, and the functions UPre and Min are computable. For

the computation of UPre we rely of the functions Preobs∀ : ΦUobs
→ Pfin(ΦUobs

) and

Preobs∃ : ΦUobs
× Σ∃ → Pfin(ΦUobs

), which we described in Section 3.3.3.

Correctness The following three propositions establish the total correctness of Al-

gorithm SolveLC-GamesSafety.

Proposition 3.3.1. Algorithm SolveLC-GamesSafety terminates.

Proof. Let B0 ⊆ B1 ⊆ B2 . . . be the sequence of subsets of L(G) computed by Al-

gorithm SolveLC-GamesSafety. Suppose that the algorithm does not terminate.

This means that B0 (B1 (B2 . . . and there exists a sequence L0, L1, L2, . . . of distinct

elements of L(G) such that for each i ≥ 0, Li+1 ∈ Bi+1 and Li+1 6∈ Bi. Since ⊑ is

a BQO (and hence a WQO), there exist indices 0 ≤ i < j such that Li ⊑ Lj . Since

Li ∈ Bj , this contradicts to the fact that Bj consists of ⊑-minimal elements only.

Proposition 3.3.2. If algorithm SolveLC-GamesSafety terminates and returns a

tree Ck, then Ck is a knowledge-based counterexample tree in Safety(G̃, Err).

65

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

Proof. Let L0 ∈ B be an element of L(G) such that I ∩ L0 = ∅ for every U ∈ L0.

Procedure ConstructTree constructs a tree Ck = (N,E,Ks ,La) with nodes N ,

edges E ⊆ N × N , function Ks : N → (2S \ ∅) that labels each node with a set of

states and a function La : E → Σ∃ ∪ {ǫ} that labels edges with Player∃-actions. More

precisely, the nodes of Ck are labeled with elements of Dobs(G).

Furthermore, the construction ensures, relying on the definition of the function

UPre, that for each n ∈ N there exists L ∈ B such that Ks(n)∩U 6= ∅ for each U ∈ L.

The tree Ck is constructed in a top-down manner as follows.

Let us denote for each L ∈ B with rank (L) the least i ≥ 0 such that L ∈ Bi.

By the definition of I and L(G) it follows that there exists a single state s0 ∈ I

such that s0 ∈ U for each U ∈ L0. The root n0 of Ck is labeled with {s0} ∈ Dobs(G).

At each step the procedure picks an unexplored leaf node n and processes n as follows:

• If Ks(n) ∩ Err 6= ∅, n is closed (not expanded further) and remains a leaf in Ck.

• If Ks(n) ∩ Err = ∅ and Ks(n) ⊆ S∃, then for each σ∃ ∈ Act∃(o), where o ∈ Obs

is the unique observation such that Ks(n)∩ o 6= ∅, we add to N a node n′ and let

Ks(n
′) = D′ where D′ = Postobs∃ (Ks(n), σ∃) and La((n, n

′)) = σ.

• If Ks(n)∩Err = ∅ and Ks(n) ⊆ S∀, then there exists a D′ ∈ Postobs∀ (Ks(n)) such

that there exists an L′ ∈ B for which D′ ∩ U ′ 6= ∅ for each U ′ ∈ L′. We pick one

such D′ and L′ with minimal rank and add to N a node n′ with Ks(n
′) = D′.

For each edge (n, n′) ∈ E with Ks(n) ⊆ S∀ we let La((n, n
′)) = ǫ.

The above construction is guaranteed to terminate, since the transition relation of G̃

has finite branching and along each edge (n, n′) of the tree the rank of the corresponding

elements of B strictly decreases. For n with Ks(n) ⊆ S∃ this follows by the definition

of rank and the construction of B, and for Ks(n) ⊆ S∀ by the choice of n′.

For each leaf n it holds that Ks(n) ⊆ Err, since L = {Err∩o} for some o ∈ Obs, for

each L with rank (L) = 0. All other conditions of Definition 2.2.5 also follow easily from

the construction of Ck, and thus Ck is a knowledge-based counterexample tree.

Proposition 3.3.3. If algorithm SolveLC-GamesSafety terminates returning a

strategy f∃, then f∃ is an obsa-consistent wining strategy for Player∃ in Safety(G , Err).

Proof. Here we consider the case when the while-loop of SolveLC-GamesSafety

terminates and for every L ∈ B there exists a U ∈ L such that I ∩ U = ∅. In this

case the procedure ConstructStrategy constructs a finite strategy represented as

a strategy automaton M = (QM, q
0
M
,Obs × Σ⊥

∃ , ρ), as described below.

66

3.3 Algorithms for Safety and Reachability Games

A function JK : QM → Dobs(G) maps each qM ∈ QM to a downward-closed set

JqMK ⊆ S that is such that for each L ∈ B there exists U ∈ L such that JqMK ∩ U = ∅.

The set QM is defined as follows. First, for each o ∈ Obs we define the set Vo ⊆ P(S):

Vo = {U ∈ Uobs(G) | ∃L ∈ B. U ∈ L ∧ obs(L) = o}.

Now, if qsink
M

is a fresh state, we let

QM = {qsink
M

}

∪̇ {qM ∈ Pfin(Vo) | o ∈ Obs ∧ ∀L ∈ B.obs(L) = o⇒ ∃U ∈ L. U ∈ qM}.

We define the function JK : QM → Dobs (G) where for o ∈ Obs , qM ∈ QM ∩ Pfin(Vo),

JqMK = o \
(⋃

U∈qM
U
)
. For qsink

M
we let Jqsink

M
K = ∅.

Since each U in q is an upward-closed set and o is downward-closed, JqMK ∈ Dobs(G).

We claim that the following properties hold for the set QM, the function JK and the

functions Post∃ and Post∀ in the game structure G̃.

Property 8. If qM ∈ QM and qM ∈ Pfin(Vo ∩ P(S∃)) for some o ∈ Obs, then there

exists σ ∈ Act∃(o) such that for each L ∈ B there is U ∈ L with Post∃(JqMK, σ)∩U = ∅.

Property 9. If qM ∈ QM and qM ∈ Pfin(Vo∩P(S∀)) for some o ∈ Obs, then for every

o′ ∈ Obs it holds that for each L ∈ B there is U ∈ L such that (Post∀(JqMK)∩o′)∩U = ∅.

To verify Property 8 we assume that its statement does not hold. Let qM ∈ QM

and qM ∈ Pfin(Vo ∩P(S∃)) for some o ∈ Obs. By our assumption, for each σ ∈ Act∃(o),

there exists L′
σ ∈ B such that for all U ′ ∈ L′

σ it holds that Post∃(JqMK, σ) ∩ U ′ 6= ∅.

Let L = {Pre∃(U
′, σ) ∩ o | σ ∈ Act∃(o), U

′ ∈ L′
σ}. Then, for each U ∈ L it holds

that JqMK ∩ U 6= ∅. By the construction of B, there exists L′′ ∈ B such that L′′ ⊑ L.

According to the definition of ⊑, for each U ′′ ∈ L′′ it holds that JqMK ∩ U ′′ 6= ∅.

Since obs(L′′) = o, by the construction of QM, there exists a U ′′ ∈ L′′ ∩ qM. Thus,

JqMK ∩ U ′′ = ∅, which is a contradiction to the fact about L′′ established above.

Property 9 follows using similar reasoning about the construction of B.

If for a set of states V ⊆ S we have that V ⊆ Jq1K and V ⊆ Jq2K, for some

q1, q2 ∈ QM, then V ⊆ JqK, where q = q1 ∪ q2 ∈ QM. Thus, if for a set V ⊆ S there

exists a q ∈ QM such that V ⊆ JqK, then there exists a q′ ∈ QM such that V ⊆ Jq′K and

which is the largest w.r.t. set inclusion element of QM with this property, that is, for

every q′′ ∈ QM with V ⊆ Jq′′K it holds that q′′ ⊆ q′.

We will use the following relations to define the transition relation ρ of M:

ρ∃ ⊆ (QM ∩ Pfin(P(S∃))) ×Σ∃ × (QM ∩ Pfin(P(S∀))), and

67

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

ρ∀ ⊆ (QM ∩ Pfin(P(S∀)))×Obs × (QM ∩ Pfin(P(S∃))).

For q ∈ QM ∩ Pfin(P(S∃)), q
′ ∈ QM ∩ Pfin(P(S∀)) and σ ∈ Σ∃ we let

(q, σ, q′) ∈ ρ∃ iff Post∃(JqK, σ) ⊆ Jq′K.

For q ∈ QM ∩ Pfin(P(S∀)), q
′ ∈ QM ∩ Pfin(P(S∃)) and o

′ ∈ Obs we let

(q, o′, q′) ∈ ρ∀ iff ∃o0 ∈ Obs∃q0 ∈ QM . . . ∃on ∈ Obs∃qn ∈ QM.

(∀0 ≤ i < j < n. qi 6= qj)∧

q0 = q ∧ qn = q′ ∧ on = o′ ∧ (∀0 ≤ i ≤ n.JqiK ⊆ oi)∧

(∀0 ≤ i < n.Post∀(JqiK) ∩ oi+1 6= ∅ ∧ (Post∀(JqiK) ∩ oi+1) ⊆ Jqi+1K)∧

(∀0 ≤ i < n.∀q̃ ∈ QM. (Post∀(JqiK) ∩ oi+1) ⊆ Jq̃K =⇒ q̃ ⊆ qi+1).

For each set V ⊆ S∀ of states and observation o ∈ Obs that are such that V ⊆ o

and Post∀(V) ∩ o 6= ∅, it holds that V ⊆ Post∀(V) ∩ o and therefore, if V ∩ U 6= ∅ for

some then also Post∀(V) ∩U 6= ∅. Thus, if for some V ⊆ S∀ and o ∈ Obs we have that

V ⊆ o, Post(V) ∩ o 6= ∅, and q ∈ QM is the largest w.r.t. set inclusion element of QM

such that V ⊆ JqK and q′ ∈ QM is the largest w.r.t. set inclusion element of QM such

that Post∀(q) ∩ o ⊆ Jq′K, then it holds that q′ ⊆ q (and hence Jq′K ⊇ JqK).

Taking into account the above observation, the definition of ρ∀ entails that if

(q, o′, q′1) ∈ ρ∀ and (q, o′, q′2) ∈ ρ∀, then q
′
1 ⊆ q′2 or q′2 ⊆ q′1 and thus, q1 ∩ q2 ∈ QM.

The following properties of the relations ρ∃ and ρ∀ are a direct consequence of their

definitions and Property 8 and Property 9, respectively:

• If q ∈ QM and q ∈ Pfin(Vo ∩ P(S∃)) for some o ∈ Obs, then there exist an action

σ ∈ Act∃(o) and a state q′ ∈ QM such that (q, σ, q′) ∈ ρ∃.

• If q ∈ QM and q ∈ Pfin(Vo ∩ P(S∀)) for some o ∈ Obs , then for every o′ ∈ Obs

such that o′ ⊆ S∃ and there exist states s0, . . . , sn ∈ S such that s0 ∈ JqK,

sn ∈ o′ and (si, si+1) ∈ T̃∀ for each i < n, there exists q′ ∈ QM such that

(q, o′, q′) ∈ ρ∀. Moreover, sn ∈ J
⋂

(q,o′,q′)∈ρ∀
q′K, where

⋂
(q,o′,q′)∈ρ∀

q′ is guaranteed

to be an element of QM by the observation we made above.

Since for every L ∈ B there exists U ∈ L such that I ∩ U = ∅, there must exist a

q0
M

∈ QM such that {(∀, 1, q00 , q
0
1, ǫ, ♭, ♭)} ⊆ Jq0

M
K. We fix one such q0

M
as initial state.

We define the transition relation ρM of M as follows. Let q ∈ QM and o′ ∈ Obs.

• If q ∈ QM∩Pfin(P(S∀)), o
′ ⊆ S∃ and there exists q′ ∈ QM such that (q, o′, q′) ∈ ρ∀

we let q′ =
⋃

(q,o′,q̃)∈ρ∀
q̃, fix an action σ ∈ Act∃(o

′) and a state q′′ ∈ QM such that

(q′, σ, q′′) ∈ ρ∃ (such q′′ exists by the above property), and let (q, (o′, σ), q′′) ∈ ρM.

68

3.3 Algorithms for Safety and Reachability Games

• If q ∈ QM ∩ Pfin(P(S∀)) and o
′ ⊆ S∀, we let (q, (o′,⊥), qsink

M
) ∈ ρM.

• If q ∈ QM ∩ Pfin(P(S∀)) and o
′ ⊆ S∃ and there is no q′ ∈ QM with (q, o′, q′) ∈ ρ∀,

we fix an action σ ∈ Act∃(o
′) and let (q, (o′, σ), qsink

M
) ∈ ρM.

• If q ∈ QM ∩ Pfin(P(S∃)) and o
′ ⊆ S∀, we let (q, (o′,⊥), qsink

M
) ∈ ρM.

• If q ∈ QM ∩ Pfin(P(S∃)) and o′ ⊆ S∃, we fix an action σ ∈ Act∃(o
′) and a state

q′ ∈ QM such that (q, σ, q′) ∈ ρ∃, and let (q, (o′, σ), q′) ∈ ρM.

• If q = qsink
M

and o′ ⊆ S∀, we let (q, (o′,⊥), qsink
M

) ∈ ρM.

• If q = qsink
M

and o′ ⊆ S∃, we fix σ ∈ Act∃(o
′) and let (q, (o′, σ), qsink

M
) ∈ ρM.

It is easy to verify that M fulfills the conditions of Definition 2.2.2. Furthermore,

the definitions of Act∃ and ρM ensure that M is non-blocking and Σ∃-correct.

Thus, M defines an obsa consistent strategy f∃ for Player∃ in G , as described in

Section 2.2. To see that f∃ is winning for Player∃ assume the opposite and consider

a play π ∈ Outcome(f∃) such that for some 0 ≤ i < |π| it holds that π[i] ∈ Err. By

induction on i it is easy to see that there exists a qM ∈ QM such that π[i] ∈ JqMK.

Thus, for some o ∈ Obs we obtain JqMK ∩ (Err ∩ o) 6= ∅. Since L = {Err ∩ o} ∈ B this

contradicts the definition of QM, and hence f∃ is winning for Player∃.

Notice that the strategy automaton M is finite and can be effectively constructed

by the procedure ConstructStrategy. The set of states QM, the alphabet Obs×Σ⊥
∃

and the transition relation ρ are finite. The conditions in the definitions of ρ∃ and ρ∀

can be checked effectively, since Pre∃ and Pre∀ are computable for elements Uobs(G)

and, if q = {U1, . . . , Un}, JqK ⊆ o, q′ = {U ′
1, . . . , U

′
m}, Jq′K ⊆ o′, then:

Post∃(JqK, σ) ⊆ Jq′K ⇐⇒

Post∃(JqK, σ) ⊆ o′ ∩ (
⋃m

i=1 U
′
i) ⇐⇒

Post∃(JqK, σ) ⊆ o′ and for all i = 1, . . . ,m,Post∃(JqK, σ) ∩ U
′
i = ∅ ⇐⇒ (def. T∃)

Post∃(o, σ) ∩ o
′ 6= ∅ and for all i = 1, . . . ,m,Post∃(JqK, σ) ∩ U

′
i = ∅ ⇐⇒

o ∩ Pre∃(o
′, σ) 6= ∅ and for all i = 1, . . . ,m, JqK ∩ Pre∃(U

′
i , σ) = ∅ ⇐⇒

o ∩ Pre∃(o
′, σ) 6= ∅ and for all i = 1, . . . ,m, o ∩ Pre∃(U

′
i , σ) ⊆

⋃n
j=1 Uj ;

Post∀(JqK) ∩ o
′ 6= ∅ ⇐⇒ JqK ∩ Pre∀(o

′) 6= ∅ ⇐⇒ o ∩ Pre∀(o
′) 6⊆

⋃n
j=1Uj ;

69

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

Post∀(JqK) ∩ o
′ ⊆ Jq′K ⇔

Post∀(JqK) ∩ o
′ ⊆ o′ ∩ (

⋃m
i=1 U

′
i) ⇔

for all i = 1, . . . ,m,Post∀(JqK) ∩ o
′ ∩ U ′

i = ∅ ⇔

for all i = 1, . . . ,m, JqK ∩ Pre∀(o
′ ∩ U ′

i) = ∅ ⇔

for all i = 1, . . . ,m, o ∩ Pre∀(o
′ ∩ U ′

i) ⊆
⋃n

j=1 Uj .

Thus, the relation ρ can be computed, since QM is finite and the relations ρ∃ and

ρ∀ are computed by checking conditions that are in the form given above.

3.3.5 Solving Reachability Lossy Channel Games

The algorithm for lossy channel games under incomplete information with reachability

winning conditions constructs a finite set of AND-OR trees whose nodes are labeled with

elements of Dobs(G) (more precisely, with finite elements of Dobs (G)). The procedure

for reachability games falls into the class of what is called tree-saturation methods

in [FS01]. It can be seen as an extension of the idea of the approach to downward-

closed games with reachability winning conditions described in [ABd08].

Function Post∗∀ The sets of states that label the nodes of the constructed trees repre-

sent the knowledge of Player∃ about the current state of the game after a given prefix.

Since Player∃ can only observe the heads the observable channels and messages can

be lost by Player∀, the knowledge of Player∃ at each point of the play is indeed a

downward-closed set, element of Dobs(G). Furthermore, since the transition relations

of G have finite branching, our construction ensures that the node labels are finite sets.

To update the knowledge of Player∃, we define the function Post∗∀ : Dfin

obs(G) →

Pfin(D
fin

obs (G)), where Dfin

obs (G) ⊆ Dobs(G) is the subset of Dobs(G) consisting of the

finite sets. The function Post∗∀ extends the restriction of Postobs∀ on Dfin

obs (G). For D ∈

Dfin

obs(G), the set Post∗∀(D) ∈ Pfin(D
fin

obs (D)) is a finite set of elements of Dfin

obs (S), each

of which is a set of states that Player∃ knows, according to his current observation, the

game may be in after a sequence of transitions of Player∀ corresponding to a sequence

of transitions of process 1 possibly preceded by a transition of process 0. Formally,

for D ∈ Dfin
obs(G) we have D′ ∈ Post∗∀(D) iff there exists a sequence D0,D1, . . . ,Dn ∈

Dfin
obs(G) such that the following conditions hold:

• D0 = D and for every 1 ≤ i ≤ n, Di−1 ⊆ S∀ and Di ∈ Postobs∀ (Di−1),

70

3.3 Algorithms for Safety and Reachability Games

• for every 0 ≤ i < j < n it holds that Di 6⊆ Goal and Di 6⊆ Dj ,

• D′ satisfies one of the following conditions:

(i) D′ = Dn, D
′ ⊆ Goal, or

(ii) there exists a 0 ≤ i < n such that Di ⊆ Dn and D′ = Dn, or

(iii) D′ = {(∃, 0, q0, q1, w, σ∃, σ) | (∀, 1, q0, q1, w, σ∃, σ) ∈
⋃n

i=0Di}.

Proposition 3.3.4. For each D ∈ Dfin

obs(G) the set Post∗∀(D) is finite.

Proof. The elements of the set Post∗∀(D) correspond to paths in a tree with root labeled

with D in which the children of a node labeled with Di correspond to (are labeled with)

the elements of Post∗(Di). Since the transition relations of G(L,Σ∃, Cobs) have finite

branching and the set Obs is finite, the degree of each node in this tree is finite.

Each element of Post∗∀(D) corresponds to a path in this tree: in cases (i) and (ii)

this is a label of a node in the tree and in case (iii) this set is computed based on the

labels of a finite path in the tree. Thus, if we assume that the set Post∗(D) is infinite,

it means that the tree must be infinite. By König’s lemma we have that there exists an

infinite path in the tree such that for each node on this path there exist infinitely many

distinct elements of Post∗(D) corresponding to nodes/paths in this node’s subtree.

Since (Dfin
obs (G),⊆) is a BQO (and hence a WQO), there must be nodes n′ and n′′

on this path such that for the respective sets D′ and D′′ it holds that D′ ⊆ D′′. By

the definition of Post∗∀(D) no new elements of Post∗∀(D) can appear in the subtree of

n′′ which is a contradiction to the choice of the infinite path.

Proposition 3.3.5. For each D ∈ Dfin

obs (G), if there exists an infinite path π such that

π[0] ∈ D and π[i] ∈ S∀ and π[i] 6∈ Goal for each i ≥ 0, then there exists D′ ∈ Post∗∀(D)

such that condition (ii) from the definition of Post∗∀ is satisfied.

Proof. If such a path π exists, there exists an infinite sequence D0,D1,D2, . . . of el-

ements of Dfin

obs (G) such that D0 = D and for every 1 ≤ i, Di−1 ⊆ S∀ and Di ∈

Postobs∀ (Di−1). Since (Dfin
obs (G),⊆) is a WQO, there exist indices 0 ≤ i < j such that

Di ⊆ Dj . Now, taking the finite sequence D0, . . . ,Dj , for the set D
′ = Dj we have that

D′ ∈ Post∗∀(D) where the condition of Proposition (ii) is satisfied.

Algorithm The procedure for solving reachability games, given as Algorithm 2, per-

forms a forward exploration of the finite downward-closed sets of states representing

the knowledge of Player∃. It constructs a set of AND-OR trees rooted at the different

71

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

possible knowledge sets for Player∃ at location q00. The labeled graph consisting of the

constructed trees is F = (N,E,LD ,La) with nodes N , edges E ⊆ N × N , function

LD : N → Dfin

obs (G) that labels each node with an element of Dfin

obs(G) and a function

La : E → Σ∃ ∪ {ǫ} that labels edges with Player∃-actions.

The procedure’s input is a LC-game Reach(G(L,Σ∃, Cobs), Goal) described symbol-

ically by a partially specified LCS and a symbolically represented set of goal states.

The set of trees F is constructed starting from the root nodes labeled with the

elements of the set {(∃, 0, q00 , q
0
1 , ǫ, ♭, ♭)}∪Post

∗
∀({(∀, 1, q

0
0 , q

0
1 , ǫ, ♭, ♭)}\Goal), representing

the possible initial knowledge sets of Player∃. Children of a node in the tree are added

for the elements of the respective set of successor sets computed by Postobs∃ and Post∗∀.

Nodes whose label is a subset of the goal states are declared successful for Player∃ and

their successors are not explored. Nodes for which there exists an ancestor labeled with

a subset of the node’s label are declared unsuccessful for Player∃ and also not explored

further. Similarly, nodes labeled with a set that includes as a subset a set on the path

used by Post∗∀ are also unsuccessful for Player∃ and not explored further.

Once the set F of trees is constructed, each node n is evaluated by assigning to it

a boolean value win(n). The evaluation proceeds bottom-up from the leaves, which

have already been evaluated. The values of non-leaf nodes are computed based on

those of their children, by interpreting the choices of Player∃ disjunctively and the

choices of Player∀ conjunctively. If some root node is evaluated with false , then

SolveLC-GamesReachability returns ∀ indicating that Player∃ does not have an

obsa-consistent winning strategy. Otherwise, SolveLC-GamesReachability returns

a strategy for Player∃ constructed by the procedure ConstructStrategy.

Each step of algorithm SolveLC-GamesReachability can be effectively com-

puted. Using the representation from Section 3.3.2, the labels of nodes in F are repre-

sented by elements of ΦDobs
. Thus, checking inclusion between node labels is decidable.

The computation of the node labels relies on the functions Postobs∃ : ΦDobs
×Σ∃ → ΦDobs

and Post∗∀ : ΦDobs
→ Pfin(ΦDobs

). The latter function is based on the function Postobs∀ :

ΦDobs
→ Pfin(ΦDobs

) and by Proposition 3.3.4 can be effectively computed by exploring

a finite tree, since Postobs∀ can be computed and finite union of elements of ΦDobs
with

the same observation is an element of ΦDobs
and can be computed.

72

3.3 Algorithms for Safety and Reachability Games

Algorithm:SolveLC-GamesReachability

Input: reachability LC-game Reach(G(L,Σ∃, Cobs), Goal) with

G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) and observable set Goal

Output: (winner , strategy) or winner

ToExplore := {n0}; add n0 to N with LD(n0) := {(∃, 0, q00 , q
0
1 , ǫ, ♭, ♭)};

V := Post∗∀({(∀, 1, q
0
0 , q

0
1, ǫ, ♭, ♭)} \Goal);

foreach o ∈ Obs such that there is D′ ∈ V with D′ ⊆ o do
D′ :=

⋃
D∈V,D⊆oD; add new n′ to N with LD(n

′) = D′;

if D′ ⊆ S∀ and D′ 6⊆ Goal then win(n′) := false; /* close n′ */

else ToExplore := ToExplore ∪ {n′}

while ToExplore 6= ∅ do
pick and remove n from ToExplore ;

if LD(n) ⊆ Goal then win(n) := true; /* close n */

else if exists an ancestor n′ of n such that LD(n
′) ⊆ LD(n) then

win(n) := false; /* close n */

else if LD(n) ⊆ S∃ then

foreach σ∃ ∈ Act∃(o), where o ∈ Obs with LD(n) ⊆ o do

add new n′ to N with LD(n
′) = Postobs∃ (LD (n), σ∃);

La((n, n
′)) = σ∃;

ToExplore := ToExplore ∪ {n′}

else if LD(n) ⊆ S∀ then
V := Post∗∀(LD(n));

foreach o ∈ Obs such that there is D′ ∈ V with D′ ⊆ o do
D′ :=

⋃
D∈V,D⊆oD;

add new n′ to N with LD(n
′) = D′, La((n, n

′)) = ǫ;

if D′ ⊆ S∀ and D′ 6⊆ Goal then win(n′) := false; /* close n′ */

else ToExplore := ToExplore ∪ {n′}

ToExplore := Leaves(F);

while ToExplore 6= ∅ do
pick and remove n from ToExplore such that

n′ := Parent(n) and each n′′ ∈ Children(n′) is evaluated ;

if LD(n
′) ⊆ S∃ then win(n′) =

∨
n′′∈Children(n′) win(n

′′);

else win(n′) =
∧

n′′∈Children(n′) win(n
′′);

if n′ is a root and win(n′) = false then return ∀;

else ToExplore := ToExplore ∪ {n′}

f∃ := ConstructStrategy(G,F); return (∃, f∃);

Algorithm 2: Solving reachability LC-games under incomplete information.

73

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

Correctness The following three propositions establish the total correctness of Al-

gorithm SolveLC-GamesReachability.

Proposition 3.3.6. Algorithm SolveLC-GamesReachability terminates.

Proof. Let us suppose that the construction of the graph F does not terminate. This

means that the graph F is infinite. The transition relations of G(L,Σ∃, Cobs) as well

as the set Obs are finite, and as shown in Proposition 3.3.4, for each D ∈ Dobs(G)

the set Post∗∀(D) is finite. Therefore, the graph F constructed by the algorithm is the

union of a finite set of disjoint trees in which each node has finite degree. Thus, by

König’s Lemma there exists an infinite simple path n0, n1, n2, . . . in F. Consider the

infinite sequence LD(n0),LD (n1),LD (n2), . . . of labels of the nodes on this path. Since

(Dfin
obs (G),⊆) is a BQO (and hence also a WQO), there must exist indices 0 ≤ i < j such

that LD(ni) ⊆ LD(nj). Thus, by construction nj must be a leaf in F, which contradicts

to the fact that n0, n1, n2, . . . is an infinite path.

Thus, the graph F is finite and the first two loops of SolveLC-GamesReachability

terminate. The loop that evaluates the nodes in F clearly also terminates, since each

node in F is added to the set ToExplore at most once.

Let us denote with F̃ = (N, Ẽ,LD , L̃a) the graph obtained from F by replacing

each edge (n, n′) where n′ is a leaf node for which there is an ancestor n′′ such that

LD(n
′′) ⊆ LD(n

′) with an edge (n, n′′) labeled by L̃a ((n, n
′′)) = La((n, n

′)) and adding

a self-loop labeled with ǫ for each leaf n with LD(n) ⊆ S∀ and LD(n) 6⊆ Goal. Note

that in both cases the back-jump edges originate from nodes n with LD(n) ⊆ S∀.

Paths in the trees F and in the graph F̃ correspond to sets of paths in the game struc-

ture G(L,Σ∃, Cobs). The function StatesG : N → S maps a node n to the set of states of

G defined as follows StatesG(n) = LD(n)∪{(∀, 0, q0, q1, w, σ∃, σ) | (∃, 1, q0, q1, w, σ∃, σ) ∈

LD(n)}. Note that for a node n with LD(n) ⊆ S∃ the set StatesG(n) contains also the

counterparts from S∀ of the states in LD(n), taking into account the construction of

the node labels in F. The function PathsG extends the function StatesG to paths in F

and F̃ as follows. Given a path ν, the set PathsG(ν) of paths in G contains a path π

iff there exists a function f : N → N such that:

• f(i) ≤ f(i+ 1) for each i ∈ N, and the co-domain of f is [0, |ν|),

• π[i] ∈ States(ν[f(i)]) for each 0 ≤ i < |π|, and

• if π[i] ∈ S∃ then f(i+ 1) > f(i) for each 0 ≤ i < |π| − 1.

74

3.3 Algorithms for Safety and Reachability Games

Since for each newly introduced edge (n, n′′) replacing an edge (n, n′) it holds

that LD(n
′′) ⊆ LD(n

′), we have by the definition of F that for every finite path

ν = n0, n1, . . . , nk in F̃ and every s ∈ LD(nk), there exists π ∈ PathsG(ν) such that

last(π) = s. Thus, for each (possibly infinite) path ν in F̃ there exists π ∈ PathsG(ν).

Proposition 3.3.7. If algorithm SolveLC-GamesReachability terminates return-

ing ∀, then Player∃ does not have an obsa-consistent winning strategy in Reach(G,Goal).

Proof. If algorithm SolveLC-GamesReachability returns ∀, then there is a root

node n0 in F for which win(n0) = false. We will show that for any obsa-consistent

strategy f∃ for Player∃ we can use the tree rooted an n0 to show that there exists an

infinite play π ∈ Outcome(f∃) that never visits a state in Goal.

Let us fix for each node n in F̃ with LD(n) ⊆ S∀ and win(n) = false a node

n′ ∈ Children(n) by fixing a partial function ρ∀ : N → N that maps each such node to

a respective successor. By the definition of win and the fact that we added back-jump

edges in F̃ it follows that for each such node the function is defined.

By the construction of the trees F and the definition of the function PathsG, we have

that for each two prefixes π1 ∈ PathsG(ν) and π2 ∈ PathsG(ν), where ν = n0, n1, . . . , nk

is a path in F̃, it holds that obsa(π1) = obsa(π2). Therefore, since the strategy f∃

is obsa-consistent, we can define a function ρ∃ : N+ → N , where for a finite path

ν = n0 . . . nk in F̃, if there is a π ∈ PathsG(ν) we define ρ∃(π) = n′, where n′ is the

single child of n with La((n, n
′)) = f∃(π) (such n

′ exists according to the definition of

strategies and the construction of F), and otherwise we leave ρ∃(π) undefined.

Since, as explained above, for each path ν in F̃ there exists π ∈ PathsG(ν), the

function ρ∃ and ρ∀ starting from a root n0 with win(n0) = false construct an in-

finite path n0, n1, . . . such that LD(ni) ∩ Goal = ∅ for each i ≥ 0. There exists

π ∈ PathsG(n0, n1, . . .), and furthermore π ∈ Outcome(f∃) by the definition of ρ∃.

Proposition 3.3.8. If SolveLC-GamesReachability terminates returning a strat-

egy f∃, then f∃ is an obsa-consistent wining strategy for Player∃ in Reach(G,Goal).

Proof. Here we consider the case when algorithm SolveLC-GamesReachability ter-

minates and the root of each tree in F is evaluated to true. In this case the procedure

ConstructStrategy constructs a finite strategy represented as a strategy automaton

M = (QM, q
0
M
,Obs ×Σ⊥

∃ , ρ), as described below.

The set of states of the strategy automaton is defined as

QM = {q0M, q
sink
M } ∪̇ {D | ∃n ∈ N. D = LD(n) ∧ win(n) = true}.

75

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

By the definition of the function win , we have that for each n ∈ N such that

LD(n) ⊆ S∃, win(n) = true and LD(n) 6⊆ Goal, there exists σ ∈ Σ∃ such that for

the node n′ with La((n, n
′)) = σ it holds that win(n′) = true. Furthermore, for

every n′′ ∈ N with LD(n
′′) = LD(n) it holds that win(n′′) = true and there exists

n′′′ ∈ Children(n′′) such that La((n
′′, n′′′)) = σ and win(n′′′) = win . Thus, we can

construct a function ρ∃ : {q ∈ QM | q ⊆ S∃ ∧ q 6⊆ Goal} → Σ∃ such that

ρ∃(q) = σ ⇒ (∀n ∈ N. LD(n) = q ⇒ ∃n′ ∈ Children(n) La((n, n
′)) = σ∧win(n′) = true).

Note that for q ∈ {q ∈ QM | q ⊆ S∃ ∧ q 6⊆ Goal} it holds that Postobs∃ (q, ρ∃(q)) ∈ QM.

We define the function ρ∀ : {q ∈ QM | q ⊆ S∀} ×Obs → QM:

ρ∀(q, o) =

⋃
D∈Post∀

∗(q),D⊆oD if ∃D ∈ Post∗∀(q). D ⊆ o

qsink
M

otherwise.

Let fix : Obs ∩ P(S∃) → Σ∃ be a function that fixes for each observation o ⊆ S∃

some action σ ∈ Act∃(o). Now, using the functions ρ∃ and ρ∀ we define the transition

relation ρM of M, which is the least relation such that for q ∈ QM and o ∈ Obs:

• If q = q0
M
, o ⊆ S∃ and there exists a root node n with LD(n) ⊆ o, then

(q, (o, σ), q′) ∈ ρM, where σ = ρ∃(LD(n))) and q
′ = Postobs∃ (LD (n), σ).

• If q = q0
M
, o ⊆ S∃ and no root n has LD(n) ⊆ o, then (q, (o,fix (o)), qsink

M
) ∈ ρM.

• If q ∈ QM ∩ Pfin(P(S∃)), q 6⊆ Goal and o ⊆ S∃, then (q, (o, σ), q′) ∈ ρM, where

σ = ρ∃(q) and q
′ = Postobs∃ (q, σ).

• If q ∈ QM ∩ Pfin(P(S∀)), q 6⊆ Goal, o ⊆ S∃ and q′ = ρ∀(q, o) 6= qsink
M

, then

(q, (o, σ), q′′) ∈ ρM, where σ = ρ∃(q
′) and q′′ = Postobs∃ (q′, σ).

• If q ∈ QM ∩ Pfin(P(S∀)), q 6⊆ Goal, o ⊆ S∃ and q′ = ρ∀(q, o) = qsink
M

, then

(q, (o,fix (o)), qsink
M

) ∈ ρM.

• If q ⊆ Goal or q = qsink
M

and o ⊆ S∃, then (q, (o,fix (o)), q) ∈ ρM.

• If o ⊆ S∀, then (q, (o,⊥), qsink
M

) ∈ ρM.

It is easy to verify that M fulfills the conditions of Definition 2.2.2. Furthermore,

the definitions of Act∃ and ρM ensure that M is non-blocking and Σ∃-correct.

Thus, M defines an obs-a consistent strategy f∃ for Player∃ in G, as described in

Section 2.2. To see that f∃ is winning for Player∃ assume the opposite and consider an

infinite play π ∈ Outcome(f∃) such that for all i ≥ 0 it holds that π[i] 6∈ Goal.

76

3.4 Undecidability of Parity LC-Games under Incomplete Information

By the definition of f∃ and M, each play in Outcome(f∃) corresponds to a run of

M that does not reach qsink
M

. By the construction of M and F such a run corresponds

to a path in the tree, that is such that if it reaches leaf node n then n must be

such that LD(n) ⊆ Goal. Since we assumed that the play π does not reach Goal,

the corresponding path must be of the form n0, n1, . . . , nk, where LD(nk) ⊆ S∃ and

win(ni) = true for each 0 ≤ i ≤ k. Thus, there exists an index i0 ≥ 0 such that

for each i ≥ i0 it holds that π[i] ∈ States(nk). Thus, by Proposition 3.3.5 and the

construction of F, either k = 0 and there exists a root node n′ with win(n′) = false or

there exists n′ ∈ Children(nk−1) such that win(n′) = false. The first case contradicts

the precondition of the claim we are proving and the second contradicts the fact that

win(nk−1) = true and LD(nk−1) ⊆ S∀. Thus, the proof by contradiction is completed.

Notice that the strategy automaton M is finite and can be effectively constructed by

the procedure ConstructStrategy. The set of states QM, the alphabet Obs × Σ⊥
∃

and the transition relation ρ are finite. The transition relation ρ can be computed,

since each qM is a downward-closed set, the set QM is finite and the relations ρ∃ and

ρ∀ are defined in terms of the functions Postobs∃ and Post∗∀.

We denote with CLCS,Safety and CLCS,Reach the classes of games under incomplete

information with observable safety and reachability winning conditions respectively,

whose game structures are defined by partially specified LCSs. The following theorem

summarizes the results from sections 3.3.4 and 3.3.5.

Theorem 3.3.1. The game solving and strategy synthesis problems are decidable for

• the class of games CLCS,Safety and the class of obsa-consistent Player∃ strategies.

• the class of games CLCS,Reach and the class of obsa-consistent Player∃ strategies.

3.4 Undecidability of Parity LC-Games under Incomplete

Information

We now turn to more general ω-regular observable winning conditions for Player∃. For

perfect information lossy channel games in which only one player can lose messages,

undecidability results for weak parity winning conditions were established in [ABd08].

In this section we show that these results carry on to our setting of lossy channel games

under incomplete information. Notice that the perfect information games of [ABd08]

are not a special case of the incomplete information games for LCSs which we study in

77

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

this thesis. This is because in a lossy channel game under incomplete information, the

information which Player∃ receives about the current state is from a finite set, while

in the perfect information case there are infinitely many possible observations.

An observable priority function pr : Obs → {0, 1, . . . , n} for n ∈ N in a game

structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) with incomplete information maps each ob-

servation to a non-negative integer priority. Let Obs be finite. For an infinite play

π = s0, s1, s2 . . . we define pr (π) = min{pr (o) | o ∈ InfObs(π)}, where InfObs(π) =

{o ∈ Obs | ∀i.∃j. i < j ∧ sj ∈ o} is the set of observations from that occur infinitely

often in π, and define wpr (π) = min{pr (o) | o ∈ Obs∧∃i. si ∈ o}. An observable parity

winning condition for Player∃ in the game structure G is defined by an observable pri-

ority function pr as the set Parity(G, pr) = {π ∈ Sω | pr(π) is even} of infinite plays

for which the minimal priority occurring infinitely often is even. An observable weak

parity winning condition Player∃ in G is also defined by an observable priority function

pr and is the set of infinite plays WeakParity(G, pr) = {π ∈ Sω | wpr (π) is even} for

which the minimal priority occurring in the play is even.

We denote with CLCS,Parity and CLCS,WeakParity the classes of games under incom-

plete information with observable parity and weak parity winning conditions respec-

tively, whose game structures are defined by partially specified LCSs.

Theorem 3.4.1. The game solving problem is undecidable for the class of games

CLCS,WeakParity and the class of obsa-consistent Player∃ strategies.

Proof. In [ABd08] it was shown that in the perfect information setting the weak parity

problem for B-LCS games, which are games played on a finite set of channels in which

player A has a weak parity objective and only player B is allowed to lose messages, is

undecidable. Their proof (given for A-LCS games but easily transferable into a proof

for B-LCS games) is based on a reduction from the infinite computation problem for

transition systems based on lossy channel systems, which is undecidable [AJ96].

This reduction can be adapted for our framework, with Player∃ in the role of

player A and Player∀ in the role of player B. The fact that here Player∃ choses only

transition labels and plays under incomplete information does not affect the proof for

B-LCS games, since there player A just follows passively, while player B simulates the

original system. The values of the priority function used in [ABd08] do not depend on

the contents of the channels. Thus, we can define an observable priority function.

We now present the adapted version of the proof given in [ABd08].

78

3.4 Undecidability of Parity LC-Games under Incomplete Information

The infinite computation problem asks if for a LCS L = ({Ai}
n
i=0, C,M, {Σi}

n
i=0)

and a location qinit = (qinit0 , . . . , qinitn) there exists a channel contents w such that

there exists an infinite computation of L starting from (qinit, w), that is, whether there

is an infinite sequence of configurations π = (q0, w0), (q1, w1), (q1, w1), . . . such that

q0 = qinit, w
0 = w and for each i ≥ 0 there is σi ∈ Σ such that (qi, wi)

σi→ (qi+1, wi+1).

We show that the infinite computation problem for LCS can be reduced to the game

solving problem for the class of games CLCS,WeakParity and the class of obsa-consistent

Player∃ strategies. To this end, for a given LCS L = ({Ai}
n
i=0, C,M, {Σi}

n
i=0) we define

a partially specified LCS (L̃,Σc, Cobs), where L̃ = ({Ãi}
1
i=0, C,M, {Σ̃i}

1
i=0) and:

• Σ̃0 = {σc,m | c ∈ C,m ∈M} ∪̇ {σ̃init, σ̃d} ∪̇ Σ,

• Σ̃1 = {σ̃1},

• Ã0 = (Q̃0, q̃00 , δ̃0), Q̃0 = {q̃0, q̃d} ∪̇ (Q0 × . . .×Qn) and δ̃0 is the least set with:

– (q̃00, σ̃c,m, true , c!m, q̃
0
0) ∈ δ̃0, for each c ∈ C and m ∈M ,

– (q̃00, σ̃init, true,nop, qinit) ∈ δ̃0,

– (q, σ,Gr ,Op, q′) ∈ δ̃0 for each p ∈ [0, n] and (qp, σ,Gr ,Op, q′p) ∈ δp, such

that q(p) = qp, q
′(p) = q′p and q(p′) = q′(p′) for all p′ ∈ [0, 1] with p′ 6= p,

– (q, σ̃d, true,nop, qd) for each q ∈ Q0 × . . . ×Qn,

• Ã1 = (Q̃1, q̃
0
1 , δ̃1), where Q̃1 = {q̃01} and δ̃1 = {(q̃01 , σ̃1, true ,nop, q̃

0
1)},

• Σc = ∅, Cobs = C.

Let G(L̃,Σc, Cobs) = (S∃, S∀, I,=o,Σ∃, T∃, T∀). Now, let the observable priority

function pr : Obs → {0, 1, 2} be defined as follows:

• pr(o) = 2 if (t, 0, (q̃00 , q̃
0
1), w, σ∃, σ) ∈ o for some t, w, σ∃ and σ,

• pr(o) = 1 if (t, 0, (q̃0, q̃
0
1), w, σ∃, σ) ∈ o for some q̃0 ∈ Q, and t, w, σ∃ and σ,

• pr(o) = 0 if (t, 0, (q̃d, q̃
0
1), w, σ∃, σ) ∈ o for some t, w, σ∃ and σ,

• pr(o) = 0 if (t, 1, q, w, σ∃, σ) ∈ o for some t, q, w, σ∃ and σ.

Note that since Obs is finite, the function pr has finite representation.

We claim that in (G,WeakParity(G, pr)), Player∃ has an obsa-consistent winning

strategy iff the answer to the infinite computation problem for L and qinit is negative.

Suppose that f∃ is an obsa-consistent winning strategy for Player∃ in the game

(G,WeakParity (G, pr)) and assume that there exists a channel contents w and an

79

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

infinite computation ν = (q0, w0), (q1, w1), (q2, w2), . . . with q0 = qϕInit
and w0 = w. By

the construction of (L̃,Σc, Cobs), there exists an infinite play π ∈ Outcome(f∃), which

corresponds to w and ν, such that there exists an index i > 0 such that for all 0 ≤ j < i

we have pr (oj) = 2 and for all j ≥ i we have pr (oj) = 1, where o0o1o2 . . . is the sequence

of observations corresponding to π. Thus, π 6∈ WeakParity(G, pr), which contradicts

the fact that f∃ is a winning strategy for Player∃ in the game (G,WeakParity(G, pr)).

Now, assume that there does not exist w ∈ W for which there is an infinite com-

putation of L starting from (qinit, w). Let f∃ be the strategy for Player∃ in G that

is such that f∃(π) = ♭ for each π ∈ Prefs∃(G). Clearly f∃ is obsa-consistent and

each play π ∈ Outcome(f∃) is infinite. We will show that f∃ is winning for Player∃
in (G,WeakParity(G, pr)). If we assume the contrary, then by the construction of

the game and the definition of the priority function, there exists an infinite play

π ∈ Outcome(f∃) such that there exists an index i > 0 such that for all 0 ≤ j < i

we have pr(oj) = 2 and for all i ≤ j we have pr (oj) = 1. Let w be the contents of the

channels in state π[i]. Then, by the definition of G and pr we have that there exists an

infinite computation of L starting from (qinit, w), which contradicts our assumption.

Corollary 3.4.1. The game solving problem is undecidable for the class of games:

CLCS,Parity and the class of obsa-consistent Player∃ strategies.

As noted in [ABd08], the above proof can be straightforwardly adapted to show the

undecidability also for Büchi and co-Büchi winning conditions. Given a set F ⊆ S of

states in a game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) with incomplete information,

the Büchi winning condition for F is Buchi(G,F) = {π ∈ Sω | ∀i ≥ 0.∃j > i. π[j] ∈ F}.

