
Modeling and Verifying the
FlexRay Physical Layer Protocol
with Reachability Checking of

Timed Automata

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für

Mathematik und Informatik
der Universität des Saarlandes

Michael Gerke

Saarbrücken, 2020

ii

Dekan: Univ.-Prof. Dr. Thomas Schuster

Datum des Kolloqiums: 21.12.2020
Vorsitzende des Prüfungsausschusses: Prof. Martina Maggio, Ph.D.
Berichterstatter im Prüfungsausschuss: Prof. Bernd Finkbeiner, Ph.D.,

Prof. Dr. Ernst-Rüdiger Olderog
Akademisches Mitglied des Prüfungsausschusses: Dr.-Ing. Tim Dahmen

iii

“There is a concept which corrupts and upsets all others. I refer not to Evil,
whose limited realm is that of ethics; I refer to the infinite.”

(Jorge Luis Borges,
“Avatars of the Tortoise”,

in Jorge Luis Borges, Donald A. Yates: Labyrinths: Selected Stories & Other Writings,

New Directions Publishing, 1964, page 202)

Danksagung

Ich möchte Prof. Finkbeiner, Ph.D., für seine Unterstützung, seine Geduld, und seine
Ratschläge danken, die mir erlaubten, die vorliegende Dissertation zu verfassen.
Besonderen Dank schulde ich auch Dr. Hans-Jörg Peter und Prof. Dr. Rüdiger Ehlers,
von denen ich während meiner Zusammenarbeit mit ihnen viel gelernt habe. Mein
Dank gilt auch meiner Familie und meinen Freunden und Kollegen, die mir während
meines Promotionsstudiums den Rücken stärkten und mir immer wieder Kraft zum
Weitermachen gaben. Schließlich möchte ich mich auch bei Schloss Dagstuhl, dem
Leibniz-Zentrum für Informatik, dafür bedanken, dass ich die vorliegende Arbeit
neben meiner dortigen neuen Tätigkeit noch vervollständigen konnte.

Acknowledgment. This work was partially supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Center
“Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

iv

v

Abstract. In this thesis, I report on the verification of the resilience of the
FlexRay automotive bus protocol’s physical layer protocol against glitches during
message transmission and drifting clocks. This entailed modeling a significant part
of this industrially used communictation protocol and the underlying hardware as
well as the possible error scenarios in fine detail. Verifying such a complex model
with model-checking led me to the development of data-structures and algorithms
able to handle the associated complexity using only reasonable resources. This
thesis presents such data-structures and algorithms for reachablity checking of
timed automata. It also present modeling principles enabling the construction
of timed automata models that can be efficiently checked, as well as the models
arrived at. Finally, it reports on the verified resilience of FlexRay’s physical layer
protocol against specific patterns of glitches under varying assumptions about the
underlying hardware, like clock drift.

Zusammenfassung. In dieser Dissertation berichte ich über den Nachweis der
Resilienz des Bitübertragungsprotokolls für die physikalische Schicht des FlexRay-
Fahrzeugbusprotokolls gegenüber Übertragungsfehlern und Uhrenverschiebung.
Dafür wurde es notwendig, einen signifikanten Teil dieses industriell genutzten
Kommunikationsprotokolls mit seiner Hardwareumgebung und die möglichen Feh-
lerszenarien detailliert zu modellieren. Ein so komplexes Modell mittels Mo-
dellprüfung zu überprüfen führte mich zur Entwicklung von Datenstrukturen
und Algorithmen, die die damit verbundene Komplexität mit vernünftigen Res-
sourcenanforderungen bewältigen können. Diese Dissertation stellt solche Da-
tenstrukturen und Algorithmen zur Erreichbarkeitsprüfung gezeiteter Automa-
ten vor. Sie stellt auch Modellierungsprinzipien vor, die es ermöglichen, Model-
le in Form gezeiteter Automaten zu konstruieren, die effizient überprüft wer-
den können, sowie die erstellten Modelle. Schließlich berichtet sie über die
überprüfte Resilienz des FlexRay-Bitübertragungsprotokolls gegenüber spezifi-
schen Übertragungsfehlermustern unter verschiedenen Annahmen über die Hard-
wareumgebung, wie etwa die Uhrenverschiebung.

vi

Contents

1 Introduction 1

1.1 Extreme Computerization . 1

1.2 Vulnerability of computerized systems 1

1.3 Confidence in computerized systems . 2

1.4 Starting Ground . 4

1.5 Related Work . 5

1.6 Previously published work . 8

2 FlexRay Physical Layer Protocol 11

2.1 Introduction to FlexRay . 12

2.1.1 Bus access organization . 13

2.1.2 Synchronization and startup . 14

2.1.3 Frames . 15

2.1.4 Controller architecture . 15

2.2 FlexRay physical layer protocol . 17

2.2.1 Stream format . 17

2.2.2 Stream transmission . 18

2.3 Verification of the physical layer protocol 20

2.3.1 Results on the reliability of the physical layer protocol 20

2.3.2 Family of Benchmarks . 21

2.3.3 Explosion of discrete state space 22

I Preliminaries 25

3 Timed Automata 29

3.1 Composition . 31

3.2 Extended Timed Automata Syntax . 32

3.3 Finite Semantics . 33

3.4 Clock Zones . 35

4 Binary Decision Diagrams 37

vii

viii CONTENTS

II Data-Structures and Algorithms 39

5 State-Space Representation and Exploration 43

5.1 Finite representation of infinitely many states 44

5.2 Separate or Unified Data-Structures . 45

5.3 Algorithmic Implications . 47

5.3.1 Operations on Explicit Data . 47

5.3.2 Symbolic Operations on Symbolic Data-Structures 47

5.4 Reachability Model Checking . 48

5.4.1 Discrete States . 48

5.4.2 Continuous States . 49

5.5 Verification and Bug Finding . 50

5.5.1 Exploration . 51

5.5.2 CEGAR . 51

5.6 Data-Structure Tradeoffs . 52

5.6.1 Memory Consumption vs Runtime 52

5.6.2 Symbolic Operations on Symbolic Data-Structures 52

5.6.3 Preferring some Theory over the Others 53

6 Making the Right Cut 55

6.1 Fully Symbolic Real-Time Model Checking 56

6.1.1 Computing the Reachable States using CZMs 56

6.1.2 An Example . 58

6.1.3 Adding support for invariants . 59

6.1.4 Possible Optimizations . 60

6.2 Guided Counterexample Generation . 61

6.3 Experimental Results . 62

6.3.1 Prototype Implementation . 62

6.3.2 A FlexRay Physical Layer Protocol Model 62

6.3.3 Model Checking the FlexRay Model 63

6.3.4 Model Checking the Fischer Protocol 63

6.4 Conclusion . 64

7 Underapproximating Lookahead 67

7.1 A bitstring/difference-logic model . 67

7.1.1 Symbolic Data-Structures: DBMs and BDDs 68

7.2 Growing the BDDs faster . 68

7.3 Algorithm Idea . 68

7.4 CZM Algorithm . 69

7.4.1 Formalization of Algorithm Idea 69

7.5 Example . 83

7.6 Evaluation on FlexRay Benchmark . 86

CONTENTS ix

III Modeling Principles 89

8 Selection of Theories 93
8.1 Property to Check . 93
8.2 Relevance of System Behaviors . 94
8.3 Case Study: FlexRay . 95

9 Tailoring to Data-Structures and Algorithms 97
9.1 Modeling Time . 97
9.2 Modeling Discrete State . 99

10 Modeling FlexRay 101
10.1 Parametric Timed Automata Models . 102
10.2 Modeling Principles . 103
10.3 Structure of the FlexRay Model . 103
10.4 Hardware Environment and Possible Errors 105

10.4.1 Ignore Constant Delays in One-way Communication 106
10.4.2 A Register with Asynchronous Input 106
10.4.3 Error Types . 109

10.5 Modeling the Bus . 110
10.6 Glitches . 116

10.6.1 Sample Glitches . 117
10.6.2 Real-Time Glitches . 120

10.7 Oscillators . 121
10.8 Modeling the FlexRay Protocol . 124

10.8.1 Modeling the Sender . 124
10.8.2 Modeling the Receiver . 128

11 Model Checking FlexRay 139
11.1 First Verification of FlexRay . 140
11.2 Thorough Verification of FlexRay . 142

11.2.1 Analyzing the Parameters . 143
11.3 Analysis of Glitch Patterns . 145

11.3.1 Pattern 1 out of 4 . 146
11.3.2 Pattern 2 out of 88 . 147

12 Conclusion 149
12.1 Contributions . 150
12.2 Advancing the State of the Art . 150
12.3 Impact . 151

x CONTENTS

List of Figures

2.1 FlexRay schedule . 13

2.2 Frame format . 15

2.3 FlexRay node architecture . 16

2.4 Message Stream Format . 18

2.5 FlexRay physical layer protocol . 19

3.1 Example timed autmaton . 30

3.2 Example network of timed automata 31

3.3 Extended timed automata location syntax 33

3.4 Automata splitting syntax . 33

4.1 Example BDD . 38

6.1 An example network of timed automata 58

7.1 Example tree induced by GS . 77

7.2 Example timed automaton, GI and GS given 83

10.1 The structure of the FlexRay model . 104

10.2 Timed automata model of the oscillators 105

10.3 Hardware scenario . 107

10.4 Timing diagram voltage level transition 108

10.5 Register Semantics . 109

10.6 Model of the sender’s oscillator and the bus 111

10.7 Optimized model of the sender’s oscillator and the bus 112

10.8 Bus† . 113

10.9 Simplified Receiver Bus sampler† . 114

10.10 Simple bus‡ . 115

10.11 Simple Bus sampler‡ . 116

10.12 Real-time vs. sample glitch patterns. 117

10.13 Receiver Bus sampler† . 118

10.14 Short Sample Glitch‡ . 119

10.15 Long Sample Glitch‡ . 119

10.16 Sample Glitch: 2 in ERRDISTs‡ . 120

xi

xii LIST OF FIGURES

10.17 Real-time Glitch: 1 in ERRDISTt‡ . 121
10.18 Real-time Glitch: 2 in ERRDISTt‡ . 122
10.19 Clocks† . 122
10.20 Clocks‡ . 123
10.21 Message creation and sending . 124
10.22 Abstracted message creation and sending 125
10.23 Abstract message creation, sending, and storing with position 127
10.24 Message reception and verification with position 127
10.25 Sender Control Start‡ . 129
10.26 Sender Control Middle‡ . 129
10.27 Sender Control End‡ . 129
10.28 Glitch Correction . 130
10.29 Glitch and Drift . 131
10.30 Voter† . 131
10.31 Voter‡ . 132
10.32 Bitstrobe Control† . 133
10.33 Bitstrobe Control‡ . 133
10.34 Receiver Control Start† . 136
10.35 Receiver Control Middle† . 136
10.36 Receiver Control End† . 136
10.37 Receiver Control Start‡ . 137
10.38 Receiver Control End‡ . 137

List of Tables

6.1 Prototype, Uppaal, and RED compared on the Fischer benchmark . . 64
6.2 Prototype and Uppaal compared on the FlexRay benchmark 65

7.1 Underapproximating lookahead benchmarks 86

11.1 Verification of † with Uppaal . 140
11.2 Model † parameter values . 141
11.3 Standard model ‡ paramaters . 144
11.4 Standard glitch patterns in ‡ . 144
11.5 Effect of parameter variation in ‡ on glitch patterns 145

xiii

xiv LIST OF TABLES

List of Algorithms

1 Least fixed point construction for the set of reachable states 49
2 Least fixed point using CZMs . 57
3 Least fixed point using CZMs, with invariant treatment 60
4 Least fixed point with GI , overview . 72
5 Least fixed point with GI , detailed . 72
6 Least fixed point with GI and invariants 74
7 Least fixed point with GS and invariants 76

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Extreme Computerization

Since the 1960s, our world has witnessed the third industrial revolution, also called the
digital revolution [Sch16]. Since the development of semiconductors, computers went
from mainframes to personal computers, to the internet and ubiquitous computing. At
the end of the last millennium, traditional general purpose computers had already been
reduced to only a minuscule fraction of all computers in the world, with almost all mi-
croprocessors being ubiquitously used in embedded systems [Tur99]. Today, computers
outnumber humans by more than ten to one [Fur17].

In the fourth industrial revolution, ubiquitous computers communicating with each
others are predicted to play an important role, i.a., transforming the methods of pro-
duction by giving rise to smart factories, a development which is also referred to as
Industry 4.0 [Sch16]. Every aspect of our modern civilization, be it transportation,
power and water supply, administration, agriculture or production is ever more depen-
dent on communicating computers.

Modern planes are almost exclusively controlled via computers, which relay the
pilot’s commands. This control paradigm is called fly-by-wire and its roots go back
more than half a century [Tom00]. More generally, x-by-wire stands for the idea to
control a critical function of a vehicle via computers relaying the operator’s commands
to another computer that, in turn, activates some actuator of the vehicle, like, e.g.,
the brakes. For more than two decades, cars have been containing dozens of micropro-
cessors [Tur99]. To facilitate communication between these microprocessors, they have
been connected by communication buses like controller area network (CAN) [KDL86]
or, lately, FlexRay [Fle05, Fle10b], which will be discussed in more detail in this thesis
(For an introduction to FlexRay see Chapter 2).

1.2 Vulnerability of computerized systems

The massive spread of and dependence on computers makes our civilization vulnerable
to faults in the design of these computers. With the huge number of microprocessors

1

2 CHAPTER 1. INTRODUCTION

that are produced, erroneous designs can affect a sizable portion of our computing
infrastructure. For example, it is estimated [Gil18] that at least three billion computers
have the Spectre and Meltdown vulnerabilities, which expose the computers to the risk
of certain hacking attacks. Failures of computer systems or attacks against them are
economically very costly: In 2012, Gene Kim and Mike Orzen [Kri12] estimated the
global annual cost of IT failure at 3 trillion USD. And in 2019, Accenture [AB19]
estimated the cost of cyber security threads to the world economy at 5.2 trillion USD
lost over the next five years in the private sector alone.

But aside from malicious intent or outright erroneous designs, computers—and sys-
tems composed of networked computers—also need to be resilient to electromagnetic
interference (EMI). Electromagnetic radiation is emitted by many sources, including
electronic devices, power lines, and nuclear reactions, or can stem from solar wind
or cosmic rays. Thus, computers will be exposed to various levels of it. While out-
right shielding from electromagnetic interference has been used for decades [Nie81],
this comes with significant cost in terms of extra weight and space, which limits this
approach when it comes to ubiquitous embedded systems. Another approach is the
use of hardware that has been hardened against electromagnetic interference [dW08].
When a certain basic level of protection against electromagnetic interference is reached,
ordinary electromagnetic interference does not cause any obvious problems to the sys-
tem anymore. Of course, if a strong enough electromagnetic source, say, a strong
electromagnetic pulse like from the detonation of a nuclear bomb, is nearby, most cir-
cuitry, even if hardened and moderately shielded, will still suffer from electromagnetic
interference.

However, it becomes very hard to know whether problems that occur in the opera-
tion of a system containing embedded networked computers stem from electromagnetic
interference or from other sources, as electromagnetic interference short of burning out
circuits does not leave any traces. For example, Keith Armstrong [Fle10a] names elec-
tromagnetic interference with the drive-by-wire system as a likely culprit for accidents
with self-accelerating cars.

Long wires basically act as antennae, which makes them especially susceptible to
electromagnetic interference. Systems composed of several computers which are con-
nected by long wires consequently need to be designed with electromagnetic interference
in mind. Communication protocols that are resilient to transmission errors which have
been introduced by electromagnetic interference are thus a necessary addition to shield-
ing and hardening of the hardware, if safety critical applications like x-by-wire have to
rely on correct operations of such systems.

1.3 Confidence in computerized systems

A system designed for a certain task or set of tasks, be it composed of a single computer
or a network of computers, may its functionality be encoded in specialized hardware or
software executed on general purpose hardware, is expected to perform its task with
a certain reliability. To achieve this, it is carefully designed using state of the art

1.3. CONFIDENCE IN COMPUTERIZED SYSTEMS 3

techniques. However, careful design alone is not enough to give us confidence that the
system will in fact perform as is expected. The system needs to be verified if one is
to have confidence that it actually meets the expectations. The most common form of
doing so is to test the system. This means that the system is supplied with various
inputs, and it is observed whether its outputs are as expected. A successful test just
proves that the system behaves as expected for the particular input that was tested.
As most useful systems, especially embedded systems, could be subject to an enormous
range of inputs, testing it can only strengthen confidence in the system, but it usually
cannot verify that the system will always behave as expected.

With the ever growing complexity of systems, the need for automatable methods
of increasing confidence in their “correct” operation grows as well. In order to test
many inputs, the testing needs to be done automatically, as manual testing quickly
becomes unfeasible. This entails that a description of what it means for a system to
behave as expected is needed, allowing automatically generated tests to check whether
the system’s output constitutes expected behavior or not. To capture the notion of
expected behavior, the “correctness” of a system is defined using a specification which
describes the system-behavior that is considered correct.

If this specification is written down using a formal language, like logic, it provides
a formal notion of correctness of a system. This not only allows to automatically make
sense of arbitrary tests, but also opens up the road to trying to prove a system to be
correct for every input. This could be achieved by testing all possible inputs, but almost
all systems have too many possible inputs to test each of them in a realistic amount of
time with a realistic amount of resources. Most systems performing important tasks
have so many possible inputs that it is impossible to test each of them even given
unlimited resources, as a near infinite number of scenarios would have to be tested: It
would need more time than our universe can provide, given our current knowledge of
the universe. And if the range of potential inputs is infinite, testing simply cannot be
used to cover all possible inputs in finite time at all.

Absent the possibility to test each individual input, one can turn to formal methods
to try to check sets of inputs at once and thus cover all possible inputs. As the system
can however only react to an individual input at a time, one cannot test the system
itself that way. However, when a formal representation of the system or of a system
behavior can be acquired, formal methods can then be used to formally establish its
correctness with respect to the specification by covering all possible inputs, e.g., with
a number of sets of inputs.

If the system is itself defined in a formal way, like in a programming language,
this endeavor can make use of the system definition. However, many systems comprise
physical components whose behavior first needs to be described in a formal way, deliv-
ering a model of their behavior. Even the behavior of the code of a computer program
is only well defined if one assumes an underlying computational model of the system
that is going to execute the code.

The model of the system does not need to treat every detail of its behavior, it
only needs to give an abstracted view sufficient for the intended use. So a hardware
model often does not need to treat voltages. Instead, the model then represents an

4 CHAPTER 1. INTRODUCTION

abstracted view described in terms of boolean logic. Whether the formal model accu-
rately describes the behavior of a non-formal system is of course not formally proven,
and strengthening confidence in the model remains an engineering task.

Given a model and a specification, the process of verifying the correctness of the
model’s behavior with respect to the specification can be formalized and, hopefully,
automated as well. The process could take the form of a mathematical proof, as in
deductive verification. Or, a model could be described as a directed control flow graph.
This allows to look at the control flow through the model given the set of all possible
inputs: Starting in all initial control states of the model, at every branch in the model
one partitions the set with a certain property if the branch depends on the input having
this property, and follows all branches with the respective sets. Thus, all path through
the model could be followed, each with a set of inputs exactly fulfilling the requirements
of the path leading to this branch and following it. If a set becomes empty, one can
stop following it. If one comes back to a branch one has been to before and the set is a
subset of the set one had when being at that branch before, one can also stop following
this set, as one has already explored all paths from there. This process is an instance
of model checking. Model Checking can cover all possible paths through a model thus
discovering all possible behaviors. Given a finite model, this process can terminate, but
will still often consume vast amounts of time and memory. Models for model checking
will often be described in terms of automata, and the specification of correctness will
either be described in terms of an automaton as well or some temporal logic statement
over the path taken though the model’s automaton.

Model checking requires efficient algorithms and data-structures, and the confidence
in a model can be strengthened by using a sound modeling methodology. This thesis
treats these pillars of verification, presenting novel approaches to each of them. The
development of these approaches was driven by the bid to verify the FlexRay physical
layer communication protocol, which will be used as a motivating example throughout
this thesis.

1.4 Starting Ground of this Work

As described in Section 1.5, the problem of verifying real-time system models and, more
specifically, asynchronous communication protocols like FlexRay, has been attacked
from many angles before.

Temporal logics like Computation Tree Logic and Timed Computation Tree Logic
or Duration Calculus have been used to describe systems and properties [OD08]. Pro-
cess algebras like Communicating Sequential Processes (CSP) [Hoa78] have been em-
ployed [WKTZ05].

Manual proof efforts have been supported by theorem provers like PVS [ORSvH95]
or Isabelle/HOL [NPW02, Pau94] and even model checkers like NuSMV [CCGR00].
Alas, manual efforts have been very labor intensive, often inflexible and sometimes re-
liant on unrealistic assumptions, like the absence of transmission errors due to external
interference.

1.5. RELATED WORK 5

Transition systems like Petri Nets and Statecharts have been employed to model
systems, and so have Timed Automata (see Chapter 3). The latter allow the usage
of various automated verification tools like Uppaal [BDL04] or Kronos [Yov97]—but
the complexity of their verification efforts rises exponentially with the number of clocks
in the model.

Automated verification has shown a lot of promise, as it enables quick verification
of changes to a system and reduces human error and human labor. For timed systems
modeled in timed automata, the complexity of the model quickly limits the applica-
bility of model checkers like Uppaal and Kronos, especially in terms of the timing
complexity due to the inherent exponential complexity in the number of clocks, but
also in terms of the discrete complexity, i.e., the number of locations and possible val-
ues of discrete finite variables—due to their semi-symbolic approach being vulnerable
to explosion of the discrete state space.

These approaches only allow to verify systems of limited complexity or more com-
plex ones on a rather simplified level, or have to rely on massive manual effort. The
work presented here sets out to enable the automatic verification of complex systems,
like the FlexRay physical layer protocol, using a timed automata model and model
checking. The challenge is, thus, to reduce the complexity of the model without sac-
rificing precision through oversimplification or overly limiting assumptions, while also
improving the resilience of automatic verification of timed automata against discrete
complexity.

1.5 Related work1

The analysis of communication protocols is an active field. To name two works as
an example, Brown and Pike [BP06] use SAL [MOR+04] to increase the degree of
automation in proofs of the physical layer protocols 8N1 and Biphase Mark. Invariants
of the latter are derived by Vaandrager et al. [VG06] using Uppaal [BDL04]. These
invariants enable a semi-automatic correctness proof using the PVS [ORSvH95] proof
assistant. Both protocols are not designed for an unreliable physical environment, in
contrast to the FlexRay physical layer protocol.

FlexRay has generated a lot of interest. In a comparison of FlexRay with the older
bus protocol standards MIL-STD-1553 [Con00] and TTP/C [KG93], Srinivasan and
Lundqvist [SL02] conclude that in real-time systems, FlexRay should in the long run
become the protocol of choice.

The interest in FlexRay has spread beyond its automotive origins into the aerospace
community: Both Paulitsch and Hall [PH08]—who discuss fault containment in
FlexRay, propose the addition of a suitable bus guardian, and advocate further investi-
gation into FlexRay’s dependability—as well as Heller and Reichel [HR09] see FlexRay
as a strong field bus candidate for use in an aeronautic context. The latter examine
worst case scenarios of jitter and glitches2 to derive signal integrity criteria for the per-

1This section contains parts already published in [GEFP10, GEFP12a, GEFP12b]
2Jitter refers to erroneous bit values introduced by the non-synchronicity interfering with hardware

6 CHAPTER 1. INTRODUCTION

formance of the physical layer. They use numerical simulation to evaluate the effects of
increasing the maximal length of a cable between two communicating FlexRay nodes,
which in planes quickly surpasses the 24 m FlexRay is designed for and that are suffi-
cient in cars. Their evaluation of FlexRay using cable lengths of more than 100 m with
added lightning-strike-protection circuits, as common in an aeronautic context, leads
them to advocate the use of an alternative physical layer, such as RJ485, and adapting
its interface to the FlexRay protocol. The work [GEFP12b, GEFP10, GEFP12a] which
is presented in Chapters 10 and 11, provides with the model checking of a FlexRay mo-
del and its parameter analysis just the push button technology needed to re-evaluate
the effect of changes in hardware assumptions such as those from a transfer from an
automotive to an aeronautic environment.

The subproject Automotive of the Verisoft project attempted a first formaliza-
tion [Böh06, Ger07] of FlexRay and its formal verification, resulting in a deductive
“paper and pencil” proof-sketch presented in [BBG+05] that indicated correct mes-
sage transfer by the physical layer protocol. The proof had to use the assumption
of a reliable physical layer without glitches, which eventually lead me to abandon
the deductive approach in favor of a model-checking based verification effort that
does include glitches. The manual verification effort was however extended to a
more comprehensive proof machine-checked with the interactive theorem prover Is-
abelle/HOL [NPW02, Pau94] by Schmaltz in [Sch06], which gave a formal model of
communication between asynchronous hardware registers, and in [Sch07], which inte-
grated this model with the bit clock alignment mechanism (see Section 2.2.2) prov-
ing correct message reception in the combined model, and demonstrating the error-
proneness of pencil-and-paper approaches.3 Parts of the proof were automated using
the NuSMV model checker [CCGR00]. Knapp and Paul [KP07] outline a pervasive
correctness proof combining the asynchronous hardware model with bit clock alignment
and a clock synchronization similar to the network idle time adjustment in FlexRay
(see Section 2.1.2) to demonstrate the collision freedom of their TDMA bus access
scheme, which is very similar to the one employed in the static segment by FlexRay
(see Section 2.1.1). Moreover, they integrate their FlexRay like serial f-interface with
an instruction set architecture (ISA) level programming model for an electronic con-
trol unit (ECU) with such an f-interface. Alkassar, Böhm and Knapp [ABK08b] use
Isabelle/HOL to provide a formal proof for the setup from [KP07] naming their ECUs
with f-interfaces automotive bus controllers (ABCs). They focus on the correctness of
their synchronization and their TDMA scheme, discharging many proof obligations to
NuSMV, often combining it with the domain reducing IHaVeIt [TA08, Tve05] prepro-
cessor. They emphasize the importance of taking real-time into account and lament
the very low degree of automation available for their verification effort wherever con-

requirements. A glitch is an erroneous bit value spontaneously introduced due to unspecified reasons
like electromagnetic interference. See Section 10.4 for a more detailed description of these phenomena.

3In [BBG+05], the strobecounter is reset to 1 (000) instead of the 2 (001) that would be required by
the protocol. This lead to the 6th voted value being strobed instead of the 5th one. However, [Sch07]
shows that only the 4th (which is strobed in [Sch07]) and the 5th (as required by the protocol) can be
proven to be unaffected by jitter (in the absence of glitches).

1.5. RELATED WORK 7

tinuous real-time is involved. In [ABK08a] the same authors extend the ABC setup
from [ABK08b] with a mechanism for initial synchronization during the startup, and
for (re-)integration of ABC nodes into an ongoing communication in an ABC network.
The startup and integration procedure is visibly inspired by FlexRay’s integration
method through listening to the bus (see Section 2.1.2). However, the differences are
marked, as the whole startup machinery in FlexRay—that is used to avoid or at least
detect and resolve collisions before establishing an approximation of a shared view of
time—is replaced by individual timers for each node telling the nodes that first power
up when they can safely initiate a synchronization, avoiding collisions by setting the
timer to a sufficiently different time in each node. The other nodes do only integrate
into the communication started by the first nodes. They also allow for nodes to stop
sending or never start due to a failure of the node. This is compensated by doing away
with designated synchronization nodes, and allowing one of the non-failing first pow-
ered up nodes to initiate synchronization. The introduction of possible failures comes
with limitations, though, as erroneous sending, or failing of all first powered up nodes
is excluded, and it is assumed that all non first powering up nodes know that they
are not a first powering up node, even if there is not yet any communication on the
bus. With these assumptions, a formal proof of correct message transmission between
non-failing nodes in a cluster that has been started by only a subset of the constituent
nodes and may contain gracefully failing nodes is provided and has been checked with
Isabelle/HOL, discharging some proof-obligations to NuSMV. Endres, Müller, Shadrin
and Tverdyshev [EMST10] give a short overview of the verification task and a test de-
ployment on field-programmable gate arrays (FPGAs) for a distributed system in the
form of a cluster of ECUs, as verified by Tverdyshev [Tve09], connected by ABCs. Such
a cluster is used by Schmidt [Sch11] as the foundation for a small verified real-time
operating system for the ECUs. Müller in his dissertation [Mül11] and together with
Paul [MP11] combines all the results from [BBG+05, Sch06, Sch07, KP07, ABK08b],
fixing and adjusting the previous results into a gate level description of an automotive
bus controller which is deployed on an FPGA and a machine checked proof of correct
message transmission in a correctly configured cluster of such controllers, leaving the
incorporation of the extensions from [ABK08a] into their comprehensive setup to fu-
ture work, which, to the best of my knowledge, has not been carried out yet. However,
all these manual and semi-manual deductive proof efforts include jitter, but exclude
glitches. Moreover, the manual effort required to re-prove parts of the overall proof
if parameter assumptions where to be changed, e.g., in the hardware model, is non-
negligible, as these proofs are semi-manual and not fully automatic. A fully automatic
proof by model checking can in these cases quickly verify whether the requirements for
proofs talking about the higher levels are still met after a change in assumptions on
the hardware, the only manual effort required being the changing of the model, and
even that could be easily automated for many parameters in a parameterized model,
if the need to check a lot of different values would arise.

8 CHAPTER 1. INTRODUCTION

1.6 Previously published work

This thesis presents a modeling and model checking process that spanned a considerable
amount of time. Of course, an effort of that magnitude was not undertaken alone. I owe
a considerable dept of gratiude to my collaborators which worked with me on this effort,
namely Hans-Jörg Peter and Rüdiger Ehlers, and to my advisor Bernd Finkbeiner.

This thesis thus contains parts that have previously been published in joint work
together with Ehlers and Peter, and often Finkbeiner. In particular, the following
publications are an integral part of the work presented in this thesis:

Model Checking the FlexRay Physical Layer Protocol [GEFP10], published together
with Ehlers, Finkbeiner and Peter, presents the FlexRay model designated model † in
Chapter 10, introduces the scenario that model † is based on, which is in this thesis
described in Chapters 2 and 10, and presents the results obtained analyzing the model
with 32-bit Uppaal version 4.0.6 (which could not handle the variants with an even
bigger dicrete state space because it could not address more than 4 GiB of memory)
which are presented in Chapter 11. While it is impossible to quantify exactly how
much each author contributed to the ideas of the paper and their development, the
reason I am the first author of the paper, deviating from the alphabetical order, is that
I contributed all the central elements: the scenario and the model † itself and I also
applied Uppaal to evaluate the model under changing parameters. However, without
the contributions of my co-authors, the paper would never have reached the refinement
neccessary for a successful publication.

Automatic Protocol Verification with Parametric Physical Layers [GEFP12a], also
published together with Ehlers, Finkbeiner and Peter, is reporting on my work extend-
ing and improving the work presented in [GEFP10]. It presents the improved model
designated model ‡ in Chapter 10, elaborates on the scenario the models † and ‡ are
based on, here described in Chapters 2 and 10, and analyzes model ‡ with 64-bit Up-
paal version 4.1.4 under variations of hardware parameters and with various glitch
models, as presented in Chapter 11. That report was almost entirely my work, with
my co-authors mostly providing parts carried over from [GEFP10] and helping with
proofreading and some finishing touches.

FlexRay for Avionics: Automatic Verification with Parametric Physical Lay-
ers [GEFP12b], also published together with Ehlers, Finkbeiner and Peter, presents
lessons learned from the modeling and verification effort, here presented in Chapter 10.
It also describes the scenario on which the modeling effort is based, here described in
Chapters 2 and 10, and reports some robustness results on FlexRay, here reported in
Chapter 11. Again, I am the first author of that paper out of alphabetical order be-
cause I provided the scenario, the model and its analysis, as well as the lessons learned.
My co-authors were indispensible in helping to present these lessons learned with the
naive models introduced in that paper for explaining them, and in helping to bring the
paper to a level of sophistication that waranted publication.

Making the Right Cut in Model Checking Data-Intensive Timed Systems [EGP10],
published together with Ehlers and Peter, presents an algorithm for fully symbolic
real-time model checking based on the clock zone map (CZM) data-structure, both of

1.6. PREVIOUSLY PUBLISHED WORK 9

which are presented in Chapter 6. Most of the paper, especially the algorithm itself,
was really joint work. Certain parts owe more to contributions of some author than of
the others: I’d say that the idea for counterexample generation owes most to Rüdiger
Ehlers contributions, who’s insights into BDDs were also invaluable. Hans-Jörg Peter,
who was the driving force behind the endeavour to create an efficient fully symbolic
real-time model checker in the first place, provided the framework for the prototype
implementation and his expertise in programming made the prototype implementation
of the approach efficient enough to be viable. My input was most important for the
data-structure (which was developed from my work for my master’s thesis [Ger10], there
used in a semi-symbolic approach) and the FlexRay benchmark used in the evaluation
of the algorithm. The work from [EGP10] needs to be included in this thesis because
the approach presented in Chapter 7 extends it, so familiarity with it is necessary for
understanding that chapter.

The work from [EGP10] is also extended to the data structure of constraint matrix
diagrams (CMDs) in work published in Fully Symbolic Timed Model Checking using
Constraint Matrix Diagrams [EFGP10] together with Ehlers, Peter, and Daniel Fass.
However, the only part of that paper for which my input was more important than the
input of the other authors is the FlexRay benchmark. Ehlers, Fass and Peter provided
the most important input for most of that paper, so I only mention it in this thesis as
the work which generated the most interest from the line of work based on the work
presented in [EGP10].