The co-Büchi winning condition for F is coBuchi(G,F) = {π ∈ Sω | ∃i ≥ 0.∀j ≥

i. π[j] 6∈ F}. To obtain a reduction to a Büchi winning condition, encoded as an

observable parity condition, we use the construction from the proof and define the set

of states F ′ = {s ∈ S | ∃o.s ∈ o ∧ pr ′(o) = 0}, where:

• pr ′(o) = 0 if (t, 0, (q̃00 , q̃
0
1), w, σ∃, σ) ∈ o for some t, w, σ∃ and σ,

• pr ′(o) = 1 if (t, 0, (q̃0, q̃
0
1), w, σ∃, σ) ∈ o for some q̃0 ∈ Q, and t, w, σ∃ and σ,

• pr ′(o) = 0 if (t, 0, (q̃d, q̃
0
1), w, σ∃, σ) ∈ o for some t, w, σ∃ and σ,

• pr ′(o) = 0 if (t, 1, q, w, σ∃, σ) ∈ o for some t, q, w, σ∃ and σ.

Similarly, for a co-Büchi winning condition, F ′′ = {s ∈ S | ∃o.s ∈ o ∧ pr ′′(o) = 1},

where:

80

3.4 Undecidability of Parity LC-Games under Incomplete Information

• pr ′′(o) = 2 if (t, 0, (q̃00 , q̃
0
1), w, σ∃, σ) ∈ o for some t, w, σ∃ and σ,

• pr ′′(o) = 1 if (t, 0, (q̃0, q̃01), w, σ∃, σ) ∈ o for some q̃0 ∈ Q, and t, w, σ∃ and σ,

• pr ′′(o) = 2 if (t, 0, (q̃d, q̃
0
1), w, σ∃, σ) ∈ o for some t, w, σ∃ and σ,

• pr ′′(o) = 2 if (t, 1, q, w, σ∃, σ) ∈ o for some t, q, w, σ∃ and σ.

81

3. LOSSY CHANNEL GAMES UNDER INCOMPLETE
INFORMATION

82

Chapter 4

Games with Fixed Observations

In the previous chapter we presented algorithms for solving incomplete-information LC-

games with safety and reachability winning conditions. Now we extract and formulate

general sets of conditions on the game structures under which the algorithmic schemes

resulting from generalizing these algorithms are applicable. In addition to the existence

of a BQO on the set of states of the game that relates in a suitable way to the observation

equivalence relation, there are, broadly speaking, two other types of conditions. One

part of the conditions establish the existence of a symbolic representation that enables

the effective computation of each step of the respective backward or forward algorithm.

The second part of the conditions require in addition that the transition relations of

the two players satisfy some monotonicity properties that ensure the algorithms’ ter-

mination. We conclude this chapter with an example of a game structure that meets

the requirements of the classes of games defined here, but does not fall into any of the

previously known decidable classes of infinite-state incomplete-information games.

4.1 Monotonic and Downward-Closed BQO Games

In LC-games, the transition relation of Player∀ satisfies a strong monotonicity property

which allowed us to define effective symbolic representations closed under predecessor

of successor operations respectively, and which guaranteed the termination of the re-

spective backward or forward algorithm. Generally, given a suitable effective symbolic

representation, the requirement on the transition relation of Player∀ can be relaxed by

adding a monotonicity condition regarding the transition relation of Player∃ and still

83

4. GAMES WITH FIXED OBSERVATIONS

s1

s2

s′1

s′2

� �

∃

monotonic

s1

s2

s′1
�

downward-closed

s2

s1

s′2

s′1

� �

∃

backward

monotonic

s1

s′2

s′1

�

backward

downward-closed

Figure 4.1: Monotonicity properties of (transition) relations.

ensure termination. In the following, we give the definitions of the different monotonic-

ity conditions and state the properties of the game structures that fulfill them.

Definition 4.1.1. Let (S,�) be a quasi-ordering. A relation R ⊆ S × S is called

• monotonic if for each s1, s2, s
′
1 ∈ S for which (s1, s

′
1) ∈ R and s1 � s2, there exists

s′2 ∈ S such that (s2, s
′
2) ∈ R and s′1 � s′2.

• downward-closed if for each s1, s2, s
′
1 ∈ S for which (s1, s

′
1) ∈ R and s1 � s2, it

holds that (s2, s
′
1) ∈ R.

• backward-monotonic if for each s1, s
′
1, s

′
2 ∈ S for which (s1, s

′
1) ∈ R and s′2 � s′1,

there exists s2 ∈ S such that (s2, s
′
2) ∈ R and s2 � s1.

• backward-downward-closed if for each s1, s
′
1, s

′
2 ∈ S for which (s1, s

′
1) ∈ R and

s′2 � s′1, it holds that (s1, s
′
2) ∈ R.

Figure 4.1 depicts the properties of a binary relation → from Definition 4.1.1.

For a game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) and an action σ ∈ Σ∃ we

denote T∃σ = {(s, s′) ∈ S∃ × S∀ | (s, σ, s′) ∈ T∃}. For each observation o ∈ Obs,

Enabled(o) = {σ ∈ Σ∃ | ∃s ∈ o.∃s′ ∈ S.(s, σ, s′) ∈ T∃} is the set of actions enables in o.

Definition 4.1.2. Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure (with incom-

plete information) and (S∃ ∪̇ S∀,�) be a quasi-ordering. (G ,�) is called

• ∃-monotonic(∃-downward-closed) if T∃σ is monotonic(downward-closed) for all σ.

• ∀-monotonic(∀-downward-closed) if T∀ is monotonic(downward-closed).

• monotonic (downward-closed) if it is both ∃-monotonic and ∀-monotonic (both

∃-downward-closed and ∀-downward-closed).

84

4.1 Monotonic and Downward-Closed BQO Games

The notions of ∃-(∀)-backward-monotonic,∃-(∀)-backward-downward-closed, backward-

monotonic and backward-downward-closed game structures are defined analogously,

using the respective notions from Definition 4.1.1.

Each ∗-downward-closed game structure is ∗-monotonic. Depending on the mono-

tonicity notions satisfied by the transition relations of a game structure, the respective

Pre- and Post-operators enjoy the useful properties stated below. Recall that for a

WQO or BQO (S,�) we denote with U(S) the set of upward-closed subsets of S and

with D(S) the set of downward-closed subsets of S.

Proposition 4.1.1. Let G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be a game structure (with in-

complete information) and (S∃ ∪̇ S∀,�) be a quasi-ordering. If (G ,�) is

• ∀-monotonic, then Pre∀(U) ∈ U(S), for every U ∈ U(S).

• ∀-downward-closed, then Pre∀(V) ∈ U(S), for every set V ⊆ S.

• ∃-monotonic, then Pre∃(U, σ) ∈ U(S), for every U ∈ U(S) and every σ ∈ Σ∃.

• ∃-downward-closed, then Pre∃(V, σ) ∈ U(S), for every V ⊆ S and σ ∈ Σ∃.

• ∀-backward-monotonic, then Post∀(D) ∈ D(S) for every D ∈ D(S).

• ∀-backward-downward-closed, then Post∀(V) ∈ D(S), for every V ⊆ S.

• ∃-backward-monotonic, then Post∃(D,σ) ∈ D(S), for D ∈ D(S) and σ ∈ Σ∃.

• ∃-backward-downward-closed, then Post∃(V, σ) ∈ D(S), for V ⊆ S and σ ∈ Σ∃.

Definition 4.1.3. A well-quasi ordered (WQO) game structure is a tuple (G ,�), where

G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) is a game structure (with incomplete information) and

(S∃ ∪̇ S∀,�) is a WQO. An WQO game structure (G ,�) is a called a better-quasi

ordered (BQO) game structure if the WQO (S∃ ∪̇ S∀,�) is a BQO.

By definition, each BQO game structure is a WQO game structure.

A constraint φ for a given game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) denotes a

possibly infinite set of states JφK in G. Constraints are used to represent (infinite) sets of

states in symbolic algorithms. For example, in the algorithms described in Section 3.3.4

and Section 3.3.5 the sets of constraints used are the sets ΦUobs
and ΦDobs

. In order

to use a set of constraints in a symbolic algorithm, it has to satisfy the respective

expressiveness and effectiveness conditions defined below.

85

4. GAMES WITH FIXED OBSERVATIONS

Definition 4.1.4. A set of constraints Φ is Pre-effective for a BQO game structure

(G ,�) with G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) if it fulfills the following conditions:

(i) for each φ, φ′ ∈ Φ and s ∈ S we can decide whether JφK ⊆ Jφ′K, JφK = ∅, c ∈ JφK;

(ii) for each U ∈ U(S) there exists φU ∈ Φ such that JφU K = U ;

(iii) for each φ1, φ2 ∈ Φ and o ∈ Obs for which it holds that Jφ1K ⊆ o and Jφ2K ⊆ o,

we can compute φ ∈ Φ such that JφK = Jφ1K ∪ Jφ2K;

(iv) for each φ ∈ Φ and o ∈ Obs we can compute φ′ ∈ Φ such that Jφ′K = JφK ∩ o;

(v) for each φ ∈ Φ and σ ∈ Σ∃ we can compute φ′ ∈ Φ such that Jφ′K = Pre∃(JφK, σ);

(vi) for each φ ∈ Φ we can compute φ′ ∈ Φ such that Jφ′K = Pre∀(JφK).

Definition 4.1.5. A set of constraints Φ is Post-effective for a BQO game structure

(G ,�) with G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) if it fulfills the following conditions:

(i) for each φ, φ′ ∈ Φ and s ∈ S we can decide whether JφK ⊆ Jφ′K, JφK = ∅, c ∈ JφK;

(ii) for each D ∈ D(S) there exists φD ∈ Φ such that JφDK = D;

(iii) for each φ1, φ2 ∈ Φ and o ∈ Obs for which it holds that Jφ1K ⊆ o and Jφ2K ⊆ o,

we can compute φ ∈ Φ such that JφK = Jφ1K ∪ Jφ2K;

(iv) for each φ ∈ Φ and o ∈ Obs we can compute φ′ ∈ Φ such that Jφ′K = JφK ∩ o;

(v) for each φ ∈ Φ and σ ∈ Σ∃ we can compute φ′ ∈ Φ such that Jφ′K = Post∃(JφK, σ);

(vi) for each φ ∈ Φ we can compute φ′ ∈ Φ such that Jφ′K = Post∀(JφK).

The following theorems generalize the results stated in 3.3.1. They establish generic

conditions on the input games that ensure that the algorithms presented in Section 3.3

decide the game solving problem and solve the strategy synthesis problems for the

resulting class of games, considering the class of obsa-consistent Player∃ strategies.

Theorem 4.1.1. Let (G ,�) be a BQO game structure, where G = (S∃, S∀, I,=o

,Σ∃, T∃, T∀), Φ be a Pre-effective set of constraints for G, and φErr ∈ Φ.

If (G ,�) and φErr enjoy the following properties:

• the sets Σ∃, Obs and I are finite,

• for each o ∈ Obs we can compute Enabled(o),

86

4.1 Monotonic and Downward-Closed BQO Games

• for each o ∈ Obs, if σ ∈ Enabled(o) then there is o′ ∈ Obs with Post∃(o, σ) ⊆ o′,

• for each s1, s2 ∈ S, s1 � s2 implies s1 =o s2,

• the transition relations, the relation � and φErr satisfy one of the conditions:

(I) (G,�) is monotonic and JφErrK is upward-closed, or

(II) (G,�) is ∀-downward-closed,

then we can decide whether Player∃ has an obsa-consistent winning strategy in the game

Safety(G , JφErrK) or not, and if the answer is positive we can compute such a strategy.

Proof. To solve a safety BQO game under incomplete information, given a Pre-effective

set of constraints, we apply Algorithm 1 using the elements of Φ to represent elements

of Uobs(G), instead of using ΦUobs
as we did in the case of LC-games.

Since Φ is closed under intersection with elements of Obs, we can clearly initialize

the set B in Algorithm 1 with elements of Φ. Now the elements of L(G) are finite

subsets of Φ. Since we can check inclusion between elements of Φ, we can also check

equality between elements of L(G), and hence the loop condition. The set I is finite and

we can check membership in elements of Φ, which entails that we can check whether

I ∩ JφK = ∅ for φ ∈ Φ. As we can check inclusion between elements of Φ, (L(G),⊑) is

a decidable BQO, and hence the function Min is computable. Conditions (iv), (v) and

(vi) from the definition of Pre-effective set of constraints imply that the function UPre

is computable. Thus, the set B can be effectively updated.

If Player∃ has an obsa-consistent winning strategy in Safety(G, JφErrK), a finite such

strategy can be effectively constructed by the algorithm working with the effective set

of constraints Φ. As stated in the proof of Proposition 3.3.3 to construct the transition

relation of the strategy automaton it suffices to be able to compute Pre∃ and Pre∀ for

constraints, finite union of constraints with the same observation, and intersection with

elements of Obs and to perform emptiness and inclusion checks for elements of Φ.

Note, however, that to be able to construct a knowledge-based counterexample tree

in Safety(G̃, JφErrK) as in the proof of Proposition 3.3.2, we would need the set of

constraints to be Post-effective and the transition relations T∃ and T∀ to have finite

branching, in order to be able to compute the labels of the nodes of the tree.

Theorem 4.1.2. Let (G ,�) be a BQO game structure, where G = (S∃, S∀, I,=o

,Σ∃, T∃, T∀), Φ be a Post-effective set of constraints for G, and φGoal ∈ Φ.

If (G ,�) enjoys the following properties:

• the sets Σ∃, Obs and I are finite,

87

4. GAMES WITH FIXED OBSERVATIONS

• the transition relations T∃ and T∀ have finite branching,

• for each o ∈ Obs we can compute Enabled(o),

• for each o ∈ Obs, if σ ∈ Enabled(o) then there is o′ ∈ Obs with Post∃(o, σ) ⊆ o′,

• for each s1, s2 ∈ S, s1 � s2 implies s1 =o s2,

• the transition relations, the relation � and I satisfy one of the conditions:

(I) (G,�) is backward-monotonic and the set I is downward-closed, or

(II) (G,�) is ∀-backward-downward-closed,

then we can decide whether Player∃ has an obsa-consistent winning strategy in the game

Reach(G , JφGoalK) or not, and if the answer is positive we can compute such a strategy.

Proof. To solve a reachability BQO game under incomplete information, given a Post-

effective set of constraints, we apply Algorithm 2 using the elements of Φ to represent

elements of Dfin
obs (G), instead of using ΦDobs

as we did in the case of LC-games.

The labels of the constructed AND-OR tree are elements of Φ. To compute the

nodes’ labels, the functions Postobs∃ and Post∗∀ and finite union of sets in Dfin
obs(G) with

the same observation must be computable. Conditions (iv) and (v) from Definition 4.1.5

imply that Postobs∃ is computable, and using condition (iii) we know that finite union

of constraints with the same observation is also computable. As we saw in Proposi-

tion 3.3.4, the function Post∗∀ applied to an element of Φ can be computed by exploring

a finite tree, because Obs and the branching of T∀ are finite and (S,�) is a BQO, and

using the function Postobs∀ , which is computable since Φ satisfies conditions (iv) and (vi)

from Definition 4.1.5. We can decide inclusion between node labels and check inclusion

in JφK since Φ is Post-effective. The AND-OR tree is finite, since (S,�) is a BQO.

If Player∃ has an obsa-consistent winning strategy in Reach(G, JφGoalK), a finite such

strategy can be effectively constructed by the algorithm working with the effective set

of constraints Φ. As seen in the proof of Proposition 3.3.8, to construct the transition

relation of the strategy automaton it suffices to be able to compute Postobs∃ , Post∗∀ and

finite union of constraints with the same observation.

The preconditions of Theorem 4.1.1 and Theorem 4.1.2 guarantee the termination

of the set-saturation and tree-saturation methods respectively. The first one guarantees

that the fact about stabilization of infinite monotonic sequences of upward-closed sets

can be applied, while the second one ensures the finiteness of the AND-OR tree. Notice

88

4.2 R-stable Games

that if for each s1, s2 ∈ S such that s1 � s2 it holds that s1 =o s2, then every observable

set is both-upward and downward-closed. Hence, by requiring observability of a set of

error or goal states we can ensure that they are upward as well as downward-closed.

4.2 R-stable Games

In this section we consider a class of infinite-state games of imperfect information de-

fined in [DWDR06], called R-stable games, for which safety and reachability games

were shown to be decidable [DWDR06]. We first describe the game model used

in [DWDR06, De 06] and give a simple translation from their model into ours. In

the graph games of [DWDR06, De 06] edges are labeled with actions and one player

is responsible for choosing the action, while the other resolves the remaining nondeter-

minism by choosing a successor state from where the game proceeds.

Definition 4.2.1. ([De 06]) A game of imperfect information G = (S,E, F,Σ,∆, O)

is a tuple where S is a set of states, E is the set of initial states, F is the set of final

states, Σ is a finite alphabet of actions, ∆ ⊆ S × Σ × S is a set of labeled transitions,

such that for each s ∈ S and each σ ∈ Σ there exists s′ ∈ S such that (s, σ, s′) ∈ ∆,

and O ⊆ 2S is a set of observations. If for each o1, o2 ∈ O it holds that o1 ∩ o2 6= ∅

implies that o1 = o2 the game G is called a game of incomplete information.

For a set V ⊆ S and σ ∈ Σ, Postσ(V) = {s′ | ∃s ∈ V. (s, σ, s′) ∈ ∆}.

Each game of imperfect information can be transformed into an equivalent game of

incomplete information. For finite games this can be done in polynomial time.

Definition 4.2.2. ([De 06]) An observation-based strategy in an imperfect-information

game G = (S,E, F,Σ,∆, O) is a function λ : O+ → Σ. The notions of strategy outcome

and safe strategies are defined in a standard way. The game solving problem for safety

games of imperfect information asks to decide if there exists a safe observation-based

strategy in the given game. For formal definitions we refer the reader to [De 06].

In [DWDR06] a fixpoint algorithm for solving finite-state safety and reachability

games of imperfect (incomplete) information was proposed. The fixpoint of a con-

trollable predecessor operator is computed on the lattice of antichains of state sets and

yields the set of states from which the imperfectly (incompletely) informed player has an

observation based strategy (w.r.t. a synchronous observation function). The approach

89

4. GAMES WITH FIXED OBSERVATIONS

has been extended to general ω-regular objectives in [CDHR06]. For the infinite-state

case [DWDR06] identifies a class of games for which the antichain-based approach can

be used to solve safety and reachability games of imperfect information.

Let {r1, r2, . . . , rn} be a finite partition of a possibly infinite state set S. A set

A ⊆ S is R-definable if A =
⋃

r∈R′ for some R′ ⊆ R.

Definition 4.2.3. ([DWDR06]) An imperfect-information game G = (S,E, F,Σ,∆, O)

is R-stable if the following conditions hold:

(i) for every r ∈ R and every σ ∈ Σ, the set Postσ(r) is R-definable,

(ii) every o ∈ O is R-definable,

(iii) E and F are R-definable,

(iv) for all r, r′ ∈ R and for all σ ∈ Σ it holds that:

(
∃s ∈ r.Postσ({s}) ∩ r

′ 6= ∅
)
=⇒

(
∀s ∈ r.Postσ({s}) ∩ r

′ 6= ∅
)
.

Theorem 4.2.1. ([DWDR06]) Safety and reachability games with imperfect informa-

tion are decidable for the class of R-stable games.

We can translate each game of incomplete information G = (S,E, F,Σ,∆, O) with

safety (respectively reachability) objective to a safety (respectively reachability) game

Safety(G̃, F) (respectively Reach(G̃, F)) where the game structure G̃ = translate(G) =

(S∃, S∀, I,=o,Σ∃, T∃, T∀) with incomplete information is such that:

• S∃ = S, S∀ = S × Σ, I = E and

• for s̃1, s̃2 ∈ S̃, where S̃ = S∃ ∪̇ S∀, we have s̃1 =o s̃2 iff s̃1, s̃2 ∈ S∃ and there

exists an o ∈ O such that s̃1 ∈ o and s̃2 ∈ o, or s̃1, s̃2 ∈ S∀, s̃1 = (s1, σ) and

s̃2 = (s2, σ) for some σ, and there exists an o ∈ O such that s1 ∈ o and s2 ∈ o,

• Σ∃ = Σ, T∃ = {(s, σ, (s, σ)) | s ∈ S, σ ∈ Σ} and T∀ = {((s, σ), s′) | (s, σ, s′) ∈ ∆}.

The game structure G̃ = translate(G) has the following properties:

• Player∃ has an obss-consistent winning strategy in the game Safety(G̃, F) iff there

exists a safe observation-based strategy for G.

90

4.2 R-stable Games

0 1 2

n′ ≤ n + 1

n′ ≤ n

n ≥ 1∧n′ ≤ n− 1

n′ ≤ n

n′ ≤ n

Figure 4.2: Game under imperfect information that is not R-stable for any finite R.

• Player∃ has an obss-consistent winning strategy in the game Reach(G̃, F)) iff

there exists a reaching observation-based strategy for G.

• Every obss-consistent strategy for Player∃ in G̃ is also obsa-consistent.

Therefore obss and obsa consistent Player∃ strategies coincide for games obtained

via the above translation, and thus we can reduce the game solving and strategy syn-

thesis problems for the games from Definition 4.2.1 to the game solving and strategy

synthesis problems for the class of games obtained by the above translation and the

class of obsa-consistent (obss-consistent) Player∃ strategies.

In Section 4.1 we gave sufficient conditions for the decidability of the game solving

and strategy synthesis problems for a class of safety and a class of reachability games

under incomplete information. We will now show that the classes of game structures

considered in Theorem 4.1.1 and Theorem 4.1.2 are not contained in the class of R-

stable games studied in [DWDR06]. To this end, we will give an example of a game

of incomplete information G = (S,E, F,Σ,∆, O) that is not R-stable, but which, using

the above transformation, translates into a game, whose game structure meets the

requirements of Theorem 4.1.1 and Theorem 4.1.2.

Example 4.2.1. We define the set S of states of the game G = (S,E, F,Σ,∆, O) as

S = {(q, n) | q ∈ {0, 1, 2}, n ∈ N}. The set of initial states is E = {(0, 0)} and the set of

final states is F = {(2, n) | n ∈ N}. We let Σ = {σ} and define the transition relation

∆ = {((0, i), σ, (0, j)) | j ≤ i+ 1} ∪ {((1, i), σ, (1, j)) | i ≥ 1 ∧ j ≤ i− 1}

∪ {((q, i), σ, (q′ , j)) | (q = 0 ∧ q′ = 1 ∨ q = 1 ∧ q′ = 2 ∨ q = 2 ∧ q′ = 2) ∧ j ≤ i}.

The transition relation ∆ is depicted in Figure 4.2.

Finally the finite set of observations is O = {o(0,0), o(0,1), o(1,0), o(1,1), o(2,0), o(2,1)},

where for each q ∈ {0, 1, 2}, we have o(q,0) = {(q, 0)} and o(q,1) = {(q, n) | n > 0}.

Let us assume that R = {r1, r2, . . . , rn} is a finite partition of S and G is R-stable.

We note s1 ∼R s2 iff there exists an r ∈ R such that s1 ∈ r and s2 ∈ r.

91

4. GAMES WITH FIXED OBSERVATIONS

Sl
1 Sk

1 Sj
1 S2

s1 s′1

s2 s′2 s′2

σ

σ

σ

. . .

l > k

. . .

k > j
. . .

Figure 4.3: Illustration of the inductive step of the proof that the partition R of S′ cannot

be finite if it satisfies condition (iv) of the definition of R-stable.

Let Si = {(q, n) ∈ S | q = i} for i = 0, 1, 2 and furthermore let Sl
i = {(q, n) ∈

Si | n = l} for all natural numbers l ∈ N. By condition (ii) of the definition of R-

stable games, which requires that each o ∈ O is R-definable, we have that for each

i, j ∈ {0, 1, 2} with i 6= j it holds for each s1 ∈ Si and each s2 ∈ Sj that s1 6∼R s2.

We now show that for every l ∈ N, every 0 ≤ k < l, every s1 ∈ Sl
1 and every s2 ∈ Sk

1

it holds that s1 6∼R s2. We will thus arrive at contradiction to fact that R was chosen

to be finite. The proof is by induction on l. The claim follows trivially for l = 0.

Now let l > 0 and 0 ≤ k < l. Note that by the definition of the transition relation

∆ we have Postσ(S
l
1) ∩ S

k
1 6= ∅ and that Postσ(S

k
1) ∩ S

j
1 6= ∅ implies j < k. Suppose

that for some s1 ∈ Sl
1, s2 ∈ Sk

1 we have s1 ∼R s2. There exists s′1 ∈ Sk
1 , as illustrated

in Fig. 4.3, such that s1
σ
→ s′1. Condition (iv) of the definition of R-stable games

implies that there exists a state s′2 such that s2
σ
→ s′2 and s′1 ∼R s′2. There are two

possibilities according to ∆: either s′2 ∈ S
j
1 for some j < k or s′2 ∈ S2. In the first case

by the induction hypothesis and in the second case by condition (ii) of Definition 4.2.3

it follows that s′1 6∼R s
′
2, which contradicts the choice of s′2. Therefore, s1 6∼R s2.

Let G̃ = translate(G) = (S∃, S∀, I,=o,Σ∃, T∃, T∀) be the game structure with in-

complete information obtained from G using the translation that we described above.

We will provide a BQO � and Pre-effective and Post-effective sets of constraints Φ1

and Φ2, and show that the requirements of Theorems 4.1.1 and 4.1.2 are met.

The set Σ∃ is finite, since Σ is finite. As the set O of observations in G is also

finite, the set Obs is finite as well. Since E = {(0, 0)} is finite, so is the set I of initial

states in G̃. The finiteness of Σ implies that the transition relation T∃ for Player∃

has finite branching. By the definition of ∆ in our example we have that for each

(((q, i), σ), (q′ , j)) ∈ T∀ it holds that 0 ≤ j ≤ i + 1. Thus, T∀ has finite branching as

well. As for each o ∈ Obs we have Enabled(o) = Σ∃, the function Enabled is computable.

92

4.2 R-stable Games

If s̃1, s̃2 ∈ S∃ are such that s̃1 =o s̃2 and σ ∈ Σ∃, we have (s1, σ) =o (s2, σ). Thus,

for each o ∈ Obs and σ ∈ Σ∃ there exists an o′ ∈ Obs such that Post∃(o, σ) ⊆ o′.

Let us define the relation � on S̃ such that s̃1 � s̃2 iff one of the following holds:

• s̃1 = (q1, n1), s̃2 = (q2, n2), q1 = q2, and either it holds that n1 = 0 and n2 = 0,

or it holds that n1 > 0, n2 > 0 and n1 ≤ n2, or

• s̃1 = ((q1, n1), σ1), s̃2 = ((q2, n2), σ2), q1 = q2, σ1 = σ2, and either it holds that

n1 = 0 and n2 = 0, or it holds that n1 > 0, n2 > 0 and n1 ≤ n2

Clearly, this definition together with that of O implies that s1 � s2 entails s1 =o s2.

Note that, in our example, if (((q, i), σ), (q′ , j)) ∈ T∀, then also (((q, k), σ), (q′ , l)) ∈

T∀ for each k ≥ i and l ≤ j. Therefore, the transition relation T∀ is downward-closed, as

well as backward-downward-closed, and hence also monotonic and backward monotonic.

Since the transition relation T∃ does not modify the S-component of the state, each of

the relations T∃σ for σ ∈ Σ∃ is monotonic and backward-monotonic.

Clearly, (S̃,�) is a BQO. According to the definition of �, the set I = {(0, 0)} is

both upward- and downward-closed, and so is the set F = {(2, n) | n ∈ N}.

Let Φ1 = {φ1s | s ∈ S̃}, and let:

Jφ1(q,0)K = {(q, 0)} for each q ∈ {0, 1, 2},

Jφ1(q,n)K = {(q, n′) | n′ ≥ n} for each n ≥ 1 and q ∈ {0, 1, 2},

Jφ1((q,0),σ)K = {((q, 0), σ)} for each q ∈ {0, 1, 2},

Jφ1((q,n),σ)K = {((q, n′), σ) | n′ ≥ n} for each n ≥ 1 and q ∈ {0, 1, 2}.

Let Φ2 = {φ2s | s ∈ S̃} ∪̇ {φ2(q,∞), (φ
2
((q,∞),σ) | q ∈ {0, 1, 2}}, and;

Jφ2(q,0)K = {(q, 0)} for each q ∈ {0, 1, 2},

Jφ2(q,n)K = {(q, n′) | n′ ≤ n} for each n ≥ 1 and q ∈ {0, 1, 2},

Jφ2(q,∞)K = {(q, n′) | n′ ∈ N} for each q ∈ {0, 1, 2},

Jφ2((q,0),σ)K = {((q, 0), σ)} for each q ∈ {0, 1, 2},

Jφ2((q,n),σ)K = {((q, n′), σ) | n′ ≤ n} for each n ≥ 1 and q ∈ {0, 1, 2},

Jφ2((q,∞),σ)K = {((q, n′), σ) | n′ ∈ N} for each q ∈ {0, 1, 2}.

It is easy to see that the sets Φ1 and Φ2 are Pre-effective and Post-effective sets of

constraints respectively, for the game structure G̃.

Thus, together with � and the sets of constraints above, the games Safety(G̃ , F)

and Reach(G̃ , F) satisfy the conditions identified in Section 4.1.

93

4. GAMES WITH FIXED OBSERVATIONS

94

Part II

Counterexample-Guided

Abstraction Refinement for

Games under Incomplete

Information

95

96

Chapter 5

Counterexample-Guided

Abstraction Refinement

for Games under Incomplete

Information

The goal of abstraction is to map a complex (possibly infinite-state) system to a simpler,

finite-state system of manageable size that preserves enough information about the

original system to prove or disprove the property of interest. However, it is most often

the case that the resulting approximation is too coarse, and solving the decision problem

on the abstract instance does not yield a definite answer to the decision problem for

the concrete system. One possibility in this case is to report an indefinite answer,

or a potential false positive or false negative respectively. Alternatively, abstraction-

based verification methods [CGJ+00, LBBO01, DD02, CCGS03, SG04] that employ the

abstraction refinement paradigm automatically refine the current abstraction to obtain

more precise approximation of the original system. Typically, the refinement procedures

rely on identifying the reason for the indefinite answer or the false counterexample, in

order to identify missing information that is necessary in the abstraction. Based on this

information, the abstraction is then refined and the process is repeated in the so-called

abstraction-refinement loop until a definite result for the concrete system is obtained.

In the past years several abstraction-refinement frameworks for games with perfect

information have been developed. Ball and Kupferman [BK06] describe an abstraction-

97

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

refinement framework for concurrent multi-player games. Their abstraction is based on

the three-valued semantics for the alternating µ-calculus. Upon an indefinite answer,

the refinement procedure identifies a state in which the evaluation of the specifica-

tion became indefinite and a subformula which has undefined value in this state, and

splits the state into states in which this subformula has a precise value. An approach

to solving two-player turn-based games via three-valued abstraction refinement was

proposed in [dAR07]. The abstraction is analyzed using must and may controllable

predecessor operators, computing sets of never-win, must-win and may-win states and

the refinement reduces the number of may-win states to get closer to a definite answer.

Henzinger et al. [HJM03] extends the paradigm of counterexample-guided abstraction

refinement (CEGAR), one of the most successful and widely used techniques for auto-

matic abstraction refinement in verification, to games with perfect information.

To the best of our knowledge, the only line of work that applies abstraction tech-

niques to synthesis of infinite-state systems under partial observability is [KGMM09,

KGMM12]. There, the input infinite-state discrete event system is abstracted w.r.t. a

fixed, possibly infinite abstract domain and widening is used to enforce convergence. A

limitation of the procedure presented there is that it is a backward approach, suitable

for computing safe memoryless controllers or controller strategies that record the last k

observations along the execution for a fixed k. For general controllers with memory, the

procedure does not give an answer to the decision problem but instead pre-computes

allowed sets of actions for possible knowledge sets that an online controller can use to

determine the correct actions at the states in this set, or the absence of a safe action.

One of the most popular and successful techniques for generating refinement predi-

cates in verification [McM06, BDFW07] is Craig interpolation. There one infers from an

unconcretizable abstract counterexample path a formula that intuitively corresponds

to an explanation for the unconcretizability. This formula refers only to the variables

associated with a particular position of the abstract counterexample path, and hence

the predicates occurring in this formula can be used to refine the abstraction.

In this chapter we describe a CEGAR scheme for (infinite-state) games under incom-

plete information with safety winning conditions. The approach is based on predicate

abstraction [DD02] and constructs a finite-state abstract game structure with perfect

information directly from the given symbolic game structure with incomplete informa-

tion. The abstract game structure simulates, in the sense of an alternating simulation

98

5.1 Abstraction for Incomplete-Information Games

relation, the knowledge based game corresponding to the symbolic game structure. It

is thus a sound abstraction of the original game. The predicates play a two-fold role

in the abstraction of a game structure with incomplete information. As usual, they

define the abstract state-space and determine the precision of the abstract transition

relation. Here, however this includes the approximation of the observation equivalence

that is part of the process of constructing a game structure with perfect information.

To refine the latter approximation we developed an extension of the constraint-based

interpolation technique from [RSS07], which extension provides Craig interpolants that

meet a variable partitioning requirement provided as input.

5.1 Abstraction for Incomplete-Information Games

The abstraction method for game structures with incomplete information we present in

this section is based on predicate abstraction. Predicate abstraction [DD02] is a tech-

nique successfully used in software verification [BMMR01, HJMS03, PR07, DKFW10].

Given a concrete system and a finite set of predicates, it constructs an abstract finite-

state system that simulates the concrete one. In classical predicate abstraction for

verification, states in the abstract system are boolean vectors interpreted as valuations

of the abstraction predicates. Each abstract state thus represents a (possibly infinite)

set of concrete states, and thus the construction can be seen as a powerset construction.

The abstract game construction that we give here integrates predicate abstraction

with the knowledge-based subset construction described in Section 2.2.3.

5.1.1 Abstraction Predicates

The abstraction is parametrized by a finite set of predicates P, which determines its

precision, that is the precision of the abstract transition relations for the two players.

The precision of the transition relation for player Player∃ depends on the observa-

tions that he can make, which is related to the type of the predicates in P, and more

specifically, to the observability of the variables occurring in these predicates.

Predicates The set AP consists of the atomic formulas in the underlying logical

theory and from now on we refer to its elements as predicates. For a given set of

variables X we define AP[X] = {ϕ ∈ AP | Vars(ϕ) ⊆ X}. For a set P ⊆ AP of

99

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

predicates we denote with B(P) the closure of P under boolean operators. Given a

formula ϕ, we denote with Preds(ϕ) is the set of predicates that occur in ϕ.

Recall that for a set P of predicates, Vals(P) = BP is the set of all truth valuations

of the elements of P. For each a ∈ Vals(P) and ϕ ∈ P we write a |= ϕ iff a(ϕ) = true.

Given a finite set P ⊆ AP[X] of predicates over a set of variables X, we associate with

each a ∈ Vals(P) a formula [a] =
(∧

ϕ∈P,a|=ϕ ϕ
)
∧
(∧

ϕ∈P,a6|=ϕ ¬ϕ
)
and let JaK = J[a]K.

For sets of predicates P and Q with Q ⊆ P we define the equivalence relation =Q on

Vals(P) as follows: for a1, a2 ∈ Vals(P), a1 =Q a2 iff a1(ϕ) = a2(ϕ) for each ϕ ∈ Q.

Observation Predicates Let G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) be a symbolic game

structure with an underlying set of variables V = V∃ ∪̇ V∀ ∪̇ {t}. In this chapter we

consider only symbolic game structures for which the set Σ∃ of actions in the respective

explicit game structure is finite. That is, the domain of each variable x ∈ V∃ is finite.

In order to obtain a sound abstraction of Player∃’s informedness, predicates in which

(both observable and) unobservable variables occur are considered unobservable. For a

set P ⊆ AP[V] of predicates, we define Obs(P) = {ϕ ∈ P | Vars(ϕ) ⊆ Obs(Vars(ϕ))}.

For a finite set P ⊆ AP[V] we define

EnabledObs(P) =
⋃

a∈Vals(Obs(P))

Preds
(∨

σ∈Σ∃

Pre∃([a], σ)
)
.

By the property (2) of G, we can ensure that the set EnabledObs(P) consists of

observable predicates from AP[V] and its definition entails the following property.

Property 10. If s1, s2 ∈ Vals(V) are such that s1 |= ϕ iff s2 |= ϕ for every ϕ ∈

EnabledObs(P), then for each s′1 ∈ Vals(V) and σ1 ∈ Σ∃ for which (s1, σ1, s
′
1) ∈ JT∃K

there exist s′2 ∈ Vals(V) and σ2 ∈ Σ∃ such that (s2, σ2, s
′
2) ∈ JT∃K and such that the

following holds: s1 |= ϕ iff s2 |= ϕ for every ϕ ∈ Obs(P).

Precision We say that a set of predicates P ⊆ AP[V] is precise with respect to a

variable x ∈ V for which the set Dom(x) is finite, iff (x = c) ∈ P for each c ∈ Dom(x).

We say that a set of predicates P ⊆ AP[V] is precise with respect to the set Σ∃ =

Vals(V∃) of Player∃ actions iff P is precise with respect to each variable x ∈ V∃.

100

5.1 Abstraction for Incomplete-Information Games

5.1.2 Abstract Game Structure with Perfect Information

Let G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) be a symbolic game structure andV = V∃ ∪̇ V∀ ∪̇ {t}.

Let P ⊆ AP[V] be a finite set of predicates that is precise w.r.t. the variable t.

Let P∃ = EnabledObs(P) and let Obs∃ = Vals(P ∪ P∃)/=Obs(P∪P∃)
be the set of

equivalence classes of Vals(P ∪ P∃) w.r.t. =Obs(P∪P∃). Let Obs∀ = Vals(P)/=Obs(P)
be

the set of equivalence classes of Vals(P) w.r.t. =Obs(P).

The abstraction Abstract(G,P) of G w.r.t. the finite set P of predicates is a game

structure with perfect information that can be constructed directly from the symbolic

game structure G using a decision procedure for the underlying logical theory. The set

of states of the abstract game structure is a subset of 2Vals(P) ∪ 2Vals(P∪P∃) and the set

of possible Player∃ actions is Vals(Obs(P)), and thus the game structure is finite.

The game structure Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀), which is the

abstraction of G w.r.t. P is a finite-state game structure defined as follows.

• S#
∃ = {s# ∈ 2Vals(P∪P∃)\∅ | (∀a ∈ s#. JaK 6= ∅∧a |= t = ∃)∧(∃o ∈ Obs∃. s

⊆ o)},

• S#
∀ = {s# ∈ 2Vals(P) \ ∅ | (∀a ∈ s#. JaK 6= ∅ ∧ a |= t = ∀) ∧ (∃o ∈ Obs∀. s

⊆ o)},

• S# = S#
∃ ∪̇ S#

∀ ,

• I# = {s# ∈ S# | ∃o ∈ (Obs∃ ∪̇ Obs∀). s
= I ′ ∩ o}, where

I ′ = {a ∈ Vals(P) ∪ Vals(P ∪ P∃) | JaK ∩ JϕInitK 6= ∅},

• =#
o is the equality relation,

• Σ#
∃ = Vals(Obs(P)),

• (s#1 , s
#
2) ∈ T#

∃ iff the following conditions are satisfied

(i)∃ ∀a ∈ s#1 .∀s ∈ JaK.∃a′ ∈ s#2 .∃s
′ ∈ Ja′K. (s, s′) |= T∃,

(ii) ∀a′ ∈ s#2 .∃a ∈ s#1 .∃s ∈ JaK.∃s′ ∈ Ja′K. (s, s′) |= T∃,

(iii)

∀a2 ∈ s#2 .∀a
′
2 ∈ Vals(P). (a2(Obs(P)) = a′2(Obs(P))∧

∃a ∈ s#1 .∃s ∈ JaK.∃s′ ∈ Ja′2K. (s, s
′) |= T∃) ⇒ a′2 ∈ s#2 ,

• (s#1 , s
#
2) ∈ T#

∀ iff the following conditions are satisfied

101

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

(i)∀ ∃a ∈ s#1 .∃s ∈ JaK.∃a′ ∈ s#2 .∃s
′ ∈ Ja′K. (s, s′) |= T∀,

(ii) ∀a′ ∈ s#2 .∃a ∈ s#1 .∃s ∈ JaK.∃s′ ∈ Ja′K. (s, s′) |= T∀,

(iii)

∀a2 ∈ s
#
2 .∀a

′
2 ∈ Vals(P). (a2(Obs(P)) = a′2(Obs(P))∧

∃a ∈ s#1 .∃s ∈ JaK.∃s′ ∈ Ja′2K. (s, s
′) |= T∀) ⇒ a′2 ∈ s#2 .

The abstract game structure is an explicit one. Since we allow predicates that relate

variables from the sets V∃ and V∀, it is not possible in general to use the abstraction

predicates and define the abstract game as a symbolic game. Note further that the

construction defined above does not correspond to simply abstracting the game into a

game under incomplete information using predicate abstraction, and then applying the

knowledge-based subset construction w.r.t. an abstract observation equivalence. If we

wanted to define the transitions for predicate valuations belonging to Player∃, then we

would still need to take the abstracted observation equivalence into account, since the

existence of a transition from a Player∃ valuation a to some a′ might depend on the

existence of transitions from a to other valuations observationally equivalent to a′.

With an abstract state s# ∈ S# we associate the formula [s#] =
∨

a∈s# [a] and

define the concretization function γ : S# → 2S such that γ(s#) = J[s#]K.

The concretization function γ∃ : Σ# → 2Σ∃ is defined as follows: γ∃(σ
#) = {σ ∈

Σ∃ | ∃s ∈ S. (∀x ∈ V∃. s(x) = σ(x)) ∧ (∀ϕ ∈ Obs(P). s |= ϕ⇔ σ# |= ϕ)}.

If P is precise w.r.t. Σ∃, for each σ
∈ Σ# the set γ∃(σ

#) contains at most one σ.

Let us discuss the definition of the abstract transition relations T#
∃ and T#

∀ . Intu-

itively, condition (i)∃ guarantees that each choice that Player∃ can make in the game

structure G# can be consistently concretized for all of the respective concrete states.

That is, in G# Player∃ has potentially fewer choices and is therefore less powerful.

Condition (i)∀, on the other hand requires that the choice can be concretized for some

concrete state, which means that Player∀ is potentially more powerful in G# than in

G. Note that the definitions of T#
∃ and T#

∀ above are equivalent respectively to:

(s#1 , s
#
2) ∈ T#

∃ ⇐⇒ ∃o ∈ Obs∃.

s#2 = {a′ ∈ Vals(P) | a′ ∈ o ∧ ∃a ∈ s#1 .∃s ∈ JaK.∃s′ ∈ Ja′K. (s, s′) |= T∃}
(5.1)

102

5.1 Abstraction for Incomplete-Information Games

(s#1 , s
#
2) ∈ T#

∀ ⇐⇒ ∃o ∈ Obs∃.

s#2 = {a′ ∈ Vals(P ∪ P∃) | a
′ ∈ o ∧ ∃a ∈ s#1 .∃s ∈ JaK.∃s′ ∈ Ja′K. (s, s′) |= T∀}

(5.2)

However we chose to give the definition in terms of the respective conditions, since

the fact that (5.1) implies condition (i)∃ holds under the specific condition that P∃ ⊇

EnabledObs(P), and we want to explain the role of the predicates EnabledObs(P) in the

abstraction. More specifically, we want to shed light on the reason for the asymmetry

in the definitions of S#
∃ and S#

∀ , namely, why abstract states for Player∀ are sets of

valuations of the predicates in P, while abstract states for Player∃ are sets of valuations

of the possibly larger set of predicates P ∪ P∃, where P∃ = EnabledObs(P).

The reason behind this definition is that we want to ensure the monotonicity of the

abstraction, namely that the abstraction constructed w.r.t. a set of predicates P ⊇ Q

is at least as precise as the abstraction constructed w.r.t. Q. Condition (i)∃ is similar

to the definition of must transitions in three-valued abstractions [HJS01]. And while

in terms of the valuations of abstract predicates the transitions of Player∃ resemble

must hyper-transitions [SG04], in terms of the actual states of the abstract game the

transitions of Player∃ are essentially must-transitions. Hence, we have to address the

same problems concerning the monotonicity of abstraction refinement.

Example 5.1.1. This example illustrates the problem explained above. Consider a

symbolic game structure G with V∃ = {x∃}, V∀ = {xo∀}, where V o
∀ = {xo∀}.

Let P = {t = ∀, t = ∃, x∃ = 0, x∃ = 1, x∃ = 2, xo∀ > 0} and P′ = P ∪ {xo∀ = x∃}.

Since all variables and hence all abstraction predicates are observable we can inter-

pret each abstract state as a valuation of the abstraction predicates.

Figure 5.1 depicts on the top an abstract state in Abstract(G,P) that belongs to

Player∃ and has two successors. The corresponding state in Abstract(G,P′), shown

in the middle, has no successors. If however we consider the set of predicates P′′ =

P′ ∪ {xo∀ = 1, xo∀ = 2}, then the states in Abstract(G,P′′) resulting from splitting this

state, one of which is shown in the bottom of Figure 5.1, have their respective successors.

Must hyper-transitions proposed in [SG04] are used to obtain a monotonic abstraction-

refinement framework for CTL, at the price of making the number of transitions expo-

nential in the number of abstract states. Here we take a different approach by making

use of two properties of the symbolic game structures defined in Chapter 2. Let P ⊆ P′

103

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

t = ∃, x∃ = 0, xo∀ > 0

t 6= ∃, x∃ = 1, xo∀ > 0 t 6= ∃, x∃ = 2, xo∀ > 0

Abstract(G,P)

t = ∃, x∃ = 0, xo∀ > 0, xo∀ 6= x∃

no successors

Abstract(G,P′)

t = ∃, x∃ = 0, xo∀ > 0,

xo∀ 6= x∃, x
o
∀ = 1

t 6= ∃, x∃ = 1, xo∀ > 0,

xo∀ = x∃, x
o
∀ = 1

t 6= ∃, x∃ = 2, xo∀ > 0,

xo∀ 6= x∃, x
o
∀ = 1

Abstract(G,P′′)

Figure 5.1: States in abstract game structures w.r.t. sets of predicates P ⊂ P′ ⊂ P′′.