10 CHAPTER 1. INTRODUCTION

Chapter 2

The Motivating Case Study:
FlexRay Physical Layer Protocol

Contents

2.1 Introduction to FlexRay . 12

2.1.1 Bus access organization . 13

2.1.2 Synchronization and startup 14

2.1.3 Frames . 15

2.1.4 Controller architecture . 15

2.2 FlexRay physical layer protocol 17

2.2.1 Stream format . 17

2.2.2 Stream transmission . 18

2.3 Verification of the physical layer protocol 20

2.3.1 Results on the reliability of the physical layer protocol 20

2.3.2 Family of Benchmarks . 21

2.3.3 Explosion of discrete state space 22

11

12 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

Abstract. The FlexRay bus protocol uses time division multiple access (TDMA)
with a periodic schedule. Each iteration (communication cycle) of this schedule
is divided into segments. The static segment is divided into slots of a fixed size
during which exactly one node is allowed to write to the bus. The dynamic segment
uses similar but very small slots that grow dynamically larger if they are used. As
the size of the segments is fixed, the last dynamic slots are omitted if a slot in the
dynamic segment is used and thus grows larger. Messages are send as frames in
a predefined format, which allows synchronization of the local views of time with
respect to the schedule. In the physical layer protocol, frames are sent as formatted
bit streams where each bit is send for eight clock cycles as a so called bit cell. This
allows the receiver, which samples the bus in each clock cycle, to synchronize its
view of the position in the stream of sampled values with respect to the bit cell.
The sample-stream is flattened into a stream of voted values by a majority vote
in a window sliding over the sample-stream, and a voted value from the middle
of each bit cell is chosen (strobed) to reconstruct the bit-stream that was sent.
The verification of the resilience of this physical layer protocol against patterns
of glitches (bit-flips) on the bus during the static segment will be the motivating
example throughout this work.

2.1 Introduction to FlexRay

FlexRay is a bus protocol. It was developed by a consortium of mayor companies
in the automotive industry and their suppliers. The core members of the consortium
were BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen. The FlexRay protocol was intended to replace controller area network
(CAN) and time triggered protocol (TTP) as the vehicle bus of choice. The FlexRay
consortium was disbanded in 2009, and FlexRay is now standardized in the ISO norms
17458-1 through 17458-5.

As x-by-wire functionality was intended to be operated over the FlexRay bus, real-
time guarantees and fault-tolerance where required.1 FlexRay also provides a high
data rate of 10 Mbit/s,2 as usage for in-car entertainment systems and the like was
also intended. As modern cars can have a large number of embedded computers, called
electronic control units (ECUs) in the following, the FlexRay bus supports a flexible
architecture of 2 channels, A and B, connecting the ECUs in a bus, star, or mixed bus
and star architecture. Independent of the architecture, the communication medium
will be referred to as bus in the following. The connected entities in a FlexRay network
are called its nodes.

Sections 2.1.1–2.1.4 give a general description of the FlexRay protocol to provide
context to the description of the FlexRay physical layer protocol in Section 2.2, the
verification of which is the motivating case study driving the development of the ap-
proaches presented in this thesis, as described in Section 2.3.

1The first big industrial application of flexray was its usage in the pneumatic damping system of
BMW’s X5 in 2006, which paved the way for full utilization of FlexRay in BMW’s 7 Series in 2008.

2Configuration parameters for slower bit rates of either 2.5 Mbit/s or 5 Mbit/s are also supplied in
the FlexRay specification, see [Fle05, Appendix B.1].

2.1. INTRODUCTION TO FLEXRAY 13

2.1.1 Bus access organization3

The FlexRay protocol is used to establish the communication in a network of electronic
control units (ECUs), which can be arbitrary embedded devices. Each ECU is con-
nected via a controller to a shared communication channel (which will be called bus
in the following).

FlexRay organizes communication into communication cycles, as explained
in [Fle05, Chapter 5]. At any given time, the communication is essentially one way:
one node sends and the others listen, or none is sending. The timing hierarchy of
FlexRay is shown in Figure 2.1. Each communication cycle is divided into four seg-
ments: the static segment, the dynamic segment, the symbol window, and the network
idle time. During the static segment, a static schedule applies, which gives only one
node write-access to the bus at a time. This allows for hard worst case execution time
estimates if communication is involved, because the access to the bus is guaranteed if
the schedule says so. The same schedule is programmed into all nodes. This static
segment of the cycle is followed by a dynamic segment where controllers are allowed
to try to send a message outside the normal schedule. The dynamic segment allows
communication based on priorities. Each node has its unique place in this hierarchy,
and all nodes know this place, so the priority is already fixed during the configuration
of the network. This enables nodes to send faster or sent more data, or even to send
only if the bandwidth is available and so on. A node can try to access the bus, but its
access could fail if nodes of higher priority already used up the available transmission
time in the dynamic segment. The end of the cycle consists of a small symbol window,
and finally a network idle time. The symbol window is reserved for communication
related to establishing the communication in the first place or for re-establishing it.
The network idle time is not used for communication, but acts as a buffer separating
the communication rounds. The length of its network idle time can be adjusted by a
node in order to re-synchronize the start of the next communication round with the
rest of the network.

Communication cycle

Static
segment

Dynamic
segment

Symbol
window

Network
idle time

Static slot Static slot

Figure 2.1: Schedule of the FlexRay communication cycle.4

3This section contains parts already published in [GEFP12b, Section II].
4This figure is inspired by [Fle05, Figure 5-1]. It is based on figures already published in [Ger05,

Figure 2] and [Ger10, Figure 5.2]. It has already been published in [GEFP12b, Figure 1].

14 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

FlexRay uses three notions of time to formulate the makeup of a communication
round.

The static segment is divided into static slots, each assigned to a node that has
exclusive write-access to the bus during this slot, which always begins and ends with a
small idle time to avoid collisions. The static segment thus provides access to the bus
in a time division multiple access (TDMA) scheme. The dynamic segment is divided
into minislots providing a flexible FTDMA scheme. Both the TDMA and the FTDMA
exclude collisions [ABK08b, ABK08a].

The duration of static slots, the dynamic segment, the symbol window, and the
network idle time is defined in terms of macro ticks. The dynamic segment’s minislots
have a minimum duration defined in terms of macroticks, but if a minislot is used
for transmission, its length will be extended. If the initial idle time in a minislot is
followed by a transmission, the length of the slot is extended until the transmission
is finished and some idle time has been added in the end. Of course, the length of
the transmissions is limited. And as the length of the dynamic segment is fixed, the
number of minislots in a dynamic segment varies if communication takes place. The
length of the idle times is also defined in terms of macroticks.

The duration of a macrotick is defined in terms of microticks. The clock synchro-
nization of a node can change the number of microticks in a macrotick in a node when
performing rate correction. The duration of a microtick is defined in terms of ticks of
the sample clock. The number of sample ticks per microtick is configurable as either 1,
2, or 4 and depends on the bit rate and the duration of a sample tick, which is derived
by multiplication with 1, 2, or 4 from the ticks of the oscillator. In the following, an
oscillator with a standard rate of 80 MHz, a sample tick multiplier of 1, and a microtick
length of 1 sample tick will be assumed, providing a 10 Mbit/s data rate.

2.1.2 Synchronization and startup

The local view of time of a node is synchronized with the other nodes by adjusting the
number of microticks in its macroticks and by shortening or lengthening its network idle
time, as detailed in [Fle05, Chapter 8]. Some nodes are designated as synchronization
nodes. The arrival time of their messages is used to calculate the difference to the point
in time at which they were expected to be received and adjust the local view of time
accordingly.

When the network is powered up, some node will be commanded to wake up a
channel, see [Fle05, Chapter 7]. The channel is woken up via sending a sequence of
symbols, the wakeup pattern. This pattern contains long idle periods, which allow for
collisions with other symbols to be detected and resolved. Nodes receiving a wakeup
pattern will wake up and start to listen in to communication, which allows them to
find out the global view of time. This happens when a synchronization node waking
up the network performs a coldstart : It sends a collision avoidance symbol to establish
that it is alone in waking up the network, and will then be the only node sending in the
first four communication cycles. The information from its synchronization messages,
namely which slot and cycle they were send in, will allow the other nodes to deduce an

2.1. INTRODUCTION TO FLEXRAY 15

approximation of the global view of time and join the communication. This mechanism
also allows nodes started up later to join an ongoing communication by listening in long
enough to make sure they do not disturb communication when they start to send in
their alloted slots.

2.1.3 Frames5

Messages transmitted via FlexRay are packaged in a format called a message frame
(or just frame), defined in [Fle05, Chapter 4]. The frames have a header and a payload
section, and end with a 3-byte cyclic redundancy code (CRC) [PB61] calculated from
the frame, which allows to detect transmission errors and discard corrupted messages.
The 5-byte header—which is again protected by its own 11-bit cyclic redundancy code,
allowing to verify the integrity of the most important parts of the header before the
reception of the whole frame—contains meta data: The information in which slot and
in which cycle it was sent, whether it is a startup frame or a synchronization frame
and so on. The payload consists of up to 254 bytes of data. The format of a frame is
shown in Figure 2.2.

11111

Reserved Bit
Payload preamble indicator

Null frame indicator
Sync frame indicator

Startup frame indicator

Frame ID

11 bits

Header CRC covered area

Pay-
load
length

7 bits

Header
CRC

11 bits

Cycle
count

6 bits

Header Segment

Data 1 Data 2 Data n

0 . . . 254 bytes

Payload Segment

CRC CRC

24 bits

CRC

Trailer Segment

Figure 2.2: Format of a frame.6

2.1.4 Controller architecture7

The FlexRay controllers’ architecture is divided into a communication controller at-
tached to the host ECU, and one bus driver for each attached channel, connecting
the communication media to the communication controller. A controller is based on
a layered architecture comprising communicating processes. The architecture can be
roughly divided in three layers to which the processes can be related: the distribution-
and-control layer, the communication layer, and the bit-level layer. Figure 2.3 shows
an overview.

The actual communication between two controllers is handled by the coding and
decoding processes (CODEC) that drives the bus.

5This section contains parts already published in [GEFP12b, Section II].
6This figure is based on a figure already published in [Ger07, Figure 5.1], which, in turn, was based

on [Fle05, Figure 4-1]. It has already been published in [Ger10, Figure 5.4] and [GEFP12b, Figure 3].
7This section contains parts already published in [GEFP12b, Section II].

16 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

ECU

controller
host interface

protocol oper-
ation control

clock synchroniza-
tion processing

macrotick generation

clock synchro-
nization startup

media access control
frame and sym-
bol processing

coding and decoding process CODEC

Distribution and control
layer (one for each con-
troller)

Communication layer
(one for each channel)

Bit level layer (one for each channel)

Figure 2.3: Overview on the architecture of a FlexRay controller.8

The bus driver is basically told whether to write to the medium and whether to
write a high or a low bit, and reports whether the bus is currently high or low. In the
following, the bus driver will be considered like a part of the bus, which can be written
to and can be read.

The communication controller consists of:

• one controller host interface used for configuration of the node and for passing
on either messages to be packaged in a frame and sent, or the payload of frames
that have been received (see [Fle05, Chapter 9])

• one protocol operation control responsible for the internal mode of the node, like

8This figure is based on [Fle05, Figure 2-2]. It has already been published in [Ger10, Figure 5.3]
and [GEFP12b, Figure 2].

2.2. FLEXRAY PHYSICAL LAYER PROTOCOL 17

wakeup, normal active and the like (see [Fle05, Chapter 2])

• one clock synchronization processing calculating the clock synchronization values
(see [Fle05, Section 8.3])

• one macrotick generation supplying the local view of time (see [Fle05, Sec-
tion 8.7])

• for each attached channel one clock synchronization startup channel A (or B)
for integrating into a communication schedule during a startup procedure (see
[Fle05, Section 8.4])

• for each attached channel one frame and symbol processing channel A (or B) for
checking the integrity of frames and symbols and supplying status data about
them (see [Fle05, Chapter 6])

• for each attached channel one media access control channel A (or B) for enforcing
the schedule and the priorities with regards to access to the bus and for packaging
messages into frames (see [Fle05, Section 5.2])

• for each attached channel one coding/decoding process channel A (or B) for gen-
erating the stream of bits that is written to the bus from the frames or symbols to
be sent, and conversely extracting received frames or symbols from the received
stream (see [Fle05, Chapter 3])

It is the last item, the coding/decoding process, that contains the physical layer protocol
that will be used as a motivating example throughout this work.

2.2 FlexRay physical layer protocol

The physical layer protocol as described in [Fle05, Chapter 3] takes symbols or frames
to be transmitted and generates a bit stream that is then written to the bus, bit by
bit. The reverse process is used to extract symbols or frames from the received stream.
The streams are generated with the help of pre-defined sequences.

2.2.1 Stream format9

The bit stream for a symbol is relatively straightforward, as every symbol corresponds
to a fixed sequence. Frames on the other hand are more intricate.

A message frame is transmitted as a structured stream [Fle05, Section 3.2.1.1] of
bits as shown in Figure 2.4. The encoding of a frame in a bit stream starts by prefacing
it with a transmission start sequence (TSS), which consists of a sequence of low bits and
precedes every transmission, and is followed by a frame start sequence. The length of
the TSS depends on the structure of the overall network and may vary between 3 to 15
bits [Fle05, Sections B.2.1]. As the bus is high idle, a long enough sequence of low bits

9This section contains parts already published in [GEFP12b, Section II].

18 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

can be recognized no matter how badly synchronized the strobecounter values of the
individual controllers are. After the TSS, the frame start sequence (FSS) signals the
start of a message transmission. The FSS consists of a single high bit. The receiving
controller accepts a transmission even if the FSS is received zero or two times, as the
FSS is just inserted to make sure badly synchronized receivers still receive the first bit
of the following sequence, which is also a high bit. Afterwards, all the bytes of the
frame are attached, but each prefixed by a byte start sequence (BSS). The BSS consists
of one high bit followed by one low bit. The high to low transition in the middle of the
BSS is used as a trigger for the bit clock alignment as described in Section 2.2.2.

The stream ends with a frame end sequence (FES), which is followed by a variable
length dynamic trailing sequence (DTS) in the case of a frame sent during the dynamic
segment. The FES consists of one low bit followed by one high bit.

High

Low

TSS F
S
S

BSS
1st byte
of data

BSS BSS
last byte
of data

FES

Figure 2.4: Format of a message bit stream.10

2.2.2 Stream transmission

In order to enable resilience against transmission errors, redundancy is added while
transmitting the stream by sending each bit for eight sample ticks, effectively sending
eight samples as one bit cell for each bit, or more precisely, pulling the bus to the
corresponding value for eight consecutive sample ticks, as shown in Figure 2.5.

Voting

The receiver samples the value of the bus with each sample tick, producing a stream of
samples. This stream is then smoothened by voting : Not the received sample stream
is considered by the rest of the protocol, but the stream of voted values that are the
result of a majority vote over the last five received samples. Thus, if in the middle of
a stream of low samples, a single high sample is received due to an error, this value
will never be visible to the rest of the protocol because there will be four low samples
in the sliding voting window containing the last five received samples. However, this
means that in the error-free case, a change on the bus will only be noted with a delay
of two sample ticks, as three samples of the new value have to be received to form a
majority against the old values in the voting window. In the absence of errors, this is
not a problem as each bit is represented by eight consecutive identical samples in the

10This figure is based on [Ger10, Figure 5.7], which was based on [Ger07, Figure 4.2], which, in
turn, was based on [Fle05, Figure 3-2]. It has already been published in [GEFP10, Fig. 2], [GEFP12a,
Figure 4], and [GEFP12b, Figure 4].

2.2. FLEXRAY PHYSICAL LAYER PROTOCOL 19

Received Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte

Received Stream . . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Strobing . . . 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 . . .

Voted Values . . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

Sync edge

. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .Samples

.high

low

Sent Stream . . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Sent Message . . . 1 1 0 1 0 1 1 1 . . .

1 byteSender

Receiver

Bus

Figure 2.5: FlexRay physical layer protocol

sample stream. Note that this procedure consequently produces eight voted values for
each bit.

Strobing

To reconstruct the individual bits, bitstrobing is used: From each bit cell of eight
consecutive voted values corresponding to the same bit, the fifth voted value is picked
(strobed) and the rest is discarded. In the absence of errors, the resulting stream of
strobed values is identical to the generated stream that was sent, allowing to easily
extract the sent symbol or frame.

Bit clock alignment

As only the macrotick view of time is synchronized and the physical layer protocol op-
erates on the basis of sample ticks, the communication cannot assume synchronization.
Thus, to identify the borders of the bit cells, simple counting of local sample ticks is
not sufficient, as the local oscillators could be imperfect to a certain degree.11 Addi-

11[Fle05, Table A-1] specifies that the oscillators may not deviate from their standard rate by more
than 0.15 %, which is the value assumed in the following. However, [Fle06b, Table 12-3] and [Fle06a,
Section 3.7.1] are more restrictive, assuming a deviation of no more than 0.05 %, which they claim to
be achievable by using high quality components.

20 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

tional synchronization measures are necessary, giving rise to the bit clock alignment
mechanism. This mechanism deduces the start of certain bit cells from the stream and
adjusts the value of the strobecounter, which is used for counting the voted values in a
bit cell in order to find the fifth one. More precisely, when a bit synchronization edge is
detected in the stream of voted values as shown in Figure 2.5, the last received voted
value of this edge pattern (i.e., the value after the synchronization edge) is considered
the first of a new bit cell and the strobecounter is reset to the appropriate value to
reflect this. This edge pattern consists of a high voted value followed by a low voted
value, and edge detection is enabled during the reception of high bits outside the actual
frame bytes, i.e., during the inserted sequences of the stream. Byte start sequences,
which consist of a high bit followed by a low bit, do contain such an edge, so during
frame decoding, bit clock alignment is performed before the reception of each byte.
During symbol reception, bit clock alignment is of minor importance, as the patterns
allow recognition of a symbol even if a certain distortion due to non-aligned bit clocks
occurs.

Error resilience claim

The event of a value on the bus that was not sent, like a high value sampled from a
bus during the sending of a low sequence, is called a glitch. The FlexRay specifica-
tion [Fle05, Section 3.2.7] claims that the physical layer protocol attempts to enable
resilience against one glitch that is not longer than a sample clock period in a bit cell.
But it then goes on and explains in a footnote that sometimes two such glitches in a
bit cell can be tolerated, but also sometimes none.

This gives rise to the motivating example, namely using formal methods to make
this claim more precise.

2.3 Verification of the physical layer protocol

The work together with Rüdiger Ehlers, Bernd Finkbeiner and Hans-Jörg Peter de-
scribed in Chapters 10 and 11 and published in [GEFP10], resulted in a formal verifi-
cation of some of my models of the physical layer protocol which include an error model
that assumed a pattern of glitches a lot more precise than the vague error resilience
statement from [Fle05, Section 3.2.7] using the Uppaal tool [BDL04].

2.3.1 Results on the reliability of the physical layer protocol

If only one sample in any sequence of four consecutive samples received from the bus
before voting (see Section 2.2.2) can be nondeterministically affected by a glitch, an
absence of errors in the received message stream was verified. Another pattern against
which resilience was verified was two arbitrary glitch affected samples in the whole
stream, including close together. A relationship between the possible error patterns
and the size of the voting window, which is suggested by insight into the protocol,
could also be quickly verified by minor changes to the model: if only one glitch can

2.3. VERIFICATION OF THE PHYSICAL LAYER PROTOCOL 21

occur in a sequence of consecutive samples, this sequence can be as short as 3 for a
voting window of size 3 (which will not tolerate 2 arbitrary glitches), but needs to be at
least 5 or 6 for voting window sizes of 7 or 9, respectively. Moreover, the error resilience
does not only depend on the glitch patterns, but also on the hardware parameters that
govern the drift between the local oscillators of the sender and receiver and govern the
process of information transmission on the bus, which combine to another source of
errors, called jitter. Binary search was employed to find the most liberal constraints on
certain parameters that will leave error resilience against specific glitch patterns intact,
if that hardware parameter varies from the standard configuration, as documented
in [GEFP10].

These results were extended in work with the same co-authors and published
in [GEFP12a, GEFP12b], as described in Chapters 10 and 11. The capability of the
newer 64-bit versions of Uppaal [BDL+11] to address more memory and access to a
computer with 2 orders of magnitude more memory allowed to model check a variety
of models with different glitch pattern models. As an improved result, the presence
of 2 glitches12 in each sequence of 88 consecutive samples was found to leave error
resilience of the protocol intact. Analyzing the robustness of the protocol with a given
glitch model to changes in the parameters allowed to determine that the glitch model
with 2 arbitrarily placed glitches in 88 consecutive samples has a more constraining ef-
fect on the tolerance towards parameter variation than a model with 2 adjacent glitches
in 88 consecutive samples. Moreover, the introduction of a model with a glitch model
formulated in terms of real-time durations instead of affected samples replicated the
behavior of the model with a glitch model formulated in terms of affected samples: the
durations of the acceptable glitches turned out to be exactly such that at most 1 (or 2
resp.) samples could be affected, and the unaffected period needed to be so long that
the minimum of unaffected samples was 3 (or 86 resp.), or 87 samples at most affected
by one more glitch, depending on whether it was a 1-in-4 or a 2-in-88 scenario.

2.3.2 Family of Benchmarks

During the effort of verifying the FlexRay physical layer protocol, several models with
different glitch, jitter, or message models were created and verified.13 This gave rise
to a family of FlexRay model checking benchmarks. The benchmarks with explicit
message length have a very high discrete complexity, but come with a more optimistic
error model that has jitter covered by the glitch patterns as well. This reduces con-
tinuous complexity at the price of not being able to explore scenarios where jitter and
glitches combine to bring about a protocol error. However, being able to scale the dis-
crete complexity by scaling the number of bytes in the message makes this benchmark
especially suited for the evaluation of the abilities of reachability checking approaches
to handle the explosion of the discrete state space. The benchmarks with separate

12Here and in the following, glitch is used to refer to a glitch affected sample when speaking about
discrete sample glitches, in order to improve readability.

13The timing behavior of the hardware is modeled on values taken from the Nangate Open Cell
Library [Nan09].

22 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

jitter and glitch models reduce discrete complexity by abstracting from the length of
the message. This might introduce spurious errors in the sense of finding actually safe
configurations of the error model unsafe by looking at scenarios that exploit message
lengths longer than allowed by the FlexRay specification, possibly even infinite. They
also might result in spuriously too pessimistic hardware parameter variation tolerance
results for the same reasons, thus possibly underestimating the resilience of the FlexRay
protocol. However, positive verification results from these benchmarks do also hold for
all scenarios with message lengths legal according to the FlexRay specification. The
glitch model is either discrete, counting the affected and unaffected samples, or contin-
uous, measuring the duration of the glitches and the time between them, thus either
having more discrete or more continuous complexity. When many consecutive unaf-
fected samples need to be counted, the model gives rise to a considerably sized discrete
state space.

2.3.3 Explosion of discrete state space

To verify that the sent message is the received one, memorizing the whole message
is unpractical as it is way too much data. Memorizing the bits in transfer, i.e., the
bits sent but not yet received, would be better but is still data-intensive. Moreover
knowing how much bits can be in transfer requires considerable insight into the protocol.
However, as reachability checking will be used, it is enough to have the possibility that
a wrongly transmitted bit is being checked for correctness. So it is enough to memorize
a single bit, and its position: the position inside the byte, and the number of the byte.
However, counting the number of bytes leads to a considerable blowup if the discrete
state space is stored explicitly, prohibiting a successful verification with Uppaal and
reinforcing the need for a fully symbolic approach, as shown in [EGP10, Table 1]. The
amount of insight into the protocol model required to sidestep this problem by using a
nondeterministic number of bytes as done in [GEFP12a, Section III.B] is considerable,
e.g., the issue of overtaking of bytes needs to be addressed if only the position of a bit
in a byte is stored, but the byte itself comes without an identifier, and there a more
scenarios represented in the resulting model, which could have introduced spurious
errors, thus making measured tolerances more pessimistic.

Counting samples also increases the discrete state space. In case of a 2-in-88 sce-
nario, this can lead to a state space explosion that makes an explicit representation of
the state space extremely memory intensive, quickly beyond the point that computers
for everyday use can handle nowadays. Furthermore, access to specialized computers
with huge amounts of memory can only mitigate the problem for a while, as additional
increases in discrete complexity could lead to a state space explosion that pushes the
memory requirements beyond any bound. Moreover, models taking more of FlexRay
into account than just the physical layer protocol, or other models of industrial systems
could have more discrete complexity. In the end, it is not only the complexity of the
models that limits the practicability of verification efforts, it is also the limits of the
complexity that the verification technology can handle that limit the complexity of the
models that are developed.

2.3. VERIFICATION OF THE PHYSICAL LAYER PROTOCOL 23

Thus, it is highly desirable to have push button technologies that are able to handle
more data intense models, as presented in [EGP10]. Whether such models are inher-
ently so data intensive or this intensity could be decreased with more insight into the
particular model as proposed in Part III is usually not obvious. So the possibility of
reducing the data-intensiveness by embarking on an effort of model optimization with
unclear returns is by no means a substitute for algorithms and data-structures, as pre-
sented in Part II, that are able to do fully automatic reachability model checking on
data-intensive models.

24 CHAPTER 2. FLEXRAY PHYSICAL LAYER PROTOCOL

Part I

Preliminaries

25

Table of Contents

3 Timed Automata 29

3.1 Composition . 31

3.2 Extended Timed Automata Syntax . 32

3.3 Finite Semantics . 33

3.4 Clock Zones . 35

4 Binary Decision Diagrams 37

28 TABLE OF CONTENTS

Chapter 3

Timed Automata1

Timed automata [ACD90, AD94] are basically finite state machines extended with
nonnegative real-valued clock variables. A detailed presentation of timed automata
can be found in the textbook by Clarke et al. [CGP01, Chapter 17].

Formally, a timed automaton is a tuple A = (L, l0, I,Σ,∆, X), with a finite set of
locations L, an initial location l0 ∈ L, a function I : L→ C(X) mapping each location to
an invariant, a finite set of actions Σ, a transition relation ∆ ⊆ (L×Σ×C(X)×2X×L),
and a finite set of real-valued clocksX, where C(X) is the set of clock constraints overX.
A clock constraint ϕ ∈ C(X) is of the form

ϕ = true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where c is a constant in N0 and x is a clock in X. If I(l) = true for all locations l ∈ L,
the timed automaton is called invariant-free.

A discrete transition δ = 〈l, a, ϕ, λ, l′〉 ∈ ∆ has a source location l, an action a, a
guard ϕ, a reset set λ, and a target location l′.

The example of a timed automaton shown in Figure 3.1 has the locations l1, l2, l3
and l4, the clocks x and y, and the actions a, b and c. Its initial location is l1. The
locations l1 and l3 have the invariants y ≤ 5 and y ≤ 15, the other locations show no
invariants, which means their invariant is true. The edge between l1 and l2 is labeled
with action a, has a reset for clock x, and no guard, which is the same as saying its
guard is true. The edge between l2 and l3 is labeled with action c, has no resets, which
means its reset set is empty, and has the guard x ≥ 4.

Clocks are assigned a nonnegative value by a clock valuation ~t : X → R≥0 which
can be represented by an |X|-dimensional vector ~t ∈ R (with R = RX≥0 denoting the
set of all clock valuations).

A state of a timed automaton is a pair (l,~t) of a location and a clock valuation. As
the domain of the clocks is continuous, there are uncountably infinitely many states.
The set of all states is called the state space.

1This chapter contains parts also published in [EGP10, Section 2.1][GEFP12b, Section III.A].

29

30 CHAPTER 3. TIMED AUTOMATA

The state of a timed automaton is changed by a transition, which can be of two
types:

• In a timed transition (or delay transition), the same nonnegative value is added
to all clocks, making sure no invariant is violated. Formally, a ∈ R≥0 is added to
all clocks such that, for each 0 ≤ d ≤ a, ~t+ d satisfies the location invariant I(l).
The timed transition is denoted by (l,~t)

a−→ (l,~t+ a ·~1).

• In a discrete transition (or action transition), the location of the automaton
can be changed and clocks can be reset to zero, if the target’s invariant and the
transition’s clock constraint are fulfilled. Formally, for some a ∈ Σ, (l,~t)

a−→ (l′,~t′)
is a transition δ = 〈l, a, ϕ, λ, l′〉 of ∆ such that ~t satisfies the clock constraints of
the guard ϕ of δ, and ~t′ = ~t[λ := 0] is obtained from ~t by resetting the clocks in
λ to 0, and ~t′ satisfies the target’s location invariant I(l′).

y ≤ 5

y ≤ 15

l1 l2

l3l4

a, x := 0

b, y > 2 c, x ≥ 4

b, y > 8

c, y := 0

Figure 3.1: Example timed automaton with the locations l1, l2, l3 and l4, the clocks x
and y, as well as the actions a, b and c.2

The execution of a timed automaton starts in the initial state, a pair of the initial
location and the valuation where all clocks are 0. An execution corresponds to a path
of transitions connecting states. Such a path is also called a timed trace (or just a
trace) that is represented by a (possibly infinite) sequence of actions and delays.

For the example timed automaton in Figure 3.1, all executions start in l1 with
x = y = 0. Due to l1’s invariant, all executions have to leave l1 within 5 time units.
During that time, the action transition leading to l2 can be executed, resetting x. After
this reset x ≤ y holds at l2 and time can elapse arbitrarily. When at least 4 time units
have passed after the reset, the action transition from l2 to l3 can be executed unless
y > 15, in which case the target invariant would not be satisfied.

Formally, the words of the language accepted by the automaton A are finite
sequences of transitions a1 . . . an ∈ (Σ ∪ R≥0)∗ such that there is a path s0

a1−→
2This figure has already been published in [GEFP12b, Figure 5].

3.1. COMPOSITION 31

y ≤ 5

y ≤ 15

l1 l2

l3l4

a, x := 0

b, y > 2 c, x ≥ 4

b, y > 8

c, y := 0 ‖

z ≤ 7

l5

l6

a, z := 0c

d, z > 1,
z := 0

Figure 3.2: Example network comprising two timed automata that synchronize on
actions a and c.3

s1 . . . sn−1
an−→ sn where s0 = (l0,~t0) is the initial state of the automaton, i.e., l0 is

the initial location and ~t0 = ~0 is the zero vector, and for all indices 1 ≤ i ≤ n, the
individual si = (li,~ti) are states of the automaton, and all the si−1

ai−→ si are transitions
of A.

As a shorthand, s0 −→∗ sn denotes the existence of a finite sequence a1 . . . an ∈
(Σ ∪ R≥0)∗ of transitions with s0

a1−→ s1
a2−→ . . .

an−→ sn. A state s is called reachable in
A iff s0 −→∗ s is in the language of A.

3.1 Composition

Timed automata can be composed into networks. In a network of timed automata, the
component automata run in parallel and synchronize on shared actions. The locations
of the resultant automaton are the tuples of locations from the component automata,
thus its initial location is the tuple containing the initial locations of each component
automaton. In a composed location, the invariants of each component location have
to hold. As the action sets are joined, the transition relation contains the discrete
transitions that change only one component location for the actions belonging to one
component automaton only, and joint discrete transitions that simultaneously change
each component location of the automata that share the action with that shared action.

Figure 3.2 shows an example network of two timed automata, which synchronize on
actions a and c. Provided that the clock guards are satisfied, an automaton can only
execute an edge labeled with action a or c if the other automaton executes an edge
with the same action concurrently. However, if in one of the component automata, the
guards of all edges labeled with action a leaving the current state are not satisfied,
the other automata cannot execute any edge labeled with action a, even if its guard
is satisfied. For the actions they don’t share, the automata run asynchronously in the
sense that they can independently execute edges labeled with action b or d.

3This figure has already been published in [GEFP12b, Figure 6].

32 CHAPTER 3. TIMED AUTOMATA

Formally defined, for two timed automata A = (L1, l
1
0, I1,Σ1,∆1, X1) and A′ =

(L2, l
2
0, I2,Σ2,∆2, X2) with disjoint clock sets X1 ∩ X2 = ∅, the parallel composition

A1‖A2 is the timed automaton (L1×L2, (l
1
0, l

2
0), I,Σ1∪Σ2,∆, X1∪X2), where I(l1, l2) =

I1(l1) ∧ I2(l2) for all l1 ∈ L1 and l2 ∈ L2, and ∆ is the smallest set that contains

• for a ∈ Σ1 ∩ Σ2, 〈(l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l′2)〉 if 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1 and

〈l2, a, ϕ2, λ2, l
′
2〉 ∈ ∆2,

• for a ∈ Σ1 \ Σ2, 〈(l1, l2), a, ϕ1, λ1, (l
′
1, l2)〉 if 〈l1, a, ϕ1, λ1, l

′
1〉 ∈ ∆1, and

• for a ∈ Σ2 \ Σ1, 〈(l1, l2), a, ϕ2, λ2, (l1, l
′
2)〉 if 〈l2, a, ϕ2, λ2, l

′
2〉 ∈ ∆2.

In Part II, only the global timed automaton obtained from the composition of the
system’s component automata is considered.

As technicalities that just occur in the construction of the symbolic discrete transi-
tion relation, control-related concepts such as synchronization, parallel composition, or
integer variables do not have to be considered in the actual model checking procedure.

3.2 Extended Timed Automata Syntax4

Extended timed automata [BDL04] are derived from the classical timed automata, but
introduce features like integer variables and special synchronization. Each transition
can have an update expression to set integer variables in addition to the usual clock
resets.