104

5.1 Abstraction for Incomplete-Information Games

be two sets of predicates. Recall that the way in which the two players take turns

is such that both the successors and the predecessors of a state in S∃ (respectively

S#
∃) are in S∀ (respectively S#

∀). Thus, if the states in S#
∃ are split with additional

predicates in order to ensure that all concrete Player∃ transitions that were allowed

by Abstract(G,P) are also allowed by Abstract(G,P′), the split does not have to be it-

erated and propagated. It suffices to split Player∃ states with predicates occurring

in ϕ =
∨

σ∈Σ∃
Pre∃([a], σ) for each a ∈ Vals(Obs(P′)). Since the free variables of the

formula [a] are among Obs(V), by the properties of T∃ we have that ϕ ≡
∨

σ∈Σ∃
[a]ησ,

where the substitution ησ is ησ =
{
σ(x)/x′ | x ∈ V∃ ∪ {t}

}
. Thus, the predicates

occurring in ϕ are observable, and thus actually split the states that belong to Player∃.

Note that, furthermore, by the definition of Abstract(G,P) using the set of predicates

P∃, if G does not contain dead-ends, neither does the resulting abstract game structure.

Example 5.1.2. Let us go back to Example 2.1.1 and consider the set of predicates

consisting of the atomic formulas occurring in ϕErr and the predicates describing the

possible actions of Player∃. Formally, let

P0 = {(t = ∀), (move = N), (move = E), (move = S),

(x < 6), (x ≥ 9), (x ≤ −1), (steps > 3), (err = true), (y ≥ 4), (y ≤ −4)}.

Each of the predicates (t = ∀), (move = 0), (move = N), (move = E), (move =

S), (x < 6), (x ≥ 9), (x ≤ −1) is observable since only observable variables occur in it.

The remaining predicates are not observable by Player∃.

Valuations are boolean vectors giving a value for each predicate. Two possible

valuations are a0 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0) and a1 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), where

the values for the predicates in P0 are given in the same order in which they are listed

above. In an abstract state, all valuations must agree on the values of the observable

predicates. Since a0 and a1 differ only in the value of the unobservable predicate

(y ≥ 4), A = {a0, a1} is a possible abstract state, which belongs to Player∃. The set of

concrete states corresponding to A is the set of states that satisfy the formula:

[A] = (t 6= ∀) ∧ (move = N) ∧ (move 6= E) ∧ (move 6= S)∧

(x < 6) ∧ (x < 9) ∧ (x > −1) ∧ (steps ≤ 3) ∧ (err = false) ∧ (y > −4).

We now establish that the definition above indeed yields an abstraction of the

explicit game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) represented by G.

105

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Proposition 5.1.1. Let G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) be a symbolic game struc-

ture with incomplete information with set of variables V = V∃ ∪̇ V∀ ∪̇ {t} and let

P ⊆ AP[V] be a finite set of predicates that is precise w.r.t. the variable t. Then the

game structure Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀) is an abstraction of the

explicit game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) that is defined by G.

Proof. We show that Abstract(G,P) together with the concretization functions defined

above satisfies the conditions from Definition 2.3.1. Conditions (i), (ii) and (iv) hold

since each of Vals(P) and Vals(P∪P∃) partition Vals(V) and Vals(Obs(P)) partitions

Vals(Obs(V)). Condition (iii) is implied by the definitions of S#
∃ and S#

∀ . Condition

(v) follows from the definition of T#
∃ , and condition (vi) follows from the definition of

T#
∀ . Finally, condition (vii) is implied by the definitions of Obs∃ and Obs∀.

5.1.3 Soundness of Predicate Abstraction

An abstraction of a game structure by Definition 2.3.1 is not necessarily sound. We

now prove the soundness of the abstraction defined above. The key argument is that

the abstract game structure simulates, in the sense of an alternating simulation re-

lation, the knowledge-based game structure for the concrete one. This is implied by

Properties 11 and 12 below, which follow directly from the definition of the abstract

game and the properties of symbolic game structures.

Definition 5.1.1. For a path π# in Abstract(G,P), the concretization of π# in G is

γ(π) = {π ∈ S∗ | π is a path in G , |π| = |π#|,∀i. 0 ≤ i < |π| ⇒ π[i] ∈ γ(π#[i])}.

Theorem 5.1.1. Let Safety(G, ϕErr) be a safety game under incomplete information

with symbolic game structure G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and V = V∃ ∪̇ V∀ ∪̇ {t}.

Let P ⊆ AP[V] be a finite set of predicates that is precise w.r.t. t, and let G# =

Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀). If Err# = {s# ∈ S# | Js#K∩JϕErrK 6=

∅}, then (Safety(G#, Err#), obs#s) is a sound abstraction of (Safety(G , Err), obss).

Proof. By definition, the game structure Abstract(G,P) has the following properties.

Property 11. If s#1 ∈ S# and s1 ∈ S are such that s1 ∈ Js#1 K and (s1, s2) ∈ T∀

for some s2 ∈ S, then there exists s#2 ∈ S# such that (s#1 , s
#
2) ∈ T#

∀ and s2 ∈ Js#2 K.

Furthermore, if s̃1 ∈ Js#1 K is such that s̃1 =o s1 and s̃2 ∈ S is such that (s̃1, s̃2) ∈ T∀

and s̃2 =o s2, then it also holds that s̃2 ∈ Js#2 K.

106

5.1 Abstraction for Incomplete-Information Games

Property 12. If s#1 ∈ S# and s#2 ∈ S# are such that (s#1 , σ
#, s#2) ∈ T#

∃ for some

σ# ∈ Σ#, then for each s1 ∈ Js#1 K there exist σ ∈ γ∃(σ
#) and s2 ∈ Js#2 K such that

(s1, σ, s2) ∈ T∃. Furthermore, for every s̃1 ∈ Js1K with s̃1 =o s1 it holds that there exists

a s̃2 ∈ Js2K such that (s̃1, σ, s̃2) ∈ T∃ and s̃2 =o s2.

The following property follows from the definition of Abstract(G,P) and Property 10.

Property 13. If s#1 ∈ S# and s1 ∈ S are such that s1 ∈ Js#1 K and (s1, σ, s2) ∈ T∃

for some σ ∈ Σ∃ and s2 ∈ S, then there exists s#2 ∈ S# and σ# ∈ Σ# such that

(s#1 , σ
#, s#2) ∈ T#

∃ , s2 ∈ Js#2 K and σ ∈ γ∃(σ
#). Furthermore, if s̃1 ∈ Js#1 K is such that

s̃1 =o s1 and s̃2 ∈ S and σ̃ ∈ Σ∃ are such that (s̃1, σ̃, s̃2) ∈ T∃ and s̃2 =o s2, then it

also holds that s̃2 ∈ Js#2 K.

Let f#∃ be a winning strategy for Player∃ in the game Safety(G#, Err#) (since the

game is under perfect information, the set of all Player∃ strategies and the set of the

obs#s -consistent ones coincide). We define a strategy f∃ for Player∃ in G as follows.

Let [Prefs(G)]=s be the set of equivalence classes of prefixes in G w.r.t. the equiv-

alence relation =s. It can easily be seen by induction on the length of the prefix

and using Properties 11 and 13 that for each Π ∈ [Prefs(G)]=s there exists a unique

prefix π# ∈ Prefs(G#) such that Π ⊆ γ(π). Let Π ∈ [Prefs(G)]=s be such that

Π ⊆ Prefs∃(G) and let π# be the corresponding prefix in G# such that Π ⊆ γ(π#).

If π# ∈ Prefs(f#∃), then there exist σ# and s# such that (last(π#), σ#, s#) ∈ T#
∃ and

π# · s# ∈ Prefs(f#∃). According to Property 12 there exists a σ ∈ γ∃(σ) such that for

every π ∈ Π, σ ∈ Enabled(last(π)) and for s ∈ S with (last(π), σ, s) ∈ T∃ it holds that

s ∈ Js#K. In this case we fix one such σ and define f∃(π) = σ for each π ∈ Π. In the case

when π# 6∈ Prefs(f#∃), we choose an arbitrary σ ∈ Σ∃ such that σ ∈ Enabled(last(π)) for

each π ∈ Π and define f∃(π) = σ, if such a σ exists, and otherwise f∃(π) is undefined.

By definition, the function f∃ is a strategy for Player∃ and is obss-consistent.

Using the definition of f∃ and Properties 11, 13 and 12 we can see that for each

play π ∈ Outcome(f∃), π is infinite and there exists a play π# ∈ Outcome(f#∃) such

that π ∈ γ(π#). Thus, the strategy f∃ is winning for Player∃ in Safety(G, ϕErr).

5.1.4 From Abstract Strategies to Finite-State Concrete Strategies

Since Safety(G#, Err#) is a finite-state game with perfect information, if Player∃ has

a winning strategy, then he has a memoryless winning strategy. Suppose that f#∃ :

S#
∃ → Σ# is a memoryless winning strategy for Player∃ in Safety(G#, Err#).

Let for each s# ∈ S#, o(s) be the unique element of Obs∃ ∪Obs∀ such that s# ⊆ o.

107

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

We define the function σ#fix : Obs∃ ∪ Obs∀ → Σ# ∪ {⊥} as follows. For o ∈ Obs∀,

σ#fix (o) = ⊥. For o ∈ Obs∃, σ
#
fix (o) = ⊥ if for every σ ∈ Σ∃ it holds that [o]∧Enabled(σ)

is unsatisfiable and σ#fix (o) = σ# otherwise, for some arbitrarily fixed σ# ∈ Σ# that is

such that [o] ⇒
∨

σ∈γ∃(σ#) Enabled(σ) is valid.

We extend f#∃ to a total function f⊥∃ : S# → Σ# ∪ {⊥} such that if s# ∈ S#
∃ and

f#∃ (s#) is defined, then f⊥∃ (s#) = f#∃ (s#), and otherwise f⊥∃ (s#) = σ#fix (o(s
#)).

We define a partial function A : (Obs∃ ∪ Obs∀) × (Σ# ∪ {⊥}) → 2(LF[Obs(V)]×Σ∃).

For each o ∈ Obs∃ ∪ Obs∀, A(o,⊥) = {([o],⊥)}. For each o ∈ Obs∃ and σ# ∈ Σ#

that are such that [o] ⇒
∨

σ∈γ∃(σ#) Enabled(σ) is valid, we define A(o, σ#) = {([o] ∧

ϕ0, σ0), . . . , ([o] ∧ ϕn, σn)}, where σi ∈ γ∃(σ
#) for each 0 ≤ i ≤ n, and the formulas

ϕ0, . . . , ϕn are such that: For each 0 ≤ i ≤ n, the formula ϕi ⇒ Enabled(σi) is valid;

the formula [o] ⇒
∨n

i=0 ϕi is valid; for each 0 ≤ i < j ≤ n, ϕi ∧ ϕj is unsatisfiable.

We use the function A to define the labels of the transitions in a semi-symbolic

strategy automaton constructed from the abstract strategy f#∃ . Let O# = Obs∃∪Obs∀.

We define the semi-symbolic strategy automaton M = (Q0
q ,LF[Obs(V)] × Σ⊥

∃ , ρ)

that represents a winning strategy f∃ for Player∃ in G . The set of states is Q =

{q0, q⊥} ∪̇ S# where q0 is the initial state and q⊥ is a sink. The transition relation is

ρ = {(q0, a, q) | q ∈ I#, a ∈ A(o(q), f⊥∃ (q))}
∪ {(q, a, q′) | q ∈ S#, q′ ∈ S#, q′ ∈ Post(q), a ∈ A(o(q′), f⊥∃ (q′))}

∪ {(q0, a, q⊥) | ∃o ∈ O#. a ∈ A(o, σ#fix (o)) ∧ ∀q ∈ I#. o(q) 6= o}

∪ {(q, a, q⊥) | q ∈ S# ∧ ∃o ∈ O#. a ∈ A(o, σ#fix (o)) ∧ ∀q′ ∈ Post(q). o(q′) 6= o}

∪ {(q⊥, a, q⊥) | ∃o ∈ O#. a ∈ A(o, σ#fix (o))}.

The semi-symbolic strategy automaton M is finite. By definition, since f#∃ is a

strategy for Player∃ in G#, M is non-blocking and Σ∃-correct. Thus, M is a finite

representation of a strategy f∃ for Player∃ in G. Since f#∃ is winning for Player∃ in

Safety(G#, Err#), it is easy to see that f∃ is winning for Player∃ in Safety(G, ϕErr).

5.2 Counterexample Tree Analysis

Since Safety(G#, Err#) is a safety game with perfect information, by Proposition 2.2.1,

if Player∃ does not have a winning strategy in Safety(G#, Err#), there exists a coun-

terexample tree C#
t in Safety(G#, Err#), which we call abstract counterexample tree.

108

5.2 Counterexample Tree Analysis

An abstract counterexample may correspond to a counterexample in the the con-

crete game, i.e., be concretizable, or be an artifact of the abstraction. We give a

characterization of concretizable counterexamples that allows us to effectively check if

a counterexample is concretizable by using decision procedures for the logical theory.

5.2.1 Counterexample Concretization

In Section 2.2 we established that in safety games under incomplete information it

suffices to consider knowledge-based counterexample trees as counterexamples. Thus,

we define the concretization of an abstract counterexample tree C#
t to be the (possibly

empty) set of corresponding knowledge-based counterexample trees.

Definition 5.2.1. Given an abstract counterexample tree C#
t = (N#, E#,Ls

#,La
#)

in Safety(G#, Err#), the concretization γ(C#
t) of C#

t is the smallest set that contains

each knowledge-based counterexample tree Ck = (N,E,Ks ,La) in Safety(G , Err) that

is such that: for each path n0n1 . . . nm in Ck with n0 being the root node, there exists

a path n#0 n
#
1 . . . n

#
m in C#

t where n#0 is the root of C#
t , such that for each 0 ≤ i ≤ m

it holds that Ks(ni) ⊆ γ(Ls
#(n#i)) and for each 0 ≤ i ≤ m − 1 it holds that either

La(ni, ni+1) = La
#(n#i , n

#
i+1) = ǫ or La(ni, ni+1) ∈ γ∃(La

#(n#i , n
#
i+1)).

An abstract counterexample tree C#
t is genuine iff γ(C#

t) 6= ∅, and otherwise it is

called spurious. We now show how to construct a tree formula that is satisfiable iff

the abstract counterexample tree is genuine. The key idea is to symbolically simulate

the perfect-information game over the equivalence classes of the prefixes of the con-

crete game structure G with incomplete information. The formula is constructed as a

conjunction of a set of trace formulas for a finite set of traces defined by the abstract

counterexample tree C#
t , where a trace is a finite sequence of actions of Player∃.

5.2.2 Trace formulas

The set of traces for an abstract counterexample tree consists of the finite sequences of

Player∃ actions for which there should be a corresponding path to a leaf node in each

counterexample tree in the concretization. Below we make this intuition precise.

Traces and counterexample paths. With each node n in C#
t , we associate a set

Traces(n) of traces, where a trace is a finite sequence τ ∈ Σ∗
∃ of actions of Player∃.

For each node n in C#
t , the set Traces(n) is recursively defined as follows:

109

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

• If n is a leaf node with Ls
#(n) ∈ Err#, then Traces(n) = {ǫ},

• If n is a leaf node with Ls
#(n) ∈ S#

∃ \ Err#, then Traces(n) = Σ∃,

• If n is a leaf node with Ls
#(n) ∈ S#

∀ \ Err#, then Traces(n) = {ǫ},

• If n is an internal node with Ls
#(n) ∈ S#

∃ , then

Traces(n) = {σ · τ | ∃n′ ∈ Children(n). σ ∈ γ∃(La
#(n, n′)) ∧ τ ∈ Traces(n′)}∪

{σ ∈ Σ∃ | ∀n′ ∈ Children(n). σ 6∈ γ∃(La
#(n, n′))},

• If n is an internal node with Ls
#(n) ∈ S#

∀ and n′ is the child of n in C#
t , then

Traces(n) = Traces(n′).

Each trace τ induces a set of concrete counterexample paths in Safety(G , Err). A

finite path π = s0s1 . . . sm in the concrete game structure G is a concrete counterexam-

ple path for the trace τ = σ1 . . . σk iff si1si2 . . . sil with l ≤ k is the sequence consisting

of all Player∃-states from π in the same order and the following conditions are satisfied:

• for every 1 ≤ j ≤ l with ij < m, (sij , σj , sij+1) ∈ T∃, and

• sm ∈ Err or sm ∈ S∃ and σl 6∈ Enabled(sm).

Trace formulas for C#
t . A path ρ = n0n1 . . . nm in C#

t is an abstract counterexample

path for the trace τ = σ1 . . . σk iff ni1ni2 . . . nil with l ≤ k is the sequence consisting of

all Player∃-nodes in ρ in the same order and the following conditions are satisfied:

• for every 1 ≤ j ≤ l with ij < m, σl ∈ γ∃(La
#(nij , nij+1)), and

• Ls
#(nm) ∈ Err# or Ls

#(nm) ∈ S#
∃ and σl 6∈ γ∃(La

#(nm, n
′)) for all (n, n′) ∈ E#.

For a trace τ = σ1 . . . σk and a path ρ = n0n1 . . . nm in C#
t that is an abstract error

path for τ with l Player∃ nodes, we define the formula ϕpath (τ, ρ), which characterizes

the set of concrete error paths for τ corresponding to ρ, as follows:

ϕpath (τ, ρ)[V
n0 , . . . ,V nm] =

(∧m
i=0[Ls

#(ni)][V
ni/V]

)
∧(∧

i<m,Ls
#(ni)∈S

#
∃

T∃[V
ni/V ,V ni+1/V ′]

)
∧(∧

i<m,Ls
#(ni)∈S

#
∀

T∀[V
ni/V ,V ni+1/V ′]

)
∧(

Err ∨ (t = ∃ ∧ ¬Enabled(σl))
)
[V nm/V].

110

5.2 Counterexample Tree Analysis

Let n0 be the root node of C#
t and let τ ∈ Traces(n0). We denote with Paths(τ)

the set of all abstract counterexample paths ρ for τ such that ρ[0] = n0. The trace

formula for τ is then defined as ϕtrace(τ) = ϕInit [V
n0/V] ∧

∨
ρ∈Paths(τ) ϕpath (τ, ρ).

By the definition of the formula ϕtrace(τ), if ϕtrace(τ) is satisfiable then there exists

a prefix π ∈ Prefs(G) such that π |= ϕtrace (τ) and |π|∃ ≤ |τ |.

5.2.3 Tree formula

We define Traces(C#
t) = Traces(n0), where n0 is the root of C#

t . If the abstract

counterexample tree C#
t is genuine, then for each τ ∈ Traces(C#

t), the knowledge-

based counterexample tree in G should provide a concrete counterexample path πτ .

Since the knowledge-based counterexample tree branches according to the choices of

Player∃, the paths corresponding to two different traces τ1 and τ2 may differ after

the position corresponding to the first position in which τ1 and τ2 differ. Furthermore,

unlike for counterexample trees in the perfect information case, the concrete counterex-

ample paths for τ1 and τ2 here may differ even before this position. However, in order

to ensure that the paths form a knowledge-based counterexample tree, the states at

the same level must be equivalent with respect to =o up to the position corresponding

to the first difference between τ1 and τ2. We encode this in the tree formula that char-

acterizes the set of knowledge-based counterexample trees in the concretization of C#
t

by appropriately indexing the state variables in the formula. The tree formula for C#
t

is built from the trace formulas for the traces in Traces(C#
t) after applying a variable

substitution to each of them, as we describe in the next paragraph.

Definition 5.2.2. Let π1, π2 ∈ Paths(G), τ1, τ2 ∈ Σ∗
∃, τ1 6= τ2, and |π1|∃ ≤ |τ1| and

|π2|∃ ≤ |τ2|. We define diff(π1, π2, τ1, τ2) = min{m1,m2}, where

m =

min{j | τ1[j] 6= τ2[j]} if ∃j. j < min{|τ1|, |τ2|} and τ1[j] 6= τ2[j]

min{|τ1|, |τ2|} otherwise

mi =

jm + 1 if πi|∃ = sj0 . . . sjl and l ≥ m,

|πi| if |πi|∃ ≤ m.

Intuitively, if π1 and π2 are counterexample paths for the traces τ1 ∈ Traces(C#
t)

and τ2 ∈ Traces(C#
t) respectively, diff(π1, π2, τ1, τ2) is index of the first position starting

from which the states on the two paths are allowed to be observably different.

111

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Indexing of variables. For each trace τ ∈ Traces(C#
t) the trace formula ϕtrace(τ)

characterizes the set of concrete counterexample paths s0s1 . . .m with s0 ∈ I for which

there exists a path n0n1 . . . nm in C#
t such that for every 0 ≤ i ≤ m, si ∈ γ(Ls

#(ni)).

By definition ϕtrace(τ) = ϕInit [V
n0/V] ∧

∨
ρ∈Paths(τ) ϕpath (τ, ρ) and the variables en-

coding a concrete state in γ(Ls
#(n)) for some n ∈ N# are indexed with n. Let n ∈ N#

be a node on some ρ ∈ Paths(τ). We define τ ′n = τ [1, l] where l is the number of nodes

n′ on path(n) such that n′ 6= n and Ls
#(n′) ∈ S#

∃ . Thus, τ ′n ∈ Σ# is the sequence of

Player∃ choices leading to n on the corresponding concrete counterexample path for τ .

For a trace τ we define the substitution ητ , that distinguishes between the observable

Obs(V) = V o
∀ ∪̇ V∃ ∪̇ {t} and the unobservable variables V \Obs(V) = V∀ \ V

o
∀ :

ητ = {xn,τ
′
n/xn | x ∈ V o

∀ ∪V∃ ∪ {t}, n is a node on some ρ ∈ Paths(τ)}∪
{xn,τ/xn | x ∈ V∀ \ V

o
∀ , n is a node on some ρ ∈ Paths(τ)}.

Tree formula for C#
t . Since a knowledge-based counterexample tree that concretizes

C#
t needs to provide a concrete counterexample path for every trace τ ∈ Traces(C#

t),

the tree formula TF(C#
t) is defined to be the conjunction of the trace formulas for the

traces in Traces(C#
t), to each of which the respective variable substitution was applied:

TF(C#
t) =

∧

τ∈Traces(C#
t)

(
ϕtrace(τ)ητ

)
. (5.3)

5.2.4 Concretizability Characterization

The theorem below states that the formula 5.3 characterizes the concretizability of C#
t .

Theorem 5.2.1. Let Safety(G, ϕErr) be a safety game under incomplete information,

P ⊆ AP[V] be a finite set of predicates that is precise w.r.t. the turn variable t and let

G# = Abstract(G,P) and Err# = {s# ∈ S# | Js#K∩ JϕErrK 6= ∅}. If C#
t is an abstract

counterexample tree in Safety(G#, Err#), then γ(C#
t) 6= ∅ iff TF(C#

t) is satisfiable.

Proof. First, consider the case when the formula TF(C#
t) is satisfiable, and let M be

a model of TF(C#
t). For a node n ∈ N# and τ ∈ Traces(C#

t) we define τn = τ [1, l]

where l is the number of nodes n′ on path(n) such that n′ 6= n and Ls
#(n′) ∈ S#

∃ .

Let us define the valuation sn,τ ∈ Vals(V) such that for x ∈ V o
∀ ∪ V∃ ∪ {t},

sn,τ (x) =M(xn,τn) and for x ∈ V∀ \V
o
∀ , sn,τ (x) =M(xn,τ). Note that by this,

obs(sn,τ ′) = obs(sn,τ ′′) for every τ
′, τ ′′ ∈ Traces(C#

t) for which τ ′n = τ ′′n . (5.4)

112

5.2 Counterexample Tree Analysis

We define the labeled tree Ck = (N,E,Ks ,La) with N ⊆ N# × Σ∗
∃ as the smallest

graph that satisfies the following conditions:

• (n#0 , ǫ) ∈ N and Ks((n
#
0 , ǫ)) = I ∩ obs(sn0,τ), where n

#
0 is the root of C#

t and

τ ∈ Traces(C#
t) (note that, by (5.4), the label of (n#0 , ǫ) is uniquely determined);

• if (n, τ) ∈ N , (n, n′) ∈ E#, Ks((n, τ)) ∩ Err = ∅, La
#(n, n′) ∈ Σ#

∃ and σ ∈

γ∃(La
#(n, n′)), then let S′ = Post∃(Ks((n, τ)), σ) ∩ obs(sn′,τ ′) for some τ ′ =

τ · σ · τ ′′ ∈ Traces(C#
t), and if S′ 6= ∅, then (n′, τ · σ) ∈ N , ((n, τ), (n′, τ · σ)) ∈ E

and Ks((n
′, τ · σ)) = S′ and La(((n, τ), (n

′, τ · σ))) = σ ;

• if (n, τ) ∈ N , Ks((n, τ)) ∩ Err = ∅, (n, n′) ∈ E# and La
#(n, n′) = ǫ, then let

S′ = Post∀(Ks(n, τ))∩obs(sn′,τ ′) for some τ ′ = τ ·τ ′′ ∈ Traces(C#
t), and if S′ 6= ∅,

then (n′, τ) ∈ N , ((n, τ), (n′, τ)) ∈ E, Ks((n
′, τ)) = S′, La(((n, τ), (n

′, τ))) = ǫ.

Since C#
t and Σ∃ are finite, Ck is finite as well. Conditions (i), (ii), (iv) and (v) from

the definition of knowledge-based counterexample tree are implied by the definition of

Ck. Conditions (iii) and (viii) hold by the fact that M is a model of TF(C#
t) and

that for each leaf n in C#
t γ(n) contains a state in Err or a dead end. Condition (vi)

holds by (5.4) and the fact that if for states s1, s2 ∈ S∃ and s′1, s
′
2 ∈ S and σ ∈ Σ∃ it

holds that obs(s1) = obs(s2) and (s1, σ, s
′
1) ∈ T∃ and (s2, σ, s

′
2) ∈ T∃, then obs(s′1) =

obs(s′2) for game structures defined symbolically (see Definition 2.1.9). Since C#
t is a

counterexample tree, Ck also satisfies condition (vii). Thus, Ck is a knowledge-based

counterexample tree in the game Safety(G , Err).

Since M is a model of TF(C#
t), the definition of Ck also implies that Ck ∈ γ(C#

t).

Now, for the other direction, suppose that γ(C#
t) 6= ∅ and let Ck ∈ γ(C#

t). Since

Ck is a knowledge-based counterexample tree, for each trace τ ∈ Traces(C#
t) there

exists a concrete counterexample path s0 . . . sm in G and a path n0 . . . nm in Ck such

that si ∈ Ks(ni) for each 0 ≤ i ≤ n. By the properties of Ck it holds that we can use

the set of concrete counterexample paths to define a model M for TF(C#
t).

Example 5.2.1. Let us consider again Example 2.1.1 and the abstract game structure

defined by the set of predicates P0 given in Example 5.1.2. Figure 5.2 shows an abstract

counterexample tree in the abstract game Safety(Abstract(G), ϕErr).

Each node i in the counterexample tree shown in Figure 5.2 is labeled by (an

abstract state Ai and) a formula [Ai] over P0 describing the set γ(Ai) of concrete states

in the game structure G for the corresponding abstract state Ai.

113

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Figure 5.2: Counterexample tree in Safety(Abstract(G,P), ϕErr). The root is labeled with

an abstract initial state, the leaves are labeled with abstract error states. Nodes 0, 5, 6, 7, 8

belong to Player
∃
, the remaining nodes belong to Player

∀
.

[A0] = (t 6= ∀) ∧ (move = N) ∧ (x < 6) ∧ (x < 9) ∧ (x > −1)

∧ (steps ≤ 3) ∧ (err = false) ∧ (y < 4) ∧ (y > −4)

[A1] = (t = ∀) ∧ (move = N) ∧ (x < 6) ∧ (x < 9) ∧ (x > −1)

∧ (steps ≤ 3) ∧ (err = false) ∧ (y < 4) ∧ (y > −4)

.

For the root node 0 we have the set of traces Traces(0) = {N · E,N · S,N ·W,N ·

N,E ·E,E · S,E ·W,E ·N,S ·E,S · S, S ·W,S ·N,W ·E,W · S,W ·W,W ·N}.

For the trace τ = N ·N we have Paths(τ) = {0 · 1 · 5 · 9}. The corresponding for-

mula ϕtrace (τ) is not satisfiable and hence the abstract counterexample tree depicted

in Figure 5.2 is not concretizable in Safety(G, ϕErr). The cause for this abstract coun-

terexample is that the abstraction of the transition relation is not precise enough.

5.2.5 Sources of Spuriousness

The presented characterization of concretizable abstract counterexample trees allows

us to easily identify, in the case of a spurious counterexample tree C#
t , the reason

for the presence of the analyzed counterexample. In the CEGAR procedure that we

describe in Section 5.4 we distinguish two possibilities. If each of the trace formulas

in the conjunction TF(C#
t) is satisfiable, this means that the the approximation of

the observation equivalence defined by Obs(P) is too coarse. If, on the other hand,

for some trace τ the trace formula ϕtrace(τ) is unsatisfiable, the cause of the abstract

counterexample is the approximation of the transition relations on the level of Vals(P).

In the next section we focus on the first of these two cases and develop a procedure

for generating observable abstraction predicates.

114

1_predicate_abstraction/figures/robot-strategy-1.eps

5.3 Interpolation for Observation Refinement

5.3 Interpolation for Observation Refinement

In the case when each of the conjuncts in the unsatisfiable tree formula TF(C#
t) for the

abstract counterexample tree C#
t is satisfiable, the goal of the refinement procedure

is to compute a set of observable refinement predicates that allow to distinguish the

sets of concrete counterexample paths for the traces in Traces(C#
t). Furthermore, the

computed predicates should be state predicates. That is, they should refer only to

the current values of the variables in individual states of a path and should not relate

different states on the path. We call such predicates localized.

One of the techniques most widely and successfully used in verification [HJMM04]

for generating refinement predicates is Craig interpolation [Cra57]. The main idea

of this methodology is to extract the relevant information, in the form of a formula

called interpolant from the proof of unsatisfiability of a formula characterizing the

concretizability of a counterexample path. There, the path formula is split into a

conjunction of two formulas – a formula describing a prefix of the path and a formula

describing the corresponding suffix, and the two formulas share variables representing

a single state. Therefore, the predicates occurring in the interpolant computed for the

two formulas relate only current values of the variables of the analyzed system.

Here, since each pair of conjuncts of a tree formula TF(C#
t) shares only observable

variables, interpolants will contain only observable predicates. However, the conjuncts

share variables corresponding to different states along a path, and thus an interpolant

may contain predicates relating values of variables in different execution steps. Thus,

the key challenge for the interpolant computation in our case is to ensure that the

predicates in the resulting interpolant are localized.

The straight-forward application of existing interpolation methods (such as, for

example,[JM06, RSS07]) can produce refinement predicates that are either guaranteed

to be observable or guaranteed not to relate variables for different states, but not both.

5.3.1 Craig Interpolation

Definition 5.3.1. Let Th be a theory over a signature Ξ, all of whose symbols are

interpreted in Th, and let ϕ and ψ be formulas over Ξ. Suppose that ϕ∧ψ is unsatisfiable

w.r.t. Th. We say that a formula θ is a (theory-specific) interpolant for (ϕ,ψ) iff ϕ

implies θ w.r.t. Th, θ ∧ ψ is unsatisfiable w.r.t. Th and Vars(θ) ⊆ Vars(ϕ) ∩Vars(ψ).

115

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

A number of theories, such as for example the theories of linear rational or real

arithmetic, admit quantifier free interpolation, that is, for each pair of quantifier-free

formulas whose conjunction is unsatisfiable there exists a quantifier free interpolant.

For two formulas ϕ and ψ for which ϕ ∧ ψ is unsatisfiable w.r.t. Th, if θ is an

interpolant for (ϕ,ψ), then ¬θ is an interpolant for (ψ,ϕ) w.r.t. Th.

Definition 5.3.2. Let Th be a theory over a signature Ξ, and AP be the set of atomic

formulas over the signature Ξ. We call a formula ϕ localized w.r.t. a partitioning

(X0, . . . ,Xn) of the set Vars(ϕ) of free variables of ϕ if for each atomic proposition

ψ ∈ Preds(ϕ) it holds that Vars(ψ) ⊆ Xi for some 0 ≤ i ≤ n.

Definition 5.3.3. Let Th be a theory over a signature Ξ and let ϕ and ψ be formulas

over Ξ. Suppose that ϕ∧ψ is unsatisfiable w.r.t. Th. Given a partitioning (X0, . . . ,Xn)

of the set of variables Vars(ϕ) ∪ Vars(ψ), we say that θ is a localized interpolant for

(ϕ,ψ) if θ is an interpolant for (ϕ,ψ) and θ is localized w.r.t. (X0, . . . ,Xn).

5.3.2 Observation Equivalence Refinement

We describe an algorithm RefineObservations, outlined as Algorithm 3, which com-

putes a finite set of observable predicates given the set of trace formulas from TF(C#
t).

It uses as a black box a procedure LocalizedInterpolant, which, given two formulas

and a partitioning of the variables occurring in them, returns an interpolant for the

pair of formulas that is localized w.r.t. the given partition or returns ⊥ if it was unable

to compute such an interpolant. In Section 5.3.3 we provide an instantiation of this

procedure for the case of linear rational arithmetic and reason about its properties.

Given the set of trace formulas Formulas(C#
t) for the traces in C#

t whose conjunc-

tion is unsatisfiable, the function MinimalUnsatisfiableSubset returns a minimal set Φ of

trace formulas whose conjunction is unsatisfiable. This set is minimal in the sense that

for every Φ′ (Φ the conjunction of its elements is satisfiable. Thus, the traces corre-

sponding to the formulas in the set Φ are such that if Player∃ could distinguish between

the corresponding sets of counterexample paths he could prevent the counterexample

C#
t by playing the respective sequences of actions. In order to enable Player∃ to play

the actions occurring in these traces, we additionally refine the abstraction with pred-

icates that guarantee that the refined abstraction is precise w.r.t. this set of actions.

Namely, given a set of traces Υ, the set PredicatesΣ(Υ) of predicates consists of all

predicates x = c, where x ∈ V∃ and τ [i](x) = c for some τ ∈ Υ and some 0 ≤ i < |τ |.

116

5.3 Interpolation for Observation Refinement

The minimal unsatisfiable set of trace formulas Φ can be split into a formula ϕ1

and the nonempty set Φ2 = Φ \ {ϕ1} such that ϕ2 =
∧

ϕ∈Φ2
ϕ is satisfiable and ϕ1 ∧ϕ2

is unsatisfiable. This means that every concrete counterexample path for the trace

corresponding to ϕ1 can be distinguished from some concrete counterexample path

from each tuple of paths satisfying Φ2, meaning that the paths differ before the first

position in which the corresponding traces differ. Since the pair of satisfiable formulas

(ϕ1, ϕ2) has unsatisfiable conjunction, we can compute an interpolant θ for (ϕ1, ϕ2).

By the definition of the substitutions ητ , θ refers only to indexed observable variables.

In order to ensure that each atomic formula in θ is a state predicate, i.e., it does not

relate different predicates on a path, we pass to the interpolation procedure a partition-

ing Partition(Vars(ϕ1) ∪Vars(ϕ2), C
#
t) = (Ṽ1, . . . , Ṽk) of the variables occurring in the

trace formulas and require that in each predicate in θ only variables from a single Ṽi

occur. The partitioning of the variables is according to their level in the tree, namely,

Ṽi =
⋃

n∈N#,|path(n)|−1=i,τ∈Traces(C#
t)

V n,τ ∩ (Vars(ϕ1) ∪ Vars(ϕ2)).

The procedure LocalizedInterpolant, applied to formulas ϕ1 and ϕ2 and a

partitioning (Ṽ1, . . . , Ṽk) of Vars(ϕ1)∪Vars(ϕ2), returns an interpolant localized w.r.t.

(Ṽ1, . . . , Ṽk), if it can find one. Note that even if the theory admits Craig interpolation,

a localized interpolant for the given formulas and variable partitioning might not exist.

In the latter case the procedure LocalizedInterpolant aborts returning ⊥.

If LocalizedInterpolant returns an interpolant θ, the set ExtractPredicates(θ)

consists of the predicates from θ in which the indexed variables have been renamed to

the original variables V , and which can be added to the set of refinement predicates.

Since the conjunction ϕ1 ∧ϕ is satisfiable for each ϕ ∈ Φ, it holds that θ ∧ϕ is also

satisfiable for each ϕ ∈ Φ. Thus, if |Φ2| > 1, the predicates extracted from θ may be

insufficient for Player∃ to prevent the counterexample tree C#
t . This is because they

suffice to distinguish the paths satisfying ϕ1 from the tuples of paths satisfying ϕ2, i.e.,

the paths satisfying the trace formulas in Φ2 that satisfy the equivalence condition, but

not necessarily from the paths satisfying the formulas in Φ2 that can be distinguished

from each other. Therefore, the set Φ is updated to Φ′ = {θ ∧ ϕ | ϕ ∈ Φ2} and the

process of computing an interpolant and a set of predicates is repeated.

117

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Algorithm:RefineObservations

Input: set of trace formulas Formulas(C#
t) = {ϕtrace(τ)ητ | τ ∈ Traces(C#

t)}

for set of traces Traces(C#
t) in an abstract counterexample tree C#

t

Output: finite set R of refinement predicates

Φ := MinimalUnsatisfiableSubset(Formulas(C#
t));

R := PredicatesΣ({τ ∈ Traces(C#
t) | ϕtrace(τ)ητ ∈ Φ});

while |Φ| ≥ 2 do

pick (ϕ1,Φ2) such that:

Φ2 ⊆ Φ, ϕ1 ∈ Φ \ Φ2,

Φ2 6= ∅,
∧

ϕ∈Φ2
ϕ is SAT

ϕ1 ∧
(∧

ϕ∈Φ2
ϕ
)
is UNSAT;

ϕ2 =
∧

ϕ∈Φ2
ϕ;

θ := LocalizedInterpolant(ϕ1, ϕ2,Partition(Vars(ϕ1) ∪ Vars(ϕ2), C
#
t));

R := R ∪ ExtractPredicates(θ); /* extract refinement predicates */

Φ := {θ ∧ ϕ | ϕ ∈ Φ2}; /* update the set of conjuncts */

return R;

Algorithm 3: Refinement Predicates for the Observation Equivalence.

Example 5.3.1. To illustrate procedure RefineObservations, we consider a variant

of Example 2.1.1, in which the set V o
∀ contains an additional variable yo, that is initially

equal to y and then is set to 0 by Player∀. Formally, we have the symbolic game

structure G′ = (V∃,V∀
′,V o

∀
′, t, ϕInit

′,T∃
′,T∀

′), where G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀)

is the symbolic game structure from Example 2.1.1 and V∀
′ = V∀ ∪̇ {yo}, V o

∀
′ =

V o
∀ ∪̇ {yo}, ϕInit

′ = ϕInit ∧ y
o = y, T∃

′ = T∃ ∧ y
o′ = y, T∀

′ = T∀ ∧ y
o′ = 0.

Let us look at the abstraction Abstract(G′,P′) w.r.t. the set of predicates

P′ = {(t = ∀), (move = N), (move = E), (move = S), (x < 6), (x ≥ 9),

(x ≤ −1), (x ≥ 3), (x ≤ 1), (x ≥ 1), (x < 0), (x < 2), (x < 4), (x ≥ 5),

(steps > 3), (steps > 2), (steps > 0), (steps > 1), (err = 1),

(y ≥ 4), (y ≤ −4), (y ≥ 3), (y ≤ −3), (y ≥ 2), (y ≤ −2), (y ≤ −1)}.

In the abstract game Safety(Abstract(G′,P′), Err#), there exists a counterexample

tree, part of which is shown in Figure 5.3. The path π1 = 0, 1, 5, 9, 25, 37, 85, 125 is

118

5.3 Interpolation for Observation Refinement

Figure 5.3: Paths in an abstract counterexample tree for Safety(Abstract(G′,P′), Err#).

Paths π1 = 0, 1, 5, 9, 25, 37, 85, 125 and π2 = 0, 2, 6, 14, 30, 58, 102, 193 correspond to traces

τ1 = N ·N ·N and τ2 = E ·E ·E respectively. The conjunction of the corresponding trace

formulas is unsatisfiable.

the only path in this tree corresponding to the trace τ1 = N · N · N and the path

π2 = 0, 2, 6, 14, 30, 58, 102, 193 is the only path for the trace τ2 = E · E · E. The

conjunction ϕtrace (τ1) ∧ ϕtrace(τ2) is unsatisfiable, that is, the two formulas ϕtrace(τ1)

and ϕtrace(τ2) form a minimal subset of the set of trace formulas for this counterexample

tree, whose conjunction is unsatisfiable. The reason for which the counterexample tree

is not concretizable is that for the initial states in which yo ≤ 0, the sequence τ1, i.e.,

making 3 steps north does not lead to a bad state, while for initial states in which yo > 0

the sequence τ2, i.e., making 3 steps east does not lead to a bad state. Computing a

Craig interpolant for these two trace formulas yields the predicate (yo ≤ 0), which

distinguishes the concrete counterexample paths for the traces in their first states.

In the example above, each pair of concrete counterexample paths for the two traces

respectively could be distinguished by an observable predicate in their first state. In

general, this is not always the case, as it can be seen in the next example. There,

different tuples (in that case again pairs) of concrete counterexample paths, exhibit an

observable difference at different levels of the spurious counterexample tree.

119

1_predicate_abstraction/figures/robot-strategy-2.eps

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Example 5.3.2. Consider a simple model of a production system, that produces items

differing in several characteristics: items of type 0 with weight in the interval [1, 5] and

items of type 1 with weight in the interval [4, 10]. The items come in two sizes: items

of size 1 are those of type 0 with weight less than or equal to 2 and those of type 1

with weight less that or equal to 7. The remaining items, i.e., items of type 0 whose

weight is greater than 2 and those of type 1 whose weight is greater than 7 have size 2.

A robotic arm controller is required to sort the items correctly into the respective box

according to their type. Via sensors the controller receives precise information about

the size of the currently produced item, and inaccurate information about its weight.

The controller synthesis problem for this production system is modeled as a symbolic

game Safety(G, ϕErr) with G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀), where

• V∃ := {box}, V∀ := {type ,weight , size,weighto, loc}, V o
∀ := {size,weighto, loc},

• ϕInit := t = ∀∧ box = 0∧ type = 0∧weight = 0∧ size = 0∧weighto = 0∧ loc = 0,

• T∃ := t = ∃∧t′ = ∀∧(box ′ = 0∨box ′ = 1)∧preserve(type ,weight , size,weighto, loc),

• T∀ := t = ∀ ∧ (ϕ0 ∨ ϕ1 ∨ ϕ2 ∨ ϕ
′
3 ∨ ϕ

′′
3 ∨ ϕ4) ∧ box ′ = box ,

ϕ0 := loc = 0 ∧ t′ = ∀ ∧ loc ′ = 1 ∧ preserve(size,weighto)∧

(type ′ = 0 ∧ weight ′ ∈ [1, 5] ∨ type ′ = 1 ∧ weight ′ ∈ [4, 10]),

ϕ1 := loc = 1 ∧ t′ = ∀ ∧ loc ′ = 2 ∧ preserve(type ,weight ,weighto)∧(
size ′ = 1 ∧ (type = 0 ∧ weight ≤ 2 ∨ type = 1 ∧ weight ≤ 7)∨

size ′ = 2 ∧ (type = 0 ∧ weight > 2 ∨ type = 1 ∧ weight > 7)
)
,

ϕ2 := loc = 2 ∧ t′ = ∃ ∧ loc ′ = 3 ∧ size ′ = 0 ∧ preserve(type ,weight)∧

(weighto′ < 3 ↔ weight < 3) ∧ (weighto′ ∈ [3, 6) ↔ weight ∈ [3, 6)),

ϕ′
3 := loc = 3 ∧ type = box ∧ loc ′ = 0 ∧ t′ = ∀∧

type ′ = 0 ∧ weight ′ = 0 ∧ size ′ = 0 ∧ weighto′ = 0,

ϕ′′
3 := loc = 3 ∧ type 6= box ∧ loc ′ = 4 ∧ preserve(t, type ,weight , size,weighto),

ϕ4 := loc = 4 ∧ preserve(t, loc, type ,weight , size ,weighto),

where for a set of variables X ⊆ V , preserve(X) :=
∧

x∈x(x
′ = x),

• ϕErr := t = ∃ ∧ loc = 4.

Note that, in order to correctly infer the type of the item at location 3, the controller

has to observe and record the value of the observable variable size when the location

is 2, and observe the value of the observable variable weight0 when the location is 3.

Let for example P = {(t = ∀), (box = 0), (loc = 0), (loc = 4), (loc = 1), (loc =

2), (loc ≤ 1), (loc ≥ 3)} and consider the abstract game Safety(Abstract(G,P), Err#).

120

5.3 Interpolation for Observation Refinement

0

1

2

3

4 5

6 7

Figure 5.4: Counterexample tree C#
t in the abstract game Safety(Abstract(G,P), Err#)

from Example 5.3.2. The conjunction of the trace formulas for the tree C#
t is unsatisfiable,

and hence the abstract counterexample tree is not concretizable.

A counterexample tree C#
t in Safety(Abstract(G,P), Err#) is shown in Figure 5.4.

The set of traces for the root node is Traces(0) = {σ0, σ1}, where σ0(box) = 0 and

σ1(box) = 1. Now, applying the procedure RefineObservations yields the predicates

size ≥ 2, weighto < 3 and weighto < 6, where predicate size ≥ 2 is associated with

node 2 in the tree C#
t and the remaining two predicates are associated with node 3.