Instead of actions, transitions can be labeled with synchronization channels over
which a sender (identified by “!”) can synchronize with a receiver (identified by “?”)
to take a joint transition. This allows for normal synchronization as described above
and used, e.g., in model ‡ in Chapter 10. However, it also enables the use of broadcast
channels, where the sender can take the synchronization edge whenever its guard and
the invariants permit it, irrespective of the enabledness of receiver transitions, which
take the synchronous transition if and only if their guards and invariants permit it
when the sender takes the broadcast synchronizing transition. The latter model of
synchronization is used in model † in Chapter 10, which also uses a special feature of
extended timed automata, so called committed locations. These locations are marked
with the special invariant C, and have to be left before time passes or any non-committed
location is left.

Figure 3.3 gives a brief overview of the syntax which will be used in Part III. To
improve the readability of complex models, they will be split into segments using the
auxiliary syntax shown in Figure 3.4.

4This section contains parts already published in [GEFP12a, Section III.A].

3.3. FINITE SEMANTICS 33

Initial location indicated by this arrow:

Invariant
LocationName

Synchronization

Guard

Update

Figure 3.3: Syntax of locations and transitions in extended timed automata5

(from ExitLocation)
EntryPoint ErrorClone

(NextSegment)SaveLocation

Small arrows represent transitions in the
next segment, indicating a “Next Segment”-
location

Small arrows represent transitions entering
the Error-location in other segments

Figure 3.4: Syntax used to describe splitted automata6

• NextSegment is a location that represents the parts of the automaton reachable
by the incoming transitions that are described in the next segment. The location
is marked by gray color, smaller size and the name of the EntryPoint of the
next segment in brackets.

• EntryPoint is the location entered in this segment by entering the NextSeg-
ment location of the previous segment.

• ErrorClone is a location indicating an error state. It is reachable from vari-
ous segments of the automaton. Incoming transitions from other segments are
indicated by small arrows.

• SaveLocation is a location from which no error state can be reached. The
location is left white.

In the example shown in Figure 3.4, the location EntryPoint is also the “ExitLoca-
tion” of this segment, as there is a transition from EntryPoint to NextSegment.

3.3 Finite Semantics

The reachability problem of timed automata is decidable if there exists a region equiv-
alence relation [AD94] on R with a finite index.

Given a timed automaton A = (L, l0, I,Σ,∆, X), the value of a clock x ∈ X is called
maximal if it is strictly greater than the clock ceiling, i.e., the highest constant cmax

5This figure is based on a figure already published in [Ger10, Figure 2.1]. It has already been
published in [GEFP12a, Figure 2].

6This figure is based on a figure already published in [Ger10, Figure 2.2]. It has already been
published in [GEFP12a, Figure 3].

34 CHAPTER 3. TIMED AUTOMATA

any clock is compared to. Note that two different maximal clock values for the same
clock thus cannot be distinguished by the clock constraints of discrete transitions or
invariants.

The region equivalence relation groups states that can only be distinguished by
sequences of transitions starting there by looking at the exact ai ∈ R≥0 that are added
in the timed transitions. Formally, two clock valuations ~t1,~t2 ∈ R are in the same clock
region, denoted ~t1 ∼R ~t2, if

• In ~t1 and in ~t2 the same clocks have maximal value. Formally,
∀x ∈ X : ~t1(x) > cmax ⇔ ~t2(x) > cmax , and

• ~t1 and ~t2 agree (1) on the integer parts of the clock values, (2) on the relative
order of the non-integer parts of the clock values, and (3) on the equality of
the non-integer parts of the clock values with 0. Stating it formally: For two
valuations ~t1 and in ~t2 in a clock region, for all clocks x and y with non-maximal
value, it holds that

– (1) b~t1(x)c = b~t2(x)c,

– (2) ~̂t1(x) ≤ ~̂t1(y)⇔ ~̂t2(x) ≤ ~̂t2(y), and

– (3) ~̂t1(x) = 0 if, and only if, ~̂t2(x) = 0,

where ~̂ti(x) = ~ti(x)− b~ti(x)c for i ∈ {1, 2}.

The clock region ~t belongs to is denoted with [~t]R = {~t′ ∈ R | ~t ∼R ~t′}. Two
states s1 = (l1,~t1) and s2 = (l2,~t2) of A are region-equivalent (s1 ∼R s2), if (a) their
locations are the same (l1 = l2) and (b) their clock valuations are in the same clock
region (~t1 ∼R ~t2). The equivalence class of region-equivalent states that (l,~t) belongs
to is denoted with [(l,~t)]R = {(l,~t′) ∈ L×R | ~t ∼R ~t′}.

As noted above, sequences of discrete transitions are not affected by a region based
abstraction of a timed automaton. Region abstraction is thus a very suitable semantics,
essentially not changing the language of the abstracted timed automaton. Formally, if
there is a discrete transition s

a−→ s′ from a state s to a state s′ of a timed automaton,
then there is, for all states r with r ∼R s, a state r′ with r′ ∼R s′ such that r

a−→ r′ is
a discrete transition with the same label a ∈ Σ. Moreover, a slightly weaker property

holds for timed transitions: if there is a timed transition s
t−→ s′ from a state s to a

state s′, then there is, for all states r with r ∼R s, a state r′ with r′ ∼R s′ such that

there is a timed transition r
t′−→ r′ with t, t′ ∈ R≥0. The only really observable change

is that t′ 6= t is possible, as mentioned before.
The finite semantics of a timed automaton A = (L, l0, I,Σ,∆, X) is thus defined

as the finite graph JAK = (S, s0, T) where

• the symbolic state set S = {[(l,~t)]R | (l,~t) ∈ L×R} of JAK is the set of equivalence
classes of region-equivalent states of A, with

• the initial state s0 = [(l0,~t0)]R, and

3.4. CLOCK ZONES 35

• the set T = {(s, s′) ∈ S × S | ∃r ∈ s, r′ ∈ s′, a ∈ Σ ∪ R≥0. r
a−→ r′} of transitions.

Alur and Dill have shown the finite semantics to be reachability-preserving:

Lemma 3.3.0.1. [AD94] For a timed automaton A = (L, l0, I,Σ,∆, X) there is a
finite path from a state (l,~t) to a state (l′,~t′) if, and only if, there is a finite path from[
(l,~t)

]
R

to
[
(l′,~t′)

]
R

in JAK.

3.4 Clock Zones

To obtain a coarser finite representation of R, clock zones [Alu98] can be used.
A clock zone represents a set of valuations that satisfy certain clock difference

constraints. A special clock x0, which is always evaluated to zero, is introduced to
allow direct comparison of a clock to an integer constant by using this zero-clock in a
clock difference constraint. Formally, a clock zone z is represented by a conjunction
of clock difference constraints of the form x − y ≺x,y cx,y, where x, y ∈ X ∪ {x0},
for an x0 /∈ X, ≺x,y∈ {≤, <}, and cx,y ∈ Z ∪ {∞}. A clock valuation ~t satisfies z,
written as ~t ∈ z, if ~t′ = ~t ∪ {x0 7→ 0} satisfies each constraint x − y ≺x,y cx,y from z:
~t′(x)− ~t′(y) ≺x,y cx,y. The set of all clock zones is called Z in the following.

To represent clock zones, difference bound matrices (DBMs) [Dil89] can be used.
Essentially a DBM is a matrix with dimension |X ∪ {x0}| whose entries represent the
upper bounds on the difference between the clocks indicated by the indices. For two
clock zones z, z′ ∈ Z, DBMs allow an efficient implementation of the operations

(1) intersection z ∧ z′, where for each clock difference the stricter of the two upper
bounds from z or z′ is taken

(2) clock reset z[λ := 0], where the differences with a clock in λ are replaced by
differences with x0, and

(3) elapsing of time z⇑, where the upper bounds on clocks are removed.

Bengtsson describes these and other DBM operations in more detail in [Ben02].
To use this in forward reachability analysis, a maximal constant extrapolation is

implicitly applied after each time elapse to ensure termination. The initial clock zone
that only contains the initial clock valuation ~0 is denoted with z0.

36 CHAPTER 3. TIMED AUTOMATA

Chapter 4

Binary Decision Diagrams1

As symbolic data-structure for sets of locations, reduced ordered binary decision dia-
grams (BDDs) [Bry86, BCM+92], which represent boolean functions f : 2V → B for
some finite set of variables V , are well established in formal verification. A BDD is a
directed acyclic graph with a single root and two leaves: the true leaf and the false
leaf. Its root node and inner nodes are each labeled with the name of a variable. Each
non-leaf node has two outgoing edges, where one edge is labeled with a 1 and the
other is labeled with a 0. A BDD can be read starting from its root as a series of
questions on the values of the variables the nodes are labeled with, finally leading to a
leaf that answers with the function’s value: In a node, depending on the value of the
variable it is labeled with, which is either 1 or 0 in the argument of the represented
function, take the edge labeled with the variables value. In the next node, do the
same, until you reach either the true or the false leaf, which represents the value the
function returns for the variable assignment used. Burch et al. give more details on
BDDs in [BCM+92]. However, for the present work, it is sufficient to keep in mind
that BDDs can represent boolean functions as explained in the following, and that the
efficiency of the representation depends on the variable order.

Given two boolean functions (BF) f and f ′, represented by BDDs, for all x ⊆ V
their conjunction is defined as

(f ∧ f ′)(x) = f(x) ∧ f ′(x),

their disjunction as
(f ∨ f ′)(x) = f(x) ∨ f ′(x)

and their negation as
(¬f)(x) = ¬(f(x)).

This provides the basic boolean operations.
Given a set of variables V ′ ⊆ V and a BF f , the existentially quantified func-

tion ∃V ′.f is defined as the function that maps all x ⊆ V to true for which there
exists some x′ ⊆ V ′ such that f(x′ ∪ (x \ V ′)) = true. This allows to define a boolean

1This chapter contains parts also published in [EGP10, Section 2.2].

37

38 CHAPTER 4. BINARY DECISION DIAGRAMS

l2

l1l1

l0

true

10

0

1

1

Figure 4.1: Example BDD for l ∈ {101, 100, 011}.

function that just ignores the existentially abstracted variables from the function it
was derived from, and only looks at the not-existentially-abstracted variables there
and asks whether it can be true. One can think of it as following both edges in the
original function’s graph whenever an existentially abstracted variable is associated
with a node—and if at least one of the path leads to true, the derived function will
return true.

Given two ordered lists of variables L = l1, . . . , ln and L′ = l′1, . . . l
′
n of the same

length, the renaming f [L/L′] of L′ to L in f is defined as the BF for which some x ⊆ V
is mapped to true if and only if f((x \ {l′1, . . . , l′n}) ∪ {li | ∃1 ≤ i ≤ n : l′i ∈ x}) = true.
This allows to rename several variables in a functions definition at the same time by
providing two lists, were each variable in the list L′ is renamed to the variable name
listed at the same position in list L.

Visualized as a directed acyclic graph, the BF representing a set of locations l could
yield a BDD like the one shown in Figure 4.1. Representing the locations l ∈ {5, 4, 3}
in binary yields l ∈ {101, 100, 011}. The bits of these binary representations can be
represented by boolean variables li for i ∈ {0, 1, 2}, numbered starting with the least
significant bit. Note that the false leaf of the BDD does not need to be pictured: If an
edge for some value of a variable is not shown, it means that it leads to false, yielding
a smaller, less cluttered, and thus easier to read visualization.

With respect to a variable order, BDDs are canonic. The size of a BDD can vary
dramatically with the variable order. Thus, BDD libraries usually bring their own
variable ordering and reordering heuristics.

As bounded discrete variables can easily be represented by a few boolean variables,
sets of valuations of a bounded discrete variable can be efficiently represented as a
boolean function, and hence can be stored in a BDD.

Part II

Data-Structures and Algorithms

39

Table of Contents

5 State-Space Representation and Exploration 43

5.1 Finite representation of infinitely many states 44

5.2 Separate or Unified Data-Structures . 45

5.3 Algorithmic Implications . 47

5.3.1 Operations on Explicit Data . 47

5.3.2 Symbolic Operations on Symbolic Data-Structures 47

5.4 Reachability Model Checking . 48

5.4.1 Discrete States . 48

5.4.2 Continuous States . 49

5.5 Verification and Bug Finding . 50

5.5.1 Exploration . 51

5.5.2 CEGAR . 51

5.6 Data-Structure Tradeoffs . 52

5.6.1 Memory Consumption vs Runtime 52

5.6.2 Symbolic Operations on Symbolic Data-Structures 52

5.6.3 Preferring some Theory over the Others 53

6 Making the Right Cut 55

6.1 Fully Symbolic Real-Time Model Checking 56

6.1.1 Computing the Reachable States using CZMs 56

6.1.2 An Example . 58

6.1.3 Adding support for invariants . 59

6.1.4 Possible Optimizations . 60

6.2 Guided Counterexample Generation . 61

42 TABLE OF CONTENTS

6.3 Experimental Results . 62

6.3.1 Prototype Implementation . 62

6.3.2 A FlexRay Physical Layer Protocol Model 62

6.3.3 Model Checking the FlexRay Model 63

6.3.4 Model Checking the Fischer Protocol 63

6.4 Conclusion . 64

7 Underapproximating Lookahead 67

7.1 A bitstring/difference-logic model . 67

7.1.1 Symbolic Data-Structures: DBMs and BDDs 68

7.2 Growing the BDDs faster . 68

7.3 Algorithm Idea . 68

7.4 CZM Algorithm . 69

7.4.1 Formalization of Algorithm Idea 69

7.5 Example . 83

7.6 Evaluation on FlexRay Benchmark . 86

Chapter 5

State-Space Representation and
Exploration

Contents

5.1 Finite representation of infinitely many states 44

5.2 Separate or Unified Data-Structures 45

5.3 Algorithmic Implications . 47

5.3.1 Operations on Explicit Data 47

5.3.2 Symbolic Operations on Symbolic Data-Structures 47

5.4 Reachability Model Checking 48

5.4.1 Discrete States . 48

5.4.2 Continuous States . 49

5.5 Verification and Bug Finding 50

5.5.1 Exploration . 51

5.5.2 CEGAR . 51

5.6 Data-Structure Tradeoffs . 52

5.6.1 Memory Consumption vs Runtime 52

5.6.2 Symbolic Operations on Symbolic Data-Structures 52

5.6.3 Preferring some Theory over the Others 53

43

44 CHAPTER 5. STATE-SPACE REPRESENTATION AND EXPLORATION

Abstract. This chapter discusses various possibilities to represent the state-space
of a timed automaton and their interaction with state-space exploration tech-
niques. To combat the state space explosion problem, infinitely many states can
be collected in a set of states described by constraints, e.g., clock zones for convex
sets of clock valuations. Sets of enumerable states can for example be represented
by binary decision diagrams. Such symbolic representations are best found sepa-
rately for the continuous and the discrete aspects of a state and then combined to a
fully symbolic representation, e.g, by mapping difference bound matrices (DBMs)
to reduced ordered binary decision diagrams (BDDs). An exploration algorithm
working on sets of states were the discrete part is explicit can work efficiently even
on complex aspects of the model like transitions enriched with code, and store the
already explored states fully symbolically. A fully symbolic algorithm executes
symbolic operations on fully symbolically represented sets of states, increasing the
workload for a single step while reducing the number of steps. There often is
a tradeoff between memory and time consumption when deciding between semi-
symbolic or fully symbolic approaches. Exploration algorithms use a post operator
to find the set of states reachable with a certain set of transitions from a set of
reachable states, which is described in Section 5.4 for timed automata. Reacha-
bility checking with a counterexample trace is useful for finding bugs, whether a
error state is reached from a initial one or vice versa in case of a backwards ex-
ploration, or in a combination of both using target enlargement. Counterexample
guided abstraction refinement (CEGAR) uses counterexample traces relating not
to bugs in the system but in the model (due to over-abstraction) to iteratively
build a model just refined enough to prove the desired property. As a dedicated
error location is part of the discrete aspect of the state space, the idea of trying to
explore the discrete parts faster at the expense of lagging behind in the exploration
of continuous aspects could lead to quicker bug finding.

The natural representation of a state of a system model are just the values of all
variables. To represent a set of states, one can thus just enumerate these states. So
the most natural approach to exploring the state space of a system model is to start
with some initial state, look at its possible successors, and their successors again and
so on, and enumerating all the encountered states. However, enumerating all states is
for all practical purposes impossible for models with continuous states, as all models
which need to use a continuous state component have infinitely many states, because
the continuous variable can take infinitely many values.