The procedure RefineObservations, shown as Algorithm 3, computes a set of

refinement predicates, given the set of satisfiable trace formulas for a spurious abstract

counterexample tree C#
t . The following lemma formalizes the property of the computed

set of predicates that is important for showing the progress of the refinement step.

Lemma 5.3.1. Let Safety(G, ϕErr) be a safety game under incomplete information,

P ⊆ AP[V] be a finite set of predicates that is precise w.r.t. the turn variable t and let

G# = Abstract(G,P) and Err# = {s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}.

Let C#
t be an abstract counterexample tree in Safety(G#, Err#) such that TF(C#

t)

is unsatisfiable and ϕtrace(τ) is satisfiable for each τ ∈ Traces(C#
t).

Consider a set Π ⊆ Prefs(G) of prefixes such that for every τ ∈ Traces(C#
t), there

exists πτ ∈ Π such that πτ |= ϕtrace(τ). Suppose that RefineObservations applied to

Formulas(C#
t) = {ϕtrace (τ)ητ | τ ∈ Traces(C#

t)} completed successfully (every call to

LocalizedInterpolant returned an interpolant) and returned a set R of predicates.

Then there exist:

• τ1, τ2 ∈ Traces(C#
t) such that τ1 6= τ2 and PredicatesΣ({τ1, τ2}) ⊆ R,

121

1_predicate_abstraction/figures/parts-strategy-2.eps

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

• a predicate ψ ∈ R and

• a position j < diff(πτ1 , πτ2 , τ1, τ2),

such that πτ1 [j] |= ψ and πτ2 [j] |= ¬ψ.

Proof. Let k be the number of iterations of the loop in RefineObservations and

θ1 . . . θk be the corresponding interpolants computed by LocalizedInterpolant. We

will show that there exists an iteration i such that there exist τ1, τ2 ∈ Traces(C#
t) such

that τ1 6= τ2, πτ1 |= θi and πτ2 |= ¬θi. Thus, there exist a predicate ψ ∈ Preds(θi) and

a position j < diff(πτ1 , πτ2 , τ1, τ2) such that πτ1 [j] |= ψ and πτ2 [j] |= ¬ψ or πτ1 [j] |= ¬ψ

and πτ2 [j] |= ψ. Since R ⊇ ExtractPredicates(θi), the claim of the lemma holds.

We denote with Φi, ϕi
1, Φ

i
2 and ϕi

2 the values of Φ, ϕ1, Φ2 and ϕ2 at iteration i.

It can easily be seen by induction on i that if for all iterations i′ with i′ < i the

above property does not hold for θi′ , then either the property holds for θi or for each

ϕ ∈ Φi there exists a π ∈ Π such that π |= ϕ. The statement clearly holds for i = 1

by he choice of Π and the definition of Φ0. For i + 1 the statement follows from the

inductive hypothesis and the fact that θi is an interpolant for (ϕi
1, ϕ

i
2).

Thus, either there exists i < k such that there exist τ1, τ2 ∈ Traces(C#
t) for which

τ1 6= τ2, πτ1 |= θi and πτ2 |= ¬θi, or there exist τ1, τ2 ∈ Traces(C#
t) such that τ1 6= τ2,

πτ1 |= ϕk
1 and πτ2 |= ϕk

2 where Φk
2 = {ϕk

2}. In the latter case, since θk is an interpolant

for (ϕk
1 , ϕ

k
2) it holds that πτ1 |= θk and πτ2 |= ¬θk, which concludes the proof.

5.3.3 Localized Interpolants for Linear Rational Arithmetic

For this section we fix the considered background theory Th to be the theory of linear

rational arithmetic. Thus, the set AP of atomic predicates is the set of linear inequali-

ties with rational coefficients. Each quantifier free linear arithmetic formula is a positive

boolean combination of linear inequalities. In particular, when transformed into dis-

junctive normal form, it can be seen as a disjunction of systems of linear inequalities.

Constraint solving for interpolation for linear arithmetic A mixed system,

denoted Ax 6 a, is a conjunction of strict and non-strict linear inequalities. The

system consisting of the strict inequalities of Ax 6 a is denoted by Altx < alt, and the

one of the non-strict ones with Alex < ale. IfmA is the number of columns of the matrix

A, we denote with A|k its k-th column for 1 ≤ k. A conic combination of the inequalities

in Ax 6 a is an inequality λAx 6 λa for a row vector λ = (λ|1, . . . , λ|mA
) with length

122

5.3 Interpolation for Observation Refinement

mA and such that λ|k ≥ 0 for each 1 ≤ k ≤ mA. The subvectors of λ corresponding to

the strict and non-strict inequalities in Ax 6 a respectively are denoted with λlt and

λle. If x = (x1, . . . , xmA
), we define Vars(Ax 6 a) = {xk | A|k 6= 0}.

Rybalchenko and Sofronie-Stokkermans propose in [RSS07] an algorithm LI for

computing linear interpolants for mixed systems of inequalities whose conjunction is

not satisfiable. Their algorithm reduces interpolant generation to a linear programming

problem and is based in Motzkin’s transposition theorem below.

Theorem 5.3.2 ([Sch86]). If Ax < a is a system of strict inequalities and Bx ≤ b is

a system of non-strict inequalities, then there exists a vector x0 such that Ax0 < a and

Bx0 ≤ b iff for all vectors λ ≥ 0 and µ ≥ 0 the following conditions hold true:

• if λA+ µB = 0 then λa+ µb ≥ 0, and

• if λA+ µB = 0 and λ 6= 0, then λa+ µb > 0.

The input of algorithm from [RSS07] consists of two mixed systems of inequalities

Ax 6 a and Bx 6 b such that the conjunction Ax 6 a ∧Bx 6 b is not satisfiable. The

output is an interpolant which is a linear inequality ix⊳ δ where ⊳ ∈ {≤, <}.

Theorem 5.3.3 ([RSS07]). For mutually unsatisfiable mixed systems Ax 6 a and

Bx 6 b of inequalities, there exists a linear inequality interpolant ix⊳δ with ⊳ ∈ {≤, <}.

As noted in [RSS07], an interpolant θ for disjunctions of mixed systems
∨

k Ak 6

ak and
∨

lBlx 6 bl can be constructed by computing a linear interpolant iklx ⊳ δkl

for each pair (Aj 6 aj, Bkx 6 bk) and then letting θ =
∨

j

∧
k ijkx ⊳ δjk. Another

alternative suggested there is to use their constraint-based algorithm to generate partial

interpolants for conflict clauses in a DPLL procedure and then combine them using an

extension of Pudlák’s algorithm [Pud97, YM05].

Computing localized interpolants In order to compute localized interpolants for

linear rational arithmetic we give an algorithm LILA (Linear Interpolation with Local-

ized Atoms) that extends algorithm LI from [RSS07]. In addition to the systems of

inequalities, algorithm LILA receives a partitioning of the variables which occur in the

input systems. As a result, each atom in the generated interpolant, a conjunction of

linear inequalities, is guaranteed to contain variables from exactly one partition.

123

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Algorithm:LILA

Input: mixed systems Ax 6 a and Bx 6 b where Ax 6 a ∧Bx 6 b is UNSAT

partitioning (X0,X1, . . . ,Xn) of the variables in the vector x

Output: interpolant
∧n

j=0 ijx⊳j δj with ⊳j ∈ {≤, <} and Vars(ijx⊳j δj) ⊆ Xj

or ⊥ if such an interpolant could not be computed

χ1 := λ ≥ 0 ∧ µ ≥ 0 ∧ λA+ µB = 0;

χ2 := λ =
∑n

j=0 λj ∧
∧n

j=0(λj ≥ 0 ∧ ij = λjA ∧ δj = λja ∧
∧

k∈Ix(j)
λjA|k = 0);

if exist λ, µ, λj , ij , δj , for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa+ µb ≤ −1

then return
∧n

j=0 ijx ≤ δj ;

elif exist λ, µ, λj , ij , δj , for 0 ≤ j ≤ n satisfying χ1 ∧χ2 ∧ λa+µb ≤ 0∧λlt 6= 0

then return
∧

0≤j≤n,λlt
j 6=0 ijx < δj ∧

∧
0≤j≤n,λlt

j=0 ijx ≤ δj ;

elif exist λ, µ, λj , ij , δj , for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa+ µb ≤ 0 ∧ µlt 6= 0

then return
∧n

j=0 ijx ≤ δj ;

else return ⊥

Algorithm 4: Computing localized interpolants for systems of inequalities.

The procedure LILA , shown as Algorithm 4, generates an interpolant for (Ax 6

a,Bx 6 b) that is of the form
∧n

j=0 ijx ⊳j δj , where n + 1 is the number of sets

(X0,X1, . . . ,Xn), and which is localized w.r.t. the given variable partitioning. Such an

interpolant, however, might not exists. If this is the case, LILA returns the element ⊥.

Each of the inequalities ijx⊳j δj is a linear combination λjAx 6 λja of inequalities

in Ax 6 a. The coefficients are computed as a solution to a set of constraints, they

are a satisfying assignment to the variables λ0, λ1, . . . , λn. The subvectors λltj , λ
le
j for

j = 0, 1, . . . , n define linear combinations of strict and non-strict inequalities in Ax 6 a,

respectively. The remaining variables in the constraints are λ, λlt, λle, µ, µlt, µle.

The constraint χ1 = λ ≥ 0∧µ ≥ 0∧λA+µB = 0, together with the constraints on

λ, µ, λlt, µlt in each of the three cases, as in [RSS07], encode the possible cases according

to Theorem 5.3.2. Constraint χ2 encodes the requirement for localized atoms:

χ2 := λ =
n∑

j=0

λj ∧
n∧

j=0

(
λj ≥ 0 ∧ ij = λjA ∧ δj = λja ∧

∧

k∈Ix(j)

λjA|k = 0
)
.

124

5.3 Interpolation for Observation Refinement

The set Ix (j) = {k ∈ {1, . . . ,mA} | xk ∈ V j} for a 0 ≤ j ≤ n is the set of column

indices in the matrix A that correspond to variables in the set Xj . We denote with

Ix (j) = {1, . . . ,mA}\ Ix (j) the complement of Ix (j). Thus,
∧

k∈Ix(j)
λjA|k = 0 requires

that the coefficients in ijx⊳j δj of all variables in x that are not in Xj are 0.

In general, a localized interpolant for a pair of systems of inequalities may not exist.

Even if one does exist, it might not be of the following form, where ⊳j ∈ {≤, <}

θ =
n∧

j=0

ijx⊳j δj (
∧

LI)

that is considered by Algorithm 4. However, we establish in the following theorem

that if an interpolant of the form (
∧

LI) does exist, the procedure LILA is guaranteed

to find one. Later we will see how we can use algorithm LILA to find also a localized

interpolant that is a disjunction of linear inequalities, in case one exists.

Theorem 5.3.4. Algorithm LILA is sound: If, given mixed systems Ax 6 a and

Bx 6 b and a variable partitioning (X0,X1, . . . ,Xn), it returns a formula θ, then θ is

an interpolant for (Ax 6 a,Bx 6 b) that is localized w.r.t. (X0,X1, . . . ,Xn).

Algorithm LILA is complete: if there exists interpolant θ for (Ax 6 a,Bx 6 b) that is

localized w.r.t. (X0,X1, . . . ,Xn) and satisfies (
∧

LI), then the algorithm will find one.

Proof. Soundness. Assume that the algorithm returns a formula θ. Thus, there exist

row vectors λ, µ and λj , for 0 ≤ j ≤ n, that satisfy χ1 and χ2. θ =
∧n

j=0 ijx ⊳j δj ,

where for each 0 ≤ j ≤ n, ij = λjA, δj = λja and ⊳j ∈ {≤, <}. Let ij = (i0j , . . . , i
n
j)

and k ∈ Ix (j). We have ikj = λjA|k, and since λj satisfies constraint χ2, i
k
j = 0. Thus,

Vars(ijx⊳j δj) ⊆ Xj for each 0 ≤ j ≤ n, i.e., θ is localized w.r.t. (X0,X1, . . . ,Xn).

It remains to show that θ is indeed an interpolant for (Ax 6 a,Bx 6 b). The formula

Ax 6 a implies each of the conjuncts in θ, since each of them is a conic combination of

the inequalities in Ax 6 a. Hence, Ax 6 a implies θ. By [RSS07], λAx⊳λa, where ⊳ is

< iff θ was returned by the second case of LILA , is an interpolant for (Ax 6 a,Bx 6 b),

and hence its conjunction with Bx 6 b is unsatisfiable. As λ =
∑n

j=0 λj, θ implies

λAx ⊳ λa. Therefore, the conjunction of θ and Bx 6 b is unsatisfiable as well. Since

λAx⊳ λa is an interpolant Vars(λAx⊳ λa) ⊆ Vars(Ax 6 a) ∩Vars(Bx 6 b). As each

variable xk, where x = (x1, . . . , xmA
) appears in exactly one Xj , it occurs in at most

one of the conjuncts and hence, if λA|k = 0, then also λjA|k = 0 for each 0 ≤ j ≤ n.

Therefore Vars(λjAx⊳ λja) ⊆ Vars(Ax 6 a) ∩ Vars(Bx 6 b) for each 0 ≤ j ≤ n.

Completeness. Let θ be an interpolant for (Ax 6 a,Bx 6 b) that is localized

w.r.t. (X0,X1, . . . ,Xn) and that is of the form (
∧

LI).

125

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Since Ax 6 a implies θ, it implies also ijx⊳j δj for each 0 ≤ j ≤ n. Let 0 ≤ j ≤ n

and consider −ijx⊳′
j −δj, where ⊳′

j is < iff ⊳j is ≤. The conjunction of Ax 6 a and

−ijx⊳′
j −δj is unsatisfiable. Thus, by Theorem 5.3.2 there exist vectors λ′j

lt ≥ 0 and

λ′j
le ≥ 0 and constant αj ≥ 0 such that

• if ⊳′
j is <, then (λ′j

ltαj)
(
Alt

−ij

)
+ λ′j

leAle = 0 and (λ′j
ltαj)

(
alt

−δj

)
+ λ′j

leale ≤ 0 and

• if ⊳′
j is ≤, then λ′j

ltAlt + (λ′j
leαj)

(
Ale

−ij

)
= 0 and λ′j

ltalt + (λ′j
leαj)

(
ale

−δj

)
≤ 0.

In both cases, since Ax 6 a is satisfiable, it holds that αj > 0. We define λ′j as the

combination of λ′lt and λ′le. Then,

λ′jA = λ′j
lt
Alt + λ′j

le
Ale = αjij and λ′ja = λ′j

lt
alt + λ′j

le
ale ≤ αjδj .

Now, consider θ as a mixed system Ix 6 d. Since the conjunction of θ and Bx 6 b

is unsatisfiable, by [RSS07] there exist vectors λ′′ = (λ′′0 , . . . , λ
′′
n) ≥ 0 and µ ≥ 0, such

that λ′′I + µB = 0 and one of the following is satisfied: (1) λ′′d + µb ≤ −1, or (2)

λ′′d+ µb ≤ 0 and λ′′lt 6= 0, or (3) λ′′d+ µb ≤ 0 and µlt 6= 0.

Let us define λj =
λ′′
j

αj
λ′j for each 0 ≤ j ≤ n and λ =

∑n
j=0 λj .

Consider a 0 ≤ j ≤ n and k ∈ Ix (j). We have λjA|k =
λ′′

j

αj
λ′jA|k =

λ′′

j

αj
αjijk, where

ij = (ij1, . . . , ijmA
). Since θ is localized w.r.t. (X0,X1, . . . ,Xn), λjA|k = 0. Therefore,

for each 0 ≤ j ≤ n the condition
∧

k∈Ix(j)
λjA|k = 0 is satisfied.

We have λA =
(∑n

j=0 λj
)
A =

∑n
j=0(

λ′′

j

αj
λ′jA) =

∑n
j=0(

λ′′

j

αj
αjij) =

∑n
j=0(λ

′′
j ij) =

λ′′I. Therefore, λA + µB = 0. Similarly, λa ≤ λ′′d. Therefore, one of the following

cases must hold. In case (1), λ′′d + µb ≤ −1 and thus, λa + µb ≤ −1. In case (2),

λ′′d+ µb ≤ 0 and λ′′lt 6= 0. Thus, λa+ µb ≤ 0. Since λ′′lt 6= 0, for some j we have that

θj is strict and λ
′′
j 6= 0. There are two possible cases. If (2.1) λ′j

lt 6= 0, then λltj 6= 0 and

hence λlt 6= 0. Otherwise, we have (2.2) λ′j
lt = 0. As θj is strict, we have that ⊳′

j is ≤.

Therefore, Theorem 5.3.2, it holds that λ′j
ltalt + (λ′j

leαj)
(
ale

−δj

)
< 0. Hence, λ′ja < αjδj

and thus, λa + µb < λ′′d + µb. This implies λa + µb < 0. We can scale the vectors

λk for 0 ≤ k ≤ n (and hence λ) and µ accordingly so that λa + µb ≤ −1. In case (3)

λ′′d + µb ≤ 0 and µlt 6= 0. Thus, also λa+ µb ≤ 0. Thus, in all the possible cases, the

guard of some of the if branches of algorithm LILA will be satisfied and an interpolant

with the required properties will be returned.

The procedure LocalizedInterpolantLRA, given as Algorithm 5, implements

LocalizedInterpolant for the theory of Linear Rational Arithmetic (LRA). The

formulas are rewritten as disjunctions of mixed systems of inequalities and localized

126

5.3 Interpolation for Observation Refinement

interpolants θkl are computed for each pair of disjuncts. If for a pair (Akx 6 ak, Blx 6

bl) of systems the procedure LILA returns ⊥, it is called again with the arguments

Akx 6 ak and Blx 6 bl swapped. Thus, if it succeeds to compute an interpolant θ′kl

for (Blx 6 bl, Akx 6 ak), we let θkl = ¬θ′kl, since ¬θ′kl is an interpolant for (Akx 6

ak, Blx 6 bl). Since θ′kl =
∧

j i
′
jx ⊳′

j δ
′
j , we have θkl =

∨
j ijx ⊳j δj , where ij = −i′j,

δj = −δ′j and ⊳j =≤ iff ⊳′
j =<. Thus, each θkl is in this case of the from (

∨
LI).

Algorithm:LocalizedInterpolantLRA

Input: LRA formulas ϕ and ψ such that ϕ ∧ ψ is UNSAT

partitioning (X0,X1, . . . ,Xn) of Vars(ϕ) ∪ Vars(ψ)

Output: localized interpolant θ for (ϕ,ψ) or ⊥

(∨
k Akx 6 ak

)
:= MixedSystems(ϕ);(∨

lBlx 6 bl
)
:= MixedSystems(ψ);

foreach k,l do

θk,l := LILA(Akx 6 ak, Blx 6 bl, (X0,X1, . . . ,Xn));

if θk,l = ⊥ then θk,l := ¬LILA(Blx 6 bl, Akx 6 ak, (X0,X1, . . . ,Xn));

if θk,l = ⊥ then return ⊥;

return
∨

k

∧
l θkl;

Algorithm 5: Computing localized interpolants for pairs of formulas.

θ =

n∨

j=0

ijx⊳j δj (
∨

LI)

The following corollary of Theorem 5.3.4 establishes the soundness and relative

completeness of algorithm LocalizedInterpolantLRA.

Corollary 5.3.1. Algorithm LocalizedInterpolantLRA is sound: If, given formu-

las ϕ and ψ and a variable partitioning (X0,X1, . . . ,Xn), it returns a formula θ, then

θ is an interpolant for (ϕ,ψ) that is localized w.r.t. (X0,X1, . . . ,Xn).

Furthermore, algorithm LocalizedInterpolantLRA is guaranteed to find an in-

terpolant for
(∨

k Akx 6 ak,
∨

lBlx 6 bl
)
that is localized w.r.t. (X0,X1, . . . ,Xn), if for

each pair (Akx 6 ak, Blx 6 bl) of disjuncts there exists an interpolant θ that is localized

w.r.t. (X0,X1, . . . ,Xn) and satisfies (
∧

LI) or (
∨

LI).

127

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

To the best of our knowledge, no other interpolation procedure allows for requiring

interpolants that are localized in the sense we discussed in this section. Given a pair of

mixed systems and a variable partitioning, a localized interpolant may not always exist.

Even if one does exist, it might not be of the conjunctive (
∧

LI) or disjunctive (
∨

LI)

forms. If this happens to be the case, the procedure LocalizedInterpolantLRA

will detect this and return ⊥. One option to address this situation is to try to use

the outer refinement procedure to infer information from ”partial results” of the call

to LocalizedInterpolantLRA and the counterexample under scrutiny, and restart

LocalizedInterpolantLRA with a ”more localized” query. Such a procedure, how-

ever will be incomplete as it will not be able to detect if a localized interpolant of a

general form does not exist. In Section 5.4.4 we describe such an approach that in-

troduces disjunctions in an enumerative way and is guaranteed to produce a localized

interpolant in a certain finite language, if such interpolant exists.

5.4 Abstraction Refinement Loop

The CEGAR-based method for solving games under incomplete information presented

in this section follows the classical abstraction-refinement scheme. It employs the ab-

straction procedure from Section 2.3 and the refinement procedure from Section 5.3

that address the problems specific to games under incomplete information. Before we

describe the CEGAR loop for games under incomplete information, we have to consider

the case when the abstract counterexample tree contains an unconcretizable trace and

provide a procedure for generating refinement predicates for this case.

5.4.1 Transition Relation Refinement

If for some trace τ0 ∈ Traces(C#
t) the formula ϕtrace(τ0) is unsatisfiable, then the occur-

rence of the spurious abstract counterexample tree C#
t is due to the approximations of

the transition relations. One way to compute refinement predicates sufficient to make

these approximations more precise and eliminate C#
t is to annotate each node n in C#

t

with a formula ϕstate(n, τ0), which denotes the subset of γ(Ls
#(n)) that consist of those

states in G from which there exists a concrete counterexample path for the respective

suffix of τ0 in G that is contained in some path in the subtree of C#
t rooted at n.

128

5.4 Abstraction Refinement Loop

State formulas. For a trace τ0 ∈ Traces(C#
t), the subtree of C#

t induced by τ0 is a

labeled tree subtree(C#
t , τ0) = (N#

0 , E
#
0 ,Ls

#,La
#), where N#

0 ⊆ N# and E#
0 ⊆ E#

are the smallest sets such that for every ρ ∈ Paths(τ0) and every 0 ≤ i < |ρ| it holds

that ρ[i] ∈ N#
0 and if i < |ρ| − 1 then (ρ[i], ρ[i + 1]) ∈ E#

0 . For every n ∈ N#
0 with

Ls
#(n) ∈ S#

∃ and l < |τ0|, where l = |path(n)|∃, we define action(n, τ0) = τ0[l] and for

every n ∈ N#
0 with with Ls

#(n) ∈ S#
∃ and |path(n)|∃ ≥ |τ0|, we define action(n, τ0) = ǫ.

For a node n in subtree(C#
t , τ0) we recursively define the formula ϕstate(n, τ0):

• If n is a leaf node in subtree(C#
t , τ0) and Ls

#(n) ∈ S#
∀ , or Ls

#(n) ∈ S#
∃ and

action(n, τ0) = ǫ, then we define

ϕstate(n, τ0) = [Ls
#(n)] ∧ ϕErr,

• Otherwise, if Ls
#(n) ∈ S#

∃ and action(n, τ0) = σ we let N ′ = {n′ | (n, n′) ∈ E#
0 }

and define

ϕstate(n, τ0) = [Ls
#(n)] ∧

(
¬Enabled(σ) ∨ Pre∃

(∨

n′∈N ′

ϕstate(n
′, τ0), σ

)
∨ ϕErr

)
,

• Otherwise, if Ls
#(n) ∈ S#

∀ , then n has a (single) child n′ in C#
t and we define

ϕstate(n, τ0) = [Ls
#(n)] ∧

(
Pre∀(ϕstate(n

′, τ0)) ∨ ϕErr

)
.

The following lemma establishes the connection between state formulas and trace

formulas for a counterexample tree.

Lemma 5.4.1. Let Safety(G, ϕErr) be a safety game under incomplete information,

P ⊆ AP[V] be a finite set of predicates that is precise w.r.t. the turn variable t and let

G# = Abstract(G,P) and Err# = {s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}.

Suppose that C#
t is an abstract counterexample tree in Safety(G#, Err#) and τ ∈

Traces(C#
t). If n0 is the root of C#

t , then the formula ϕstate(n0, τ)∧ϕInit is satisfiable

iff there exists a path ρ ∈ Paths(τ) and a prefix π ∈ γ(pref (ρ)) such that π |= ϕtrace(τ).

Refinement predicates. The procedure RefineTransitionRelations given as

Algorithm 6 annotates in a bottom up manner each node of subtree(C#
t , τ0) with the

respective formula ϕstate(n, τ0) and collects the predicates extracted from the computed

formulas after renaming the indexed variables to the original variables form V . Addi-

tionally the set R also includes the predicates in PredicatesΣ(τ0) which will ensure that

the refined abstraction is precise w.r.t. the outputs from τ0.

129

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Algorithm:RefineTransitionRelations

Input: safety game Safety(G, ϕErr), finite set of predicates P,

abstract game Safety(Abstract(G,P), Err#), counterexample tree C#
t

trace τ0 ∈ Traces(C#
t) for which the formula ϕtrace(τ0) is UNSAT

Output: finite set R of refinement predicates

R := PredicatesΣ(τ0);

(N#
0 , E

#
0 ,Ls

#,La
#) = subtree(C#

t , τ0);

forall n ∈ N#
0 in a bottom-up manner do

construct ϕ = ϕstate(n, τ0);

R := R ∪ ExtractPredicates(ϕ);

return R

Algorithm 6: Refinement Predicates for the Transition Relations.

Interpolation-based transition relation refinement. An alternative to the tran-

sition relation refinement described above, would be to use Craig interpolation in

the classical way as done in verification. We apply this refinement when for some

τ0 ∈ Traces(C#
t) the formula ϕtrace(τ0) is unsatisfiable, which means that for each

ρ ∈ Paths(τ0) the respective formula ϕpath (τ0, ρ) is unsatisfiable. As ϕpath (τ, ρ0) is a

classical path formula, interpolation can be used to compute suitable predicates.

Example 5.4.1. For the game from Example 2.1.1 and the abstract counterexample

tree shown in Figure 5.2, the trace formula ϕtrace(τ) for the trace τ = N ·N is unsatis-

fiable. One way to compute a set of refinement predicates from ϕtrace(τ) is to use the

procedure RefineTransitionRelations as described above. Alternatively, we can

use interpolation in this case as well. Here, in this way we can extract the predicates

(steps > 2) and (y ≥ 3), associated with nodes 0 and 1. These predicates suffice to

eliminate the given abstract counterexample tree from subsequent abstractions. In or-

der to reach a bad state with a concrete path corresponding to the abstract path for

τ , at the second step of the path (corresponding to the abstract state at node 1) we

should have steps > 2, which, together with x < 6 leads to (steps > 3 ∧ x < 6) in the

next step or, we should have y ≥ 3 which would lead to y ≥ 4 in the next state.

130

5.4 Abstraction Refinement Loop

5.4.2 CEGAR Loop

The CEGAR loop for safety games under incomplete information is given as Algo-

rithm 7. Its input is a symbolic safety game under incomplete information Safety(G, ϕErr)

and if it terminates it returns either a finite-state winning strategy for Player∃ (as a

memoryless abstract strategy) or a concretizable abstract counterexample tree.

The procedure InitialPredicates extracts the set of initial abstraction predicates

for the game Safety(G, ϕErr). We let InitialPredicates(G, ϕErr) = Preds(ϕErr)∪{t =

∃, t = ∀}, i.e., the initial abstraction is precise w.r.t. the variable t and contains the

predicates occurring in the formula ϕErr describing the error states.

The procedure AbstractGame constructs the abstraction Abstract(G,P) of G

w.r.t. P and the set of abstract error states Err# = {s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}.

The finite-state perfect-information safety game Safety(G#, Err#) is solved by the pro-

cedure SolveGame, which returns an abstract winning strategy for Player∃ if Player∃

wins the game Safety(G#, Err#), or an abstract counterexample tree otherwise. In the

first case SolveIncompteteInformationGame returns the strategy for Player∃.

Otherwise, the counterexample tree C#
t = CounterexampleTree(strategy) is

passed to the procedure Concretizable which constructs the tree formula TF(C#
t)

for the given abstract counterexample tree, computing the set of traces Traces(C#
t)

and the set of trace formulas Formulas(C#
t) = {ϕtrace (τ) | τ ∈ Traces(C#

t)}. If C#
t

is spurious, the procedure SpuriousTrace(Formulas(C#
t),Traces(C#

t)) checks if for

some trace τ ∈ Traces(C#
t) the trace formula ϕtrace(τ) is unsatisfiable and if this is the

case, returns one such τ , and otherwise returns⊥. In the first case, the set of refinement

predicates R is computed by the procedure RefineTransitionRelations, that takes

the trace τ and C#
t and returns predicates that refine the transition relations. In the

latter case, the procedure RefineObservations computes from Formulas(C#
t), using

interpolation, a set of predicates that refine the abstract observation equivalence.

For Sections 5.4.2 and 5.4.3 we assume that RefineObservations does not abort.

Definition 5.4.1. Let Safety(G, ϕErr) be a safety game under incomplete information

with G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and P and P′ be finite sets of predicates precise

w.r.t. t such that P ⊆ P′. Let Safety(G#, Err#) and Safety(G ′, Err′) be the safety

games such that G# = Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀), Err# = {s# ∈

S# | Js#K ∩ JϕErrK 6= ∅}, G ′ = Abstract(G,P′) = (S′
∃, S

′
∀, I

′,=′
o,Σ

′
∃, T

′
∃, T

′
∀) and Err

′ =

{s′ ∈ S′ | Js′K ∩ JϕErrK 6= ∅}. If C#
t = (N#, E#,Ls

#,La
#) and Ct = (N ′, E′,Ls

′,La
′)

131

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

are abstract counterexample trees in Safety(G#, Err#) and Safety(G′, Err′) respec-

tively, we write C ′
t � C#

t iff for every path ρ′ in C ′
t there exists a path ρ in C#

t such

that: (i) |ρ′| = |ρ|, (ii) for every 0 ≤ i < |ρ|, γ(Ls
′(ρ′[i])) ⊆ γ(Ls

#(ρ[i])) and (iii) for

every 0 ≤ i < |ρ| − 1, γ∃(La
′(ρ′[i], ρ′[i+ 1])) ⊆ γ∃(La

#(ρ[i], ρ[i + 1])).

It is easy to see that the following properties hold for counterexample trees C#
t =

(N#, E#,Ls
#,La

#) and C ′
t = (N ′, E′,Ls

′,La
′) with C ′

t � C#
t .

Property 14. If n1 ∈ N# and n′1 ∈ N ′ are such that γ(Ls
′(n′1)) ⊆ γ(Ls

#(n1)) ⊆ S∀,

and there exist (n1, n2) ∈ E# and (n′1, n
′
2) ∈ E′, then γ(Ls

′(n′2)) ⊆ γ(Ls
#(n2)).

Property 15. If n1 ∈ N# and n′1 ∈ N ′ are such that γ(Ls
′(n′1)) ⊆ γ(Ls

#(n1)) ⊆ S∃

and (n1, n2) ∈ E#, then for every σ ∈ γ∃(La
#((n1, n2))), if there exists (n′1, n

′
2) ∈ E′

such that σ ∈ γ∃(La
′((n′1, n

′
2))), then γ(Ls

′(n′2)) ⊆ γ(Ls
#(n3)) for some (n2, n3) ∈ E#.

The above properties imply the following.

Property 16. For every τ ∈ Traces(C#
t) there exists τ ′ ∈ Traces(C ′

t) such that τ =

τ ′ ·τ ′′ for some τ ′′ ∈ Σ∗
∃ and such that for every ρ′ ∈ Paths(τ ′) there exists ρ ∈ Paths(τ)

such that |ρ′| = |ρ| and for every 0 ≤ i < |ρ| it holds that γ(Ls
′(ρ′[i])) ⊆ γ(Ls

#(ρ[i])).

Let R be the set of predicates returned by RefineObservations. In general, these

predicates do not suffice to eliminate all counterexample trees C ′
t � C#

t from the sub-

sequent refined abstractions. Indeed, they allow for distinguishing the sets of concrete

error paths for different traces, but may not be enough to precisely describe these sets.

However, we show that the procedure RefineTransitionRelations can be used to

compute additional predicates from these counterexample trees that suffice for success-

fully removing them. The procedure RefineTree computes the set Trees of coun-

terexample trees C ′
t in Safety(G ′, Err′), where G ′ = Abstract(G,P∪R) = (S′

∃, S
′
∀, I

′,=′
o

,Σ′
∃, T

′
∃, T

′
∀) and Err

′ = {s′ ∈ S′ | Js′K ∩ JϕErrK 6= ∅} that are such that C ′
t � C#

t . By

Lemma 5.4.2 below, for each C ′
t ∈ Trees there exists a trace τ ′ ∈ Traces(C ′

t) such that

ϕtrace(τ
′) is unsatisfiable. For each C ′

t and one such τ ′ the set of predicates computed

by RefineTransitionRelations are included in the set R.

The procedure RefineGame refines the game structure G# and the set of error

states Err# w.r.t. the extended set P of predicates, such that G# = Abstract(G,P).

The following lemma tells us that we can apply RefineTransitionRelations

after RefineObservations as described above to ensure that all subsumed coun-

terexample trees are successfully eliminated from subsequent abstractions.

132

5.4 Abstraction Refinement Loop

Algorithm:SolveIncompteteInformationGame

Input: safety game Safety(G, ϕErr) with G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀)

Output: (winner , abstract strategy) or (winner , abstract counterexample tree)

P := InitialPredicates(G, ϕErr);

(G#, Err#) := AbstractGame(G, ϕErr,P);

(winner , strategy) := SolveGame(G#, Err#);

while winner = Player∀ do

C#
t := CounterexampleTree(strategy);

if Concretizable (C#
t ,G) then

return (winner , C#
t); /* concretizable counterexample */

R := ∅;

τ := SpuriousTrace(Formulas(C#
t),Traces(C#

t));

if τ 6= ⊥ then /* τ ∈ Traces(C#
t) with ϕtrace(τ) UNSAT */

R := RefineTransitionRelations(τ, C#
t);

else /* ϕtrace(τ) SAT for all τ ∈ Traces(C#
t) */

R := RefineObservations(Formulas(C#
t),Traces(C#

t));

Trees := RefineTree(C#
t ,P,R);

forall C ′
t ∈ Trees do

τ ′ := SpuriousTrace(Formulas(C ′
t),Traces(C

′
t));

R := R ∪RefineTransitionRelations(τ ′, C ′
t);

P := P ∪ R;

(G#, Err#) = RefineGame(G#,G,P);

(winner , strategy) = SolveGame(G#, Err#);

return (winner, strategy) /* winning strategy for Player∃ */

Algorithm 7: CEAGR for games under incomplete information.

Lemma 5.4.2. Let Safety(G, ϕErr) be a safety game under incomplete information

with G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and P and P′ be finite sets of predicates pre-

cise w.r.t. t such that P ⊆ P′. Let Safety(G#, Err#) and Safety(G ′, Err′) be the

safety games such that G# = Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀), Err# =

{s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}, G ′ = Abstract(G,P′) = (S′
∃, S

′
∀, I

′,=′
o,Σ

′
∃, T

′
∃, T

′
∀) and

Err′ = {s′ ∈ S′ | Js′K ∩ JϕErrK 6= ∅}. Suppose that C#
t = (N#, E#,Ls

#,La
#) is a

spurious counterexample tree in Safety(G#, Err#) such that each ϕ ∈ Formulas(C#
t)

133

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

is satisfiable and P′ ⊇ RefineObservations(Formulas(C#
t),Traces(C#

t)). Then, if

C ′
t = (N ′, E′,Ls

′,La
′) is a counterexample tree in Safety(G ′, Err′) such that C ′

t � C#
t ,

then there exists a τ ′ ∈ Traces(C ′
t) such that the formula ϕtrace(τ) is unsatisfiable.

Proof. Suppose that for each trace τ ′ ∈ Traces(C ′
t) the formula ϕtrace(τ

′) is satisfiable.

Let τ ∈ Traces(C#
t). By Property 16 there exists a trace τ ′ ∈ Traces(C ′

t) such that

τ = τ ′ · τ ′′ for some τ ′′ ∈ Σ∗
∃ and for every path ρ′ ∈ Paths(τ ′) there exists a path

ρ ∈ Paths(τ) such that |ρ′| = |ρ| and for every i < |ρ|, it holds that γ(Ls
′(ρ′[i])) ⊆

γ(Ls
#(ρ#[i])). Since ϕtrace(τ

′) is satisfiable, there exists a ρ′ ∈ Paths(τ ′) such that

ϕpath (τ
′, ρ′) is satisfiable. By the above, there exists a path ρ ∈ Paths(τ) such that

|ρ′| = |ρ| and for every 0 ≤ i < |ρ|, it holds that γ(Ls
′(ρ′[i])) ⊆ γ(Ls

#(ρ#[i])). This

implies that there exists a path π in G such that π ∈ γ(ρ′) and π |= ϕtrace(τ).

Thus, we showed that for every τ ∈ Traces(C#
t) there exist a prefix ρ′τ in C

′
t and pre-

fix πτ in G such that πτ ∈ γ(ρ′τ) and πτ |= ϕtrace(τ). According to Lemma 5.3.1, since

P′ ⊇ RefineObservations(Formulas(C#
t),Traces(C#

t)), there exist traces τ1, τ2 ∈

Traces(C#
t) with τ1 6= τ2 and PredicatesΣ({τ1, τ2}) ⊆ P′, and a predicate ψ ∈ P′, and a

position j < diff(πτ1 , πτ2 , τ1, τ2), such that πτ1 [j] |= ψ and πτ2 [j] |= ¬ψ.

Let ρ′τ1 and ρ′τ2 be the corresponding prefixes in C
′
t for τ1 and τ2. Since πτ1 ∈ γ(ρ′τ1),

πτ2 ∈ γ(ρ′τ2) and PredicatesΣ({τ1, τ2}) ⊆ P′, it holds that for all i < diff(πτ1 , πτ2 , τ1, τ2),

ρ′τ1 [i] = ρ′τ2 [i]. Thus, since ψ ∈ P′ and ψ is an observable predicate, either πτ1 [j] |= ψ

and πτ2 [j] |= ψ or πτ1 [j] |= ¬ψ and πτ2 [j] |= ¬ψ, which contradicts the choice of j.

5.4.3 Soundness and Progress

The soundness of the predicate abstraction of an incomplete information game and the

correctness of the algorithm for checking an abstract counterexample for spuriousness

imply the soundness of SolveIncompteteInformationGame.

Theorem 5.4.3. The procedure SolveIncompteteInformationGame is sound: if

it terminates for a game under incomplete information Safety(G , ϕErr) and returns

• (∃, f#∃), then there exists a winning strategy for Player∃ in Safety(G , ϕErr),

• (∀, C#
t), then there exists a counterexample tree Ct in Safety(G , ϕErr).

Proof. The first case follows from Theorem 5.1.1 and the second case follows from

Theorem 5.2.1.

The progress property of the refinement, namely, that the generated predicates

suffice to eliminate from further abstractions the counterexample considered at the

134

5.4 Abstraction Refinement Loop

current iteration of the CEGAR loop, relies on Lemma 5.4.2 and the following lemma, in

which we formalize and prove the progress property of RefineTransitionRelations.

Lemma 5.4.4. Let Safety(G, ϕErr) be a safety game under incomplete information

with G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and P and P′ be finite sets of predicates pre-

cise w.r.t. t such that P ⊆ P′. Let Safety(G#, Err#) and Safety(G ′, Err′) be the

safety games such that G# = Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀), Err# =

{s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}, G ′ = Abstract(G,P′) = (S′
∃, S

′
∀, I

′,=′
o,Σ

′
∃, T

′
∃, T

′
∀) and

Err′ = {s′ ∈ S′ | Js′K ∩ JϕErrK 6= ∅}. Suppose that C#
t = (N#, E#,Ls

#,La
#) is a

spurious counterexample tree in Safety(G#, Err#) and τ ∈ Traces(C#
t) is such that

ϕtrace(τ) is unsatisfiable and that P′ ⊇ RefineTransitionRelations(τ, C#
t). Then,

in Safety(C ′
t, Err

′) there does not exist a counterexample tree C ′
t such that C ′

t � C#
t .

Proof. Assume that C ′
t = (N ′, E′,Ls

′,La
′) is a counterexample tree in Safety(C ′

t, Err
′)

such that C ′
t � C#

t . According to Property 16, there exists τ ′ ∈ Traces(C ′
t) such

that τ = τ ′ · τ ′′ for some τ ′′ ∈ Σ∗
∃ and such that for every ρ′ ∈ Paths(τ ′) there exists

ρ ∈ Paths(τ) such that |ρ′| = |ρ| and for every 0 ≤ i < |ρ| it holds that γ(Ls
′(ρ′[i])) ⊆

γ(Ls
#(ρ[i])).

Since PredicatesΣ({τ}) ⊆ RefineTransitionRelations(τ, C#
t) ⊆ P′ and there

exists a ρ′ ∈ Paths(τ ′), it holds that there exists a s ∈ γ(Ls
′(n′0)) such that s |=

ϕstate(n0, τ), where n
′
0 is the root of C ′

t and n0 is the root of C#
t . That is, the formula

ϕstate(n0, τ) is satisfiable, and hence ϕtrace(τ) is too, which is a contradiction.

Theorem 5.4.5. Let Safety(G, ϕErr) be a safety game under incomplete informa-

tion with G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and P be a finite set of predicates precise

w.r.t. t. Suppose that C#
t is a spurious counterexample tree in Safety(G#, Err#),

where G# = Abstract(G,P) = (S#
∃ , S

#
∀ , I

#,=#
o ,Σ

#
∃ , T

#
∃ , T

#
∀) and Err# = {s# ∈

S# | Js#K ∩ JϕErrK 6= ∅}. If R is the set of refinement predicates computed by

SolveIncompteteInformationGame, and G ′ = Abstract(G,P∪R) = (S′
∃, S

′
∀, I

′,=′
o

,Σ′
∃, T

′
∃, T

′
∀) and Err′ = {s′ ∈ S′ | Js′K ∩ JϕErrK 6= ∅}, then in Safety(C ′

t, Err
′) there

does not exist a counterexample tree C ′
t such that C ′

t � C#
t .

Proof. The theorem is a direct consequence of Lemma 5.4.2 and Lemma 5.4.4.

5.4.4 Relative Completeness

In this section we provide sufficient conditions for termination of the CEGAR schema

given as Algorithm 7. We show that only finitely many different abstract states are

generated during the execution of the procedure, provided that the concrete game

135

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

structure fulfills certain standard assumptions, as well as some conditions related to

the presence of incomplete information, and the procedure for computing localized

Craig interpolants obeys a given restriction regarding the resulting interpolants.

Sufficient Conditions for Termination

Definition 5.4.2. A region algebra with observations for a safety game Safety(G , Err)

with game structure G = (S∃, S∀, I,=o,Σ∃, T∃, T∀) and set of error states Err is a tuple

(R,Robs , JK), consisting of a (possibly infinite) set of regions R, a (possibly infinite) set

of observable regions Robs ⊆ R, and a function JK : R→ 2S that satisfy the conditions:

(i) R contains regions T and F such that JTK = S and JFK = ∅,

(ii) R is closed under Boolean operations: for regions r1 ∈ R and r2 ∈ R there exist:

• region r1 ∪ r2 such that Jr1 ∪ r2K = Jr1K ∪ Jr2K,

• region r1 ∩ r2 such that Jr1 ∩ r2K = Jr1K ∩ Jr2K,

• region r1 \ r2 such that Jr1 \ r2K = Jr1K \ Jr2K,

that can be effectively computed,

(iii) R contains regions rInit and rErr such that JrInitK = I and JrErrK = Err,

(iv) Robs contains regions r∀ and r∃ such that Jr∀K = S∀ and Jr∃K = S∃,

(v) R is closed under predecessor operations: for every r ∈ R and σ ∈ Σ∃ there exist:

• region Pre∃(r, σ) such that Pre∃(r, σ) = Pre∃(JrK, σ),

• region Pre∀(r) such that Pre∀(r) = Pre∀(JrK),

that can be effectively computed,

(vi) For every π1, π2 ∈ Prefs(G) such that each of last(π1) and last(π2) is a dead-end

or error state, and for which there exists a j such that π1[j] 6=o π2[j], there exist

an index 0 ≤ k ≤ j and a region r ∈ Robs such that π1[k] ∈ JrK and π2[k] 6∈ JrK.

Theorem 5.4.6. Let Safety(G, ϕErr) be a symbolic safety game under incomplete in-

formation and let Safety(G , Err) be the induced explicit game under incomplete infor-

mation. Assume that (R,Robs , JK) is region algebra for Safety(G , Err) such that:

(i) R is a finite subset of B(AP), where B(AP) is the closure of AP under ∨,∧,¬,

136

5.4 Abstraction Refinement Loop

(ii) Preds(ϕInit) ⊆ R, Preds(ϕErr) ⊆ R, (t = ∃) ∈ R and (t = ∀) ∈ R,

(iii) for every r ∈ R and σ ∈ Σ∃, Preds(Pre∃(r, σ)) ⊆ R and Preds(Pre∀(r)) ⊆ R,

(iv) for every x ∈ V∃ and every c ∈ Dom(x), we have that (x = c) ∈ Robs .

Assume furthermore that LocalizedInterpolant satisfies the following conditions:

(LI1) if for the regions r1, r2 ∈ R and a variable partitioning (X0, . . . ,Xn) there exists

an interpolant θ for (r1, r2) that is localized w.r.t. (X0, . . . ,Xn) and such that

Preds(θ) ⊆ Robs , then LocalizedInterpolant(r1, r2, (X0, . . . ,Xn)) 6= ⊥,

(LI2) if LocalizedInterpolant returns a formula θ, then Preds(θ) ⊆ Robs .

Then algorithm SolveIncompteteInformationGame applied to Safety(G, ϕErr)

is guaranteed to terminate.

Proof. We first show that each call to the procedure LocalizedInterpolant during

the execution of SolveIncompteteInformationGame on Safety(G, ϕErr) success-

fully computes an interpolant θ expressible over Robs . Since Robs is finite, condition (vi)

from the definition of region algebra guarantees that for every two formulas with which

LocalizedInterpolant is called and which are expressible over R, an interpolant ex-

pressible over Robs exists. Thus, by condition (LI1), LocalizedInterpolant returns

an interpolant θ. Condition (LI2) implies that Preds(θ) ⊆ Robs .

Thus, since each call to LocalizedInterpolant that returns an interpolant re-

sults in at least one refinement predicate which is not present in the current set of

abstraction predicates, and since Robs is finite, we have that LocalizedInterpolant,

and hence also the procedure RefineObservations, is called only finitely many times

during the execution of SolveIncompteteInformationGame on Safety(G, ϕErr).

Condition (ii) above implies that InitialPredicates(G, Err) ⊆ R. Conditions (iii)

and (iv) guarantee that each call to RefineTransitionRelations returns predi-

cates that are elements of R. Therefore, since all refinement predicates generated

by RefineObservations and RefineTransitionRelations are elements of R we

conclude that for each of the constructed abstractions and state s# in it, [s#] ∈ R.

According to the progress property, if SolveIncompteteInformationGame does

not terminate, infinitely many spurious counterexamples are ruled out, which means

that infinitely many times an abstract state is split. Since R is finite, this is not possible,

and hence, SolveIncompteteInformationGame must terminate.

137

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Termination for Rectangular Games

Now we consider a specialization of the CEGAR schema Algorithm 7, obtained by

instantiating LocalizedInterpolant with a procedure derived from the procedure

LocalizedInterpolantLRA, which in addition ensures that the computed Craig in-

terpolants fall into a particular set of boolean combinations of inequalities. The result-

ing game-solving procedure is then guaranteed to terminate for all inputs where the

game structure is defined by formulas in the theory of linear arithmetic and there exists

a finite region algebra with observations for this game which satisfies the conditions of

Theorem 5.4.6 and for which the set of observations consists of rectangular predicates.

Definition 5.4.3. A rectangular predicate ϕ over a set of variables X is defined by the

grammar ϕ := cx ⊳ a | ϕ ∧ ϕ, where x ∈ X, c ∈ {−1, 1}, ⊳ ∈ {<,≤} and a is an

integer constant. An inequality of the form cx⊳ a is called rectangular inequality.

Definition 5.4.4. Given m ∈ N, a rectangular predicate ϕ =
∧n

i=1 cixi ⊳ ai is called

m-bounded if | ci |≤ m for each 0 ≤ i ≤ n. For a set X of variables, RPm[X] is the set

of all m-bounded rectangular predicates over X and RP =
⋃

m∈N RPm.

We apply the standard technique (e.g, [JM06]) of restricting the language of the

interpolants computed at each step to some finite language Lm and gradually enlarge

the restriction language when necessary, in order to maintain completeness. In our

case, the language at each step is defined by the m-bounded rectangular predicates, for

some bound m, over the observable variables Obs(V). To impose this restriction, we

make use of the fact that the interpolation procedure reduces interpolant computation

to constraint solving, which allows us to add constraints on the generated inequalities.

The procedure LIRectis a modification of LILA that receives as additional input a

boundm ∈ N. It ensures that in case the partitioning (X0, . . . ,Xn) consists of singleton

sets, the returned interpolant θ is a rectangular predicate in RPm. This is achieved by

adding the constraint χ3 =
∧n

j=0(ij ≤ 1 ∧ ij ≥ −1 ∧ δj ≤ m ∧ δj ≥ −m) and requiting

that the variables δj and the variables in the vector ij assume integer values.

LocalizedInterpolantRectis a modification of LocalizedInterpolantLRAthat

computes an interpolant θ where Preds(θ) consists of rectangular inequalities.

To achieve this, LocalizedInterpolantRect first partitions the given sets of vari-

ables such that each set is a singleton, thus ensuring that only a single variable oc-

curs in each atomic predicate. Then, it tries to compute an interpolant θ for (ϕ,ψ)

138

5.4 Abstraction Refinement Loop

Algorithm:LIRect

Input: mixed systems Ax 6 a and Bx 6 b where Ax 6 a ∧Bx 6 b is UNSAT,

partitioning (X0,X1, . . . ,Xn) of the variables in the vector x,

bound m ∈ N

Output: interpolant
∧n

j=0 ijx⊳j δj with ⊳j ∈ {≤, <} and Vars(ijx⊳j δj) ⊆ Xj

or ⊥ if such an interpolant in RPm could not be computed

χ1 := λ ≥ 0 ∧ µ ≥ 0 ∧ λA+ µB = 0;

χ2 := λ =
∑n

j=0 λj ∧
∧n

j=0(λj ≥ 0 ∧ ij = λjA ∧ δj = λja ∧
∧

k∈Ix(j) λjA|k = 0);

χ3 =
∧n

j=0(ij ≤ 1 ∧ ij ≥ −1 ∧ δj ≤ m ∧ δj ≥ −m);

if exist λ, µ, λj and integer ij, δj , for 0 ≤ j ≤ n

satisfying χ1 ∧ χ2 ∧ χ3 ∧ λa+ µb ≤ −1

then return
∧n

j=0 ijx ≤ δj ;

elif exist λ, µ, λj and integer ij , δj , for 0 ≤ j ≤ n

satisfying χ1 ∧ χ2 ∧ χ3 ∧ λa+ µb ≤ 0 ∧ λlt 6= 0

then return
∧

0≤j≤n,λlt
j 6=0 ijx < δj ∧

∧
0≤j≤n,λlt

j=0 ijx ≤ δj ;

elif exist λ, µ, λj and integer ij, δj , for 0 ≤ j ≤ n

satisfying χ1 ∧ χ2 ∧ χ3 ∧ λa+ µb ≤ 0 ∧ µlt 6= 0

then return
∧n

j=0 ijx ≤ δj ;

else return ⊥

Algorithm 8: Computing localized rectangular interpolants.

such that Preds(θ) ⊆ RPm, where m is initially assigned the value of the global vari-

able that stores the current bound and is incremented whenever an interpolant for

the current m cannot be computed. To determine if an interpolant for the pair of

mixed systems Akx 6 ak and Blx 6 bl can be computed with the current bound m,

LocalizedInterpolantRect proceeds as follows.

If LIRect does not succeed to compute an interpolant in RPm neither for (Akx 6

ak, Blx 6 bl) nor for (Blx 6 bl, Akx 6 ak), then LocalizedInterpolantRect replaces

either Akx 6 ak or Blx 6 bl by a disjunction distinguishing the three possible cases

with respect to a variable in Vars(Akx 6 ak) ∩ Vars(Blx 6 bl) and a constant in

{−m, . . . ,m}. Then, procedure LIRect is called for each of the disjuncts. The process

139

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

is repeated until an interpolant is successfully computed for each disjunct, or no non-

trivial splits are possible any more. In the latter case the bound m is increased.

Proposition 5.4.1. Suppose that for LRA formulas ϕ and ψ whose conjunction is un-

satisfiable there exists an interpolant θ with Preds(θ) ⊆ RP. Then, for any variable par-

titioning (X0, . . . ,Xn), LocalizedInterpolantRect(ϕ,ψ, (X0, . . . ,Xn)) returns an in-

terpolant θ′ for (ϕ,ψ) localized w.r.t. (X0, . . . ,Xn) and such that Preds(θ′) ⊆ RP. Fur-

thermore, if Preds(θ) ⊆ RPm for some m ≥ 0, then also Preds(θ′) ⊆ RPm.

Proof. Clearly, if LocalizedInterpolantRect returns a formula θ′ it is a boolean com-

bination of formulas returned by LIRect and hence Preds(θ′) ⊆ RP. Since only a single

variable occurs in each atom of θ, the formula θ is also localized w.r.t. (X0, . . . ,Xn).

Let θ be an interpolant for (ϕ,ψ) with Preds(θ) ⊆ RP and mθ be such that

Preds(θ) ⊆ RPmθ
. Since for each bound the number of possible disjunctions introduced

by LocalizedInterpolantRect is finite, the current bound will eventually reach mθ

unless an interpolant is returned before that. When m = mθ, in the worst case all el-

ements of Preds(θ) are considered for introducing disjunctions. Thus, at this point an

interpolant in RPm can be computed for each pair of disjuncts and the loop terminates.

Since the process of introducing disjunctions replaces formulas with equivalent ones,

the formula returned by LocalizedInterpolantRect is an interpolant for (ϕ,ψ).

Corollary 5.4.1. Let Safety(G, ϕErr) be a symbolic safety game under incomplete in-

formation with formulas in the theory of linear rational arithmetic. Assume that there

exists a region algebra (R,Robs , JK) for the corresponding explicit game under incomplete

information Safety(G , Err) that satisfies the conditions (i)-(iv) from Theorem 5.4.6 and

for which Robs = RPm. Then algorithm SolveIncompteteInformationGame, in

which LocalizedInterpolant is implemented by LocalizedInterpolantRect ap-

plied to the game Safety(G, ϕErr) is guaranteed to terminate.

Proof. The claim follows from Theorem 5.4.6 and Proposition 5.4.1.

An noteworthy example of a class of infinite-state games that fulfill the conditions

of the corollary above is the class of partial-observation timed games with fixed finite

sets of observations which are rectangular predicates.

140

5.4 Abstraction Refinement Loop

Algorithm:LocalizedInterpolantRect

Input: LRA formulas ϕ and ψ such that ϕ ∧ ψ is UNSAT,

partitioning (X0, . . . ,Xn) of Vars(ϕ) ∪ Vars(ψ)

Output: localized interpolant θ for (ϕ,ψ) or ⊥

(∨
k Akx 6 ak

)
:= MixedSystems(ϕ);(∨

lBlx 6 bl
)
:= MixedSystems(ψ);

(X ′
0, . . . ,X

′
n′) := SingletonSets((X0, . . . ,Xn));

m := CurrentBound ;

foreach k,l do

Ak := {Akx 6 ak};

Bl := {Blx 6 bl};

repeat

repeat

foreach Ax 6 a ∈ Ak do
θAx6a := LIRect(Ax 6 a,Blx 6 bl, (X

′
0, . . . ,X

′
n′),m);

θk,l :=
∨

Ax6a∈Ak
θAx6a;

if θk,l = ⊥ then

foreach Bx 6 b ∈ Bl do
θBx6b := LIRect(Bx 6 b,Akx 6 ak, (X

′
0, . . . ,X

′
n′),m);

θk,l :=
∧

Bx6b∈Bl
¬θBx6b;

pick xA ∈ Vars(Akx 6 ak) ∩ Vars(Blx 6 bl), cA ∈ {−m, . . . ,m} and

ϕA ∈ Ak such that θϕA
= ⊥ and:

ϕA ∧ xA < cA is SAT and ϕA ∧ xA ≥ cB is SAT,or

ϕA ∧ xA ≤ cA is SAT and ϕA ∧ xA > cB is SAT;

Ak := (Ak \ {ϕA}) ∪
{
ϕA ∧ (xA ∼ cA) : SAT | ∼ ∈ {<,=, >}

}
;

pick xB ∈ Vars(Akx 6 ak) ∩ Vars(Blx 6 bl), cB ∈ {−m, . . . ,m} and

ϕB ∈ Bl such that θϕB
= ⊥ and:

ϕB ∧ xB < cB is SAT and ϕB ∧ xB ≥ cB is SAT, or

ϕB ∧ xB ≤ cB is SAT and ϕB ∧ xB > cB is SAT;

Bl := (Bl \ {ϕB}) ∪
{
ϕB ∧ (xB ∼ cB) : SAT | ∼ ∈ {<,=, >}

}
;

until θk,l 6= ⊥ or both Ak and Bl did not change ;

if θk,l = ⊥ then m := m+ 1;

until θk,l 6= ⊥ ;

CurrentBound := m;

return
∨

k

∧
l θkl;

Algorithm 9: Computing localized interpolants for pairs of formulas.

141

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

5.5 Experiments

5.5.1 Prototype implementation

We have implemented the approach described in this chapter as a prototype synthesis

tool. The tool is written in C++ and uses the SMT solver Z3 [dMB08] as a com-

putational engine in the construction of the abstract game, and the CUDD BDD

library [Som09] for the symbolic representation of the states of the abstract game.

The implementation of the interpolation-generation procedure for the theory of lin-

ear arithmetic described in Section 5.3.3 relies on a combination of the SMT solver

CVC3 [BT07] and the linear programming solver glpk [GLP]. Linear arithmetic for-

mulas with arbitrary boolean structure are handled by an extension of Pudlák’s algo-

rithm [Pud97, YM05]. CVC3 provides the resolution proof generated by the underlying

SAT solver (in this case MiniSAT) and the correspondence between theory predicates

an boolean variables in the conflict clauses. The systems of linear inequalities generated

by algorithm LILA for the conflict clauses are solved by the LP solver glpk.

5.5.2 Experimental Results

Here we report on experimental results obtained with our prototype on several ex-

amples of infinite-state systems including two well-known mutual exclusion protocols,

the task for which is to solve the program repair problem with respect to given safety

and bounded liveness properties. The program augmentation and the encoding as a

symbolic game structure in the required input format are done manually.

Bakery. This example is modeled after Lamport’s Bakery algorithm [Lam74]. In

this well known mutual exclusion protocol each thread that wants to access the critical

section is assigned a unique positive number (ticket). Before entering the critical section

each process has to check that it holds the minimal ticket among the processes waiting

for access. This protocol is modeled as an infinite-state system, since the ticket variables

are unbounded and their values can become arbitrarily large.

Figure 5.5 shows a partial program that consists of two processes A and B, where

process A follows the Bakery protocol for accessing its critical section. In process B,

on the other hand, the choices of how to update the variable ticketB at location m2

and when to access the critical section are left unresolved. The task is to resolve the

142

5.5 Experiments

Process A:

l0: ticketA := 0;

l1: while(true){

l2: ticketA := ticketB + 1;

l3: await(ticketB = 0 ||

ticketA < ticketB);

l4: critical;

l5: ticketA := 0;

}

Process B:

m0: ticketB := 0;

m1: while(true){

m2: | ticketB := 0;

| ticketB := ticketA;

| ticketB := ticketA + 1;

m3: await(?);

m4: critical;

m5: ticketB := 0;

}

Figure 5.5: Partial program for Bakery mutual exclusion protocol.

nondeterminism in process B (possibly by introducing additional program variables)

such that the resulting program meets the safety property stating that it is never the

case that process A is in location l4 and process B is in location m4, and a bounded

liveness property that states that every time process B enters location m3, after a certain

number of steps of process A, process B allows the transition to location m4.

We model the partial program as a symbolic game structure with incomplete in-

formation and reduce the task above to the problem of finding an obss-consistent win-

ning strategy for Player∃. The decisions of Player∃ are encoded via the variables

V∃ = {update , guard} whose values determine the selected update and whether access

to the critical section is allowed or not. Player∃ can observe the location of process B,

as well as the shared variable ticketB. We model the fact that Player∃ can read the

value of the shared variables that can be written by process A, in this case the vari-

able ticketA, only when process B is scheduled, by introducing two Player∀ variables,

namely ticketA and ticketoA, where only the latter one can be observed by Player∃.

Thus, the set of variables observed by Player∃ is V o
∀ = {pcB , ticketB, ticket

o
A}. In

addition to that, the set V∀ of Player∀’s variables contains the unobservable variables

pcA, ticketA, scheduled , control , steps . The value of scheduled , which is arbitrarily up-

dated by Player∀, determines the scheduled process. The variables control and steps

are used to encode the bounded liveness property that Player∃ must enforce.

In the final set of abstraction predicates we have the following predicates over the

143

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

Process A:

l0: while(true){

l1: atomic{if(lock = 0)

then x1 := 0;

else goto l1;}

// wait for delay x1 <= B1

l2: atomic{if(x1 <= B1)

then lock := 1; x1 := 0;

else goto l1;}

l3: await(x1 >= B2);

l4: atomic{if(lock = 1)

then goto l5;

else goto l1;}

l5: critical;

l6: lock := 0;

}

Process B:

m0: while(true){

m1: b := B1 | B2;

m2: atomic{if(lock = 0)

then x2 := 0;

else goto m2;}

// wait for delay x2 <= b

m3: atomic{if(x2 <= b)

then lock := 2; x2 := 0;

else goto m1;}

m4: b := B1 | B2;

m5: await(x2 >= b);

m6: atomic{if(lock = 2)

then goto m7;

else goto m1;}

m7: critical;

m8: lock := 0;

}

Figure 5.6: Partial program for Fischer’s mutual exclusion protocol.

variables ticketB and ticketoA: (ticketB ≤ ticketoA), (ticketB > 0) and (ticketoA > 0).

The computed resulting strategy for Player∃ is memoryless and implements the Bakery

protocol. Note that even if a memoryless concrete strategy exists, like in this case, the

strategy returned by our approach does not necessarily have to be memoryless.

Fischer. Here we consider an example modeled after another mutual-exclusion algo-

rithm, namely Fischer’s real-time mutual-exclusion protocol, as described for example

in [MP96]. As usual, the goal of the protocol is to guarantee that at most one process

can be at the critical section at any given time. The protocol uses a single shared

integer variable lock and two parameters B1 and B2, which are fixed constants in R≥0.

These constants determine the lengths of delays in the protocol. Figure 5.6 shows a

partial program with two processes, where process A is running Fischer’s protocol and

in process B the use of the constants B1 and B2, in this example 1 and 2, is not fixed.

144

5.5 Experiments

Iterations Predicates Max. States Strategy Time(s)

Bakery 5 25 897 Memoryless 10.98

Fischer 6 27 5559 Memoryless 18.58

Robot 16 30 1158 Memoryfull 31.48

Sensors 14 34 1088 Memoryfull 38.43

Table 5.1: Results from experiments with our prototype on mutex protocols and motion

planning examples. We report on: number of iterations of the CEGAR loop, final number

of abstraction predicates, maximal number of explored abstract states in some iteration of

the CEGAR loop, the type of the computed strategy for Player∃ and running time.

We reduce the problem of resolving the nondeterminism in this partial program to the

problem of finding an obss-consistent winning strategy for Player∃ in a safety game

under incomplete information. Player∃ controls a finite-range variable b, whose value,

either B1 or B2, is used to bound the delays in process B. The result is a strategy for

Player∃ that corresponds to Fischer’s protocol, where before setting lock to 2 process

B waits at most B1 time units and after setting lock to 2 waits at least B2 time units.

The next two examples are from the application domain of robot motion planning.

Robot. Here we considered the game formalized in Example 5.3.1.

Sensors. We looked at a variation of Example 2.1.1. First, here there is no uncer-

tainty about the initial position of the robot, but the movement parallel to the y axis

is ”imprecise”, that is, uncertainty is introduced by the transition relation. There is a

sensor that gives an interval [ys , yn] of the possible values of the coordinate y and the

exact value of y is received on every second step of moving parallel to the y axis.

The game structure G′ = (V∃
′,V∀

′,V o
∀
′, t′, ϕ′

Init ,T
′
∃,T

′
∀) is defined as follows.

The output variables V∃
′ are the same as in Example 2.1.1 and the observable and

unobservable input ones are V o
∀
′ = {x, ys , yn} and V∀

′ \ V o
∀
′ = {y, steps , err , sense}.

The formulas describing the initial states and transition relations are shown in Fig. 5.7.

The winning condition is defined by the formula ϕErr given in Example 2.1.1.

Table 5.1 shows the results from our experiments preformed on an Intel Core 2

Duo CPU at 2.53 GHz with 3.4 GB RAM, using a single core. In the mutual ex-

clusion examples the computed respective abstract strategies are memoryless, which

means that they can be implemented without adding extra state (program variables)

145

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

ϕ′
Init := t = ∃ ∧ move = 0 ∧ x = 4 ∧ y = 3 ∧ steps = 0 ∧ ¬err ∧

ys = 3 ∧ yn = 3 ∧ sense = true.

T′
∃ := t = ∃ ∧ t′ = ∀ ∧ (move ′ = N ∨move ′ = S ∨move ′ = E ∨move ′ =W)∧

x′ = x ∧ y′ = y ∧ steps ′ = steps ∧ err ′ = err ∧

ys ′ = ys ∧ yn ′ = yn ∧ sense ′ = sense.

T′
∀ := t = ∀ ∧ t′ = ∃ ∧move ′ = move ∧ (ϕ′

N ∨ ϕ′
S ∨ ϕ′

E ∨ ϕ′
W)∧

steps ′ = steps + 1 ∧
(
(ϕbad ∧ err ′) ∨ (¬ϕbad ∧ err ′ = err)

)
, where

ϕ′
N := y′ ≥ y + 1 ∧ y′ ≤ y + 1.5 ∧ x′ = x ∧(

¬sense ∧ ys ′ = y + 1 ∧ yn ′ = y + 1.5 ∧ sense ′ ∨

sense ∧ ys ′ = y′ ∧ yn ′ = y′ ∧ ¬sense ′
)
,

ϕ′
S := y′ ≥ y − 1.5 ∧ y′ ≤ y − 1 ∧ x′ = x ∧(

¬sense ∧ ys ′ = y − 1.5 ∧ yn ′ = y − 1 ∧ sense ′ ∨

sense ∧ ys ′ = y′ ∧ yn ′ = y′ ∧ ¬sense ′
)
,

ϕ′
E := x′ = x+ 2 ∧ y′ = y ∧ ys ′ = ys ∧ yn ′ = yn ∧ sense ′ = sense,

ϕ′
W := x′ = x− 2 ∧ y′ = y ∧ ys ′ = ys ∧ yn ′ = yn ∧ sense ′ = sense,

ϕbad := ϕhit−wall ∨ ϕgo−back , where

ϕhit−wall := (x < 5 ∧ x′ ≥ 5 ∨ x > 5 ∧ x′ ≤ 5) ∧ (y ≤ 0 ∨ y ≥ 2),

ϕgo−back := x > 5 ∧ x′ ≤ 5,

Figure 5.7: Formulas defining the game structure for the modified robot example.

146

5.5 Experiments

to the programs shown in Figure 5.5 and Figure 5.6. More specifically, they corre-

spond to the classical Bakery and Fischer’s protocols. The significant difference in

the maximal number of explored abstract states for a similar number of predicates

is partly due to the fact that the abstract game is constructed on-the-fly while also

reusing results from previous iterations. One can observe that the running times are

proportional to the number of iterations of the CEGAR loop and not to the size of

the abstract games. This is the case when a significant amount of time is spent on the

counterexample analysis and refinement operations. Although the goal of the proce-

dure RefineTransitionRelations is to refine the abstract transition relation, the

set of generated predicates can, of course, contain observable predicates, which refine

the abstract transition relation as well. In the first two examples above it happens

that RefineTransitionRelations succeeds in producing observable predicates that

suffice to discover a consistent abstract winning strategy for Player∃. In the last two

examples this is not the case, and applying the procedure RefineObservations is

necessary for computing sufficient observations. In the Robot example this procedure

generates the predicate yo ≤ 0, which allows the controller to decide correctly at the

first step whether to make one step in direction north before heading east or not. This

single predicate over yo suffices for Player∃ to win the game. Even if we would change

the transition relation such that y and yo are equal in all reachable states, this is still

the only predicate about yo generated by the refinement. During the refinement of

the transition relation a number of predicates over the unobservable variable y are

also generated. Thus, if instead of having the extra variable yo we declare variable y

observable, a larger number of observable predicates are generated, which in this case

are not necessary for the existence of a controller. In the last of the examples above,

RefineObservations produces the predicates ys ≤ 3
2 and ys ≥ 3

2 which enable the

controller to decide whether to make one or two steps in direction south before going

east though the door.

5.5.3 Discussion

The synthesis problems considered in this section are out of the scope of other state-of-

the-art synthesis tools that exist at the time of writing of this thesis. The only tool that

takes both infinite state spaces and partial observation into account is SMACS [SMA10],

which implements a technique presented in [KGMM09]. SMACS addresses the basic

147

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT
FOR GAMES UNDER INCOMPLETE INFORMATION

(and the non-blocking) synthesis problem for memoryless controllers with partial ob-

servation for infinite-state systems, and is therefore restricted to memoryless strategies.

More importantly, since it applies solely backward reasoning it is unable to discover

strategies for the above examples. The reason is, that even when memoryless consis-

tent winning strategies for Player∃ exist, establishing the existence of such a strat-

egy relies on forward reasoning about the knowledge of Player∃ during the course

of the game. Another tool for solving games under incomplete information is Al-

paga [BCW+09], which is applicable to parity games on a finite game graph. The

antichain approach [CDHR06] for finite-state incomplete information games on which

Alpaga is based is also implemented as part of the tool GAVS+ [CKLB11]. Clearly,

the problem that we addressed in this chapter is out of the scope of these tools.

148

Part III

Counterexample-Guided

Abstraction Refinement for

Synthesis of Observation

Predicates for Timed Control

149

150

Chapter 6

Timed Control with Partial

Observation

Controller synthesis, both in the discrete and in the timed setting, has been an active

field of research in the last decades. The timed controller synthesis problem asks to

automatically find a controller for an open plant such that the controlled closed loop

system satisfies a given property. It naturally reduces to the problem of finding a win-

ning strategy for the controller player in a two-player timed game between a controller

and its environment (the plant). This problem is well-understood for the case that the

controller can fully observe the state and evolution of the plant. In reality, however,

this assumption is usually violated due to limited sensors or the inability to observe

the internal behavior of the plant. The controller must therefore win the game under

partial observability. The key challenge for timed controller synthesis methods is to find

what sensor information, and more importantly, what timing information and precision

is required by the controller in order to enforce the desired property.

Motivating Example. The example shown in Figure 6.1 demonstrates the role of

observations in timed control under partial observability. The figure depicts a toy

model of a production system. The role of the controller is to remove a box from a

conveyor belt after the box is ready and before it reaches the end of the belt. The

plant produces two types of boxes, and for each type the respective robot arm should

be used to remove the box from the belt. The locations On, Producing1, Producing2,

Sensed1, Sensed2, Ready1, Ready2, End and Off of the plant indicate the position of the

151

6. TIMED CONTROL WITH PARTIAL OBSERVATION

box (depending on its type) on the belt. Producing a box of Type I takes between 4 and

6 seconds and producing a box of Type II takes between 7 and 8 seconds. Regardless

of its type, the box arrives at the respective location Ready1 or Ready2 between 9 and

10 seconds after the start of the current production phase. The goal of the controller

is to avoid the error location End. For that, it has to execute the correct arm1! or arm2!

action at the right time, namely when the box is in location Ready1 or Ready2.

The challenge is that locations On, Produce1 and Produce2 are indistinguishable by

the controller, and so are locations Sensed1, Sensed2, Ready1 and Ready2. Thus, the

controller cannot directly observe the box entering locations Ready1 and Ready2. The

controller can only detect the presence of a box via a sensor (i.e, it observes the box

entering locations Sensed1 and Sensed2) and can use timing information to determine

the time-frame in which the box is in location Ready1 (or Ready2). The sensor cannot

distinguish the type of the produced box, and hence the controller cannot observe if

a box of Type I or a box of Type II is being produced. However, using the timing

information, the controller can correctly infer the type of the box as well.

The controller cannot observe the plant’s clock x. Thus, a solution to the synthesis

problem is to use a clock y in the controller and activate the respective robot arm when

y = 21/2, thus ensuring that the error location End is never reached, as the box is

guaranteed to reach location Ready1 or Ready2 in 9 to 10 seconds after it is sensed and

remains there at least until y = 11. Activating the correct robot arm can be done by

checking whether or not the box has been sensed before the clock y reaches 7.

Given the two observation predicates y = 21/2 and y ≥ 7, we can construct a correct

controller. Clearly, both predicates are necessary: if the controller only observes one

of them or only some other predicate, say, only y = 30, then it is impossible to enforce

the specification. Note also that the two predicates play different roles in the control

strategy. Predicate y = 21/2 identifies a particular point in time (out of the infinitely

many) in which the controller may choose to take an action, while predicate y ≥ 7 is

needed in order to be able to decide on the right action. In the following, we distinguish

these two types of observation predicates as action points and decision predicates.

Related Work. The timed controller synthesis problem, and hence computing a suffi-

cient set of observation predicates, is undecidable under partial observability [BDMP03,

152

On

x ≤ 0

Produce1

x ≤ 6

Sensed1

x ≤ 10

Ready1

Produce2

x ≤ 8

Sensed2

x ≤ 10

Ready2

Off

End
x := 0

x := 0

x ≥ 4 x ≥ 9

arm1?
x ≥ 11

x ≥ 7 x ≥ 9
arm2?

x ≥ 11

Figure 6.1: Example of a partially observable plant for a production system represented

as a timed game automaton with a clock x. The plant has an uncontrollable action u

(uncontrollable edges in the automaton are denoted with dashed lines). For readability,

the edges with controllable actions arm1? and arm2? leading to End from locations On,

Produce1, Produce2, Sensed1, Sensed2, End and locations Ready2 and Ready1 respectively,

have been omitted from the figure. The equivalence relation between the locations of the

plant has been encoded using colors depicting the equivalence classes.

BC06]. All previously known synthesis algorithms therefore rely on some a-priori re-

striction of the problem, such as fixing the resources of the controller [BDMP03], or

fixing a template for the controller [FP12]. Alternatively, one can predefine the obser-

vations of the controller [CDL+07, Cas07] in the form of a fixed finite set of predicates.

The latter works were extended in [BCD+12] to take into account the cost of observa-

tions and compute for a finite set of predicates a subset with minimal cost.

Contribution. In this part of the thesis we investigate the important research ques-

tion of automatically discovering observation predicates for timed control. We present

the first systematic method for the automatic synthesis of observation predicates, which

was first published in [DF12]. The proposed method works by successively refining a

finite set of observation predicates and is based on the analysis of spurious counterexam-

ples. It builds on the CEGAR approach described in the second part of this thesis. For

timed games, the main difficulty in the characterization of spurious counterexamples

and refining the abstraction is caused by the fact that the number of moves available

to the controller is infinite, corresponding to the infinite number of points in time when

an action can be taken. To the best of our knowledge, prior to the work [DF12] of Dim-

itrova and Finkbeiner there was no approach to controller synthesis that can handle

153

6. TIMED CONTROL WITH PARTIAL OBSERVATION

partial observability for systems that allow for infinitely many choices of the controller,

without fixing a priori a finite set of available observations.

6.1 Preliminaries

Let us recall some definitions and notations from the theory of timed automata [AD94].

For a set X of real-valued variables, RX
≥0 = X → R≥0 is the set of total functions

from X to R≥0, also called clock valuations. For v ∈ RX
≥0, a set Z ⊆ X of variables

and a positive constant ∆ ∈ R>0 we denote with v[0/Z] the valuation obtained from v

by setting the values of the variables in Z to 0 and with v +∆ the valuation obtained

from v by adding ∆ to the value of each variable in X given by v. We let 0 ∈ RX
≥0 be

the function that maps each variable in X to the value 0.

Recall from Section 2.1.1, that for a set of real valued variables X, B[X] is the

set of boolean combinations of formulas of the form x ∼ c, where x ∈ X, c ∈ Q and

∼ ∈ {<,≤, >,≥,=}, and C[X] consists of true, false and conjunctions of such atoms.

Definition 6.1.1 ([AD94]). A timed automaton is a tuple A = (Loc, l0,X,Σ, Inv, δ),

where Loc is a finite set of locations, l0 ∈ Loc is the initial location, X is a finite set of

real-valued clocks, Σ is a finite set of actions, Inv : Loc → C[X] maps each location in

Loc to an invariant and δ ⊆ Loc×Σ×B[X] × 2X × Loc is a finite set of transitions.

Definition 6.1.2. The semantics of a timed automaton A = (Loc, l0,X,Σ, Inv, δ) is

defined by a timed transition system A = (SA, s
0
A
,Σ,→), where SA = {(l, v) ∈ Loc ×

RX
≥0 | v |= Inv(l)} is the set of states, s0

A
= (l0,0) is the initial state, and the transition

relation →⊆ SA × (Σ ∪ R>0)× SA is such that ((l, v), σ, (l′, v′)) ∈→ (denoted (l, v)
σ
→

(l′, v′)) iff v |= Inv(l), v′ |= Inv(l′) and one of the following conditions holds:

• σ ∈ Σ and there exists (l, σ, g, Z, l′) ∈ δ such that v |= g and v′ = v[0/Z];

• σ ∈ R>0, l
′ = l, v′ = v + σ, and (v + σ′) |= Inv(l) for each 0 < σ′ ≤ σ.

A timed automaton A = (Loc, l0,X,Σ, Inv, δ) is called time-deterministic iff for ev-

ery state (l, v) the set of transitions enabled in (l, v) does not contain distinct transitions

(σ, g′, Z ′) and (σ, g′′, Z ′′) such that the conjunction g1 ∧ g2 is satisfiable.

154

6.2 Timed Controller Synthesis

6.2 Timed Controller Synthesis

The timed controller synthesis problem in its general form asks to construct a controller

(check if one exists) for a given plant, such that the controlled plant satisfies a given

property. We study this problem under the partial observability hypothesis, where part

of the input determines what aspects of the plant the controller is able to observe. We

focus on the case when the clocks available to the controller are fixed a priori.

Partially Observable Plant

The plant given as input to the timed controller synthesis problem is represented as

a timed automaton, in which the actions labeling the transitions are partitioned into

controllable and uncontrollable. The partial observation of the plant by the controller

is encoded by a partitioning of the clocks of the plant into observable and unobservable

and specifying an equivalence relation on the set of locations of the plant. The controller

can read the values only of the observable clocks and observes only the equivalence class

of the location the plant is currently in, and not the actual location of the plant.

Definition 6.2.1. A partially observable plant is a tuple N = (A,Σc,Σu,Xo,Xu,=
L
o),

where A = (Loc, l0,X,Σ, Inv, δ) is a timed automaton and:

• Σc and Σu partition the set Σ of actions of the automaton A into a set Σc of

controllable actions and a set Σu of uncontrollable actions,

• Xo and Xu partition the set X of clocks of the automaton A into a set Xo of

observable clocks and a set Xu of unobservable clocks,

• =L
o⊆ Loc× Loc is an (observation) equivalence relation on Loc.

We require thatN is input-enabled and deadlock-free. A plantN = (A,Σc,Σu,Xo,Xu,

=L
o) with A = (Loc, l0,X,Σ, Inv, δ) is called input-enabled if for each controllable action

σ ∈ Σc and configuration (l, v) ∈ SA there exists a configuration (l′, v′) ∈ SA such

that (l, v)
σ
→ (l′, v′), that is, each controllable action is enabled in each configuration

in SA. The plant N is deadlock-free if for each configuration (l, v) ∈ SA there exist

σ ∈ Σu ∪ R>0 and a configuration (l′, v′) ∈ SA such that (l, v)
σ
→ (l′, v′), i.e., in each

configuration from SA an uncontrollable action can be performed or time can elapse.

155

6. TIMED CONTROL WITH PARTIAL OBSERVATION

Control Strategies

Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant with underlying timed

automaton A = (Loc, l0,X,Σ, Inv, δ). A controller for N decides when and what control-

lable actions can be executed. The controller operates under incomplete information

about the current location of the plant and the values of the plant’s clocks. In a given

configuration, the controller can only observe the equivalence class of the current lo-

cation w.r.t. =L
o and the current values of the observable clocks Xo. The controller is

equipped with a set of controllable clocks, whose values it can observe and set to 0.

Let Xc be a set of controllable clocks such that Xc ∩ X = ∅. We denote with

Xo+c = Xo∪̇Xc the union of the observable clocks of the plant and the controllable

clocks Xc. Let Σr = {resetZ | Z ∈ 2Xc \ {∅}} be a set of actions disjoint from Σ.

Intuitively, the actions from Σr allow the controller to reset the controllable clocks. Let

us define S̃A = Loc × RX ∪̇ Xc

≥0 and Σ̃ = Σ ∪̇ R>0 ∪̇ Σr. The set S̃A consists of the

configurations of the plant extended with values for the clocks of the controller and the

elements of Σ̃ are the possible actions of the controlled plant.

A run of the controlled plant is a sequence π ∈ (S̃A · (Σ̃ · S̃A)
∗) ∪ (S̃A · (Σ̃ · S̃A)

ω).

A control strategy maps finite runs (the history of the execution so far) to decisions

of the controller. The controller can decide to: (i) execute a controllable action σ when

a clock x ∈ Xo+c reaches a value c, or (ii) execute a controllable action σ immediately,

or (iii) remain idle and let time elapse, or (iv) reset a set of controllable clocks Z ⊆ Xc.

The function Act∃ : S̃A → 2(Σc∪(Σc×Xo+c×Q>0)∪{♭}∪Σr) maps a configuration (l, ṽ) ∈ S̃A

to the set of possible choices of the controller in this configuration. Formally, the set

Act∃((l, ṽ)) is the smallest subset of Σc ∪ (Σc × Xo+c ×Q>0) ∪ {♭} ∪ Σr such that:

(i) if σ ∈ Σc and c > ṽ(x) for c ∈ Q>0, x ∈ Xo+c, then (σ, x, c) ∈ Act∃((l, ṽ)) – the

controller can choose to execute a controllable action when some clock in Xo+c

reaches a value that is strictly greater than this clock’s current value;

(ii) Σc ⊆ Act∃((l, ṽ)) – the controller can always immediately execute a σ ∈ Σc;

(iii) ♭ ∈ Act∃((l, ṽ)) – the controller can always remain idle and let time elapse;

(iv) if ṽ(x) > 0 for each x ∈ Z ⊆ Xc, then resetZ ∈ Act∃((l, ṽ)) – the controller can

reset clocks whose values in the current configurations are strictly positive.

156

6.2 Timed Controller Synthesis

A control strategy is a function fc : S̃A·(Σ̃·S̃A)
∗ → Σc∪(Σc×Xo+c×Q>0)∪{♭}∪Σr. This

function must be consistent with what the controller can observe during the execution

of the plant. To formalize this requirements we define a function

obsr : S̃A · (Σ̃ · S̃A)
∗ → (ObsL × R

Xo+c

≥0) · ((ObsL × R
Xo+c

≥0)× (ObsL × R
Xo+c

≥0))∗,

where ObsL is the set of equivalence classes of Loc w.r.t. =L
o. The function obsr maps

a finite run to the sequence of observations the controller makes during this run. The

controller observes controllable actions of the plant and discrete changes of the state-

based observations, such as change of the equivalence class of the current location or

reset of some clock in Xo+c. At such points the controller observes the equivalence class

of the current location and the current values of the clocks in Xo+c.

First, we define the function obs : S̃A → ObsL × R
Xo+c

≥0 , such that for (l, ṽ) ∈ S̃A

we let obs((l, ṽ)) = ([l]=L
o
, ṽ(Xo+c)), where [l]=L

o
is the equivalence class that contains l.

Now, for a finite run π ∈ S̃A · (Σ̃ · S̃A)
∗ we define:

obsr(π) =

obs(s̃) if π = s̃ ∈ S̃A,

obsr(π
′ · s̃) · (obs(s̃), obs(s̃′)) if π = π′ · s̃ · σ̃ · s̃′, and σ̃ ∈ Σc ∪ Σr or

l 6=L
o l

′ or ṽ(x) > ṽ′(x) for some x ∈ Xo,

where s̃ = (l, ṽ) and s̃′ = (l′, ṽ′),

obsr(π
′ · s̃) if π = π′ · s̃ · σ̃ · s̃′ and σ̃ 6∈ Σc ∪ Σr and

l =L
o l

′ and ṽ(x) ≤ ṽ′(x) for all x ∈ Xo,

where s̃ = (l, ṽ) and s̃′ = (l′, ṽ′).

Definition 6.2.2. Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant with

A = (Loc, l0,X,Σ, Inv, δ) and let Xc be a finite set of clocks with Xc ∩X = ∅. A Xc-

control strategy for the partially observable plant N is a total function fc : S̃A·(Σ̃·S̃A)
∗ →

Σc ∪ (Σc × Xo+c ×Q>0) ∪ {♭} ∪ Σr, that meets the following two requirements:

• fc(π) ∈ Act∃(last(π)), for each π ∈ S̃A · (Σ̃ · S̃A)
∗,

• if obsr(π1) = obsr(π2), then fc(π1) = fc(π2), for each π1, π2 ∈ S̃A · (Σ̃ · S̃A)
∗.

A control strategy fc for the plant N defines a set of controlled runs CR(fc,N) ⊆

(S̃A · (Σ̃ · S̃A)
∗) ∪ (S̃A · (Σ̃ · S̃A)

ω). For a run π we have π ∈ CR(fc,N) iff π[0] = (l0,0)

and for every 0 < i < |π| − 1 with π[i− 1] = (l, ṽ), π[i] = σ̃ and π[i+ 1] = (l′, ṽ′):

157

6. TIMED CONTROL WITH PARTIAL OBSERVATION

(i) if σ̃ ∈ R>0, then (l, ṽ(X))
σ̃
→ (l′, ṽ′(X)), ṽ′(Xc) = ṽ(Xc)+ σ̃, and fc(π[0, i−1]) = ♭

or fc(π[0, i − 1]) = (σ, x, c) and ṽ′(x) ≤ c (either the controller chose to remain

idle or time can only elapse while the value of clock x has not reached c);

(ii) if σ̃ ∈ Σc, then (l, ṽ(X))
σ̃
→ (l′, ṽ′(X)), ṽ′(Xc) = ṽ(Xc), and fc(π[0, i − 1]) = σ̃ or

fc(π[0, i − 1]) = (σ̃, x, c) and v(x) = c (σ̃ is taken immediately, or x reached c);

(iii) if σ̃ ∈ Σu, then fc(π[0, i − 1]) 6∈ Σr, (l, ṽ(X))
σ̃
→ (l′, ṽ′(X)) and ṽ′(Xc) = ṽ(Xc)

(only resetting controllable clocks has priority over uncontrollable transitions);

(iv) if σ̃ = resetZ , then fc(π[0, i − 1]) = σ̃, (l′, ṽ′(X)) = (l, ṽ(X)) and ṽ′(Xc) =

ṽ(Xc)[0/Z] (resetting clocks from Xc leaves the configuration of N unchanged).

Controller Synthesis Problem

A plant location l ∈ Loc is reachable in CR(fc,N) iff there exists a finite path π ∈

CR(fc,N) such that last(π) = (l, ṽ) for some clock valuation ṽ ∈ RX ∪̇ Xc

≥0 .

Given

• a partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o), A = (Loc, l0,X,Σ, Inv, δ),

• an error location lErr ∈ Loc, for which [lErr]=L
o
= {lErr}, and

• a finite set Xc of controllable clocks such that Xc ∩X = ∅,

the timed safety control problem with partial observability asks whether there exists a

Xc-control strategy fc for N such that lErr is not reachable in CR(fc,N). The corre-

sponding controller synthesis problem asks to compute such a strategy if one exists.

6.3 Observations for Timed Control

6.3.1 Undecidability Results

In [BDMP03] Bouyer et al. established undecidability of the timed control problem

under partial observability for specifications given as deterministic timed automata.

Later Bouyer and Chevalier [BC06] considered the special cases of reachability and

safety specifications, given as a set of goal and error locations respectively. Under

158

6.3 Observations for Timed Control

partial observability, they show undecidability of the timed reachability control problem

and the timed safety control problem under non-Zeno control strategies.

These undecidability results have initiated work on restrictions of the control prob-

lem under partial observability, where the observation power of the controller is fixed.

6.3.2 Timed Control with Fixed Observations

In their paper [BDMP03] Bouyer et al. investigated the case when the resources of

the controller, i.e., its clocks and the constants these clocks can be compared to, are

fixed. Formally, the input to the problem consists of a timed automaton describing

the plant, a partitioning of the actions of the automaton into controllable, observable

and unobservable actions, a partitioning of the set of clocks of the automaton into

observable and unobservable clocks, and a granularity µ. The granularity µ = (Xr ∪

XCont ,m,max) consists of a set Xr of plant clocks which the controller can read and

the set XCont of the controller’s own clocks, a positive integer m and a function max :

Xr ∪ XCont → Q>0. The constant m fixes all constants used in the controller to

be integral multiples of m. The function max maps each clock in the granularity

to the maximal constant this clock can be compared to. The granularity µ defines

a finite subset of B[Xr ∪XCont]. The timed controller synthesis problem with partial

observability and with fixed resources µ, asks to decide if there exists a controller whose

granularity is µ and such that the controlled plant satisfies the given specification.

In the framework of [BDMP03, BC06] the observations of the controller are event-

based, i.e, the controller observes the controllable and a subset of the uncontrollable

actions and uses in their guards the clocks from XCont and a subset of the plant’s

clocks. The observations used in [CDL+07], on the other hand, are state-based. That

is, each observable predicate is a pair (K,φ) consisting of a set K of plant locations and

constraint φ ∈ C[X], where X is the set of clocks. Intuitively, the controller observes a

set of locations one of which is the plant’s current location and observes the clocks not

directly, but via the values of the given constraints. The synthesis problem considered

in [CDL+07] is to compute an observation- based strategy to control the given plant

using a an a priori fixed set of observable predicates.

In both of its above variations the timed controller synthesis problem with fixed

observations is decidable. The algorithm presented in [BDMP03] is based on the idea

of the region graph construction, and the one developed in [CDL+07] is zone-based.