5.1 Finite representation of infinitely many states

To collect an infinite amount of states in a set, the states cannot be enumerated, but
have to be described by constraints. For timed automata [AD94, AD90] models, the
popular Uppaal tool [BDL04], among others, uses this approach for the continuous
parts of a state, but keeps the explicit enumeration for the discrete parts: Clock valua-
tions are collected into convex clock zones [Alu98] that describe a set of clock valuations
with a set of constraints on the differences between clock values, represented by a dif-
ference bound matrix (DBM) [Dil89] (which, in turn, can be represented by minimal
constraint graphs [LLPY97]), as described in Section 3.4. All clock valuations from
the continuous states that can occur for a given discrete state are collected in a set

5.2. SEPARATE OR UNIFIED DATA-STRUCTURES 45

of DBMs, called a federation [LWYP98]. This is a semi-symbolic approach, because it
represents the continuous part symbolically, but the discrete part explicitly. The model
checking tool Kronos [Yov97] also supports the use of DBMs together with explicit
discrete state.

To tackle the discrete state space explosion, a symbolic approach can also be ap-
plied to sets of discrete states. In a fully symbolic approach [HNSY94, SB03], both
the discrete and the continuous states are represented symbolically. Sets of dis-
crete states can for example be represented by reduced ordered binary decision dia-
grams (BDDs) [Bry86, BCM+92], which are described in Chapter 4.

5.2 Separate Theories—Separate or Unified Data-
Structures

Considering a timed automaton model, a state of the model is basically a pair of a
discrete state encoded in a location, and a valuation of the clocks. This definition
as a pair hints at the underlying structure: timed automata combine concepts from
two separate theories, namely finite automata and real-valued clocks. As symbolic
representations usually use constraints from the underlying theory to characterize a set,
this makes it harder to find a good symbolic representation for sets of states of timed
automata. Formulating constraints on one concept in the other theory requires the
overhead of embedding the original theory in the other theory. Theories encompassing
all the concepts are often to complex to allow for an efficient representation. Thus, the
symbolic representations suitable for the discrete states are not necessarily suitable for
the continuous states and vice versa. For example, using BDDs for both discrete and
continuous states can lead to a blowup of the BDDs due to the magnitude of the clocks
and due to interdependencies in the timing behavior [BMPY97].

Yovine’s Kronos [Yov97] also supports the use of BDDs to represent sets of discrete
states, but, as Bozga, Maler, Pnueli, and Yovine point out in [BMPY97, Section 2],
it is not obvious how to combine them with DBMs. Thus, they instead propose the
use of numerical decision diagrams (NDDs) [ABK+97] at the price of discretizing the
continuous domain.1 Beyer [Bey01] also uses discretization to enable the use of BDDs
for representing states of a restricted form of timed automata, so called closed timed
automata.

It is hard to use a fixed-point reachability checking approach like Algorithm 1, which

1Asarin, Bozga, Kerbrat, Maler, Pnueli, and Rasse also point out in [ABK+97, Section 1] that it is
not obvious how a DBM based representation for the continuous states can be combined with a symbolic
representation for sets of discrete states. According to [BDM+98, Section Supported verification
techniques], Kronos’ successor OpenKronos has the capability to employ symbolic representation of
states, using DBMs and BDDs. However, the paper is unclear on whether they are used jointly, or
alternatively. The latter seems likely, as the same paper [BDM+98, Section Case studies] lists the
size of the state space as the number of pairs of a control location and a DBM. Furthermore, the latest
additions to OpenKronos are listed there as well, and a successful combination of BDDs and DBMs
for exact computation of the state space (as opposed to approximations as used in [DWT95]) is not
mentioned.

46 CHAPTER 5. STATE-SPACE REPRESENTATION AND EXPLORATION

will be described in Section 5.4, if non-canonic representations like and-inverter graphs
(AIGs) [PSD06] or conjunctive normal form (CNF) clause sets are used. Seshia and
Bryant [SB03] have to add special so-called transitivity constraints on-the-fly during
the fixed point computation in order to be able to use separation logic formulas encoded
in BDDs as a description for sets of states.

One solution to this dilemma is using separate symbolic representations for the
separate concepts, each formulated in a suitable theory that allows an efficient repre-
sentation. The discrete states and the continuous states can both be handled symbol-
ically, but by different data-structures, e.g., as described in Sections 5.4.1 and 5.4.2.
This was pioneered by Dill and Wong-Toi in [DWT95], where a set of control locations
represented by a BDD was paired with a convex set of clock valuations, represented
by a DBM. However, they judged symbolically computing the timed successor states
of such pairs exactly to be too cumbersome due to non-convex sets of clock valuations
in the result if invariants are taken into account, so approximation was used. This
approximation approach is implemented by Yamane and Nakamura [YN04].

In my work [Ger10] and in my work together with Rüdiger Ehlers and Hans-Jörg-
Peter [EGP10], a representation with those data-structures was independently devel-
oped, but with reversed order in the pairing: pairs of DBMs and BDDs were used, as
presented in Chapter 6. This avoids the problem from [DWT95] of non-convex sets of
clock valuations being too much hassle by hash-mapping DBMs to BDDs, allowing for
rapid lookup of the DBMs in the results of the invariant applications to the results of
a successor states computation. Furthermore, this mapping made the application of
fully symbolic operations in the exploration algorithm very natural, as the hierarchy
between time and location in the state space representation is the same as the one
imposed on the operations by the necessary grouping according to the operations tim-
ing behavior. This approach has shown a lot of potential for timed game solving as
well [EMP10, PEM11].

The promising combination of DBMs and BDDs lead to work developing constraint
matrix diagrams (CMDs) [EFGP10], a data-structure unifying BDDs and DBMs more
thoroughly than the simple mapping approach of the aforementioned works, but not
covered in this thesis. CMDs replace the hashmap with a more memory friendly graph
structure with partial DBMs that can be jointly used by several DBMs.

Møller et al. [MLAH99] propose difference decision diagrams (DDDs), where the
nodes are labeled with clock difference constraints, encoding the boolean variables in
the form of special constraints. Behrmann et al. [BLP+99] modifies DDDs into clock dif-
ference diagrams (CDDs) using deterministic interval based branching. Wang [Wan04],
in turn, modifies CDDs into clock restriction diagrams (CRDs), which use overlapping
upper bounds instead of intervals for branching, and are used by the model checker
RED.

5.3. ALGORITHMIC IMPLICATIONS 47

5.3 Algorithmic Implications

A reachability checking algorithm working with a fully symbolic state space representa-
tion can either do the discrete exploration explicitly, like the semi-symbolic approaches,
as done in [Ger10], or symbolically, as done in [EGP10].

5.3.1 Operations on Explicit Data

Exploration algorithms working on explicit states are more intuitive, as computing the
possible behaviors of the model in a concrete state in order to find the direct successor
states is very close to answering the question how the modeled system could evolve
from a given state. For backward exploration the same argument applies, as looking
for the direct predecessors is also straightforward.

Aside from the easier to grasp concept, working with explicit states enables very
fast low level operations on the state, e.g., when computing successor states. If a model
enriched with code is used, for example Uppaal’s extended timed automata [BDL04],
the code can manipulate the discrete variables of the explicit state directly.

These advantages carry over to the explicit parts of a semi-symbolic state, i.e., an
explicit discrete state paired with a set of symbolically represented continuous states. A
simple way of exploring a state space using a fully symbolic state space representation is
thus to decode the set on which operations should be executed, work on the enumeration
of its semi-symbolic states, and encode the resulting enumerations in a fully symbolic
way again as soon as no more operations need to be executed on them, an approach I
chose in [Ger10].

The execution of code on a fully symbolic representation of a set of states without
enumerating those states is non-trivial. Especially in those cases, it seems advisable
to replace code with operations from the core of the modeling language, which, while
possibly decreasing readability, makes the operations much more straightforward to
compute in a fully symbolic setting.

5.3.2 Symbolic Operations on Symbolic Data-Structures

Working on a symbolic representation of sets of states can enable the use of symbolic
operations on these sets. While this is usually less efficient if a single explicit state is
concerned, the fact that several explicit states are concurrently treated in one operation
can lead to a more efficient overall performance. Chapter 6 demonstrates the effective-
ness of this approach which was also published in [EGP10]. The effectiveness of using
symbolic operations is apparent if those results are compared to the performance of the
approach from [Ger10], where I used a fully symbolic representation only for storage,
but a semi symbolic representation to explicitly execute the operations on.

48 CHAPTER 5. STATE-SPACE REPRESENTATION AND EXPLORATION

5.4 Reachability Model Checking2

A fully symbolic fixed point reachability checking algorithm, like the one from the
work [EGP10] presented in Chapter 6, that combines two theories, in the example
difference logic (using DBMs, see Section 3.4) and boolean functions (using BDDs, see
Chapter 4), assumes a model with states and transitions between them, in the example
a labeled transition system, namely a timed automaton as described in Chapter 3.

The transition relation will usually be a big disjunction of all the transitions, where
each transition is a conjunctive formula describing the state, some conditions on the en-
abledness of the transition and the next state. In the example, the edges in the labeled
transition system can be labeled with constraints that determine their enabledness.

Transitions that can be executed symbolically together will be grouped into one
symbolic operation by a fully symbolic algorithm, e.g., grouped by timing information
like guards and resets, as assumed by Dill and Wong-Toi [DWT95, Section 3.2]. In
the example, the location switches guarded by the same constraint combination will be
encoded as one BDD, say the constraint a− 0 < 5 ∧ 0− b < 3 (or shorter a < 5∧b > 3)
would have an associated BDD that encodes all the edges that are labeled with this
constraint.

Checking reachability boils down to computing the set of reachable states and
checking whether some state corresponding to the reachability property is in this set.
In the following, a reachability property of the form “there exists an execution of the
system that eventually reaches a state where φ holds”, in CTL: ∃♦φ, is assumed.3

Here, φ is a boolean predicate over the state variables.

The standard fixed point algorithm for this problem starts with the set of initial
states and repeatedly applies the post operator until a fixed point is reached, as shown
in Algorithm 1. The post operator computes all successor states for a given set of
states.

Such labeled transition systems can also label locations with constraints called
invariants, which determine whether the system is allowed to be in the location. As
it is a reachability checking algorithm, such invariants can conjunctively be added to
the constraints on all incoming and outgoing edges: The system can only enter the
location if the invariant is true, and only leave it while it is true. If it is given that
invariants on initial states are initially true, and that invariants on time only impose
upper bounds on clocks, an invariant can be applied to all states in a result from the
post operator to which it applies before these states are added to the set of reachable
states, which allows to remove states that contradict the invariant.

5.4.1 Discrete States

In the context of Algorithm 1, it is advisable to pre-compute a BDD representing the
transition relation for use in the post operator when storing the set of reachable states

2This section contains parts also published in [EGP10, Section 2.3].
3See [BK08, Chapter 6] for a comprehensive treatment of CTL [CE82].

5.4. REACHABILITY MODEL CHECKING 49

Algorithm 1 Least fixed point construction for computing the set of reachable
states R.4

R0 := {initial states}
i := 0
repeat
i := i+ 1
Ri := Ri−1 ∪ post(Ri−1)

until Ri = Ri−1
R := Ri

as a BDD. This BDD encodes precisely the pairs of states (s, s′) for which there exists
a transition from s to s′.

Assuming L to be the ordered list of state variables l1, . . . , ln, a state can be encoded
as a valuation of these state variables. A set of states thus can be encoded by the
BF f({li|1 ≤ i ≤ n}) that maps to true for and only for valuations of the li that
encode a state that is contained in the set. This allows to encode a state–next-state
relation using primed versions of the state variables, like the variables in the ordered
list L′ = l′1, . . . l

′
n. Let the BF ftr({li|1 ≤ i ≤ n} ∪ {l′i|1 ≤ i ≤ n}) map to true if

and only if for each valuation where the li variables encode a state s, the l′i would
encode a successor state s′ of s if the primes would be removed. More formally, for
a BF fs′({li|1 ≤ i ≤ n}) that maps to true if and only if the valuation of the li
encodes a state s′ and a similarly defined BF fs({li|1 ≤ i ≤ n}) encoding a state s,
ftr({li|1 ≤ i ≤ n} ∪ {l′i|1 ≤ i ≤ n}) maps to true for exactly those valuations that
satisfy fs({li|1 ≤ i ≤ n}) and fs′ [L/L

′]({l′i|1 ≤ i ≤ n}) for each pair (s, s′) where s′ is
a successor state of s. To calculate the set of successor states of a set of states encoded
by some BF f({li|1 ≤ i ≤ n}) the transition relation BF is applied to it, the unprimed
state variables are removed using existential quantification, and the variables are finally
renamed to their unprimed versions, resulting in a BF encoding all the successor states
reachable in one step. More formally, the successor states are encoded in (∃{li|1 ≤ i ≤
n}.(f({li|1 ≤ i ≤ n}) ∧ ftr({li|1 ≤ i ≤ n} ∪ {l′i|1 ≤ i ≤ n})))[L/L′]({li|1 ≤ i ≤ n}).

Baier and Katoen elaborate on this construction and its use in the post operator
in [BK08, Chapter 6].

5.4.2 Continuous States

In reachability checking for timed automata, the successor state is defined not only by
the successor location that can be treated by BDDs, but by the successor clock zone as
well. The post operator thus also needs to find the successor clock zone if a transition
is taken. Timed transitions are treated implicitly by the post operator.

First, consider the situation in the absence of invariants: From a clock zone z, a
discrete transition δ = 〈l, a, ϕ, λ, l′〉 (followed up by an implicit timed transition) gives

4This algorithm is just a pseudo-code description of a well known algorithm. This description has
already been published in [EGP10, Algorithm 1] and in [Ger10, Algorithm 1].

50 CHAPTER 5. STATE-SPACE REPRESENTATION AND EXPLORATION

rise to the successor clock zone (z ∧ϕ)[λ := 0]⇑ through intersection with the guard ϕ,
resetting the clocks in λ and then performing an implicit timed transition by elapsing
time. The transition is only enabled if z ∧ ϕ is non-empty.

Now, consider I(l′) to be the invariant of the successor location. The transition
is only enabled if the successor clock zone before the implicit timed transition (i.e.,
without the time elapse) satisfies the invariant of the successor location. So, this zone
then needs to be intersected with the invariant of the successor location to obtain
((z ∧ϕ)[λ := 0])∧ I(l′). The implicit timed transition can be incorporated as well, but
is restricted by the invariant, resulting in (((z ∧ ϕ)[λ := 0]) ∧ I(l′))⇑ ∧ I(l′).

Note that if invariants are restricted to upper bounds on clocks (that are not
stricter than ≤ 0), clock resets cannot invalidate them. Furthermore, if invariants
are restricted in this way, the invariant of the target location can be incorporated
in the guard of each transition such that ϕ = ϕ ∧ I(l′) if I(l′) does not restrict any
clock in λ, as clock resets can only affect constraints containing a clock that was re-
set. Moreover, for an invariant Iλ(l′) that consists exactly of those conjuncts from
I(l′) that do not involve a clock from λ, Iλ(l′) can then be incorporated into the
guard such that ϕ = ϕ ∧ Iλ(l′). Using z ∧ ϕ = z ∧ ϕ ∧ Iλ(l′) (from incorporation of
the invariant in the guard) and (z ∧ ϕ ∧ Iλ(l′))[λ := 0] = (z ∧ ϕ)[λ := 0] ∧ Iλ(l′)
(from excluding conjuncts concerning clocks from λ from the invariant) this gives
(z ∧ ϕ)[λ := 0] = ((z ∧ ϕ)[λ := 0]) ∧ I(l′). These restrictions and changes then simplify
the successor clock zone to (z ∧ ϕ)[λ := 0]⇑ ∧ I(l′).

The restriction does not reduce expressivity: Lower bounds can be incorporated into
the guards of all incoming discrete transitions to make sure only discrete transitions
that do not violate the lower bound are enabled. As timed transitions can only increase
the value of clocks, they cannot violate lower bounds, i.e., lower bounds cannot force the
automaton out of a location due to timed transitions. Thus, reachability of a location
can be restricted to clock zones that do not violate certain lower bounds without
resorting to invariants. As for upper bounds, negative clock values are not allowed,
so invariants restricting to < 0 effectively remove the locations they are associated
with, because they can never be reached—this can be more easily achieved by simply
removing those locations.

5.5 Verification and Bug Finding

Demonstrating the existence of some execution which violates a desired property or
satisfies an undesired one is the domain of bug finding. Finding bugs in a model is very
useful for refining the model, e.g., while modeling a system, and even more useful if the
found bug is not in the model, but in the system itself. In model based development,
bug finding can be used from a very early stage of the development process, identifying
bugs quickly to allow for their removal soon after their introduction.

Verification usually demonstrates not the violation, but the satisfaction of a prop-
erty. It is desirable to combine verification with bug finding such that a failure to verify
a property demonstrates the existence of a bug by providing a counterexample to the

5.5. VERIFICATION AND BUG FINDING 51

desired property, which is, in turn, an example for the found bug.

Interesting positive properties that some system is desired to fulfill are usually
universal, i.e., something is supposed to happen eventually (liveness), or something is
supposed to never happen (safety). When verifying some universal property, all possible
executions of a system model have to be considered in order to prove that the model
satisfies the property. On the other hand, finding one execution of the system model
that violates the property is enough to demonstrate that a model does not satisfy the
property. Existential properties, i.e., that something could possibly happen, are mostly
properties that systems are desired to not fulfill. Here, the converse applies: disproving
an existential property requires all executions of a system model to be considered, while
proving it can be achieved by finding one satisfying execution. Note that this work is
mostly concerned with safety properties.