159

6. TIMED CONTROL WITH PARTIAL OBSERVATION

l0

x ≤ 3

l1

x ≤ 3

l2

x ≤ 3

l3

l4

l5

x ≥ 2

x := 0

x ≥ 2

x := 0

x ≥ 2

x := 0

a

x > 1

X = {x, y}

Xo = {y}

Σ = {u, a}

Σc = {a}

Figure 6.2: Partially observable plant for which the necessary action points for the con-

troller are not bounded by the maximal constant occurring in a constraint of the plant

automaton. The plant has two clocks x and y, and only y is observable by the controller.

The plant has an uncontrollable action u (uncontrollable edges in the automaton are de-

noted with dashed lines). For readability, the edges with controllable action a leading to

l5 from locations l0, l1, l2, l4 and l5 have been omitted from the figure. The equivalence

relation between locations has been encoded using colors depicting the equivalence classes.

The challenge that remained, however, is to automatically find sufficient observa-

tions for the controller. According to the discussion in the beginning of this chapter,

we distinguish between two types of observable predicates, namely action points and

decision predicates, depending on the role they play in the resulting controller. In the

following, we exemplify the fact that, in the general case, neither set of predicates can

be directly derived from the syntactic description of the plant.

Let A = (Loc, l0,X,Σ, Inv, δ) be a timed automaton in which all constants are non-

negative integers, and let cmax be the maximal constant in A. We note with D[X, cmax]

the subset of D[X], where all constants are non-negative integers bounded by cmax.

The region automaton [AD94] Ar for the timed automaton A is a finite automaton,

whose states are the equivalence classes of an equivalence relation with finite index over

the states of the timed transition system associated with A. Each of these equivalence

classes can be represented by a constraint in D[X, cmax]. As the region graph is finite,

it underlies most decidability results for timed automata and timed games.

The following example demonstrates that there exist partially observable plants with

timed automata in which all constants are non-negative integers, where the necessary

action points are not bounded by the maximal constant in the plant automaton.

Example 6.3.1. A controller for the plant depicted in Fig. 6.2 does not require any

decision predicates. In order to avoid the error location l5, the controller has to execute

the controllable action a during the time the plant is in location l3. It takes the plant

between 6 and 9 time units from the start to enter location l3, and thus it is guaranteed

160

6.3 Observations for Timed Control

l0

x ≤ 0

l1

x ≤ 3

l2

x ≤ 3

l3

x ≤ 3

l4

l5

x ≤ 2

l6

x ≤ 2

l7

l8 l9

x := 0

x := 0

x ≥ 2

x := 0

x ≥ 2

x := 0

x ≥ 2

x := 0

x := 0 x := 0

a1
x ≥ 1

a2
x ≥ 1

X = {x, y}

Xo = {y}

Σ = {u, a1, a2}

Σc = {a1, a2}

Figure 6.3: Partially observable plant for which the predicates describing the region au-

tomaton do not suffice as decision predicates. The plant has two clocks x and y, and only

y is observable by the controller. The plant has an uncontrollable action u (uncontrollable

edges in the automaton are denoted with dashed lines). For readability, the edges with

controllable actions a1 and a2 leading to l9 from locations l0, l1, l2, l3, l5, l6, l8, l9, and loca-

tions l7 and l4, respectively, have been omitted from the figure. The equivalence relation

between locations has been encoded using colors depicting the equivalence classes.

to be in this location when y ∈ (9, 10]. Since y is the only observable clock, the winning

action points are y = c, where c ∈ (9, 10], for which clearly y = c 6∈ D[Xo, 3].

Now we give another example, in which no action points are needed by the controller,

but there does not exist a controller whose decision predicates are in the set D[Xo, cmax],

where cmax is the maximal constant in the plant automaton.

Example 6.3.2. For the plant in Fig. 6.3 no action points are necessary, as the con-

troller can observe when the location changes from l3 to l4 and from l6 to l7, and

executing the correct controllable action upon entering l4 or l7 results in a control

strategy that avoids the error location l9. However, in order to decide which control-

lable action to execute so as to to avoid location l9, the controller has to be able to

distinguish locations l4 and l7, which is not possible by using the constraints inD[Xo, 3].

The decision predicate y ≤ 4 suffices to distinguish the two locations, since when the

plant enters l4 we have 6 ≤ y ≤ 9 and when it enters l7 we have 0 ≤ y ≤ 4.

6.3.3 Finite Control Strategies

We will be interested in controller strategies with finite memory, since such strategies

can be implemented by timed automata, i.e., as controller automata.

Definition 6.3.1. Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant with

A = (Loc, l0,X,Σ, Inv, δ) and let Xc be a finite set of clocks with Xc ∩X = ∅.

161

6. TIMED CONTROL WITH PARTIAL OBSERVATION

A finite controller automaton for N with clocks Xc is a time-deterministic timed

automaton C = (L̃oc, l̃0, X̃, Σ̃, Ĩnv, δ̃), where X̃ = Xo ∪̇ Xc, Σ̃ = Σ̃1 ∪̇ Σ̃2 and

Σ̃1 = {(σ, o1, o2, Y) | σ ∈ Σc, o1, o2 ∈ ObsL and Y ⊆ Xo} and

Σ̃2 = {(τ, o1, o2, Y) | o1, o2 ∈ ObsL, Y ⊆ Xo, and it holds that o1 6= o2 or Y 6= ∅},

where τ is some fixed action label such that τ 6∈ Σ. The mapping Ĩnv is such that

for each l ∈ L̃oc, Ĩnv(l) = true and the transition relation δ̃ is such that

• δ̃ ⊆ L̃oc× ((Σ̃1 × C[X̃]) ∪ (Σ̃2 ×B[X̃]))× 2Xc × L̃oc,

• for each l ∈ L̃oc and each σ ∈ Σc there exists a formula (x ≥ c) ∈ C[X̃] such that

for each transition (l, (σ, o1, o2, Y), g, Z, l′) ∈ δ̃ it holds that g = (x ≥ c), and

• for each l ∈ L̃oc and each σ ∈ Σ̃2, (
∨

(l,σ,g,Z,l′)∈δ̃
g) ≡ true.

A set of transitions δ̃′ ⊆ δ̃∩(L̃oc×(Σ̃1×C[X̃])×2Xc× L̃oc) in δ̃ labeled with controllable

actions are urgent. This means that the respective source location must be left without

(further) delay when the transition is enabled (i.e., when its guard is satisfied).

According to the above definition, the set of clocks of the controller automaton

consists of the observable clocks of the plant and the controller’s own clocks, where

only the latter ones can be reset by the controller. The controller synchronizes with the

plant on discrete controllable transitions and on the discrete changes in the state-based

observation (i.e., observable location change or observable clock reset). The urgency

condition for the controllable actions ensures these actions are taken as soon as they are

enabled by the controller automaton. Notice that, as it is usually done, urgency can be

encoded by adding invariants for the respective locations of the controller automaton

(and possibly introducing a fresh clock variable to the controller automaton).

It is not difficult to see how a controller automaton for a partially observable plant

defines a control strategy for this plant and yields the respective set of controlled paths.

In order to define the syntactic product of the timed automata for plant and con-

troller, we would have to rename some of the actions in both automata. More precisely,

for the transitions of the plant automaton that have observable effect (i.e., reset an ob-

servable clock or change the equivalence class of the plant location) we add this effect

to the transition label. In addition, in the controller automaton, the transition labels

162

6.3 Observations for Timed Control

l0

l1

y ≤ 21
2

l2

y ≤ 21
2

l3

y ≤ 6

(O → S)?

(O → S)?
y > 6

y ≥ 21
2

arm1!

arm2!

y ≥ 21
2

O = {On,Produce1,Produce2}

S = {Sensed1,Sensed2,Ready1,Ready2}

Figure 6.4: A controller automaton for the partially observable plant in Figure 6.1. The

invariants at locations l0 and l1 ensure that the actions arm1! and arm2! are urgent.

are augmented with the actions of the plant automaton that have the respective ob-

servable effect. Then, the standard definition of product of timed automata yields a

timed automaton in which the set of paths is exactly the set of controlled paths.

Figure 6.4 depicts a controller automaton for the partially observable plant shown

in Figure 6.1, that enforces that in the controlled plant the location Err is not reachable.

The transition relation of the controller automaton branches according to the value of

the clock y when the equivalence class of the plant’s location changes from O to S. As

soon as y reaches the value 21
2 , the respective action arm1! or arm2! is executed.

An Xc-control strategy for a partially observable plant cannot always be represented

as a finite automaton with clocks Xc. We give an example of a partially observable

plant for which there does not exist a finite-state control strategy to avoid the error.

Example 6.3.3. For the partially observable plant shown in Figure 6.5, there does not

exist a controller automaton (which by definition should be a finite timed automaton)

that does not use additional clocks. In order for a control strategy to ensure that the

error location l3 is not reachable on any of the controlled paths, it must ensure that the

controllable action a is taken when the location is l1 and when the value of the clock x

is 1. Since the clock x cannot be observed by the controller, the value of the observable

(but not controllable) clock y when the action must be taken depends on its value at the

time when the plant’s location changes from l0 to l1. Hence, in a controller automaton

that does have any controllable clocks, we would need one location for each such value,

which means that there must be infinitely many locations in the automaton.

163

6. TIMED CONTROL WITH PARTIAL OBSERVATION

l0 l1 l2

l3

x := 0

a

x ≥ 1

a

x < 1
x > 1

X = {x, y}

Xo = {y}

Σ = {u, a}

Σc = {a}

Figure 6.5: Partially observable plant for which there does not exist a finite controller

automaton. The plant has an uncontrollable action u (uncontrollable edges in the automa-

ton are denoted with dashed lines) and a controllable action a. The location l3 is an error

location. For readability we have omitted the transitions labeled with a and with guard

true from locations l0, l2 and l3 to l3. The equivalence relation between locations has been

encoded using colors depicting the equivalence classes.

164

Chapter 7

Synthesis of Observation

Predicates for Timed Control

7.1 Await-Time Games

In this section we introduce await-time games and show that the timed safety controller

synthesis problem with partial observability reduces to the problem of finding a winning

strategy for the controller (the existential player) in an await-time game against the

plant (the universal player). As we will see, await-time games are a convenient and

natural representation of the timed safety controller synthesis problem with partial

observability. They allow us to represent the infinite number of choices available to the

controller in a suitable way using the variables in the symbolic game structure.

Construction of the Await-Time Game

We fix a partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o) with timed automaton

A = (Loc, l0,X,Σ, Inv, δ), and an error location lErr ∈ Loc with [lErr]=L
o
= {lErr}.

Let Xc be a fixed finite set of controllable clocks such that Xc ∩X = ∅.

An await-time game models the interaction between a Xc-control strategy (Player∃),

and the partially observable plant N, i.e, the controller’s environment, (Player∀), in

a turn-based manner. Whenever it is his turn, Player∃ has the possibility to propose

what controllable action should be executed and when. Then, Player∀ can do one or

more transitions executing the actual actions of the plant, i.e., updating the location

and all clocks, respecting the choice of Player∃. Since the controller and the plant

165

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

synchronize when a controllable action is executed or a discrete change in the state-

based observation has occurred, the turn is back to Player∃ as soon as this happens.

The await-time game for N, lErr and Xc is the game Safety(G(N, lErr,Xc), ϕErr),

where the symbolic game structure G(N, lErr,Xc) = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) and

the formula ϕErr are defined as described in the remainder of this section.

We denote the corresponding explicit game structure with G(N, lErr,Xc).

Variables. As usual, we let V = V∃ ∪̇ V∀ ∪̇ {t} be the set of all variables in G.

Player∃ updates the variables in V∃, which model the decisions of the controller. We

partition the set V∃ into two sets: the set V f
∃ = {v ∈ V∃ | |Dom(v)| < ∞} consists of

the variables from V∃ that have finite domains, and SC = {v ∈ V∃ | |Dom(v)| = Q≥0}

consists of the variables whose domains are infinite. Thus, V∃ = V f
∃ ∪̇ SC , where:

• V f
∃ = {act ,wait , reset}, Dom(act) = Σc∪{♭}, Dom(wait) = B, Dom(reset) = 2Xc ,

• SC = {cx | x ∈ Xo+c} consists of variables called symbolic constants and contains

exactly one symbolic constant cx for each x ∈ Xo+c, where Dom(cx) = Q≥0.

When Player∃ choses to execute a controllable action from Σc, the variable act

indicates the selected action. Player∃ sets wait to true if he wants to let time elapse

(before executing a controllable action or when remaining idle). The variable reset

stores a set of controllable clocks Player∃ wants to reset. The values of the symbolic

constants determine when Player∃ chose to execute the selected controllable action.

Player∀ updates the variables in V∀, which encode the state of the plant. Recall

that the set V o
∀ ⊆ V∀ consists of the variables belonging to Player∀ that Player∃ can

read. Here, the set V o
∀ is defined according to what the controller is allowed to observe.

Thus, we have V∀ = V o
∀ ∪̇ V u

∀ , where we have defined:

• V o
∀ = {oloc, er} ∪̇ Xo+c, where Dom(oloc) = ObsL and Dom(er) = B,

• V u
∀ = {loc, et} ∪̇ Xu, where Dom(loc) = Loc and Dom(et) = B.

The variables loc and oloc store the plant’s current location and the equivalence

class of the current location. The auxiliary boolean variable er indicates in which

states Player∃ can choose to reset clocks from Xc. The unobservable auxiliary variable

et has value false in the states in which Player∀ has disabled further delay transitions.

166

7.1 Await-Time Games

Initial states. The set of initial states of G(N, lErr,Xc) is characterized by the formula

ϕInit := t = ∃ ∧ act = ♭ ∧ wait ∧ reset = ∅ ∧
∧

x∈Xo+c

cx = 0 ∧

loc = l0 ∧ oloc = [l0]=L
o
∧

∧

x∈X∪Xc

x = 0 ∧ ¬er ∧ et .

Thus, in the unique initial state, which belongs to Player∃ all variables of Player∃

have some default values, the plant is in its initial location and all clocks of the plant

and the controller are 0. Thus, Player∃ is not allowed to reset the controller’s clocks.

Transition relation of Player∃. The transitions of Player∃ correspond to the pos-

sible choices of the controller. We distinguish four types of transitions, according to

the different cases in the definition of Act∃ in Section 6.2. In case (i) Player∃ chooses

an action σ ∈ Σc to be executed after a positive delay, in case (ii) Player∃ chooses an

action σ ∈ Σc to be executed immediately, in case (iii) Player∃ chooses to remain idle,

and in case (iv) Player∃ selects a set of clocks from Xc to be reset. Thus, we define

T∃[V ,V
′] := t = ∃∧ t′ = ∀∧ preserve(V∀)∧

(∧

x∈Xo+c

c′x ≥ 0
)
∧
(
T
(i)
∃ ∨T

(ii)
∃ ∨T

(iii)
∃ ∨T

(iv)
∃

)
,

where for a set of variables U ⊆ V the formula preserve(U) is a shortcut for the formula
∧

u∈U (u
′ = u) and the formulas T

(i)
∃ , T

(ii)
∃ , T

(iii)
∃ and T

(iv)
∃ are defined as follows:

T
(i)
∃ :=

(∨
σ∈Σc

act ′ = σ
)
∧ wait ′ ∧ reset ′ = ∅ ∧

(∨
x∈Xo+c

c′x > 0
)
∧∧

x∈Xo+c
(c′x > 0 → c′x > x),

T
(ii)
∃ :=

(∨
σ∈Σc

act ′ = σ
)
∧ ¬wait ′ ∧ reset ′ = ∅ ∧

∧
x∈Xo+c

c′x = 0,

T
(iii)
∃ := act ′ = ♭ ∧ wait ′ ∧ reset ′ = ∅ ∧

∧
x∈Xo+c

c′x = 0,

T
(iv)
∃ :=

∨
Z⊆Xc,
Z 6=∅

(
er ∧ act ′ = ♭ ∧ ¬wait ′ ∧ reset ′ = Z ∧

∧
x∈Xo+c

c′x = 0
)
.

We call the positive values of variables from SC in case (i) await points.

Transition relation of Player∀. The transitions of Player∀ correspond to the pos-

sible transitions of the plant, respecting the choices of the controller. According to the

definition of controlled run in Section 6.2 we consider the following types of transitions:

167

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

(i) delay transitions of the plant, (ii) discrete controllable transitions, (iii) discrete un-

controllable transitions and (iv) transitions that reset clocks selected by Player∃. An

additional type of transitions (v) allow Player∀ to give the turn back to Player∃ at any

point after letting some time elapse, in case Player∃ has chosen to remain idle.

First, with each (l, σ, g, Y, l′) ∈ δ in N we associate a formula ϕ(l,σ,g,Y,l′) over the

variables in V and V ′ that describes the corresponding transition relation:

ϕ(l,σ,g,Y,l′)[V, V
′] := loc = l ∧ Inv(l)[X] ∧ g[X] ∧

∧

y∈Y

y′ = 0 ∧

loc ′ = l′ ∧ oloc ′ = [l′]=L
o
∧ Inv(l′)[X ′/X] ∧ preserve(X \ Y).

The transition relation formula T∀ contains a disjunct for each type of transitions:

T∀[V ,V
′] := t = ∀ ∧ preserve(V∃) ∧

(
T
(i)
∀ ∨ T

(ii)
∀ ∨ T

(iii)
∀ ∨ T

(iv)
∀ ∨ T

(v)
∀

)
, where

T
(i)
∀ := (wait ∧ et) ∧

(
∃∆. ∆ > 0 ∧

∧
x∈X ∪̇ Xc

(x′ = x+∆)
)
∧

∧
l∈Loc

(
loc = l → Inv(l)[X ′]

)
∧ preserve

(
{oloc, loc, t, er}

)
∧(

act 6= ♭→
∧

x∈Xo+c
(x < cx → x′ ≤ cx)

)
∧(

act 6= ♭→
(
et ′ ↔

∧
x∈Xo+c

(cx = 0 ∨ x ≥ cx ∨ x
′ < cx)

))
,

T
(ii)
∀ := (¬wait ∨ ¬et) ∧

(∨
σ∈Σc,

(l,σ,g,Y,l′)∈δ

act = σ ∧ ϕ(l,σ,g,Y,l′) ∧ preserve(Xc)
)
∧

t′ = ∃ ∧ er ′ ∧ et ′,

T
(iii)
∀ := reset = ∅ ∧

(∨
σ∈Σu,

(l,σ,g,Y,l′)∈δ

ϕ(l,σ,g,Y,l′) ∧ preserve(Xc)
)
∧

(
t′ = ∃ ↔

(
oloc ′ 6= oloc ∨

∨
x∈Xo

(x > 0 ∧ x′ = 0)
))

∧(
t′ = ∃ → er ′ ∧ et ′

)
∧
(
t′ = ∀ → er ′ = er ∧ et ′ = et

)
,

T
(iv)
∀ := reset 6= ∅ ∧

(∧
x∈reset x

′ = 0
)
∧ preserve

(
{loc, oloc} ∪ ((X ∪̇ Xc) \ reset)

)
∧

t′ = ∃ ∧ ¬er ′ ∧ et ′,

T
(v)
∀ := act = ♭ ∧ wait ∧ ¬et ∧ preserve

(
{loc, oloc} ∪ (X ∪̇ Xc)

)
∧

t′ = ∃ ∧ ¬er ′ ∧ et ′.

In (i), Player∀ can let time elapse, if delay transitions are enabled, that is Player∃

has set wait to true, and Player∀ has not disabled further delay transitions. The

latter happens upon reaching an await point, as Player∀ cannot let time pass beyond

an await point. The controllable action selected by Player∃ can be executed only

168

7.1 Await-Time Games

when time-elapse transitions are disabled (i.e., Player∃ wanted to execute the transition

immediately or an await point has been reached). Once a controllable transition is

taken the turn is back to Player∃. In (iii), an enabled uncontrollable transition can

be executed if Player∃ did not choose to reset controllable clocks. The turn is back to

Player∃ if and only if the transition changes the state-based observation. If Player∃

chose a non-empty set of controllable clocks to reset, Player∀ can set these clocks to 0

and give the turn back to Player∃, disabling consecutive resets of controllable clocks.

Error states. The set of error states in the game Safety(G(N, lErr,Xc), ϕErr) is de-

scribed by the formula ϕErr := t = ∀ ∧ oloc = [lErr]=L
o
.

Correctness of the Reduction

As we mentioned in the definition of the observation function obsr in Section 6.2, the

controller observes only those transitions of the plant that correspond to controllable

actions or to a discrete change of the state-based observation, i.e., change the equiva-

lence class of the current location or reset clocks that the controller can observe. Thus,

the controller does not observe the intermediate sequences of transitions of the plant,

nor their number. In particular, the controller does not observe the number or duration

of individual delay transitions, nor when and if an uncontrollable action is taken.

Therefore, in order to ensure that the considered strategies of Player∃ in the cor-

responding await-time game correspond to control strategies, we define an observation

function obsr : Prefs(G(N, lErr,Xc)) → Obs∗, which maps a prefix π to the sequence

of observations made by Player∃ according to what the controller can observe. The

function obs : S → Obs maps a state s to the corresponding equivalence class.

obsr(π) =

obs(s) if π = s ∈ S∃,

obsr(π
′) · obs(s) · obs(s′) if π = π′ · s · s′ and s′ ∈ S∃,

obsr(π
′) if π = π′ · s and s ∈ S∀.

Unlike in the asynchronous observation function obsa defined in Section 2.2, we

include the observations of the Player∀ states preceding Player∃ states, since the con-

troller (and hence Player∃) can observe the values of the clocks in Xo at the point when

an observed transition occurs. We do not use the stuttering-free observation function

obsf defined in Section 2.2, since Player∃ can read the values of the clocks in Xo+c, but

should not observe their intermediate values (changed by unobserved transitions).

169

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

The following proposition states that we can reduce the timed safety controller syn-

thesis problem with partial observability to finding an obsr-consistent winning strategy

for Player∃ in the corresponding await-time game.

Proposition 7.1.1. If N = (A,Σc,Σu,Xo,Xu,=
L
o) is a partially observable plant,

lErr ∈ Loc is an error location such that [lErr]=L
o
= {lErr} and Xc is a finite set of

controllable clocks such that Xc∩X = ∅, then there exists a Xc-control strategy fc for N

such that lErr is not reachable in CR(fc,N) iff Player∃ has an obsr-consistent winning

strategy in the await-time game Safety(G(N, lErr,Xc), ϕErr).

Proof. Let us denote G = G(N, lErr,Xc) = (S∃, S∀, I,=o,Σ∃, T∃, T∀).

Suppose that fc is a Xc-control strategy for N such that lErr is not reachable

in CR(fc,N). We define a function f∃ : Prefs∃(G) → Σ∃ by first fixing a function

g1 : Prefs(G) → S̃A · (Σ̃ · S̃A)
∗ such that if obsr(π1) = obsr(π2), then obsr(g1(π1)) =

obsr(g1(π2)). For π = s we define g1(π) = (s(loc), s(X ∪̇ Xc)) and if π = π′ · s · s′, then

we fix a value g1(π) such that one of the following conditions holds:

• g1(π) = g1(π
′ · s) and s ∈ S∃ or (s, s′) |= T

(v)
∀ ;

• g1(π) = g1(π
′ · s) · s(act) · (s′(loc), s′(X ∪̇ Xc)) and (s, s′) |= T

(ii)
∀ ;

• g1(π) = g1(π
′ · s) · σ̃ · (s′(loc), s′(X ∪̇ Xc)), (s, s

′) |= T
(i)
∀ ∨ T

(iii)
∀ and

(s(loc), s(X))
σ̃
→ (s′(loc), s′(X));

• g1(π) = g1(π
′ · s) · s(reset) · (s′(loc), s′(X ∪̇ Xc)) and (s, s′) |= T

(iv)
∀ .

Now, let π ∈ Prefs∃ and fc(g1(π)) = σ′. We then define f∃(π) = σ, where:

• if σ′ ∈ Σc, then σ(act) = σ′, σ(wait) = false, σ(reset) = ∅, σ(cx) = 0 for cx ∈ SC ,

• if σ′ = (σ, x, c) ∈ Σc×Xo+c×Q>0, then σ(act) = σ, σ(wait) = true, σ(reset) = ∅,

σ(cx) = c and σ(cy) = 0 for every y ∈ Xo+c that is such that y 6= x,

• if σ′ = ♭, then σ(act) = ♭, σ(wait) = true, σ(reset) = ∅, σ(cx) = 0 for cx ∈ SC ,

• if σ′ ⊆ Xc, then σ(act) = ♭, σ(wait) = false, σ(reset) = σ′, σ(cx) = 0 for cx ∈ SC .

By the definition of g1 and since fc is a control strategy, we have that f∃ is an obsr-

consistent strategy for Player∃. Since lErr is not reachable in CR(fc,N), it is easy to

see from the definition of f∃ that f∃ is a wining strategy for Player∃.

For the other direction, suppose that f∃ is an obsr-consistent winning strategy in

the await-time game Safety(G(N, lErr,Xc), ϕErr). Similarly to above we define a total

170

7.1 Await-Time Games

function fc : S̃A · (Σ̃ · S̃A)
∗ → Σc ∪ (Σc ×Xo+c×Q>0)∪ {♭} ∪Σr by first fixing a partial

function g2 : S̃A · (Σ̃ · S̃A)
∗ → Prefs(G) such that if obsr(π1) = obsr(π2) and g2(π1)

and g2(π2) are defined, then obsr(g2(π1)) = obsr(g2(π2)). If π = s̃, then we define

g2(π) = s0, where I = {s0}. Now let π = π′ · s̃ · σ̃ · s̃′. Then g2(π) is defined iff g2(π
′ · s̃)

is defined and there exist states s′ and s′′ with the properties stated below and then

g2(π) =

g2(π

′ · s̃) · s′′ · s′ if last(g2(π
′ · s̃)) ∈ S∃

g2(π
′ · s̃) · s′ if last(g2(π

′ · s̃)) ∈ S∀.

For s′′ we let s′′ = s′′′ if s′′′ = last(g2(π
′ · s̃)) ∈ S∀. Otherwise, we let s′′(V∀) =

s′′′(V∀), s
′′(t) = ∀ and s′′(V∃) = f∃(g2(π

′ · s̃)). The state s′ must satisfy the conditions:

• s′(loc) = l and s′(X ∪ Xc) = v, where s̃′ = (l, v),

• if σ̃ ∈ R>0, then (s′′, s′) |= T
(i)
∀ and then, if s′′(act) = ♭, then s′(et) = true;

• if σ̃ ∈ Σc, then (s′′, s′) |= T
(ii)
∀ ;

• if σ̃ ∈ Σu, then (s′′, s′) |= T
(iii)
∀ ;

• if σ̃ ⊆ Xc, then (s′′, s′) |= T
(iv)
∀ .

By the definition of T∀ and the above requirements, if s′ exists, it is unique.

Consider π ∈ S̃A · (Σ̃ · S̃A)
∗. If g2(π

′) is undefined for all π′ with obsr(π) = obsr(π
′),

we let fc(π) = ♭. Otherwise, let σ = f∃(g2(π
′)), where π′ ∈ S̃A · (Σ̃ · S̃A)

∗ is some for

which g2(π
′) is defined and obsr(π) = obsr(π

′). We then define fc(π) = σ̃, where:

• if σ(act) ∈ Σc and σ(wait) = false, then σ̃ = σ(act),

• if σ(act) ∈ Σc and σ(wait) = true, then σ̃ = (σ(act), x, σ(cx)), where x ∈ Xo+c is

such that σ(cx) > 0 and for each y ∈ Xo+c that is such that y 6= x and σ(cy) > 0,

it holds that σ(cx)− s(x) ≤ σ(cy)− s(y), where s = last(g2(π
′)),

• if σ(Σc) = ♭ and wait = true, then σ̃ = ♭,

• if σ(reset) = Z 6= ∅, then if Z ′ = {z ∈ Z | s(z) > 0} 6= ∅, where s = last(g2(π
′)),

we let σ̃ = Z ′ and otherwise we define σ̃ using f∃(π
′′), where π′′ = g2(π

′) · s′ · s′′,

s′ is the unique state in G such that (s, σ, s′) ∈ T∃ and s′′ is the unique according

to the definition of T∀ in the game structure G(N, lErr,Xc) successor of s
′.

By the definition of g2 and since f∃ is an obsr-consistent strategy, we have that fc is

a control strategy for the plant N. Since the strategy f∃ is winning for Player∃ in the

game Safety(G(N, lErr,Xc), ϕErr), we have that lErr is not reachable in CR(fc,N).

171

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

incomplete

information

perfect

information

infinite state space finite state space

infinite-choice

G(N, lErr,Xc)

finite-choice

Gf (N, lErr,Xc, ξ)

Abstract(Gf
skip ,P)κ(Gskip) κ(G f

skip)

fix ξ abstract

w.r.t. P

Figure 7.1: Overview of the abstraction process. An await-time game structure

G(N, lErr,Xc) is first abstracted into a finite-choice game structure Gf (N, lErr,Xc, ξ), and

then into a finite-state prefect-information game structure Abstract(Gf
skip ,P).

7.2 Fixed-Observations Abstraction

This section describes an abstraction-based approach to solving await-time games.

We develop a two-step abstraction which transforms an await-time game, which is

an infinite-state game under incomplete information with a safety winning condition,

into a finite-state perfect-information game with a safety winning condition. In the

first step we construct for a given partially observable plant, error location and a set of

controllable clocks, an abstraction of the corresponding await-time game w.r.t. a fixed

finite set of action points. In the second step the resulting game is abstracted w.r.t. a

fixed finite set of predicates following the approach described in Chapter 5. Thus, by

fixing also the decision predicates for the controller, in the second step we completely

fix the set of observation predicates that can be used by the control function.

Figure 7.1 gives an overview of the abstraction process. The original await-time

game is infinite-choice, i.e., in each state there is an infinite number of choices available

to the controller. After fixing the action points, we obtain a finite-choice game, which

is still an infinite-state game under incomplete information. The final game resulting

from applying predicate abstraction is a finite-state game with perfect information.

7.2.1 Abstraction with Fixed Action Points

The symbolic constants in the await-time game structure for given partially observable

plant and set of controllable clocks are abstracted away using an action-point function.

172

7.2 Fixed-Observations Abstraction

The abstraction leaves Player∃ with a finite state of possible choices in each of his

states, and lets Player∀ resolve the resulting nondeterminism.

Definition 7.2.1. An action-point function ξ : Xo+c → 2Q>0 for a partially observable

plant N = (A,Σc,Σu,Xo,Xu,=
L
o), with A = (Loc, l0,X,Σ, Inv, δ), and a finite set of

controllable clocks Xc, with Xc ∩X = ∅, is a function ξ : Xo+c → 2Q>0 that maps each

x ∈ Xo+c to a finite set of positive rational constants called action points for x.

We fix a partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o) with timed automa-

ton A = (Loc, l0,X,Σ, Inv, δ), an error location lErr ∈ Loc with [lErr]=L
o
= {lErr} and a

finite set of controllable clocks Xc such that Xc ∩X = ∅.

Given an action point function ξ, the finite-choice await-time game for the game

Safety(G(N, lErr,Xc), ϕErr) is Safety(G
f (N, lErr,Xc, ξ), ϕErr), where the symbolic game

structure Gf (N, lErr,Xc, ξ) is obtained from G(N, lErr,Xc) by replacing the symbolic

constant cx for each x ∈ Xo+c with the action points ξ(x) as described below.

We let Gf (N, lErr,Xc, ξ) = (V f
∃ ,V∀,V

o
∀ , t, ϕ

f
Init ,T

f
∃ ,T

f
∀), where the sets V∀ and V o

∀

of Player∀ variables are the ones from G(N, lErr,Xc). Let V
f = V f

∃ ∪̇ V∀ ∪̇ {t}.

We denote the corresponding explicit game structure with G f (N, lErr,Xc, ξ).

Variables for Player∃. The set of Player∃ variables in Gf (N, lErr,Xc, ξ) is the set

V f
∃ of finite-range variables from the game structure G(N, lErr,Xc).

Initial states. The set of initial states is defined by the formula

ϕf
Init := t = ∃ ∧ act = ♭ ∧ wait ∧ reset = ∅ ∧

loc = l0 ∧ oloc = [l0]=L
o
∧

∧

x∈X∪Xc

x = 0 ∧ ¬er ∧ et .

The formula ϕf
Init differs from the formula ϕInit in G(N, lErr,Xc) in that it does not

assert initial values for the variables from SC , which are not part of Gf (N, lErr,Xc, ξ).

Transition relation of Player∃. As in G(N, lErr,Xc), we distinguish four types of

transitions for Player∃. The only difference is in case (i), where Player∃ chooses an

action σ ∈ Σc to be executed after a positive delay. The difference lies in the fact that

now, the exact point when the selected controllable action is taken will be determined

173

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

by Player∀, since the symbolic constants are not part of Player∃’s variables any more.

Thus, the transition relation of Player∃ is described by the formula

T
f
∃ [V ,V

′] := t = ∃ ∧ t′ = ∀ ∧ preserve(V∀) ∧
(
T
(i)f
∃ ∨ T

(ii)f
∃ ∨ T

(iii)f
∃ ∨ T

(iv)f
∃

)
,

where the formulas T
(i)f
∃ , T

(ii)f
∃ , T

(iii)f
∃ and T

(iv)f
∃ are defined as follows.

T
(i)f
∃ :=

(∨
σ∈Σc

act ′ = σ
)
∧ wait ′ ∧ reset ′ = ∅,

T
(ii)f
∃ :=

(∨
σ∈Σc

act ′ = σ
)
∧ ¬wait ′ ∧ reset ′ = ∅,

T
(iii)f
∃ := act ′ = ♭ ∧ wait ′ ∧ reset ′ = ∅,

T
(iv)f
∃ :=

∨
Z⊆Xc,
Z 6=∅

(
er ∧ act ′ = ♭ ∧ ¬wait ′ ∧ reset ′ = Z

)
.

Transition relation of Player∀. The transition relation for Player∀ again contains

a disjunct for each type of transitions:

T
f
∀ [V ,V

′] = t = ∀ ∧ preserve(V f
∃) ∧

(
T
(i)f
∀ ∨ T

(ii)
∀ ∨ T

(iii)
∀ ∨ T

(iv)
∀ ∨ T

(v)
∀

)
, where

T
(i)f
∀ := (wait ∧ et) ∧

(
∃∆. ∆ > 0 ∧

∧
x∈X ∪̇ Xc

(x′ = x+∆)
)
∧

∧
l∈Loc

(
loc = l → Inv(l)[X ′]

)
∧ preserve({oloc, loc, t, er})∧(∧

x∈Xo+c,c∈ξ(x)
(x < c→ x′ ≤ c)

)
∧(

et ′ →
∧

x∈Xo+c,c∈ξ(x)
(x ≥ c ∨ x′ < c)

)
.

The nondeterminism resulting from replacing T
(i)
∃ by T

(i)f
∃ , i.e., how much time

should elapse before the selected controllable action is executed, is resolved by Player∀.

The controllable action can now be fired at any time up to (and including) the first

action point is reached, after a positive amount of time has elapsed. This is achieved

by replacing T
(i)
∀ by T

(i)f
∀ , which differs in the following. First, T

(i)f
∀ allows Player∀ to

disable further delay transitions at any point. Second, T
(i)f
∀ requires that the duration

of the time-elapse transitions is constrained by the action points, regardless of whether

Player∃ has chosen to execute a controllable action after a delay or to remain idle.

Finite-choice await-time games as abstraction of await-time games. We will

now establish the connection between the two game structures G = G(N, lErr,Xc) =

(S∃, S∀, I,=o,Σ∃, T∃, T∀) and G f = G f (N, lErr,Xc, ξ) = (Sf
∃ , S

f
∀ , I

f ,=f
o ,Σ

f
∃, T

f
∃ , T

f
∀).

174

7.2 Fixed-Observations Abstraction

We define functions γf : Sf → 2S and γf∃ : Σf
∃ → 2Σ∃ that map a state of G f to a

set of states of G and a Player∃ action in G f to a set of actions in G .

First, we define the function AwaitPointsξ : Sf → 2Vals(SC), such that if sf ∈ Sf

and v ∈ Vals(SC), then v ∈ AwaitPointsξ(s) iff the following conditions are satisfied:

(1) for some x ∈ Xo+c, v(cx) > 0, and

(2) for all x ∈ Xo+c, if v(cx) > 0, then v(cx) ≥ sf (x),

(3) if ∆ = min{v(cx) − sf (x) | v(cx) ≥ sf (x)}, then for all x ∈ Xo+c and all c ∈ ξ(x)

with c > sf (x) it holds that sf (x) + ∆ ≤ c.

Thus, AwaitPointsξ(s) consists of those valuations of the symbolic constants that

are valid choices for Player∃ in G (conditions (1) and (2)) which are reached not later

than the time when the first action point determined by ξ is reached (condition (3)).

Now, for sf ∈ Sf we define

γf (sf) =

{s ∈ S | s(V f) = sf (V f) ∧ s(SC) ∈ AwaitPointsξ(s
f)} sf (act) ∈ Σ∃ and

sf (wait) = true

{s ∈ S | s(V f) = sf (V f)}∪

{s ∈ S | s(V f \ {act}) = sf (V f \ {act}) ∧ s(act) ∈ Σ∃∧

s(SC) 6∈ AwaitPointsξ(s
f)} sf (act) = ♭ and

sf (wait) = true,

{s ∈ S | s(V f) = sf (V f)} otherwise.

Each state sf in G f in which Player∃ has chosen to take a controllable action im-

mediately or to reset some controllable clocks (i.e., where sf (wait) = false), is mapped

to the set of states in G each of which agrees with sf on the values of the variables

from V f and gives arbitrary values to the symbolic constants. The concretization of a

state sf in which Player∃ has chosen to execute a controllable action after letting time

elapse, consists of all states in G which agree with sf on the values of the variables

from V f and whose valuation of the symbolic constants is a valid choice for Player∃

in the game structure G and do not exceed the next action point. The concretization

of a state sf in which Player∃ has chosen to remain idle is the union of two sets. The

first set consists of those states in G that agree with sf on the values of the variables

from V f and give arbitrary values to the symbolic constants. The second set consists

of the states in G in which Player∃ has chosen to execute a controllable action after a

175

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

delay, but the valuation of the symbolic constants is not a valid choice for Player∃ or

exceeds the next action point. Thus, intuitively, states in G in which Player∃ chose to

execute a controllable action after the next action-point determined by ξ, correspond

to abstract states in which Player∃ chose to remain idle (until the next action point is

reached).

For σf ∈ Σf
∃, we let γf∃ (σ

f) = {σ ∈ Σ∃ | σ(V f
∃) = σf (V f

∃)}.

The function γf maps each of the finitely many possible actions Σf
∃ of Player∀ in the

game structure G f to the corresponding set of infinitely many possible choices Player∃

has in the game structure G (resulting from the valuations of the variables SC).

It is easy to verify the conditions of Definition 2.3.1 and establish that the game

structure G f (N, lErr,Xc, ξ) together with the concretization functions γf and γf∃ is an

abstraction of the game structure G(N, lErr,Xc).

Soundness of the abstraction. We claim that in the game structure G f Player∀ is

more powerful than in G , while Player∃ is less powerful, i.e., the abstraction is sound.

We first extend the function γf to play prefixes in G f , that is, we define the function

γf : Prefs(G f) → 2Prefs(G). For πf ∈ Prefs(G f), γf (πf) ⊆ Prefs(G) is such that

π ∈ γf (πf) iff there exists a total function idx : [0, |π| − 1] → [0, |πf | − 1] such that:

• idx (0) = 0, idx (|π| − 1) = |πf | − 1, idx (i) < idx (i+ 1) for each 0 ≤ i < |π| − 1,

• for each 0 ≤ i < |π|, it holds that π[i] ∈ γf (πf [idx (i)]),

• for each 0 ≤ if < |πf | for which there does not exist 0 ≤ i < |π| such that idx (i) =

if , it holds that there exist x ∈ Xo+c and c ∈ ξ(x), such that πf [if](x) = c.

The concretization function for prefixes has the following properties:

Property 17. For π ∈ Prefs(G), there is exactly one πf ∈ Prefs(G f) with π ∈ γf (πf).

Property 18. For every π1, π2 ∈ Prefs(G) with obsr(π1) = obsr(π2), and πf1 , π
f
2 ∈

Prefs(G f) with π1 ∈ γf (πf1) and π2 ∈ γf (πf2), it holds that obsr(π
f
1) = obsr(π

f
2).

Intuitively, for π ∈ Prefs(G) the prefix πf ∈ Prefs(G f) with π ∈ γf (πf) is obtained

by first mapping π to the sequence of states in G f that correspond to the sequence

of states in π, and then extending the resulting sequence with the intermediate states

176

7.2 Fixed-Observations Abstraction

necessary to obtain a prefix πf in G f , that is, the Player∃ and Player∀ states cor-

responding to reaching intermediate action points from ξ. This extension is uniquely

determined by the definition of γf , which also entails Property 18 above.

Now, consider an obsr-consistent strategy f
f
∃ for Player∃ in G f . We define a func-

tion Await
f
f
∃

: Prefs∃(G
f) → Prefs∃(G

f) as follows. Let πf ∈ Prefs∃(G
f). Note that by

construction of the game structures G(N, lErr,Xc) and Gf (N, lErr,Xc, ξ), for each s
f ∈

Sf
∃ it holds that Enabled(sf ,G f) 6= ∅. Thus, f f∃ (π

f) is defined. If f f∃ (π
f)(wait) = false,

we let Await
ff
∃

(πf) = πf . If f f∃ (π
f)(wait) = true and f f∃ (π

f)(act) ∈ Σc, then we also

let Await
f
f
∃

(πf) = πf . Otherwise, we distinguish the following two cases.

Case 1. There exists a prefix πf1 ∈ Prefs(f f∃) ∩ Prefs∃(G
f) such that:

• there exists an index i0 ≥ 0 such that πf = πf1 [0, i0],

• for each i0 < i < |πf1 |, π
f
1 [i](oloc) = πf1 [i0](oloc) and πf1 [i](x) ≥ πf1 [i − 1](x) for

each x ∈ Xo+c (i.e., there is no discrete change of the observation),

• for each i > i0 with πf1 [i] ∈ Sf
∃ there are x ∈ Xo+c and c ∈ ξ(x) with πf1 [i](x) = c,

• for each i0 < i < |πf1 | − 1 with πf1 [i] ∈ Sf
∃ it holds that f f∃ (π

f
1 [0, i])(act) = ♭ and

f f∃ (π
f
1 [0, i])(wait) = true, and for πf1 it holds that f f∃ (π

f
1)(act) ∈ Σc.

Intuitively, the prefix πf1 extends πf and is such that no discrete observation change

occurs between πf and πf1 , and all intermediate Player∃ states correspond to reaching

intermediate action points, and are such that for the corresponding prefix, the strategy

f f∃ for Player∃ is to remain idle. Thus, all other prefixes with the same properties are

obsr-equivalent to π
f
1 . In this case we let Await

f
f
∃

(πf) = πf1 .

Case 2. There exists no prefix in Prefs(f f∃) with the properties required in Case 1

above. In this case we let Await
f
f
∃

(πf) = πf .

The function Await
f
f
∃

has the following property:

Property 19. If πf1 , π
f
2 ∈ Prefs(G f) are such that obsr(π1) = obsr(π2), Awaitff

∃

(πf1) =

π̃f1 , Awaitff
∃

(πf2) = π̃f2 , π̃
f
1 6= πf1 and π̃f2 6= πf2 , then it holds that obsr(π̃

f
1) = obsr(π̃

f
2).

We are now ready to prove the following proposition.

Proposition 7.2.1. Given a partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o), an

error location lErr ∈ Loc such that [lErr]=L
o
= {lErr} and a finite set of controllable

177

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

clocks Xc such that Xc ∩ X = ∅, it holds for every action-point function ξ : Xo+c →

2Q>0 that if Player∃ has an obsr-consistent winning strategy in the finite-choice await-

time game Safety(Gf (N, lErr,Xc, ξ), ϕErr), then Player∃ has an obsr-consistent winning

strategy in the await-time game Safety(G(N, lErr,Xc), ϕErr).

Proof. Let f f∃ be an obsr-consistent winning strategy for Player∃ in the finite-choice

await-time game Safety(Gf (N, lErr,Xc, ξ), ϕErr). We define f∃ : Prefs∃(G(N, lErr,Xc)) →

Σ∃ and show that it is an obsr-consistent winning strategy for Player∃.

Let π ∈ Prefs(G) and πf ∈ Prefs(G f) be the unique prefix such that π ∈ γf (πf).

We have to consider the following four cases.

Case 1. f f∃ (π
f)(wait) = false. Then we define f∃(π) = σ, where σ(v) = f f∃ (π

f)(v)

for each v ∈ V f , and σ(cx) = 0 for each x ∈ Xo+c.

Case 2. f f∃ (π
f)(wait) = true and f f∃ (π

f)(act) ∈ Σc. Then we define f∃(π)(π
f) = σ,

where σ(v) = f f∃ (π
f)(v) for each v ∈ V f , and for each x ∈ Xo+c we let

σ(cx) =

c if c is the smallest element of ξ(x) such that last(πf)(x) < c

0 if no c ∈ ξ(x) such that last(πf)(x) < c exists.

Case 3. f f∃ (π
f)(wait) = true and f f∃ (π

f)(act) = ♭, and there exists a prefix π̃ such

that obsr(π̃) = obsr(π) and for the unique prefix π̃f in G f with π̃ ∈ γf (π̃f) it holds

that f f∃ (π
f
1)(act) ∈ Σc, where π

f
1 = Await

f
f
∃

(π̃f). In this case we let f∃(π) = σ, where

σ(v) = f f∃ (π
f
1)(v) for each v ∈ V f . If f f∃ (π

f
1)(wait) = false we let σ(cx) = 0 for each

x ∈ Xo+c, and otherwise for each x ∈ Xo+c we let

σ(cx) =

c if c is the smallest element of ξ(x) such that last(πf1)(x) < c

0 if no c ∈ ξ(x) such that last(πf1)(x) < c exists.

Case 4. f f∃ (π
f)(wait) = true and f f∃ (π

f)(act) = ♭, and for every prefix π̃ such that

obsr(π̃) = obsr(π) and for prefix π̃f in G f with π̃ ∈ γf (π̃f) it holds that f f∃ (π
f
1)(wait) =

true and f f∃ (π
f
1)(act) = ♭, where πf1 = Await

ff
∃

(π̃f). In this case we let f∃(π) = σ,

where σ(v) = f f∃ (π
f
1)(v) for each v ∈ V f and σ(cx) = 0 for each x ∈ Xo+c.

By the definition of f∃ and the fact that f f∃ is a strategy we have that f∃ is also a

strategy for Player∃. Property 17, Property 18 and the definition of Await
ff
∃

together

with the definition of f∃ and the fact that f f∃ is obsr-consistent imply that for prefixes

π1, π2 ∈ Prefs(G) with obsr(π1) = obsr(π2) it holds that f∃(π1) = f∃(π2).

It is easy to see that from the definitions of f∃ and γf it follows that for each

prefix π ∈ Prefs(f∃) for the prefix πf ∈ Prefs(G f), for which π ∈ γf (πf), it holds that

πf ∈ Prefs(f f∃). Thus, since f
f
∃ is winning for Player∃, f∃ is winning for Player∃.

178

7.2 Fixed-Observations Abstraction

Await Points as Action Points We now establish a connection between await-

time games and await-time games with fixed observations in the other direction. For a

strategy for Player∃ in the await-time game structure G(N, lErr,Xc) that uses a finite

set of await points, we can give an action-point function ξ that uses these await points

as action points and a Player∃ strategy in the resulting game structure with fixed action

points Gf (N, lErr,Xc, ξ) whose set of outcomes is the same as the set of outcomes of the

original strategy. Intuitively, the strategy in the abstraction takes controllable actions

precisely at the respective action points. This is formalized in the following proposition.

Proposition 7.2.2. Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant with

timed automaton A = (Loc, l0,X,Σ, Inv, δ), lErr ∈ Loc be an an error location such that

[lErr]=L
o
= {lErr} and Xc be a finite set of controllable clocks such that Xc ∩X = ∅.

Let f∃ be an obsr-consistent strategy for Player∃ in G = G(N, lErr,Xc), for which

there exists a finite set C ⊆ Q>0 such that for each π ∈ Prefs∃(G) it holds that

f∃(π)(cx) = 0 or f∃(π)(cx) ∈ C for each x ∈ Xo+c. Let ξ be an action-point func-

tion such that ξ(x) ⊇ {c ∈ Q>0 | ∃π ∈ Prefs∃(G). f∃(π)(cx) = c}, for each x ∈ Xo+c.

Then, there exists an obsr-consistent Player∃ strategy f f∃ in G f = G f (N, lErr,Xc, ξ)

such that for each play πf ∈ Outcome(f f∃) there exists a play π ∈ Outcome(f∃) such

that for each 0 ≤ i < |πf | there exists 0 ≤ j < |π| such that π[j](loc) = πf [i](loc).

Proof. In order to define a strategy f f∃ for Player∃ in G f , we first give a function

AwaitPref : Prefs(G f) → Prefs(G) that maps each prefix in G f to a prefix in G . The

function is defined recursively as follows. For πf ∈ Prefs(G f) we let:

AwaitPref (πf) =

s0 if πf = sf0 ∈ If and where I = {s0},

π1 · s1 · s2 if πf = πf1 · sf1 · s
f
2 ,AwaitPref (π

f
1 · sf1) = π1 · s1,

s1(t) = sf1(t), s2 = Match(π1 · s1, s
f
2), (s1, s2) ∈ T,

AwaitPref (πf1s
f
1) otherwise,

where the function Match maps a state sf ∈ Sf to a s′ ∈ S w.r.t. a given prefix

π · s ∈ Prefs(G). For π · s ∈ Prefs(G) and sf ∈ Sf we have Match(π · s, sf) = s′ iff

• s′(v) = sf (v), for each v ∈ V f \ {act ,wait , et},

179

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

•

s′(act) =

sf (act) if sf (act) ∈ Σc,

s(act) if sf (act) = ♭ and s(t) = ∀,

σ(act) if sf (act) = ♭, sf (wait) = true, s(t) = ∃ and f∃(π · s) = σ,

sf (act) otherwise.

•

s′(wait) =

sf (wait) if sf (wait) = true,

s(wait) if sf (wait) = false and s(t) = ∀,

sf (wait) otherwise.

• for each x ∈ Xo+c,

s′(cx) =

s(cx) if s(t) = ∀,

σ(cx) if sf (act) = ♭, sf (wait) = true, s(t) = ∃ and f∃(π · s) = σ,

s(x) + 1 if sf (act) ∈ Σc, s
f (wait) = true and s(t) = ∃,

0 otherwise.

•

s′(et) =

sf (et) if sf (et) = true,

true if sf (et) = false, s(act) ∈ Σc and

for all x ∈ Xo+c : s(x) ≥ s(cx) or s
f (x) 6= s(cx),

sf (et) otherwise.

Now we are ready to define the function f f∃ : Prefs∃(G
f) → Σf

∃. For π
f ∈ Prefs∃(G

f),

let π be the longest prefix of AwaitPref (πf) with π ∈ Prefs∃(G) and

f f∃ (π
f) =

σ(V f
∃) if f∃(π) = σ and σ(act) = ♭ or σ(wait) = false,

σf if f∃(π) = σ, σ(act) ∈ Σc, σ(wait) = true and

for all x ∈ Xo+c, last(π)(x) 6= σ(cx), and

σf (act) = ♭ and σf (v) = σ(v) for each v ∈ V f \ {act},

σf if f∃(π) = σ, σ(act) ∈ Σc, σ(wait) = true and

for some x ∈ Xo+c, last(π)(x) = σ(cx), and

σf (wait) = false and σf (v) = σ(v) for each v ∈ V f \ {wait}.

180

7.2 Fixed-Observations Abstraction

Since f∃ is a strategy for Player∃, the function f f∃ is one as well. As for prefixes

πf1 , π
f
2 ∈ Prefs(G f) with obsr(π

f
1) = obsr(π

f
2) it holds that obsr(AwaitPref (π1)) =

obsr(AwaitPref (π2)), and the strategy f∃ is obsr-consistent, we have that f f∃ is also

obsr-consistent. It remains to show that for each πf ∈ Outcome(f f∃) there exists π ∈

Outcome(f∃) such that or each 0 ≤ i < |πf | there exists 0 ≤ j < |π| such that

π[j](loc) = πf [i](loc). We will show that for each πf ∈ Outcome(f f∃) there exists a

π ∈ Outcome(f∃) such that for each 0 ≤ i < |πf |, AwaitPref (πf [0, i]) is a prefix of π,

which entails the above property. First, note that f f∃ has the following properties.

Property 20. If πf ∈ Prefs(f f∃), π = AwaitPref (πf), sf = last(πf), s = last(π), then:

(1) if s(act) 6= sf (act), then s(act) ∈ Σc and sf (act) = ♭,

(2) if s(wait) 6= sf (wait), then s(wait) = true and sf (wait) = false,

(3) if s(et) 6= sf (et), then s(et) = true and sf (et) = false,

(4) if s(t) 6= sf (t), then s(t) = ∀ and sf (t) = ∃,

(5) s(v) = sf (v) for v ∈ V f \ {t, act ,wait , et}.

Property 20 follows from the definition of the function AwaitPrefs , by induction on

the length of the prefix πf . Also by induction we can show the following.

Property 21. If πf ∈ Outcome(f f∃) and i0 < i1 < i2 < . . . are all the indices such that

ij = 0 or AwaitPref (πf [0, ij − 1]) 6= AwaitPref (πf [0, ij]), then:

• if πf is infinite, then the sequence i0 < i1 < i2 < . . . is also infinite, and

• if sj = last(AwaitPref (πf [0, ij])), then π = s0 · s1 · s2 . . . ∈ Outcome(f∃).

Thus, according to Property 20, for each πf ∈ Outcome(f f∃) the prefix defined using

Proposition 21 satisfies the desired requirements.

7.2.2 Predicate Abstraction

Abstraction predicates. Let P ⊆ AP[V f] be a finite set of predicates. In this part

of the thesis we consider sets of predicates that meet the following requirements:

(i) Preds(ϕInit) ⊆ P, Preds(ϕErr) ⊆ P,

(ii) (x ≤ c) ∈ P and (x ≥ c) ∈ P for each x ∈ Xo+c and c ∈ ξ(x),

181

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

(iii) P is precise w.r.t. the set of variables {v ∈ Obs(V f) | |Dom(v)| <∞},

(iv) P is precise w.r.t. the set Σf
∃ of Player∃ actions in Gf (N, lErr,Xc, ξ),

(v) for all p ∈ P, either Vars(p) ⊆ V f
∃ or Vars(p) ∩ V f

∃ = ∅.

Condition (i) ensures that the predicates in P suffice to express ϕInit and ϕErr.

Intuitively, (ii) ensures that the abstraction is precise w.r.t. the action-point function

ξ. Since our goal is to synthesize observation predicates over the clock variables Xo+c,

we require in (iii) for simplicity that P is precise w.r.t. all observable variables with

finite domains. Finally, (iv) requires that P is precise w.r.t. the actions of Player∃ in

G f . Requirement (v), which ensures that no predicate refers to variables from V∃ and

from V∀, can be satisfied by substituting variables in V f
∃ with their possible values.

The observable predicates in P (i.e., those referring only to variables in Obs(V)) are

exactly the observation predicates the controller can track in the current abstraction.

Game structure transformation. The abstraction defined in Section 5.1.2 is sound

w.r.t. obss-consistent strategies for Player∃ in the concrete game structure. In order to

obtain an abstract game that soundly abstracts (Safety(G f , Errf), obsr), we will apply

predicate abstraction to a modified game structure G f
skip that will have the property

that Player∃ has an obsr-consistent winning strategy in Safety(G f , Errf) iff he has an

obss-consistent winning strategy in Safety(G f
skip , Err

f). We will check concretizability

of abstract counterexample trees in the game structures G f
skip (and Gskip) respectively.

The symbolic game structure Gskip for G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀) is the tuple

Gskip = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀skip), where T∀skip = T∀ ∨ (t = ∀ ∧ preserve(V)). We

denote with Gskip the corresponding explicit game structure with skip transition. Simi-

larly, the symbolic game structure Gf
skip for Gf = (V f

∃ ,V∀,V
o
∀ , t, ϕ

f
Init ,T

f
∃ ,T

f
∀) is the tu-

ple Gf
skip = (V f

∃ ,V∀,V
o
∀ , t, ϕ

f
Init ,T

f
∃ ,T

f
∀ skip

), where Tf
∀ skip

= T
f
∀ ∨ (t = ∀∧ preserve(V f)).

We denote with G f
skip the corresponding explicit game structure with skip transition.

Proposition 7.2.3. If we are given game structures G = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀)

and Gskip = (V∃,V∀,V
o
∀ , t, ϕInit ,T∃,T∀skip), where T∀skip = T∀ ∨ (t = ∀ ∧ preserve(V)),

and Err ⊆ S, then if Player∃ has an obsr-consistent winning strategy in the game

Safety(G , Err), then he has an obss-consistent winning strategy in Safety(Gskip , Err).

182

7.2 Fixed-Observations Abstraction

Proof. To see that for each obsr-consistent winning strategy f∃ for Player∃ in the

game Safety(G , Err), we can define a obss-consistent winning strategy f ′∃ for Player∃

in Safety(Gskip , Err), consider the function deleteskip : Prefs∃(Gskip) → Prefs(G) that

maps a prefix in Gskip to the prefix in G obtained by deleting all skip steps. Then,

we define f ′∃(π
′) = f∃(deleteskip(π

′)). Since for every π′1, π
′
2 ∈ Prefs∃(Gskip) it holds

that obss(π
′
1) = obss(π

′
2) implies obsr(deleteskip(π

′
1)) = obsr(deleteskip(π

′
2)), f

′
∃ is obss-

consistent. Since π′ and deleteskip(π
′) visit the same states, f ′∃ is winning.

Proposition 7.2.4. If we are given game structures G = (V f
∃ ,V∀,V

o
∀ , t, ϕInit ,T∃,T∀)

and Gskip = (V f
∃ ,V∀,V

o
∀ , t, ϕInit ,T∃,T∀skip), where T∀skip = T∀ ∨ (t = ∀ ∧ preserve(V)),

and Err ⊆ S, then if Player∃ has an obss-consistent winning strategy f∃ in the game

Safety(Gskip , Err) such that the set {σ ∈ Σ∃ | ∃π ∈ Prefs∃(G). f∃(π) = σ} is finite,

then he has an obsr-consistent winning strategy in Safety(G , Err).

Proof. Let us suppose that Player∃ has an obss-consistent winning strategy in the game

Safety(Gskip , Err). Consider the game structure Gk
skip = (Sk

∃ , S
k
∀ , I

k,Σk
∃, T

k
∃ , T

k
∀) defined

by the knowledge-based subset construction from Section 2.2.3 for Gskip . According to

our hypothesis, Player∃ has a memoryless winning strategy in the perfect information

game Safety(Gk
skip , Err

k). Let fk∃ be such a strategy, and let f∃ be the corresponding

obss-consistent winning strategy for Player∃ in Safety(Gskip , Err).

For π, π′ ∈ Prefs(Gskip), we write π ≤ π′ if obsr(π1) = obsr(π2) and there exists a

function idx : [0, |π| − 1] → [0, |π′| − 1] such that idx (0) = 0, idx (|π| − 1) = |π′| − 1,

id(i1) < id(i2) for each 0 ≤ i1 < i2 < |π|, and π[i] = π′[idx (i)] for each 0 ≤ i < |π|.

For any prefixes π1, π2 ∈ Prefs(Gskip) with obsr(π1) = obsr(π2) there exist π′1, π
′
2 ∈

Prefs(Gskip) such that obss(π
′
1) = obss(π

′
2), π1 ≤ π′1 and π2 ≤ π′2.

Let Σf = {σ ∈ Σ∃ | ∃π ∈ Prefs∃(G). f∃(π) = σ}. By our hypothesis, Σf is finite.

We will show that there exists a function f ′∃ : Prefs∃(G) → Σf such that for each

Π ⊆ Prefs∃(G) that satisfies the following two properties:

• if π1, π2 ∈ Π then obsr(π1) = obsr(π2),

• if π1 ∈ Π and obsr(π1) = obsr(π2), then π2 ∈ Π,

it holds that the following conditions are satisfied:

(1) there exists σ ∈ Σf such that for each π ∈ Π ∩ Prefs∃(G) it holds that f ′∃(π) = σ

and σ ∈ Enabled(last(π)),

(2) if for each π ∈ Π there exists a π′ ∈ Prefs(f∃) such that π ≤ π′, then for each

π ∈ Π ∩ Prefs∃(G) there exists π′ ∈ Prefs(f∃) such that π ≤ π′ and f∃(π
′) = f ′∃(π).

183

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

Assume for contradiction that a function f ′∃ with the above properties does not

exist. Thus, there exists Π ⊆ Prefs∃(G) that satisfies the preconditions above, such

that for each π ∈ Π there exists a π′ ∈ Prefs(f∃) such that π ≤ π′, but for each σ there

exists a πσ ∈ Π, such that for every π′ ∈ Prefs(f∃) with π ≤ π′ it holds that f∃(π
′) 6= σ.

Since obsr(πσ1) = obsr(πσ1) for any σ1, σ2 ∈ Σf , there exist π′′σ ∈ Prefs∃(G) for

each σ ∈ Σf such that πσ ≤ π′′σ for each σ ∈ Σf and obss(πσ1) = obss(πσ2) for each

σ1, σ2 ∈ Σf . According to our assumption, for each σ ∈ Σf , there exists a π
′
σ ∈ Prefs(f∃)

such that π′′σ ≤ π′σ. Since the strategy f∃ is obss-consistent, we can choose π′σ for σ ∈ Σf

such that obss(π
′
σ1
) = obss(π

′
σ2
) for each σ1, σ2 ∈ Σf . Furthermore, there exists σ′ ∈ Σf

such that f∃(π
′
σ) = σ′ for each σ ∈ Σf . Therefore, f∃(π

′
σ′) = σ′, which contradicts our

assumption, i.e., the choice of πσ′ , which concludes the proof by contradiction.

A function f ′∃ that has the property stated above is clearly an obsr-consistent strat-

egy for Player∃ in the game structure G . What remains to show is that the the strategy

f ′∃ is winning for Player∃ in Safety(G , Err). To this end, we can show by induction on

the number of Player∃ states on a prefix that for each prefix π ∈ Prefs(f ′∃) there exists a

prefix π′ ∈ Prefs(f∃) such that π ≤ π′. Then, by the definition of the relation ≤ on the

set Prefs(G f
skip) of prefixes, and since f∃ is winning for Player∃ in Safety(Gskip , Err),

we have that f ′∃ is winning for Player∃ in Safety(G , Err).

Since the set of Player∃ actions Σ
f
∃ in the game structureG f

skip is finite, each strategy

for Player∃ has finite co-domain. Thus, we obtain the following corollary.

Corollary 7.2.1. If we are given the game structures Gf = (V f
∃ ,V∀,V

o
∀ , t, ϕ

f
Init ,T

f
∃ ,T

f
∀)

and G
f
skip = (V f

∃ ,V∀,V
o
∀ , t, ϕ

f
Init ,T

f
∃ ,T

f
∀ skip

), where T
f
∀ skip

= T
f
∀ ∨(t = ∀∧preserve(V f)),

and Errf ⊆ Sf , then Player∃ has an obsr-consistent winning strategy in the game

Safety(G f , Errf) iff he has an obss-consistent winning strategy in Safety(G f
skip , Err

f).

Following the same reasoning as in the proof of Proposition 7.2.2 we can prove an

analogous property for the game structure Gskip(N, lErr,Xc).

Proposition 7.2.5. Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant with

timed automaton A = (Loc, l0,X,Σ, Inv, δ), lErr ∈ Loc be an an error location such that

[lErr]=L
o
= {lErr} and Xc be a finite set of controllable clocks such that Xc ∩X = ∅.

Let f∃ be an obss-consistent strategy for Player∃ in Gskip = Gskip(N, lErr,Xc), for

which there exists a finite set C ⊆ Q>0 such that for each π ∈ Prefs∃(Gskip) it holds that

f∃(π)(cx) = 0 or f∃(π)(cx) ∈ C for each x ∈ Xo+c. Let ξ be an action-point function

such that ξ(x) ⊇ {c ∈ Q>0 | ∃π ∈ Prefs∃(Gskip). f∃(π)(cx) = c}, for each x ∈ Xo+c.

184

7.3 Observation Refinement

Then, there exists an obss-consistent Player∃ strategy f f∃ in G f
skip = G f

skip(N, lErr,Xc, ξ)

such that for each πf ∈ Outcome(f f∃) there exists a play π ∈ Outcome(f∃) such that for

each 0 ≤ i < |πf | there exists 0 ≤ j < |π| such that π[j](loc) = πf [i](loc).

Soundness of the abstraction. Given a finite set of predicates P, we construct the

finite-state game structure Abstract(Gf
skip(N, lErr,Xc, ξ),P) with perfect information,

which abstracts G f
skip(N, lErr,Xc, ξ) w.r.t. P. Theorem 5.1.1 directly implies that the

game structure Abstract(Gf
skip(N, lErr,Xc, ξ),P) soundly abstracts Gf

skip(N, lErr,Xc, ξ).

Proposition 7.2.6. Given a partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o), an

error location lErr ∈ Loc such that [lErr]=L
o
= {lErr} and a finite set of controllable

clocks Xc such that Xc ∩ X = ∅, and an action-point function ξ : Xo+c → 2Q>0 ,

it holds for every finite set of predicates P ⊆ AP(V f) that is precise w.r.t. t that

(Safety(G#, Err#), obs#s) soundly abstracts (Safety(G f
skip(N, lErr,Xc, ξ), Err), obss),

where G# = Abstract(Gf
skip(N, lErr,Xc, ξ),P), Err

= {s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}.

7.2.3 Existence of Finite-State Strategies

Since G# is a finite-state game structure with perfect information, if Player∃ has

a winning strategy in Safety(G#, Err#), then he also has a memoryless one. Ac-

cording to the results in Section 5.1.4, for each such winning strategy for Player∃ in

Safety(G#, Err#) there exists a finite semi-symbolic strategy automaton that repre-

sents an obss-consistent winning strategy for Player∃ in Safety(G f
skip , Err

f), and this

automaton can be effectively constructed. Furthermore, we can use the idea of the proof

of Proposition 7.2.4 to directly construct a finite semi-symbolic strategy automaton Mf ,

which represents an obsr-consistent winning strategy for Player∃ in Safety(Gf , Errf).

Now, using the idea of the proof of Proposition 7.2.1 we can construct a finite semi-

symbolic strategy automaton M from Mf , which represents an obsr-consistent winning

strategy for Player∃ in Safety(G , Err).

7.3 Observation Refinement

In this section we describe a nested CEGAR loop for the automatic discovery of observa-

tion predicates, which is based on the two-step fixed observation abstraction presented

in Section 7.2. If the loop terminates, it either yields a finite set of observation predi-

cates that suffice to construct a finite-state Xc-control strategy for the given partially

185

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

observable plant and set Xc of controllable clocks, that avoids the given error location,

or determines that an Xc-control strategy to avoid the error location does not exist.

7.3.1 CEGAR Loop

The CEGAR loop for timed control with partial observability is given as Algorithm 10.

Its input consists of a partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o) with timed

automaton A = (Loc, l0,X,Σ, Inv, δ), an error location lErr ∈ Loc with [lErr]=L
o
=

{lErr}, and a finite set of controllable clocks Xc with Xc ∩ X = ∅. If the procedure

terminates it returns either a finite-state winning strategy for Player∃ (as a memoryless

abstract strategy) or an abstract counterexample tree concretizable in G(N, lErr,Xc).

The initial action-point function ξ = {(x, ∅) | x ∈ Xo+c} maps each clock in

Xo+c to the empty set, that is, initially there are no action points. The procedure

InitialPredicates returns a set of initial abstraction predicates that satisfy the con-

ditions listed in Section 7.2.2. We let InitialPredicates(G, ϕErr, ξ) = Preds(ϕInit) ∪

Preds(ϕErr) ∪ {t = ∃, t = ∀} ∪ {x = d | x ∈ Obs(V f) ∧ |Dom(x)| <∞∧ d ∈ Dom(x)}.

The procedure FixActionPoints constructs the abstraction Gf (N, lErr,Xc, ξ) of

G(N, lErr,Xc) w.r.t. the current action-point function ξ. Then, AbstractGame con-

structs the abstraction Abstract(Gf
skip ,P) of Gf

skip w.r.t. P and the set of abstract er-

ror states Err# = {s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}. As in Algorithm 7, the game

Safety(G#, Err#) is solved by the procedure SolveGame. If this game is not won by

Player∃, the counterexample tree C#
t = CounterexampleTree(strategy) is analyzed

for concretizability in two steps, corresponding to the two levels of abstraction.

The procedure Concretizable applied to C#
t and G

f
skip checks as in Section 5.4 if

C#
t is concretizable in the game G

f
skip . Thus, the inner loop is the CEGAR loop of Al-

gorithm 7. The difference is, that an abstract counterexample tree that is concretizable

in G
f
skip is passed to the concretizability check of the outer refinement loop.

In the outer loop, the procedure Concretizable applied to an extended tree

C#
t and the await-time game structure Gskip(N, lErr,Xc) constructs the quantified tree

formula QTF(C#
t) for the given abstract counterexample tree, as described below, and

checks if it is satisfiable. If this formula is satisfiable, the abstract counterexample tree,

which is concretizable in the concrete await-time game, is returned. Otherwise, the

procedure RefineActionPoints described later in this section is called to refine the

action-point function ξ and compute a corresponding set of refinement predicates R.

186

7.3 Observation Refinement

Algorithm:SynthesizeObservationPredicates

Input: partially observable plant N = (A,Σc,Σu,Xo,Xu,=
L
o)

with timed automaton A = (Loc, l0,X,Σ, Inv, δ),

error location lErr ∈ Loc with [lErr]=L
o
= {lErr},

finite set of controllable clocks Xc with Xc ∩X = ∅

Output: (winner , abstract strategy) or (winner , abstract counterexample tree)

ξ = {(x, ∅) | x ∈ Xo+c};

P := InitialPredicates(Gf
skip , ϕErr, ξ);

while winner = Player∀ do

Gf := FixActionPoints(G(N, lErr,Xc), ξ);

(G#, Err#) := AbstractGame(Gf
skip , ϕErr,P);

(winner , strategy) := SolveGame(G#, Err#);

while winner = Player∀ do

C#
t := CounterexampleTree(strategy);

if Concretizable (C#
t ,G

f
skip) then break;

R := ∅;

τ := SpuriousTrace(Formulas(C#
t),Traces(C#

t));

if τ 6= ⊥ then /* τ ∈ Traces(C#
t) with ϕtrace(τ) UNSAT */

R := RefineTransitionRelations(τ, C#
t);

else /* ϕtrace(τ) SAT for all τ ∈ Traces(C#
t) */

R := RefineObservations(Formulas(C#
t),Traces(C#

t));

Trees := RefineTree(C#
t ,P,R);

forall C ′
t ∈ Trees do

τ ′ := SpuriousTrace(Formulas(C ′
t),Traces(C

′
t));

R := R ∪RefineTransitionRelations(τ ′, C ′
t);

P := P ∪R;

G# = RefineGame(G#,G,P);

(winner , strategy) = SolveGame(G#, Err#);

if winner = Player∃ then return (winner, strategy);

C#
t := Extend(C#

t);

if Concretizable (C#
t ,Gskip(N, lErr,Xc)) then return (winner,C#

t);

(ξ,R) := RefineActionPoints(C#
t);

P := P ∪ R;

return (winner, strategy); /* winning strategy for Player∃ */

Algorithm 10: CEGAR for timed control with partial observability.

187

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

7.3.2 Concretizability Characterization

Concretization Functions

The concretization functions relating the game structures G# and G f
skip are the ones

defined in Section 5.1. The concretization functions relating G# and Gskip are as

follows: γ : S# → 2S is such that γ(s#,Gskip) = γf (γ(s#,G f
skip)) and for γ∃ : Σ# → 2Σ∃

we have γ∃(σ
#,Gskip) = {σ ∈ Σ∃ | ∃s ∈ S. (∀v ∈ V f

∃ . s(v) = σ(v))∧ (∀ϕ ∈ Obs(P). s |=

ϕ⇔ σ# |= ϕ)}. While the concretization of an abstract action σ# in G f
skip is a singleton

set {σf}, the concretization in Gskip is {σ ∈ Σ∃ | ∀v ∈ V f
∃ . σ(v) = σf (v)} = γf∃ (σ

f).

The construction of Abstract(Gf
skip(N, lErr,Xc, ξ),P) together with the definition of

G
f
skip(N, lErr,Xc, ξ) and the requirements on P listed in Section 7.2.2, entail the following

properties of Abstract(Gf
skip(N, lErr,Xc, ξ),P).

Property 22. For a state s# in G# = Abstract(Gf
skip(N, lErr,Xc, ξ),P) it holds that:

• There exists an action σ ∈ Σf
∃ such that for each state sf ∈ γ(s#,G f

skip) and each

state s ∈ γ(s#,Gskip) ∩ J[s#]K it holds that sf (V f
∃) = σ and s(V f

∃) = σ.

• Either for each state sf ∈ γ(s#,G f
skip) and each state s ∈ γ(s#,Gskip) it holds

that sf (er) = true and s(er) = true, or for each state sf ∈ γ(s#,G f
skip) and each

state s ∈ γ(s#,Gskip) it holds that sf (er) = false and s(er) = false.

• If s# ∈ S#
∃ , then for each σ ∈ Σf

∃ such that we have either s(er) = true for each

s ∈ γ(s#,Gskip) or σ(reset) = ∅, there exists a unique state s#
′
such that for

each sf ∈ γ(s#,G f
skip) and each s ∈ γ(s#,Gskip)∩ J[s#]K we have sf (V f

∃) = σ and

s(V f
∃) = σ and it holds thats (s#, σ#, s#

′
) ∈ T

#
∃ for some σ# ∈ Σ#

∃ .

Extended Counterexample Tree

In order to ensure that the values computed to refine the action-point function are

suitable for eliminating the analyzed abstract counterexample tree, we have to take

into account the connection between the possible choices (i) and (iii) by the controller,

namely executing a controllable action after certain delay or letting time elapse. More

specifically, in order for Player∃ to spoil a given counterexample by taking a controllable

action after some delay, i.e., case (i), within the duration of this delay Player∀ should

not be able to enforce an error node following the subtree corresponding to case (iii).

188

7.3 Observation Refinement

To take into account this relation between different branches of C#
t , we consider

an extended counterexample tree Extend(C#
t) = (Ñ#, Ẽ#, L̃s

#
, L̃a

#
) and a relation

R ⊆ (N# ∪ Ñ#)×N#, which are the smallest tree and binary relation such that:

• C#
t is a connected subgraph of Extend(C#

t),

• Extend(C#
t) satisfies conditions (i), (ii), (iii), (iv), (v) and (vii) of Definition 2.2.4,

• if n ∈ N#, Ls
#(n) ∈ S#

∃ ,m1,m2 ∈ Children(n), σ∃(m1)(act) ∈ Σc, σ∃(m2)(act) =

♭, σ∃(m1)(wait) = true and σ∃(m2)(wait) = true, then (m1,m2) ∈ R,

• if (n1, n2) ∈ R and σ∃(n2)(wait) = true then σ∃(n2)(act) = ♭,

• if (n1, n2) ∈ R, s#1 = Ls
#(n1) and s

#
2 = Ls

#(n2), then for every s1 ∈ Js#1 K there

exists s2 ∈ Js#2 K such that s1(V
f \ {t, act}) = s2(V

f \ {t, act}) and:

– if s1(t) 6= s2(t), then s1(act) ∈ Σc, s1(wait) = true, s1(t) = ∀ and s2(t) = ∃,

– if s1(act) 6= s2(act), then s1(act) ∈ Σc and s2(act) = ♭,

• if n1, n2 ∈ Ñ#, (n1, n2) ∈ R and Ls
#(n1),Ls

#(n2) ∈ S#
∃ , then for each m2 ∈

Children(n2) with σ∃(act) = ♭ there exists m1 ∈ Children(n1) with (m1,m2) ∈ R,

• if n1, n2 ∈ Ñ#, (n1, n2) ∈ R and Ls
#(n1),Ls

#(n2) ∈ S#
∀ , then for each m2 ∈

Children(n2) there exists m1 ∈ Children(n1) such that (m1,m2) ∈ R,

• if n1, n2 ∈ Ñ#, (n1, n2) ∈ R, Ls
#(n1) ∈ S#

∀ and Ls
#(n2) ∈ S#

∃ , then for each

m2 ∈ Children(n2) for which σ∃(act) = ♭ and σ∃(wait) = true there exists m1 ∈

Children(n1) such that (m1,m2) ∈ R.

The existence of the tree Extend(C#
t) is guaranteed by the properties of the transi-

tion relation of Player∀ in the game structure G f
skip . More precisely, if s1, s2 ∈ Sf

∀

are such that s1(V
f \ {t, act}) = s2(V

f \ {t, act}), s1(wait) = s2(wait) = true,

s1(act) ∈ Σc and s2(act) = ♭, then Player∀ has from state s1 all the options that

he has from state s2, except for giving the turn back to Player∃ without executing

σ, which however can be matched by an idle transition from s1. Thus, there exist

s′1, s
′
2 ∈ Sf such that (s1, s

′
1) ∈ T f

∀ , (s2, s
′
2) ∈ T f

∀ , s
′
1(V

f \ {t, act}) = s′2(V
f \ {t, act}),

s′1(wait) = s′2(wait) = true, s′1(act) ∈ Σc and s′2(act) = ♭. Furthermore, the tree

Extend(C#
t) is finite and can be constructed from C#

t . Thus, for the rest of this

section we assume that C#
t is the extended counterexample tree defined above.

189

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

Counterexample Concretization

Definition 5.2.1 yields concretization functions for (extended) abstract counterexample

trees, where γ(C#
t ,G

f
skip) and γ(C

#
t ,Gskip) are sets of knowledge-based counterexample

trees in the games Safety(G f
skip , Err

f) and Safety(Gskip , Err) respectively.

Note that if the original counterexample tree is concretizable in some of the game

structures Gskip and G f
skip , so is the extended one. Note also that Proposition 7.2.1 and

Theorem 2.2.2 imply that if γ(C#
t ,Gskip) 6= ∅ then also γ(C#

t ,G
f
skip) 6= ∅.

If γ(C#
t ,Gskip) 6= ∅, then there exists a knowledge-based counterexample tree Ck in

the game Safety(Gskip , Err). Therefore, by Theorem 2.2.1, Player∃ does not have an

obss-consistent winning strategy in the game Safety(Gskip , Err). By Proposition 7.2.3,

Player∃ does not have an obsr-consistent winning strategy in the game Safety(G , Err).

Quantified Tree Formula

We now provide a logical characterization of concretizability of an abstract counterex-

ample C#
t in the game Safety(Gskip , Err). To this end, we construct a quantified tree

formula QTF(C#
t) that evaluates to true iff the abstract counterexample tree is con-

cretizable in Safety(Gskip , Err). On a high-level the construction resembles the one

described in Section 5.1. Here, however, we cannot construct the formula as a conjunc-

tion over a set of trace formulas, since the set Σ∃ of Player∃ actions is infinite. Thus,

here the result is a linear arithmetic formula with alternating universal and existential

quantifiers corresponding to the alternating choices of the two players. The variables

V∀ ∪̇ {t} updated by Player∀ are existentially quantified, and the variables V∃ ∪̇ {t}

updated by Player∃, including the symbolic constants, are universally quantified.

First, for a path ρ = n0n1 . . . nk in C#
t , we define the formula ϕpath (ρ), which

characterizes the set of concrete paths in Gskip corresponding to ρ, as follows:

ϕpath (ρ)[V
n0 , . . . ,V nk] =

(∧k
i=0[Ls

#(ni)][V
ni/V]

)
∧(∧

i<k,Ls
#(ni)∈S

#
∃

T∃[V
ni/V ,V ni+1/V]

)
∧(∧

i<k,Ls
#(ni)∈S

#
∀

T∀[V
ni/V ,V ni+1/V]

)
.

Since the abstraction is precise w.r.t. the choices of Player∃ in G f
skip , for each node

n in C#
t , Ls

#(n) defines a valuation σf (n) of the variables in the set V f
∃ . Based on this

valuation we define the substitution ηn =
{
σf (n)(x)/xn | x ∈ V f

∃ ∪ {t}
}
for each n.

190

7.3 Observation Refinement

Now, for a node n in C#
t we define a formula ψnode(n) that characterizes the set

of sets of observationally equivalent prefixes in Gskip that are subsumed by the pre-

fix leading to n and lead to a set of states from which there is a knowledge-based

counterexample tree in Gskip contained in the subtree of C#
t rooted at the node n.

The formula ψnode(n) is defined recursively as follows.

• If n is a leaf node in C#
t and ρ = path(n) = n0n1 . . . nk then we define

ψnode (n) = ∃V o
∀
n∃(V∀ \V

o
∀)

n0 . . . ∃(V∀ \V
o
∀)

nk .
(
ϕpath (ρ) ∧ locn = lErr

)
ηn.

• Otherwise, if Ls
#(n) ∈ S#

∀ we let N ′ = {n′ | (n, n′) ∈ E#} and define

ψnode(n) = ∃V o
∀
n.

∨

m∈N ′

(
ψnode (m)[SC n/SCm]ηn

)
.

• Otherwise, if Ls
#(n) ∈ S#

∃ we let N ′ = {n′ | (n, n′) ∈ E#} and define

ψnode(n) = ∃V o
∀
n.

∧

m∈N ′

(
ψ(n,m)ηm

)
,

where for each m ∈ N ′, the formula ψ(n,m) is defined depending on σf (m), that

is, depending on the choice made by Player∃ at node n in the game G#.

For the successor corresponding to case (i), i.e., executing a controllable action

after a positive delay, we quantify universally over the variables in SCm, adding

a condition which restricts their values to ones that are valid choices of await

points for Player∃ in Gskip . We further require that these await points correspond

to intermediate action points. This gives a condition θ(n,m) on the symbolic

constants SCm at node m and we define ψ(n,m) = ∀SCm.(θ(n,m) → ψnode(m)),

where

θ(n,m) =
(∨

x∈Xo+c
cmx > 0

)
∧
∧

x∈Xo+c
(cmx > 0 → cmx > xn)∧

∧
x,y∈Xo+c

c∈ξ(x)

(
(xn < c ∧ cmy > 0) → xn + (cmy − yn) < c

)
.

For the successors corresponding to cases (ii), (iii) or (iv), i.e, executing a con-

trollable action immediately, letting time elapse or resetting a set of controllable

clocks, we substitute the symbolic constants SCm with 0 (according to the tran-

sition relation T∃ in Gskip). Thus, ψ(n,m) = ψnode (m)[0/SCm].

191

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

For a node n in C#
t with path(n) = n0n1 . . . nk we have Vars(ψnode (n)) ⊆ SC n ∪

⋃k−1
i=0 (Obs(V ni) ∪ SC ni). Thus, for the root node n0, Vars(ψnode (n0)) ⊆ SC n0 .

The formula QTF(C#
t) is constructed by annotating in a bottom-up manner each

node n in C#
t with the formula ψnode(n) and letting QTF(C#

t) = ψnode(n0)[0/SC
n0]

where n0 is the root of C#
t . Thus, QTF(C#

t) is a closed formula.

The formula QTF(C#
t) characterizes the concretizability of C#

t in Gskip .

Theorem 7.3.1. Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant, lErr ∈

Loc be an error location such that [lErr]=L
o
= {lErr}, Xc be a finite set of controllable

clocks such that Xc ∩ X = ∅, ξ : Xo+c → 2Q>0 be an action-point function and P ⊆

AP(V f) be a finite set of predicates satisfies the requirements listed in Section 7.2.2.

Then, if G# = Abstract(Gf
skip(N, lErr,Xc, ξ),P), Err

= {s# ∈ S# | Js#K ∩

JϕErrK 6= ∅} and C#
t is an abstract counterexample tree in Safety(G#, Err#), then

γ(C#
t ,Gskip) 6= ∅ iff the quantified tree formula QTF(C#

t) is satisfiable.

Proof. First, consider the case when QTF(C#
t) is satisfiable, and let M be a model of

the prenex normal form Φ of QTF(C#
t), obtained from QTF(C#

t) by first replacing the

formula ψnode(n) for each leaf node n by the formula

∃V o
∀
n∃(V∀ \ V

o
∀)

n0,path∃(n) . . . ∃(V∀ \ V
o
∀)

nk,path∃(n).
(
ϕpath (ρ) ∧ locn = lErr

)
η′n,

where path∃(n) is the subsequence of path(n) consisting of the indices ni with Ls
#(ni) ∈

S#
∃ , and the substitution η′n is ηn ◦

{
xni,path∃(n)/xni | x ∈ V∀ \ V

o
∀ , ni ∈ path(n)

}
.

For a node n ∈ N# we denote with num∃(n) the number of nodes n′ on path(n)

such that Ls
#(Parent(n′)) ∈ S#

∃ , σf (n)(act) ∈ Σc and σ
f (n)(wait) = true.

For each n ∈ N# and v ∈ V o
∀ , M(vn) is a function M(vn) : Σ

num∃(n)
∃ → Dom(v).

For each n ∈ N# and each leaf node m ∈ N#, where n is a node on path(m), and

every v ∈ V∀ \V
o
∀ , M

(
vn,path∃(m)

)
is a function M

(
vn,path∃(m)

)
: Σ

num∃(m)
∃ → Dom(v).

We define the labeled tree Ck = (N,E,Ks ,La) with N ⊆ N# × Σ∗
∃ as the smallest

graph that satisfies the following conditions:

• (n#0 , ǫ) ∈ N# and Ks((n
#
0 , ǫ)) = I ∩ obs(s0), where I = {s0};

• if (n, τ) ∈ N , Ks((n, τ))∩Err = ∅, Ks
#(n) ⊆ S#

∃ , (n, n′) ∈ E#, σ ∈ Σ∃, σ(V
f
∃) =

σf (n′)(V f
∃), then let S′ = Post∃(Ks((n, τ)), σ) and if S′ 6= ∅, then (n′, τ · σ) ∈ N ,

((n, τ), (n′, τ · σ)) ∈ E, Ks((n
′, τ · σ)) = S′, La(((n, τ), (n

′, τ · σ))) = σ,

• if (n, τ) ∈ N , Ks((n, τ)) ∩Err = ∅, Ks
#(n) ⊆ S#

∀ and (n, n′) ∈ E# then let S′ =

Post∀(Ks(n, τ))∩o, where o = {s ∈ S | ∀v ∈ V o
∀ . s(v) =M(vn

′

)(τ)}, and if S′ 6= ∅,

then (n′, τ) ∈ N , ((n, τ), (n′, τ)) ∈ E, Ks((n
′, τ)) = S′, La(((n, τ), (n

′, τ))) = ǫ.

192

7.3 Observation Refinement

Conditions (i), (ii), (iii), (iv) and (v) from the definition of knowledge-based coun-

terexample tree are implied by the definition of Ck. Condition (vi) holds, since (i)

is satisfied and it holds that if s1, s2 ∈ S∃, s
′
1, s

′
2 ∈ S, σ ∈ Σ∃, obs(s1) = obs(s2),

(s1, σ, s
′
1) ∈ T∃ and (s2, σ, s

′
2) ∈ T∃, then obs(s′1) = obs(s′2). Since M is a model

of QTF(C#
t), we can choose for each node (n, τ) ∈ N with Ks((n, τ)) ⊆ S∀ a node

(n′, τ) ∈ Children((n, τ)) such that the resulting tree C ′
k satisfies condition (viii). By

the definition of Ck and C ′
k, condition (vii) is satisfied by the tree C ′

k. Thus, C ′
k is a

knowledge-based counterexample tree in Safety(Gskip , Err). Taking into account that

M is a model of QTF(C#
t), the definition of Ck also implies that C ′

k ∈ γ(C#
t ,Gskip).

For the other direction, suppose that γ(C#
t ,Gskip) 6= ∅ and let Ck = (N,E,Ks ,La) ∈

γ(C#
t ,Gskip). For a node n ∈ N we denote with trace(n) the sequence of elements of

Σ∃ labeling the edges on path(n). By the properties of Ck, for each leaf node m ∈ N

with path(m) = n0n1 . . . nk, there exists a path πm = s0s1 . . . sk ∈ Prefs(Gskip) such

that si ∈ Ks(ni) for each 0 ≤ i ≤ k. For each n# ∈ N# in C#
t , we denote with Nn#

the set of corresponding nodes in the tree Ck, and with Mn# the set of pairs (n,m),

where n ∈ Nn# and m is a leaf node in Ck such that n is a node on path(m). By

Definition 2.2.5, for each τ ∈ Σ∗
∃ there exists at most one n ∈ N such that trace(n) = τ .

For each n# ∈ N# and v ∈ V o
∀ , we define the function M(vn

#
) : Σ

num∃(n
#)

∃ →

Dom(v), such that for τ ∈ Σ
num∃(n

#)
∃ , M(vn

#
)(τ) = s(v), if there exists n ∈ Nn# such

that trace(n) = τ and s ∈ Ks(n), and M(vn
#
)(τ) is arbitrary if there is no such n.

For each n# ∈ N# and each leaf node m# ∈ N#, where n# is a node on path(m#),

and every v ∈ V∀ \ V o
∀ , we define the function M

(
vn

#,path∃(m
#)
)

: Σ
num∃(m

#)
∃ →

Dom(v) such that for τ ∈ Σ
num∃(m

#)
∃ , M

(
vn

#,path∃(m
#)
)
(τ) = s(v), if there exists a pair

(n,m) ∈ Mn#,m# and s is the state on the path πm corresponding to the node n, and

M
(
vn

#,path∃(m
#)
)
(τ) is arbitrarily fixed if no such pair (n,m) exists.

The functions defined above constitute a model M for QTF(C#
t).

7.3.3 Computing Observation Predicates

At each iteration of the inner or outer loop when the respective formula characteriz-

ing the concretizability of the abstract counterexample tree is unsatisfiable, i.e., the

counterexample is not concretizable, the fixed-observation abstraction of the consid-

ered await-time game is refined by introducing new observation predicates. The new

observation predicates are computed using the respective tree formula.

193

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

7.3.3.1 Computing Decision Predicates

When the concretizability check of the inner loop determines that the abstract coun-

terexample tree is not concretizable in the game structure G f
skip , we refine the abstract

game using predicates computed by the procedures described in Section 5.3 and Sec-

tion 5.4. The new observable predicates are the new decision predicates. In particular,

the interpolation-based procedure from Section 5.3 yields decision predicates that allow

Player∃ to distinguish states in which he has to make different choices.

As additional decision predicates we obtain the predicates x ≥ c and x ≤ c corre-

sponding to each new action point c for each clock variable x from Xo+c. New action

points are computed during the refinement phase of the outer loop as described below.

7.3.3.2 Computing Action Points

The action-point function ξ is refined in the cases when the abstract counterexample

tree is concretizable in the game structure G f
skip , but the extended abstract coun-

terexample tree is not concretizable in Gskip . The procedure RefineActionPoints,

computes new action points for ξ based on the unsatisfiable formula QTF(C#
t).

If the closed formula QTF(C#
t) evaluates to false , its negation ¬QTF(C#

t) eval-

uates to true, i.e., is satisfiable. Let Ψ be the negation of the prenex normal form

of the formula QTF(C#
t), constructed as described in the proof of Theorem 7.3.1.