5.5.1 Exploration

In reachability checking, the model usually contains dedicated error locations which
are entered when the property is violated.

Fully exploring the reachable state space allows to verify whether an error location
is reachable from an initial state.

Forward or Backward

There are basically two options to explore the state space: (1) Forward exploration
starts from the initial states and looks for all states reachable from there by looking at
all possible successor states of states found to be reachable. (2) Backward exploration
starts from the error states and looks for all states that can reach them by looking at
all predecessor states of states from which the error is known to be reachable. This
can be combined, e.g., using target enlargement, where some set of states from which
an error state is reachable is computed and all those states are then marked as error
states. This set is usually computed cheaply using backward exploration, e.g., with
underapproximation, and only contains a few of the states from which an error is
reachable. Then, the forward exploration from the initial states is done in the usual
way, but on a model containing an enlarged set of error states.

5.5.2 Counterexample-Guided Abstraction Refinement

To verify models that are very complex, approaches based on automatic abstraction aim
at reducing the complexity of the model to check. In counterexample-guided abstraction
refinement (CEGAR) [CGJ+00], the initially very simple abstraction gives the abstract
model more behaviors than the actual model has. Model checking the abstract model
provides either proof that the model does not have the unwanted behavior, or delivers
a counterexample demonstrating the unwanted behavior in the abstract model. If the
counterexample can be concretized in the actual model, an actual counterexample is
found. Otherwise, the counterexample is spurious, i.e., it demonstrates a behavior that

52 CHAPTER 5. STATE-SPACE REPRESENTATION AND EXPLORATION

was added to the model due to the abstraction. This counterexample is then used to
automatically refine the abstraction, removing this offending behavior.

CEGAR usually requires many iterations of the refinement loop each producing
a slightly less coarse abstraction than the previous one to find an abstraction that
is sufficiently fine to prove the property. Essentially, each of these iterations starts
with a bug finding step, thus quick discovery of reachable error states to provide a
counterexample is desired from a model checking technique used in the refinement
loop.

5.6 Data-Structure Tradeoffs

The choice of the data-structure to be used by an algorithm for verification or bug
finding needs to take into account several aspects. For example, the algorithm may be
most suited to a specific data-structure, as the development of an algorithm is often
tightly integrated with the development of a data-structure that is proposed to be used
by the algorithm. In a state space exploration approach, data-structures are needed
to store two sets of states: the states that have already been explored, and the states
whose successors need to be explored. It is possible to use different data-structures for
these two sets, as done in [Ger10], but this entails encoding the results of looking for
the successors of states in the one set into a different data-structure for storage in the
other set.

5.6.1 Memory Consumption vs Runtime

These two roles of the used data-structures, storing the set of states whose successors
need to be explored and storing the set of the reachable states, give rise to a trade-
off: A data-structure optimal for a quick exploration of the successor states might for
example use an explicit or semi-symbolic representation for a set of states, which will
consume a lot of memory. A data-structure optimal for storing may states using only
little memory might for example use a fully symbolic representation for a set of states,
which will only allow for a slower successor computation routine.

5.6.2 Symbolic Operations on Symbolic Data-Structures

That a symbolic representation is slower when computing a single successor state does
not mean it needs to be slower when computing several successors, if symbolic opera-
tions can be used.

Finding all successors of all states from a set of states can be achieved in a single
symbolic operation, as will be demonstrated in Section 6.1 on page 56. Even if not all
immediate successors can be found in a single symbolic step, at least all immediate
successors which result from a set of transitions that can be executed together symbol-
ically can be computed in a single symbolic step, e.g., as described in Section 6.1.1. If
enough states can thus be treated by a single symbolic operation, a few slow symbolic
successor computations needed to explore a reachable state space can still be faster

5.6. DATA-STRUCTURE TRADEOFFS 53

than many more explicit successor computations that, while very fast individually,
treat only a single explicit or semi-symbolic state. So over the whole runtime of an
algorithm, symbolic operations on symbolic data-structures can be faster as well as
less memory intensive than an explicit or semi-symbolic approach, as demonstrated in
Table 6.2 on page 65.

5.6.3 Preferring some Theory over the Others

It can improve the efficiency of a state space exploration if certain parts of the state
space are explored preferably, as will be described in Section 6.1.4 on page 60. Fur-
thermore, in the context of bug finding, it might be advantageous to prefer exploration
steps in the theory most likely to quickly lead to a bug, e.g., the theory encoding the
locations.

The set of states whose successors are to be explored has subsets of states whose
successors can be calculated in one symbolic operation. As described in Section 6.1.4,
it can speed up the exploration of the whole state space if these subsets grow fast.
The bigger these subsets become, the more states can be treated in one symbolic
operation. If the successor computation can be done in one symbolical step for all
states that fulfill certain constraints from one theory, it can thus be advantageous
to prioritize exploration in the other theory: Finding more states that are separated
from the already discovered states in this other theory alone grows the subsets, while
discovering states separated from the already discovered states in the first theory creates
new subsets.

Prioritizing a Data-Structure

In Chapter 7, I propose to prefer exploration in one theory over the other in the explo-
ration algorithm. As the data-structure used is the combination of two data-structures
(BDDs and DBMs) for the two theories (boolean functions and difference logic) that
treat the two aspects of a state (location and continuous time), the preference for a
theory can be achieved by preferring exploration in one data-structure over the other.

54 CHAPTER 5. STATE-SPACE REPRESENTATION AND EXPLORATION

Chapter 6

Making the Right Cut in Model
Checking Data-Intensive Timed
Systems1

Contents

6.1 Fully Symbolic Real-Time Model Checking 56

6.1.1 Computing the Reachable States using CZMs 56

6.1.2 An Example . 58

6.1.3 Adding support for invariants 59

6.1.4 Possible Optimizations . 60

6.2 Guided Counterexample Generation 61

6.3 Experimental Results . 62

6.3.1 Prototype Implementation . 62

6.3.2 A FlexRay Physical Layer Protocol Model 62

6.3.3 Model Checking the FlexRay Model 63

6.3.4 Model Checking the Fischer Protocol 63

6.4 Conclusion . 64

1This chapter constitutes a modified version of work already published in [EGP10].

55

56 CHAPTER 6. MAKING THE RIGHT CUT

Abstract. The success of industrial-scale model checkers such as Uppaal [BDL04]
or NuSMV [CCGR00] relies on the efficiency of their respective symbolic state
space representations. While difference bound matrices (DBMs) are effective for
representing sets of clock values, binary decision diagrams (BDDs) can efficiently
represent huge discrete state sets. In this chapter, a simple general framework
for combining both data-structures is introduced, enabling a joint symbolic rep-
resentation of the timed state sets in the reachability fixed point construction.
Especially in the analysis of models with only few clocks, large constants, and a
huge discrete state space (such as, e.g., data-intensive communication protocols),
the presented technique turns out to be highly effective. Additionally, the pre-
sented framework allows to employ existing highly-optimized implementations for
DBMs and BDDs without modifications. The approach is evaluated and compared
with Uppaal [BDL04] and RED [Wan04] using a prototype implementation on
two benchmarks: A model of the FlexRay physical layer protocol and a model of
Fischer’s mutual exclusion protocol.

6.1 Fully Symbolic Real-Time Model Checking

This section presents the timed state set representation and the extension of the basic
fixed point algorithm for computing the set of reachable states in order to make it
applicable to this representation. The representation is described in a general way and
abstracted from the actual choices of data-structures for representing clock zones (CZ)
and discrete location sets (LS), which allows to consider the approach seperately from
the details of implementation choices. The actual implementation of the approach
(as described in Section 6.3), uses DBMs and BDDs. However, the general idea is
applicable to all suitable data-structure types (such as, e.g., CDDs [BLP+99]). Thus,
future alternatives for storing clock zones and location sets can also be used with the
presented approach.

To simplify the presentation, the case of invariant-free timed automata is presented
first and the application of the algorithm on an example network is demonstrated. Af-
terwards, the idea is extended to include support for invariants. Possible optimizations
to the algorithm are discussed at the end.

Sets of CZ/LS pairs permit representing the timed and discrete parts of sets of
states separately, and provide the basis for the approach. The sets of states S in the
fixed point computations are defined as partial functions S : Z ⇀ 2L from the set of
clock zones Z to the powerset of the set of locations L. For such a so-called clock zone
map (CZM), a state (l,~t) is in S if for some z ∈ Z, ~t ∈ z and l ∈ S(z). Note that the
choice of z is not required to be unique.

6.1.1 Computing the Reachable States using CZMs

In the following, the adaptation of the basic fixed point construction for computing the
set of reachable states given in Algorithm 1 on page 49 to work with CZMs is described.
The first step is to partition the overall transition relation of the system: for each
combination of clock guards and resets that occurs along some transition, a separate
transition relation T [ϕ, λ] containing all transitions corresponding to the guard/reset

6.1. FULLY SYMBOLIC REAL-TIME MODEL CHECKING 57

Algorithm 2 Computing the set of reachable states R represented as a CZM. The
post operator is parametrized by the transition relation used.2

1: for all guard/reset pairs (ϕ, λ) in the system do
2: compute the transition relation T [ϕ, λ]
3: end for
4: R :=

{
z⇑0 7→ {l0}

}
5: W := {z⇑0 }
6: R′ := R
7: repeat
8: R := R′

9: W ′ := ∅
10: for all z ∈W do
11: for all guard/reset pairs (ϕ, λ) do
12: L := postT [ϕ,λ](R[z])

13: z′ := (z ∧ ϕ)[λ := 0]⇑

14: if R′[z′] + L then
15: R′[z′] := R′[z′] ∪ L
16: W ′ := W ′ ∪ {z′}
17: end if
18: end for
19: end for
20: W := W ′

21: until R = R′

pair (ϕ, λ) is built. This separates timing concerns from the discrete transitions of the
system and makes it easy to compute successor clock zones from a given source clock
zone and some guard/reset pair. When BDDs are used for representing location sets,
it is not necessary to enumerate the product locations in the global timed automaton
explicitly if the system is given as a network of timed automata, as the synchronization
between the components can be encoded symbolically.

When the transition relations are built, the standard fixed point computation is
performed. However, it iterates over all such guard/reset pairs in every step, in order
to apply the pairs’ associated transition relation. After each discrete transition, the
set of possible timed transitions that can follow is computed as well, in order to obtain
the successor clock zone. Algorithm 2 shows the details of these steps.

The pre-fixed point is stored in R, where R[z] represents the locations associated
with clock zone z in R. The algorithm iterates over this set of reachable states, in
each new round looking at the pre-fixed point from the previous round. For every
clock zone in the domain of R, it computes successor locations L and clock zones z′ for
each guard/reset pair (ϕ, λ) in the transition relation. If the new CZ/LS pair (z′, L)

2This algorithm has already been published in [EGP10, Algorithm 2]. A pseudo-code version of the
underlying approach has already been published in [Ger10, Algorithm 2].

58 CHAPTER 6. MAKING THE RIGHT CUT

pstart q

a, y := 0

b

r

a, x ≥ 5

b, x := 0||

Figure 6.1: An example network of timed automata.3

is not already contained in the pre-fixed point, it is added to the next pre-fixed point
R′. To make the computation more efficient, the changes in the CZM are tracked in
the waiting set W . This allows to avoid re-considering CZ/LS pairs which have not
changed since the previous round of the algorithm. The added inner loop, in which
all guard/reset pairs are iterated over, is of course additional work as compared to
semi-symbolic approaches. But unlike model checkers keeping the discrete part of the
system explicit, this approach can compute timed successor zones for many locations
at the same time.

The presented algorithm’s correctness is guaranteed by the fact that it is essentially
a classical reachability fixed point algorithm. For every number of steps n ∈ N and
timed state (l,~t) that is reachable from the initial state in n discrete steps, the pre-
fixed point R contains this state after at most n iterations of computing these pre-fixed
points. The termination of this algorithm is obvious, as clock regions are never split
and the number of sets of these is finite, as is the number of discrete locations, and the
algorithm terminates when no new clock regions or discrete locations are found.

6.1.2 An Example

Consider the parallel composition of the timed automata depicted in Figure 6.1. The
product automaton has two locations pr and qr, and two clocks x and y. There are three
guard/reset pairs (true, ∅), (x ≥ 5, {y}), and (true, {x}). Each of them is associated
with one of the following three transition relations:

• T [true, ∅] = {(qr, qr), (pr, pr)},

• T [x ≥ 5, {y}] = {(pr, qr)}, and

• T [true, {x}] = {(qr, pr)}.

When the algorithm is run on this example,
{

(x = y = 0)⇑ 7→ {pr}
}

=
{

(x = y) 7→
{pr}

}
is the initial value for R:

• R =
{

(x = y) 7→ {pr}
}

and

• W = {(x = y)}.
3This figure has already been published in [EGP10, Fig. 1].

6.1. FULLY SYMBOLIC REAL-TIME MODEL CHECKING 59

Then, in the fixed point computation, it iterates over the transition relations and
obtains

• R =
{
{(x = y) 7→ {pr}, (x ≥ 5 ∧ y ≤ x− 5) 7→ {qr}

}
and

• W = {(x ≥ 5 ∧ y ≤ x− 5)}.

as the transitions synchronizing on a are enabled when x ≥ 5, resetting y to 0. In the
second round, it adds (x ≤ y) 7→ {pr} to R obtaining

• R =
{

(x = y) 7→ {pr}, (x ≥ 5 ∧ y ≤ x− 5) 7→ {qr}, (x ≤ y) 7→ {pr}
}

and

• W = {(x ≤ y)}.

as from states with the location qr, the transitions synchronizing on b are enabled,
resetting x to 0. The algorithm then terminates in the following round, as no new
states are discovered, providing R =

{
{(x = y) 7→ {pr}, (x ≥ 5 ∧ y ≤ x − 5) 7→

{qr}, (x ≤ y) 7→ {pr}
}

as the CZM representation of the set of reachable states in the
system.

6.1.3 Adding support for invariants

Algorithm 2 is not able to deal with invariants. The invariants active at some point
in the run of a system depend on the system’s current location. To add the handling
of invariants to the fixed point construction, it is necessary to take into account the
location data from the discrete part of the state when computing the successor clock
zones. In the FlexRay physical layer protocol models, the number of clocks and the
number of distinct invariants is small. Hence, it is feasible to enumerate all possible
invariants of the product timed automaton as a pre-computational step.

Let I be the set of all invariants appearing in the product automaton of a timed
system. Assume that each invariant is given in minimal form. Consider the example
where precisely the invariants x ≤ 3, x ≤ 4, and y ≤ 2 are associated to some locations
of three different components of the input network. In this example, the set of all
invariants of the product automaton is I = {true, x ≤ 3, x ≤ 4, y ≤ 2, x ≤ 3 ∧ y ≤
2, x ≤ 4∧y ≤ 2}. Now consider the function C : I → 2L that maps each invariant onto
the set of locations in which precisely the given invariant must hold. One can easily
compute I and C in a preprocessing step that does not need to construct the product
automaton.

In the fixed point construction, the computed successor locations need to be split
according to their associated invariants. This is achieved by splitting them according
to the locations mapped to in C. Thus, the successor clock zones can be computed
taking the respective invariants into account. If the initial location has an active
invariant, this invariant also needs to be taken into account when computing the initial
zone. Algorithm 3 is a version of Algorithm 2 with the necessary changes to handle
invariants.

60 CHAPTER 6. MAKING THE RIGHT CUT

Algorithm 3 Algorithm 2 with added invariant treatment.4

1: for all guard/reset pairs (ϕ, λ) in the system do
2: compute the transition relation T [ϕ, λ]
3: end for
4: R :=

{
z⇑0 ∧ I(l0) 7→ {l0}

}
5: W := {z⇑0 ∧ I(l0)}
6: R′ := R
7: repeat
8: R := R′

9: W ′ := ∅
10: for all z ∈W do
11: for all guard/reset pairs (ϕ, λ) do
12: L := postT [ϕ,λ](R[z])
13: for all i ∈ I do
14: L′ := L ∩ C(i)

15: z′ :=
(
(z ∧ ϕ)[λ := 0] ∧ i

)⇑ ∧ i
16: if R′[z′] + L′ then
17: R′[z′] := R′[z′] ∪ L′
18: W ′ := W ′ ∪ {z′}
19: end if
20: end for
21: end for
22: end for
23: W := W ′

24: until R = R′

6.1.4 Possible Optimizations

The performance of the presented technique could be improved by deviating from the
strict rule of computing one pre-fixed point after the other. All newly encountered
CZ/LS pairs (z, l) can be directly stored into the pre-fixed point R in the algorithm
instead of storing them in some intermediate set R′, which is later copied to R when all
elements from the waiting set have been processed. This saves computation time in the
case that such a z is in the waiting set W but not yet processed in the respective round
of the fixed point computation. In this case, by storing the newly reachable locations
for z into R, they are also taken into account when z is finally drawn from the waiting
list in the respective round of the algorithm and their exploration is not delayed until
the next round, resulting in a lower number of steps in total until the fixed point is
reached.