In Ψ, after pushing the negation through the quantifiers, all symbolic constants (in-

dexed accordingly) are existentially quantified. Consider a node n ∈ N# such that

Ls
#(Parent(n)) ∈ S#

∃ , and let path(n) = n0n1 . . . nr. In Ψ there exists a quanti-

fier block ∃SCn, which is preceded by the blocks of universal quantifiers ∀V o
∀
ni for

i = 0, . . . , r. Thus, if M is a model of Ψ, then for each x ∈ Xo+c we have that the

witness M(cnx) for c
n
x is a function M(cnx) : Vals(V

o
∀
n0)× . . .× Vals(V o

∀
nr) → Q≥0.

Our goal is to compute witnesses for the symbolic constants that can be used for

refining the action-point function ξ. Assume for now, that in a model M we have a

tuple of witness functions for the variables in SC n of the following form.

For some k ∈ N>0, there are positive rational constants a1, . . . , ak ∈ Q>0 and a

function b : Vals(V o
∀
n0)× . . .× Vals(V o

∀
nr) → N ∩ [1, k], such that:

• each ai is associated with some variable xi ∈ Xo+c,

• for each s ∈ Vals(V o
∀
n0)× . . .× Vals(V o

∀
nr) it holds that:

194

7.3 Observation Refinement

y

x
a1 a2

a3

a1 = 3, x1 = x

a2 = 6, x2 = x

a3 = 1, x3 = y

xn ∈ [0, 2) 7→ cnx = 3, cny = 0

xn ∈ [2, 4) 7→ cnx = 0, cny = 1

xn ∈ [4, 5] 7→ cnx = 6, cny = 0

Figure 7.2: Example of witnesses for symbolic constants cnx and cny .

– if b(s) = i and x = xi, then M(cx) = ai,

– if b(s) = i and x 6= xi, then M(cx) = 0.

That is, we have a case split with k cases according to the valuation of the observable

variables along the prefix, such that in each case exactly one of the symbolic constants

(the one corresponding to the clock variable associated with this case) is assigned the

constant corresponding to this case, and to all other symbolic constants 0 is assigned.

Example 7.3.1. Consider an example with Xo+c = {x, y}, where in the abstract state

Ls(n) we know that the value of xn is in [0, 5] and the value of yn is 0, and the ”good”

values for SC n are depicted as the gray sets on Fig. 7.2. The figure shows an example

where k = 3 and each ai is associated with the variable xi shown in the figure.

Given such functions, we can refine the action-point function ξ as follows. For each

x ∈ Xo+c we add to the set ξ(x) all positive values a such that M(cnx)(s) = a for some

node n and valuation s ∈ Vals(V o
∀
n0) × . . . × Vals(V o

∀
nr). The assumption that we

made about the model M ensures that the number of these values is finite.

Now, given a natural number k ∈ N>0 we can restrict the possible witness func-

tions for the indexed symbolic constants to the form discussed above by introducing

additional variables to encode functions of this form and strengthening the formula Ψ.

In the strengthened formula Ψk we use the following fresh additional variables.

• A set An
k = {an1 , . . . , a

n
k} of k rational variables.

• An integer variable bn with domain N ∩ [1, k].

195

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

• A set Dn
k = {dn1 , . . . , d

n
k} of k integer variables with domain N ∩ [1, |Xo+c|].

The formula Ψk is obtained from Ψ by replacing for each n ∈ N# the condition θn

for SC n that was used in the construction of Ψ by the stronger one θn ∧ θnk , where:

θnk = ∃bn
k∧

i=1

(
bn = i→

∧

x∈Xo+c

(
(id(x) = dni → cnx = ani) ∧ (id(x) 6= dni → cnx = 0)

))
,

and id : Xo+c → N ∩ [1, |Xo+c|] is an indexing function for the clock variables Xo+c.

In the formula Ψk, the variable bn is existentially quantified in the same quantifier

block as the symbolic constants in SC n. The variables from the sets An
k and Dn

k are

free in Ψk (existentially quantified on the outermost level).

The formula Ψk has only models in which the functions assigned to the symbolic

constants are of the form we discussed above. Formally, it has the following property.

Property 23. If the formula Ψk is satisfiable and M is a model of Ψk, then M is a

model of Ψ as well, and for each x ∈ Xo+c and n ∈ N# it holds that:

M(cnx)(v) =

M(an1) if M(bn)(v) = 1 ∧M(dn1) = id(x),

. . .

M(ank) if M(bn)(v) = k ∧M(dnk) = id(x),

0 otherwise,

where path(n) = n0n1 . . . nr and v ∈ Vals(V o
∀
n0)× . . .× Vals(V o

∀
nr).

The refinement procedure RefineActionPoints iterates over the values of k ≥ 1,

at each step constructing the formula Ψk as described above. Ψk is a strengthening of

Ψ and Ψk+1 is weaker than Ψk. The procedure terminates if a k for which the formula

Ψk is satisfiable is reached. In this case, we use the values in the resulting model of the

newly introduced variables from An
k to refine the action-point function ξ.

If it terminates, Algorithm 11 returns a new action-point function ξ′ such that for

every x ∈ Xo+c, we have ξ′(x) ⊇ ξ(x). The new action points for x are extracted from

a model for Ψk and are the values of those variables ani for which dni is equal to id(x).

Example 7.3.2. We now provide an example, for which there does not exists a k that

is such that there exist witness function of the desired form. In the case we consider,

for each k > 0 the formula Ψk is unsatisfiable, although the formula Ψ is satisfiable.

Here, Xo+c = {x} and Xu = {y}, where in the abstract state Ls(n) we know that

the value of xn is in [0, 5] and the value of yn is 0, and the ”good” values for SC n (i.e.,

when y = 1) are depicted as the gray line in Figure 7.3.

196

7.3 Observation Refinement

Algorithm: RefineActionPoints

Input: satisfiable formula Ψ with conditions θn for SC n, for nodes n ∈ N#;

action-point function ξ : Xo+c → 2Q>0

Output: refined action-point function ξ′ : Xo+c → 2Q>0

ξ′(x) := ξ(x) for every x ∈ Xo+c;

R = ∅;

k := 0;

sat := false ;

while sat = false do
k ++;

Ψk := Strengthen(Ψ, k);

sat := CheckSat(Ψk);

M := Model(Ψk);

foreach (n, i) ∈ (N# × {1, ..k}) with M(ani) > 0 do

foreach x ∈ Xo+c with id(x) =M(dni) do
ξ′(x) := ξ′(x) ∪ {M(ani)};

R := R ∪ {x ≤M(ani), x ≥M(ani)};

return (ξ′,R);

Algorithm 11: Computation of refinement action points.

y

x

1 cnx = xn + 1

Figure 7.3: Example of witnesses for symbolic constant cnx .

197

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

7.3.4 Progress

Now we will establish a progress property of the procedure RefineActionPoints,

namely we will prove that the new action points suffice to eliminate all knowledge-

based counterexample trees Cf
k in G f

skip that are in the concretization of C#
t .

Theorem 7.3.2. Let N = (A,Σc,Σu,Xo,Xu,=
L
o) be a partially observable plant, lErr ∈

Loc be an error location such that [lErr]=L
o
= {lErr}, Xc be a finite set of controllable

clocks such that Xc ∩ X = ∅, ξ : Xo+c → 2Q>0 be an action-point function and P ⊆

AP(V f) be a finite set of predicates satisfies the requirements listed in Section 7.2.2.

Let G# = Abstract(Gf
skip(N, lErr,Xc, ξ),P), Err

= {s# ∈ S# | Js#K ∩ JϕErrK 6= ∅}

and suppose that C#
t is an extended counterexample tree in Safety(G#, Err#) such that

the quantified tree formula QTF(C#
t) is unsatisfiable. If ξ′ is the refined action-point

function and R is the set of refinement predicates computed by RefineActionPoints,

then for the await-time game with fixed action points Safety(Gf
skip(N, lErr,Xc, ξ

′), ϕErr),

it holds that γ(C#
t ,G

f
skip(N, lErr,Xc, ξ

′)) = ∅.

Proof. By our hypothesis the formula QTF(C#
t) is unsatisfiable, which means that the

respective negated formula Ψ is satisfiable. We are considering the case when the pro-

cedure RefineActionPoints terminates and returns a refined action-point function

ξ′. Let k > 0 be the smallest positive natural number such that the corresponding

formula Ψk is satisfiable. By the construction of Ψk, there exist a finite set C ⊆ Q>0

and an obss-consistent strategy f∃ for Player∃ in the game structure Gskip such that:

• For every π ∈ Prefs(f∃) for which there exists a path ρ in C#
t such that π[i] ∈

γ(Ls
#(ρ[i])) for each 0 ≤ i < |π|, it holds that π[i] 6∈ Err for each 0 ≤ i < |π|.

• For each π ∈ Prefs∃(Gskip) and x ∈ Xo+c, it holds that f∃(π)(σ(cx)) ∈ C ∪ {0}.

Thus, since the set Σf = {σ ∈ Σ∃ | ∃π ∈ Prefs∃(Gskip). f∃(π) = σ} is finite, by

Proposition 7.2.5 and the construction of ξ′ we have that there exists an obss-consistent

strategy f f∃ for Player∃ in the game structure G f ′
skip = G f

skip(N, lErr,Xc, ξ
′) such that

for each πf ∈ Outcome(f f∃) there exists a play π ∈ Outcome(f∃) such that for each

0 ≤ i < |πf | there exists 0 ≤ j < |π| such that π[j](loc) = πf [i](loc).

Furthermore, by the definition of f f∃ in the proof of Proposition 7.2.5 (i.e., the proof

of Proposition 7.2.2) and the fact that C#
t is an extended counterexample tree, we have

that if πf ∈ Prefs(f f∃) and there exists a path ρ in C#
t such that for each 0 ≤ i < |πf |,

πf [i] ∈ γ(Ls
#(ρ[i]),G f ′

skip), then there exists π ∈ Prefs(f∃) such that

• there exists a path ρ′ in C#
t such that for each 0 ≤ i < |π|, π[i] ∈ γ(Ls

#(ρ′[i]),G),

198

7.4 Experiments

• for each 0 ≤ i < |πf | there exists 0 ≤ j < |π| such that π[j](loc) = πf [i](loc).

Now, suppose that Ck ∈ γ(C#
t ,G

f ′
skip) is a knowledge-based counterexample tree

in Safety(G f ′
skip , Err

f). Since f f∃ is an obss-consistent strategy for Player∃ in G f ′
skip ,

there exists a path ρ in Ck such that for each 0 ≤ i < |ρ| and each s ∈ Ks(ρ[i]) it

holds that there exists a prefix πf ∈ Prefs(f f∃) such that last(πf) = s. By the above

properties of f f∃ , we have that s 6∈ Err, which contradicts to the choice of Ck.

7.4 Experiments

7.4.1 Prototype implementation

We have developed a version of the prototype tool described in Section 5.5.1 that imple-

ments the approach described in this chapter. Here we rely on the ability of the recent

versions of the Z3 SMT solver to handle formulas with quantifiers as the ones generated

in the outer abstraction-refinement loop of SynthesizeObservationPredicates.

7.4.2 Experimental Results

We applied our prototype to the safety controller synthesis problem for the partially

observable plant shown in Figure 6.1 and the Box Painting Production System and the

Timed Game For Sorting Bricks examples from [Cas07]. The synthesis problems were

encoded as await-time games. We applied our method to compute, starting with an

empty set of action points and the respective set of initial predicates, sets of observation

predicates for which the given plants are controllable, that is the sets of controlled paths

fulfill the corresponding safety requirements.

Production System This is the example presented in the introduction to Chapter 6,

described by the timed game automaton shown in Figure 6.1. Here, the controller needs

observation predicates in the role of decision predicates and observation predicates in

the role of action points in order to ensure that the error location End is never reached.

Box Painting The timed game automaton for the Box Painting Production System

example is shown in Figure 1 in [Cas07]. Here the task of the controller is to execute

199

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

OBS Iter. CEGAR Iter. Act. Points Predicates A. States Time(s) TIGA(s)

Prod. Syst. 2 4 3 35 3944 87.16 0.23

Paint 2 8 2 33 560 54.48 0.21

Paint-100 2 5 2 29 573 29.31 3.93

Paint-1000 2 5 2 29 573 29.18 339.95

Paint-10000 2 7 2 34 560 52.72 TO

Paint-100000 2 7 2 34 560 50.93 TO

Bricks 3 3 3 28 1175 24.68 0.04

Bricks-100 3 3 3 28 1175 25.22 2.56

Bricks-1000 3 3 3 28 1175 23.75 303.79

Bricks-10000 3 3 3 28 1175 24.21 TO

Bricks-100000 3 3 3 28 1175 25.33 TO

Table 7.1: Results from experiments with our prototype: number of iterations of the

respective refinement loops, number of action points in the final abstraction, total number

of predicates in the final abstraction, largest number of states explored in an intermediate

abstraction, and running time. Results from experiments with Uppaal-TIGA with fixed

observations: running time, where timeout (TO) was set to 30 minutes.

the single controllable action at the right time to avoid the error location despite of the

timing uncertainty coming from the variable duration of the processing phases.

Bricks Sorting The Timed Game For Sorting Bricks is given in Figure 3 in [Cas07].

It is similar to our first example, the difference being that the controller does not need

decision predicates over clock variables, as observing the equivalence class of the plant’s

location suffices for selecting the correct controllable action to be executed.

Results In order to demonstrate that our method performs well in situations where

fine granularity is needed to win the game, i.e., when the constraints occurring in the

plant involve large constants and the differences between certain guards and invariants

are small, we constructed multiple instances of each of the last two examples. In-

stances Paint−N and Bricks−N , where N ∈ {100, 1000, 10000, 100000} were obtained

by adding the constant N to all positive constants occurring in the plants.

In Table 7.1 we report on the results from our experiments preformed on an Intel

Core 2 Duo CPU at 2.53 GHz with 3.4 GB RAM, using a single core. We give the

number of refinement iterations for the await-time game with fixed action points and

the number of iterations of the inner loop, the sizes of the final sets of action points and

abstraction predicates and the maximal number of explored states in the intermediate

200

7.4 Experiments

G CEGAR P(G) Pmin(G) Ps(G)

Paint-10000 52.78s 2.77s 0.23s MemoryError (35m30.402s)

Bricks-10000 24.21s 1.382s 0.78s MemoryError (17m4.781s)

Table 7.2: Comparison of the running times of counterexample-guided synthesis of obser-

vations and solving respective timed games with fixed observations using [BCD+12]. The

first column shows the running time of our prototype and the remaining three columns give

the running time of [BCD+12] on sets of observation predicates corresponding respectively

to observable clock predicates computed by the CEGAR approach, a minimal subset of

this set and a set corresponding to an a priori fixed fine granularity.

abstractions. The results show that the size of the abstract games generated by our

approach depend on the number of action points and predicates and not on the size

of the constants in the plant. This is in contrast with approaches based on fixed

granularity, where strategies involve counting modulo the given granularity.

Since the problem of synthesizing observation predicates for timed games under

incomplete information is out of the scope of existing synthesis tools, a relevant com-

parison is not possible. However, we used the tool Uppaal-TIGA version 4.1.4-0.16,

which supports timed games with partial observability and fixed observations, on the

problem instances constructed as explained above. For the Box Painting Production

System we used the observation predicates describing the equivalence relation on the

set of locations, together with the observation 0 ≤ y < 1 and for the Timed Game For

Sorting Bricks we used the location observations plus the observation 0 ≤ y < 1
2 (given

also as 0 ≤ y ∈ 1 by scaling the constants in the model accordingly). One can see in

Table 7.1 that, although on the small instances the running times are better compared

to our approach, on instances where fine granularity is needed, our approach synthesizes

the sufficient observation predicates considerably faster than it takes Uppaal-TIGA to

solve the game with a fixed set of observation predicates.

7.4.3 Discussion

Based on the results from the previous paragraph we can make a conclusion about

the importance of finding appropriate observation predicates both for the feasibility

of the synthesis procedure and for the quality of the resulting controller. Clearly,

the counterexample-guided search for observation predicates can be combined with

techniques for a posteriori minimization of the set of observations, such as [BCD+12].

201

7. SYNTHESIS OF OBSERVATION PREDICATES FOR TIMED
CONTROL

To further support our conclusion, we compared the results from our implemen-

tation also with the prototype implementation1 of the technique [BCD+12] which in

turn builds on the algorithm from [CDL+07], which is the one implemented also in

Uppaal-TIGA. We ran their prototype on two of the examples above, with the sets of

observations corresponding to the predicates generated by our implementation, with a

minimal subset of each of this sets that suffices for controllability, and with the single

predicate over the observable clock used above for the comparison with Uppaal-TIGA.

The results shown in Table 7.2 are obtained for the following sets of predicates:

For Paint-10000 we use P = {loc = Sensor, loc = Off, y < 10008, y < 10011, y <

20021}, Pmin = {loc = Sensor, y < 20021} and Ps = {loc = Sensor, loc = Off, y < 1},

and for Bricks-10000 we use P = {loc = H, loc = L, y < 20011, y < 20012, y <

20021}, Pmin = {loc = H, y < 20011, y < 20021} and Ps = {loc = H, y < 1}. The

results demonstrate that albeit computationally expensive, the counterexample-guided

generation of observation predicates can immensely outperform solving a timed game

with badly chosen set of observation predicates. One can also see that the set of

observations computed by our approach is not minimal, which is due to the choice of

counterexamples. This means that the approach can clearly benefit from techniques for

further minimization of the set of observations, such as for example the ones described

in [BCD+12] that are implemented in the aforementioned prototype1.

1 https://launchpad.net/pytigaminobs

202

Chapter 8

Conclusion & Outlook

In this thesis we have studied infinite-state two-player games under incomplete informa-

tion as they naturally arise in the synthesis of reactive systems with partial observation.

We develop game solving methods for a number of fundamental types of infinite-state

games under incomplete information, which are classified according to the resources

available to the synthesized component. More precisely, this classification is based on

the interface between the synthesized component and its environment, comprising the

possible observations which this component can make and the actions which it controls.

The methods described in this thesis are applicable to systems which are beyond the

scope of other currently existing approaches to synthesis of reactive systems.

We established a generic class of infinite-state game structures with incomplete

information for which games with safety and reachability winning conditions are decid-

able. The class is characterized by a better-quasi ordering on the set of states and the

requirement that the sets of possible observations and possible actions of the synthe-

sized system component are finite. As a particular instance, we provided symbolic algo-

rithms for solving lossy channel games under incomplete information, where the hostile

environment can nondeterministically drop messages from the communication buffers.

This environment model, however, is often too conservative in practical situations. It

is well known that, unfortunately, adding a fairness assumption on the channels makes

the verification of eventuality properties of lossy channel systems undecidable [AJ96].

We have seen that this negative result extends to the game model considered in this

thesis. One approach to circumvent this problem taken in verification [Sch04] is to

consider probabilistic lossy channel systems. Recently, perfect-information games with

203

8. CONCLUSION & OUTLOOK

(generalized) Büchi objectives on probabilistic lossy channel systems have been shown

to be decidable [AHdA+08, BS13]. One interesting direction of future research is to in-

vestigate incomplete-information games for systems with probabilistic message losses.

Another possible direction is to identify other types of systems and applications for

which the synthesis problem under partial observability reduces to the game solving

problem for game structures that fall into the class we established here.

In some of the target applications of synthesis it is undesirable to make the as-

sumption that a finite set of possible observation is provided as input to the synthesis

procedure. In robotics, for example, the task one might be actually interested in can

be to determine a (possibly small) set of sensors and precision of these sensors that

enable a robot controller to enforce the given specification. Here, as a first step, we

demonstrated on a couple of examples that our abstraction-refinement based method

for solving games under incomplete information can potentially be applied to such

problems. In particular, modeling the given sensors as observable variables in the syn-

thesis games allows us to use refinement to infer sufficient precision of these sensors. A

promising direction of research is to explore further these ideas to develop methods to

discover additional sensors that are necessary and to reduce the number of used sensors

or their precision. As demonstrated by the examples, identifying the role that different

observable predicates play in the abstract game is essential for determining if they are

necessary for the controller. A further possibility in this direction can be to combine

counterexample analysis with domain knowledge that might aid the sensor discovery.

In the real-time setting, the set of generated observation predicates also plays a cru-

cial role in the quality of the synthesized controller. Developing methods to minimize

the set of generated observation predicates during the refinement phase will allow for

reducing the size and number of clock constraints of the resulting controller. Addition-

ally, the application of such techniques will increase the practicability of our approach.

An important criterion for the quality of a real-time controller strategy is its robust-

ness [CHP08, SBMR13]. Since our approach tightly relates the time delays chosen

by the controller (i.e., the times when the controller makes a discrete transition) and

the observation predicates, it will be interesting to investigate the connection between

the robustness of control strategies and the observation predicates and derive synthesis

methods that guarantee some notion of robustness of their result.

204

References

[AAB99] Parosh Aziz Abdulla, Aurore Annichini, and Ahmed Bouajjani, Symbolic

verification of lossy channel systems: An application to the bounded re-

transmission protocol, Proc. TACAS ’99-5th Int. Conf. on Tools and Al-

gorithms for the Construction and Analysis of Systems, Lecture Notes in

Computer Science, vol. 1579, 1999.

[ABd08] Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso, Monotonic

and downward closed games, J. Log. Comput. 18 (2008), no. 1, 153–169.

[Abd10] Parosh Aziz Abdulla, Well (and better) quasi-ordered transition systems,

Bulletin of Symbolic Logic 16 (2010), no. 4, 457–515.

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson, On-the-fly

analysis of systems with unbounded, lossy FIFO channels, Proc. 10th Int.

Conf. on Computer Aided Verification, Lecture Notes in Computer Science,

vol. 1427, 1998, pp. 305–318.

[ACABJ04] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and

Bengt Jonsson, Using forward reachability analysis for verification of lossy

channel systems, FMSD 25 (2004), no. 1, 39–65.

[ACMS13] Parosh Aziz Abdulla, Lorenzo Clemente, Richard Mayr, and Sven

Sandberg, Stochastic parity games on lossy channel systems, CoRR

abs/1305.5228 (2013).

[AD94] Rajeev Alur and David L. Dill, A theory of timed automata, Theoretical

Computer Science 126 (1994), no. 2, 183–235.

205

REFERENCES

[AHdA+08] Parosh Aziz Abdulla, Noomene Ben Henda, Luca de Alfaro, Richard

Mayr, and Sven Sandberg, Stochastic games with lossy channels, FoSSaCS

(Roberto M. Amadio, ed.), Lecture Notes in Computer Science, vol. 4962,

Springer, 2008, pp. 35–49.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.

Vardi, Alternating refinement relations, In Proceedings of the Ninth In-

ternational Conference on Concurrency Theory (CONCUR’98), volume

1466 of LNCS, Springer-Verlag, 1998, pp. 163–178.

[AJ93] Parosh Aziz Abdulla and Bengt Jonsson, Verifying programs with unreli-

able channels, Proc. LICS ’93-8th IEEE Int. Symp. on Logic in Computer

Science, 1993, pp. 160–170.

[AJ96] , Undecidable verification problems for programs with unreliable

channels, Inf. Comput. 130 (1996), no. 1, 71–90.

[BBS06] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen, On comput-

ing fixpoints in well-structured regular model checking, with applications

to lossy channel systems, Proceedings of the 13th International Confer-

ence on Logic for Programming, Artificial Intelligence, and Reasoning

(LPAR’06), Lecture Notes in Artificial Intelligence, vol. 4246, Springer,

November 2006, pp. 347–361.

[BC06] Patricia Bouyer and Fabrice Chevalier, On the control of timed and hybrid

systems, Bulletin of the EATCS 89 (2006), 79–96.

[BCD+12] Peter Bulychev, Franck Cassez, Alexandre David, Kim Guldstrand Larsen,

Jean-François Raskin, and Pierre-Alain Reynier, Controllers with minimal

observation power (application to timed systems), Proc. ATVA, LNCS, vol.

7561, Springer, 2012.

[BCW+09] Dietmar Berwanger, Krishnendu Chatterjee, Martin De Wulf, Laurent

Doyen, and Thomas A. Henzinger, Alpaga: A tool for solving parity games

with imperfect information, TACAS, LNCS, vol. 5505, Springer, 2009,

pp. 58–61.

206

REFERENCES

[BDFW07] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim,

Slicing abstractions, FSEN (Farhad Arbab and Marjan Sirjani, eds.), Lec-

ture Notes in Computer Science, vol. 4767, Springer, 2007, pp. 17–32.

[BDMP03] Patricia Bouyer, Deepak D’Souza, P. Madhusudan, and Antoine Petit,

Timed control with partial observability, Proc. CAV’03, LNCS, vol. 2725,

Springer, 2003.

[BK06] Thomas Ball and Orna Kupferman, An abstraction-refinement frame-

work for multi-agent systems, Proc. LICS, IEEE Computer Society, 2006,

pp. 379–388.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani,

Automatic predicate abstraction of c programs, Proceedings of the ACM

SIGPLAN 2001 conference on Programming language design and imple-

mentation (New York, NY, USA), PLDI ’01, ACM, 2001, pp. 203–213.

[BS13] Nathalie Bertrand and Philippe Schnoebelen, Solving stochastic büchi

games on infinite arenas with a finite attractor, Proceedings of the 11th In-

ternational Workshop on Quantitative Aspects of Programming Languages

(QAPl’13) (Luca Bortolussi and Herbert Wiklicky, eds.), Electronic Pro-

ceedings in Theoretical Computer Science, vol. 117, June 2013, pp. 116–

131.

[BT07] Clark Barrett and Cesare Tinelli, CVC3, Proceedings of the 19th Inter-

national Conference on Computer Aided Verification (CAV ’07) (Werner

Damm and Holger Hermanns, eds.), Lecture Notes in Computer Science,

vol. 4590, Springer-Verlag, July 2007, Berlin, Germany, pp. 298–302.

[Cac02] Thierry Cachat, Symbolic strategy synthesis for games on pushdown

graphs, Proceedings of the 29th International Colloquium on Automata,

Languages and Programming (London, UK, UK), ICALP ’02, Springer-

Verlag, 2002, pp. 704–715.

[Cas07] Franck Cassez, Efficient on-the-fly algorithms for partially observable timed

games, Proc. FORMATS’07, LNCS, vol. 4763, Springer, 2007.

207

REFERENCES

[CC00] Patrick Cousot and Radhia Cousot, Temporal abstract interpretation,

POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages (New York, NY, USA), ACM

Press, 2000, pp. 12–25.

[CCGS03] Sagar Chaki, Edmund Clarke, Alex Groce, and Ofer Strichman, Predicate

abstraction with minimum predicates, Proceedings of 12th Advanced Re-

search Working Conference on Correct Hardware Design and Verification

Methods (CHARME), 2003.

[CCH+11] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Rad-

hakrishna, and Rohit Singh, Quantitative synthesis for concurrent pro-

grams, CAV, Lecture Notes in Computer Science, vol. 6806, Springer, 2011,

pp. 243–259.

[CDHR06] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, Algorithms

for omega-regular games of incomplete information, Proc. CSL’06, LNCS,

vol. 4207, Springer, 2006.

[CDL+07] Franck Cassez, Alexandre David, Kim Guldstrand Larsen, Didier Lime,

and Jean-François Raskin, Timed control with observation based and stut-

tering invariant strategies, Proc. ATVA’07, LNCS, vol. 4762, Springer,

2007.

[CE81] Edmund M. Clarke and E. Allen Emerson, Design and synthesis of syn-

chronization skeletons using branching-time temporal logic, Logic of Pro-

grams (Dexter Kozen, ed.), Lecture Notes in Computer Science, vol. 131,

Springer, 1981, pp. 52–71.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-

mut Veith, Counterexample-guided abstraction refinement, Proc. CAV’00,

LNCS, vol. 1855, Springer, 2000, pp. 154–169.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long, Model check-

ing and abstraction, ACM Transactions on Programming Languages and

Systems 16 (1994), no. 5, 1512–1542.

208

REFERENCES

[CHP08] Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu,

Timed parity games: Complexity and robustness, FORMATS (Franck

Cassez and Claude Jard, eds.), Lecture Notes in Computer Science, vol.

5215, Springer, 2008, pp. 124–140.

[Chu63] Alonzo Church, Logic, arithmetic, and automata, Proceedings of the In-

ternational Congress of Mathematicians (ICM’62), 1963, pp. 23–35.

[CKLB11] Chih-Hong Cheng, Alois Knoll, Michael Luttenberger, and Christian

Buckl, GAVS+: an open platform for the research of algorithmic game

solving, Proceedings of the 17th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’11),

LNCS, Springer, 2011.

[Cra57] William Craig, Linear reasoning. a new form of the herbrand-gentzen the-

orem, J. Symb. Log. 22 (1957), no. 3, 250–268.

[CRKB11] Chih-Hong Cheng, Harald Rueß, Alois Knoll, and Christian Buckl, Synthe-

sis of fault-tolerant embedded systems using games: From theory to prac-

tice, VMCAI, Lecture Notes in Computer Science, vol. 6538, Springer,

2011, pp. 118–133.

[dAGJ04] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan, Three-valued

abstractions of games: Uncertainty, but with precision, Proc. LICS’04,

IEEE Computer Society, 2004.

[dAR07] Luca de Alfaro and Pritam Roy, Solving games via three-valued abstraction

refinement, Proc. CONCUR’07, LNCS, vol. 4703, Springer, 2007, pp. 74–

89.

[DD02] Satyaki Das and David L. Dill, Counter-example based predicate discovery

in predicate abstraction, Proc. FMCAD’02, Springer-Verlag, 2002, pp. 19–

32.

[De 06] Martin De Wulf, From timed models to timed implementations, Thèse de

doctorat, Département d’Informatique, Université Libre de Bruxelles, Bel-

gium, December 2006.

209

REFERENCES

[DF08] Rayna Dimitrova and Bernd Finkbeiner, Abstraction refinement for games

with incomplete information, IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science (FSTTCS),

LIPIcs, vol. 2, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2008.

[DF12] , Counterexample-guided synthesis of observation predicates, 10th

International Conference on Formal Modeling and Analysis of Timed Sys-

tems (FORMATS) (Marcin Jurdzinski and Dejan Nickovic, eds.), LNCS,

vol. 7595, Springer, 2012, pp. 107–122.

[DF13] , Lossy channel games under incomplete information, 1st Interna-

tional Workshop on Strategic Reasoning (SR) (Fabio Mogavero, Aniello

Muran, and Moshe Y. Vardi, eds.), EPTCS, vol. 112, 2013, pp. 43–51.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg, Abstract interpretation

of reactive systems, ACM Trans. Program. Lang. Syst. 19 (1997), no. 2,

253–291.

[DKFW10] Klaus Dräger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike

Wehrheim, Slab: A certifying model checker for infinite-state concurrent

systems, Proceedings of the 16th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Lecture Notes

in Computer Science, Springer-Verlag, 2010.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner, Z3: An efficient smt

solver, TACAS (C. R. Ramakrishnan and Jakob Rehof, eds.), Lecture

Notes in Computer Science, vol. 4963, Springer, 2008, pp. 337–340.

[DR11] L. Doyen and J.-F. Raskin, Games with imperfect information: Theory

and algorithms, Lectures in Game Theory for Computer Scientists, 2011,

pp. 185–212.

[DWDR06] M. De Wulf, L. Doyen, and J.-F. Raskin, A lattice theory for solving games

of imperfect information, Proc. HSCC’06, LNCS, Springer, 2006, pp. 153–

168.

210

REFERENCES

[FP12] Bernd Finkbeiner and Hans-Jörg Peter, Template-based controller synthe-

sis for timed systems, TACAS, LNCS, vol. 7214, Springer, 2012, pp. 392–

406.

[FS01] Alain Finkel and Ph. Schnoebelen, Well-structured transition systems ev-

erywhere!, Theor. Comput. Sci. 256 (2001), no. 1-2, 63–92.

[GBC06] Andreas Griesmayer, Roderick Bloem, and Byron Cook, Repair of boolean

programs with an application to c, CAV, LNCS, vol. 4144, Springer, 2006,

pp. 358–371.

[GLP] GNU Linear Programming Kit, http://www.gnu.org/software/glpk.

[GRV04] G. Geeraerts, J.-F. Raskin, and L. Van Begin, Expand, Enlarge and

Check: new algorithms for the coverability problem of WSTS, Proceedings

of FSTTCS’04, 24th International Conference on Foundations of Software

Technology and Theoretical Computer Science, Chennai, India (Kamal

Lodoya and Meena Mahajan, eds.), Lecture Notes in Computer Science,

vol. 3328, Springer-Verlag, 2004, pp. 287–298.

[GRV05] , Expand, enlarge and check... made efficient, Lecture Notes in

Computer Science, no. 3576, Springer Verlag, 2005, pp. 394–404.

[HJM03] T.A. Henzinger, R. Jhala, and R. Majumdar, Counterexample-guided con-

trol, Proc. ICALP’03, LNCS, vol. 2719, Springer, 2003, pp. 886–902.

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.

McMillan, Abstractions from proofs, Proc. POPL’04 (New York, NY,

USA), ACM Press, 2004, pp. 232–244.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre, Software verification with blast, Model Checking Software, 10th In-

ternational SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Pro-

ceedings (Thomas Ball and Sriram K. Rajamani, eds.), Lecture Notes in

Computer Science, vol. 2648, Springer, 2003, pp. 235–239.

211

REFERENCES

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmidt, Modal transition

systems: A foundation for three-valued program analysis, ESOP’01 (David

Sands, ed.), Lecture Notes in Computer Science, vol. 2028, Springer, 2001,

pp. 155–169.

[HMMR00] Thomas A. Henzinger, Rupak Majumdar, Freddy Y. C. Mang, and Jean-

François Raskin, Abstract interpretation of game properties, Proc. SAS’00,

Springer-Verlag, 2000, pp. 220–239.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem, Program

repair as a game, CAV, 2005, pp. 226–238.

[JM06] Ranjit Jhala and Kenneth L. McMillan, A practical and complete approach

to predicate refinement, Proc. TACAS’06, vol. 3920, Springer-Verlag, 2006,

pp. 459–473.

[JSGB12] Barbara Jobstmann, Stefan Staber, Andreas Griesmayer, and Roderick

Bloem, Finding and fixing faults, J. Comput. Syst. Sci. 78 (2012), no. 2,

441–460.

[KG05] R. Kumar and V.K. Garg, On computation of state avoidance control for

infinite state systems in assignment program framework, Automation Sci-

ence and Engineering, IEEE Transactions on 2 (2005), no. 1, 87–91.

[KGFP09] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas,

Temporal-logic-based reactive mission and motion planning, IEEE Trans-

actions on Robotics 25 (2009), no. 6, 1370–1381.

[KGM93] Ratnesh Kumar, Vijay Garg, and Steven I. Marcus, Predicates and predi-

cate transformers for supervisory control of discrete event dynamical sys-

tems, IEEE Transactions on Automatic Control 38 (1993), 232–247.

[KGMM09] Gabriel Kalyon, Tristan Le Gall, Hervé Marchand, and Thierry Massart,

Control of infinite symbolic transition systems under partial observation,

European Control Conference, 2009, pp. 1456–1462.

212

REFERENCES

[KGMM12] , Symbolic supervisory control of infinite transition systems under

partial observation using abstract interpretation, Discrete Event Dynamic

Systems 22 (2012), no. 2, 121–161.

[KV97] O. Kupferman and M.Y. Vardi, Synthesis with incomplete informatio,

2nd International Conference on Temporal Logic (Manchester), July 1997,

pp. 91–106.

[Lam74] Leslie Lamport, A new solution of dijkstra’s concurrent programming prob-

lem, Commun. ACM 17 (1974), no. 8, 453–455.

[LBBO01] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre, Incremental verifi-

cation by abstraction, Lecture Notes in Computer Science 2031 (2001),

98+.

[Mar75] Donald A. Martin, Borel determinacy, Annals of Mathematics 102 (1975),

no. 2, 363–371.

[Mar01] Alberto Marcone, Fine analysis of the quasi-orderings on the power set,

Order 18 (2001), no. 4, 339–347.

[McM06] Kenneth L. McMillan, Lazy abstraction with interpolants, CAV (Thomas

Ball and Robert B. Jones, eds.), Lecture Notes in Computer Science, vol.

4144, Springer, 2006, pp. 123–136.

[Mil85] E. C. Milner, Basic wqo- and bqo-theory, Graphs and order, 1985, pp. 487–

502.

[MP96] Z Manna and Amir Pnueli, Clocked transition systems, Tech. report, Stan-

ford, CA, USA, 1996.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis, On the synthesis of discrete

controllers for timed systems, Proc. STACS’95, LNCS, vol. 900, Springer,

1995.

[MW80] Zohar Manna and Richard Waldinger, A deductive approach to program

synthesis, ACM Trans. Program. Lang. Syst. 2 (1980), no. 1, 90–121.

213

REFERENCES

[Nas65] C. Nash-Williams, On well-quasi ordering infinite trees, Proceedings of the

Cambridge Philosophical Society 61 (1965), 697–720.

[PAHSv02] Roberto Passerone, Luca De Alfaro, Thomas A. Henzinger, and Alberto L.

Sangiovanni-vincentelli, Convertibility verification and converter synthesis:

Two faces of the same coin, In International Conference on Computer

Aided Design ICCAD, ACM, 2002.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar, Synthesis of reactive(1) de-

signs, VMCAI (E. Allen Emerson and Kedar S. Namjoshi, eds.), Lecture

Notes in Computer Science, vol. 3855, Springer, 2006, pp. 364–380.

[PR89a] Amir Pnueli and Roni Rosner, On the synthesis of a reactive module, POPL

(New York, NY, USA), ACM Press, 1989, pp. 179–190.

[PR89b] Amir Pnueli and Roni Rosner, On the synthesis of an asynchronous re-

active module, Proceedings of the 16th International Colloquium on Au-

tomata, Languages and Programming (London, UK, UK), ICALP ’89,

Springer-Verlag, 1989, pp. 652–671.

[PR90] Amir Pnueli and Roni Rosner, Distributed reactive systems are hard to

synthesize, FOCS’90, IEEE Computer Society, 1990, pp. 746–757.

[PR07] Andreas Podelski and Andrey Rybalchenko, Armc: The logical choice

for software model checking with abstraction refinement, PADL (Michael

Hanus, ed.), Lecture Notes in Computer Science, vol. 4354, Springer, 2007,

pp. 245–259.

[PRSV98] Roberto Passerone, James A. Rowson, and Alberto Sangiovanni-

Vincentelli, Automatic synthesis of interfaces between incompatible proto-

cols, Proceedings of the 35th annual Design Automation Conference (New

York, NY, USA), DAC ’98, ACM, 1998, pp. 8–13.

[Puc10] Bernd Puchala, Asynchronous omega-regular games with partial informa-

tion, Proc. MFCS, LNCS, vol. 6281, Springer, 2010, pp. 592–603.

[Pud97] Pavel Pudlák, Lower bounds for resolution and cutting plane proofs and

monotone computations, J. Symb. Log. 62 (1997), no. 3, 981–998.

214

REFERENCES

[Rei84] John H. Reif, The complexity of two-player games of incomplete informa-

tion, J. Comput. Syst. Sci. 29 (1984), no. 2, 274–301.

[RSS07] Andrey Rybalchenko and Viorica Sofronie-Stokkermans, Constraint solv-

ing for interpolation, Proc. VMCAI’07, LNCS, vol. 4349, Springer-Verlag,

2007, pp. 346–362.

[RW89] Peter J. Ramadge and W. Murray Wonham, The control of discrete event

systems, Proceedings of the IEEE 77 (1989), no. 1, 81–98.

[SBMR13] Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier,

Robust controller synthesis in timed automata, CONCUR (Pedro R.

D’Argenio and Hernán C. Melgratti, eds.), Lecture Notes in Computer

Science, vol. 8052, Springer, 2013, pp. 546–560.

[Sch86] Alexander Schrijver, Theory of linear and integer programming, John Wi-

ley & Sons, Inc., New York, NY, USA, 1986.

[Sch04] Ph. Schnoebelen, The verification of probabilistic lossy channel systems,

Validation of Stochastic Systems (Christel Baier, Boudewijn R. Haverkort,

Holger Hermanns, Joost-Pieter Katoen, and Markus Siegle, eds.), Lecture

Notes in Computer Science, vol. 2925, Springer, 2004, pp. 445–466.

[SF06] Sven Schewe and Bernd Finkbeiner, Synthesis of asynchronous systems,

16th International Symposium on Logic Based Program Synthesis and

Transformation (LOPSTR 2006), Springer Verlag, 2006, pp. 127–142.

[SF07] , Bounded synthesis, ATVA (Kedar S. Namjoshi, Tomohiro Yoneda,

Teruo Higashino, and Yoshio Okamura, eds.), Lecture Notes in Computer

Science, vol. 4762, Springer, 2007, pp. 474–488.

[SG04] Sharon Shoham and Orna Grumberg, Monotonic abstraction-refinement

for ctl, TACAS’04 (Kurt Jensen and Andreas Podelski, eds.), Lecture

Notes in Computer Science, vol. 2988, Springer, 2004, pp. 546–560.

[SMA10] The SMACS Tool, http://www.smacs.be, 2010.

215

REFERENCES

[Som09] Fabio Somenzi, CUDD: CU decision diagram package, release 2.4.2, Uni-

versity of Colorado at Boulder, 2009.

[Tri04] Stavros Tripakis, Undecidable problems of decentralized observation and

control on regular languages, Inf. Process. Lett. 90 (2004), no. 1, 21–28.

[vEJ13] Christian von Essen and Barbara Jobstmann, Program repair without re-

gret, Computer Aided Verification (CAV) (Springer, ed.), 2013, To appear.

[VYY09] Martin T. Vechev, Eran Yahav, and Greta Yorsh, Inferring synchroniza-

tion under limited observability, TACAS (Stefan Kowalewski and Anna

Philippou, eds.), Lecture Notes in Computer Science, vol. 5505, Springer,

2009, pp. 139–154.

[WTM10] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray, Reced-

ing horizon control for temporal logic specifications, HSCC (Karl Henrik

Johansson and Wang Yi, eds.), ACM ACM, 2010, pp. 101–110.

[YM05] Greta Yorsh and Madanlal Musuvathi, A combination method for gener-

ating interpolants, CADE, LNCS, vol. 3632, Springer, 2005, pp. 353–368.

216

	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Publications
	1.4 Organization of the Thesis

	2 Infinite-State Games under Incomplete Information
	2.1 Game Model and Representation
	2.1.1 Preliminaries
	2.1.2 Two-Player Games
	2.1.3 Symbolic Representation
	2.1.4 Discussion of the Game Model

	2.2 Games under Incomplete Information
	2.2.1 Observation-based Strategies
	2.2.2 Determinacy and Counterexamples
	2.2.3 Knowledge-Based Subset Construction
	2.2.4 The Game Solving and Strategy Synthesis Problems
	2.2.5 Discussion of the Knowledge-Based Subset Construction

	2.3 Game Abstractions

	3 Lossy Channel Games under Incomplete Information
	3.1 Preliminaries
	3.2 Lossy Channel Games under Incomplete Information
	3.3 Algorithms for Safety and Reachability Games
	3.3.1 Monotonicity Properties of the Transition Relations
	3.3.2 Effective Representation of Upward and Downward-Closed Sets
	3.3.3 Effective Successor and Predecessor Operations
	3.3.4 Solving Safety Lossy Channel Games
	3.3.5 Solving Reachability Lossy Channel Games

	3.4 Undecidability of Parity LC-Games under Incomplete Information

	4 Games with Fixed Observations
	4.1 Monotonic and Downward-Closed BQO Games
	4.2 R-stable Games

	5 Counterexample-Guided Abstraction Refinement for Games under Incomplete Information
	5.1 Abstraction for Incomplete-Information Games
	5.1.1 Abstraction Predicates
	5.1.2 Abstract Game Structure with Perfect Information
	5.1.3 Soundness of Predicate Abstraction
	5.1.4 From Abstract Strategies to Finite-State Concrete Strategies

	5.2 Counterexample Tree Analysis
	5.2.1 Counterexample Concretization
	5.2.2 Trace formulas
	5.2.3 Tree formula
	5.2.4 Concretizability Characterization
	5.2.5 Sources of Spuriousness

	5.3 Interpolation for Observation Refinement
	5.3.1 Craig Interpolation
	5.3.2 Observation Equivalence Refinement
	5.3.3 Localized Interpolants for Linear Rational Arithmetic

	5.4 Abstraction Refinement Loop
	5.4.1 Transition Relation Refinement
	5.4.2 CEGAR Loop
	5.4.3 Soundness and Progress
	5.4.4 Relative Completeness

	5.5 Experiments
	5.5.1 Prototype implementation
	5.5.2 Experimental Results
	5.5.3 Discussion

	6 Timed Control with Partial Observation
	6.1 Preliminaries
	6.2 Timed Controller Synthesis
	6.3 Observations for Timed Control
	6.3.1 Undecidability Results
	6.3.2 Timed Control with Fixed Observations
	6.3.3 Finite Control Strategies

	7 Synthesis of Observation Predicates for Timed Control
	7.1 Await-Time Games
	7.2 Fixed-Observations Abstraction
	7.2.1 Abstraction with Fixed Action Points
	7.2.2 Predicate Abstraction
	7.2.3 Existence of Finite-State Strategies

	7.3 Observation Refinement
	7.3.1 CEGAR Loop
	7.3.2 Concretizability Characterization
	7.3.3 Computing Observation Predicates
	7.3.3.1 Computing Decision Predicates
	7.3.3.2 Computing Action Points

	7.3.4 Progress

	7.4 Experiments
	7.4.1 Prototype implementation
	7.4.2 Experimental Results
	7.4.3 Discussion

	8 Conclusion & Outlook
	References