Note that this also allows to use a waiting queue instead of a set. Then, in line 10 of
Algorithm 2 (and Algorithm 3), the zones are popped, so every zone from W that was
picked is removed. This opens the door for optimization strategies based on the ordering

4This algorithm is based on [EGP10, Algorithm 3] and [EGP10, Algorithm 2].

6.2. GUIDED COUNTEREXAMPLE GENERATION 61

of the queue. For example, the waiting queue can be modified such that clock zones are
drawn from it prioritized by their first appearance in R. This way, the exploration of
new clock zones is delayed such that the progress in computing the reachable discrete
states for zones encountered earlier can be forwarded to successor zones more efficiently.
This optimization idea inspired the approach presented in Chapter 7.

6.2 Guided Counterexample Generation

Algorithms 3 and 2 are only capable of computing the set of reachable states. As
checking if it contains some given goal state is trivial after it has been computed, this
suffices to make the approach presented suitable for a typical verification task for timed
systems: checking that no error state is reachable.

For cases in which some error state is reachable, however, obtaining a counterexam-
ple, i.e., a sequence of transitions from some initial state to some error state, is desired
to help the designer of a timed system to improve the model or even to document a
genuine flaw in the system. Therefore, most modern model checking tools can generate
counterexamples.

For Algorithm 2, finding a counterexample relies on storing the pre-fixed points.
When an error state is found in the pre-fixed point Rn from step n, a predecessor
state of the error state can be picked from Rn−1 by following all transitions entering
the error state backward and picking one that leaves a state that is in Rn−1. Such a
transition can always be found as at least one such transition needed to be followed in
order to discover the error state when the successors of Rn−1 were computed. For this
predecessor state of the error state, a predecessor state from Rn−2 can be picked an
so on, until finally an initial state is reached. The reversed sequence of all the chosen
transitions then forms a trace leading from an intitial state to the error state, i.e., a
counterexample.

This procedure can also be used to find a counterexample if the error state is
discovered with Algorithm 3, but only with some additional meassures.

Suppose that Algorithm 3 terminates early with a set of forward reachable states
R comprising some error states E. Then, a nonimproved fixed point construction
is executed to compute a sequence of pre-fixed points F0, . . . , Fn, where each Fi is
restricted to R and Ef = Fn ∩ E 6= ∅. Note that for all 0 ≤ i ≤ n, the set Fi contains
only states that are reachable after exactly i steps.

This allows to compute a counterexample using a backward nonimproved fixed point
construction producing a sequence of backward reachable sets of states Bn, . . . , B0

with Bn = Ef . For each 0 < j ≤ n, Bj−1 is computed by picking one particular
semi-symbolic state (i.e., a zone and one concrete location) from Bj , compute its pre-
decessors, and restrict them to Fj−1. After each iteration j, a transition connecting a
state in Bj−1 and Bj is picked, and added to the counterexample. The computation of
the predecessors can be done in a symbolic way similar to the techniques described in
this chapter for computing the sucessors.

62 CHAPTER 6. MAKING THE RIGHT CUT

6.3 Experimental Results

6.3.1 Prototype Implementation

The approach presented in this chapter has been implemented by Hans-Jörg Peter
and Rüdiger Ehlers in a prototype model checker using the Uppaal-DBM library
[Ben02] for representing DBMs and the Cudd library [Som09] for representing BDDs.
To allow a fair comparison with Uppaal [BDL04] and RED [Wan04], the prototype
tool reads automata-based specifications as input. The first step in its execution is to
call the tool Nova from the SIS toolset [SSL+92] as a back-end for finding efficient
assignments of control locations to BDD variable valuations. Then, the guard/reset
pairs of the given timed system are collected and, for each pair, the BDD representing
the symbolic transition relation over the discrete control structure is computed (using
the assignments obtained in the first step). In the last step of the preparation phase,
the possible invariant combinations are collected and, for each combination, the BDD
representing the associated locations is computed.

The actual fixed point computation of the reachable states is implemented as de-
scribed in Section 6.1. For the state space representation, a hash map that maps DBMs
to BDDs is used. No fixed BDD variable ordering is provided a priori nor any other
insight into the model is used to optimize the BDD representation. Instead, the imple-
mentation only relies on the automatic on-the-fly reordering heuristics implemented in
the Cudd library.

6.3.2 A FlexRay Physical Layer Protocol Model

I created a benchmark that investigates the physical layer protocol of the FlexRay pro-
tocol as introduced in Section 2.1 starting on page 12, where a message is transmitted
during a so-called static segment from a sending ECU to a receiving ECU. As a crucial
correctness property, it is required that there is no deviation of the message received
from the message sent. The FlexRay physical layer protocol as described in Section 2.2
starting on page 17 is modeled in the benchmark, the important details of the model
variant used in this chapter are described in the following.

Clocks. Since the receiving and sending ECU are running asynchronously, two clocks
are used to model the timing behavior. The length of a clock cycle may deviate by at
most 0.15 % from the standard rate.

Bit Stream Format. The actual payload of a transmission between two ECUs has a
maximal length of 262 bytes. It is embedded into a structured bit stream that consists
of (1) the initial 15 bit transmission start sequence (TSS), (2) the 1 bit frame start
sequence (FSS), (3) the individual bytes of the payload, each prepended with a 2 bit
byte start sequence (BSS), and finally (4) the 2 bit frame end sequence (FES). Thus, the
maximal bit stream length is 2638 bits. Note that modeling the length of the message

6.3. EXPERIMENTAL RESULTS 63

increases the discrete complexity of the benchmark, thus enabling a smooth scaling of
said discrete complexity by scaling the number of bytes in the payload of the message.

Error Model. As a reasonable error model, in any sequence of 5 consecutive bits
on the bus, 1 bit might be flipped. However, in this chapter, instantaneous transitions
on the bus5 are assumed and registers are assumed to sample values correctly ignoring
setup and hold times (both assumptions reduce timing complexity), thus these bit flips
do not only have to account for glitches, but also for jitter. Therefore, the resulting
benchmark model does not yield results on tolerable glitch patterns, as it cannot dis-
tinguish between the effects of glitches and those of jitter (see Section 2.3 for details
on tolerable glitch patterns).

6.3.3 Model Checking the FlexRay Model

I modeled the physical layer protocol of the FlexRay protocol [Fle05] as a network
of timed automata6, as described in Section 6.3.2, for usage with Uppaal7 [BDL04],
RED8[Wan04], and the prototype model checker. As a safety property, the reachability
of a dedicated error location, which the receiver enters upon an uncompensatable devi-
ation of the received from the sent bit stream, is checked. Table 6.2 on page 65 shows
the results of this evaluation. Unfortunately, for every payload length, RED runs out
of memory (e.g., for the smallest instance it hits the 4 GB limit after 18 minutes).

The most striking observation is that the prototype overall needs much less memory
than Uppaal or RED, which allows to verify the full payload length of 262 bytes. In
fact, while the prototype model checker’s memory consumption always stays below
1 GB, Uppaal’s memory and time consumption increases linearly in the length of the
payload, resulting in running out of memory with a payload length of 34 bytes or more.
It is also noteworthy that in most of the cases the presented approach also outperforms
Uppaal w.r.t. the running time. An oscillation effect can be observed in the running
times and space consumptions of the implementation which is caused by the variable
reordering and caching heuristics of the Cudd library. This BDD-related phenomenon
is also observable in other contexts (see, e.g., [BGJ+07]). Nevertheless, the number of
symbolic exploration steps increases linearly in the length of the payload and the set
of encountered clock zones reaches its fixed point at a payload length of 24.

6.3.4 Model Checking the Fischer Protocol

In addition to the FlexRay case study from Section 6.3.3, the Fischer mutual exclu-
sion protocol is also considered, which is a standard benchmark from the timed model

5This means in Figure 2.5 on page 19, the transition between high and low on the bus would be
vertical instead of sloped.

6The models are available at http://www.avacs.org/Benchmarks/Open/flexray.tgz
7Version 4.0.11, running with aggressive space optimization – option -S2
8Version 8.100511

64 CHAPTER 6. MAKING THE RIGHT CUT

checking domain with a small discrete state space and one clock per component. Ta-
ble 6.1 shows that the existing model checking techniques implemented in Uppaal and
RED perform better than the prototype on this benchmark.

This is, however, not surprising, as the Fischer protocol does not fall into the
class of systems whose verification the approach aims at. This chapter presented a
specialized technique for timed systems with a large discrete state space but only a few
clocks, an important class of models that comprise, e.g., data-intensive asynchronous
communication protocols. The Fischer protocol model, on the other hand, has a large
number of clocks (one per component), but only few locations, thus the standard semi-
symbolic state space representation used in Uppaal is already quite effective here.
Also, RED’s symmetry reduction is beneficial for this particular protocol.

CZM model checker Uppaal RED

Benchmark Steps Zones Time Memory Time Memory Steps Time Mem

Fischer 3 26 19 0 s 81 MB 1 s 0 5 0 s 29 MB
Fischer 4 258 149 0 s 81 MB 1 s 0 3 0 s 21 MB
Fischer 5 3156 1496 1 s 108 MB 0 s 37 MB 5 0 s 21 MB
Fischer 6 42528 17426 32 s 156 MB 0 s 37 MB 5 1 s 45 MB
Fischer 7 612531 227522 17 min 302 MB 1 s 37 MB 5 1 s 66 MB
Fischer 8 TIMEOUT 3 s 38 MB 5 3 s 105 MB
Fischer 9 TIMEOUT 15 s 42 MB 5 8 s 174 MB
Fischer 10 TIMEOUT 65 s 56 MB 5 19 s 303 MB

Table 6.1: Comparison of the prototype with Uppaal and RED on the (timing-
intensive) Fischer protocol benchmark.9

6.4 Conclusion

DBMs and BDDs impressively demonstrate their effectiveness in model checkers such as
Uppaal and NuSMV. However, since NuSMV can only handle pure discrete models
and Uppaal does not have a symbolic representation for the discrete part of the state
space, both tools fail in verifying timed systems with large discrete control structures.

This chapter presented a fully symbolic approach to timed model checking which
combines DBMs with BDDs as presented in [EGP10]. In contrast to other approaches,
the presented technique neither suffers from a loss of modeling precision (it remains in
the classical timed automata framework) nor leads to blow-ups in the BDDs (it avoids
the encoding of timing interdependencies in the BDDs).

The presented approach was further improved in work presented in [EFGP10] by
transcending CZMs’ simple mapping relationship between DBMs and BDDs to create
Constraint Matrix Diagrams (CMDs), a fully integrated graph based fully symbolic
timed state space representation.

9Parts of this table have already been published in [EGP10, Table 2].

6.4. CONCLUSION 65

CZM model checker Uppaal

Payload Correct Steps Zones Time Memory Time Memory

1 Yes 6566 1858 86 s 252 MB 23 s 88 MB
2 Yes 8606 2498 2 min 251 MB 69 s 205 MB
3 Yes 10423 3142 7 min 527 MB 2 min 325 MB
4 Yes 12143 3782 2 min 251 MB 3 min 436 MB
5 Yes 13863 4422 4 min 312 MB 4 min 563 MB
6 Yes 15583 5062 5 min 415 MB 5 min 675 MB
7 Yes 18647 5706 4 min 312 MB 6 min 786 MB
8 Yes 20367 6346 6 min 311 MB 7 min 930 MB
9 Yes 22087 6986 5 min 259 MB 8 min 1 GB
10 Yes 23807 7626 6 min 311 MB 8 min 1 GB
11 Yes 26872 8270 5 min 262 MB 9 min 1 GB
12 Yes 28592 8910 12 min 526 MB 10 min 1 GB
13 Yes 30312 9550 13 min 528 MB 11 min 1 GB
14 Yes 32032 10190 14 min 527 MB 12 min 2 GB
15 Yes 35094 10834 8 min 266 MB 13 min 2 GB
16 Yes 36814 11474 5 min 259 MB 14 min 2 GB
17 Yes 38534 12114 5 min 256 MB 15 min 2 GB
18 Yes 40254 12754 5 min 260 MB 15 min 2 GB
19 Yes 43314 13398 11 min 405 MB 16 min 2 GB
20 Yes 45029 14038 5 min 261 MB 18 min 2 GB
21 Yes 46750 14678 6 min 259 MB 18 min 2 GB
22 Yes 48470 15318 5 min 262 MB 19 min 2 GB
23 Yes 50190 15958 4 min 259 MB 20 min 3 GB
24 Yes 51991 16024 7 min 264 MB 22 min 3 GB
25 Yes 52629 16024 5 min 314 MB 22 min 3 GB
26 Yes 52909 16024 5 min 265 MB 24 min 3 GB
27 Yes 53189 16024 35 min 522 MB 26 min 3 GB
28 Yes 53469 16024 7 min 266 MB 25 min 3 GB
29 Yes 53749 16024 6 min 262 MB 25 min 3 GB
30 Yes 54029 16024 6 min 265 MB 28 min 3 GB
31 Yes 54309 16024 16 min 415 MB 29 min 4 GB
32 Yes 54589 16024 6 min 313 MB 31 min 4 GB
33 Yes 54869 16024 28 min 955 MB 31 min 4 GB
34 Yes 55149 16024 13 min 313 MB MEMOUT
60 Yes 66230 16024 18 min 520 MB MEMOUT
100 Yes 90230 16024 57 min 941 MB MEMOUT
150 Yes 120230 16024 30 min 406 MB MEMOUT
200 Yes 150230 16024 72 min 938 MB MEMOUT
262 Yes 187430 16024 28 min 413 MB MEMOUT

Table 6.2: Comparison of the prototype with Uppaal on the FlexRay physical layer
protocol case study. The first column shows the length of the payload in bytes. The
second column states the obtained verification result. The next four columns show the
number of symbolic steps (i.e., applications of the post operator) until the reachability
fixed point is reached, the number of distinct clock zones encountered, the running
time, and the memory consumption of the prototype model checker. The last two
columns show the running time and space consumption of Uppaal. All benchmarks
were executed on an AMD Opteron processor with 2.6 GHz and 4 GB RAM.10

10Parts of this table have already been published in [EGP10, Table 1].

66 CHAPTER 6. MAKING THE RIGHT CUT

Chapter 7

Underapproximating Lookahead
in Symbolic Forward
Reachability-Checking

Contents

7.1 A bitstring/difference-logic model 67

7.1.1 Symbolic Data-Structures: DBMs and BDDs 68

7.2 Growing the BDDs faster . 68

7.3 Algorithm Idea . 68

7.4 CZM Algorithm . 69

7.4.1 Formalization of Algorithm Idea 69

7.5 Example . 83

7.6 Evaluation on FlexRay Benchmark 86

Abstract. This chapter explores the combination of Difference Bound Matrices
(DBMs) and Reduced Ordered Binary Decision Diagrams (BDDs) during the fully
symbolic state space exploration. It proposes a novel algorithm to find more
successor states in one symbolic step, at the price of a stronger fragmentation of
the representation of the explored state space: If a set of transitions is executed
in a symbolic step, this set can be enlarged by adding transitions with not the
exact same guard/reset set, but with guards that are implied and side effects that
are hidden. This associates more locations with the resulting clock zone, which is
smaller than it could be for the additional locations, thus allowing a look at an
underapproximation of the zone ahead of the regular discovery of the full clock
zone.

7.1 A bitstring/difference-logic model

Models with a real-time aspect, like FlexRay, come with a discrete part encodable as
a bitstring, and a continuous part encodable in difference-logic: Values of variables

67

68 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

and the active location can easily and efficiently be encoded in binary. Convex sets of
valuations of clocks can be encoded in a conjunction of difference constraints.

7.1.1 Symbolic Data-Structures: DBMs and BDDs

A symbolic representation of bitstrings is possible with Reduced Ordered Binary Deci-
sion Diagrams (BDDs) [Bry86, BCM+92] (see Chapter 4). Convex sets of clock val-
uations can be handled symbolically with Difference Bound Matrices (DBMs) [Dil89]
(see Section 3.4). The idea proposed in this chapter will be presented using Clock Zone
Maps (CZMs), a mapping from DBMs to BDDs to represent the state space of a reach-
ability checking algorithm working on a network of timed automata, as introduced in
the work [EGP10] presented in Chapter 6.

7.2 Growing the BDDs faster

If data, e.g., DBMs, is mapped to BDDs, an optimization from [EGP10, Section 3.4]
presented in Section 6.1.4 is based on the principle of growing the BDDs fast before
looking at the successors resulting from the data mapping to this BDD. This allows
to transfer more discrete information stored in the thus bigger BDD to the possible
successors found when looking at the data mapping to the BDD, instead of computing
this discrete information again and again for each successor of the original data entry
mapping to the BDD.

This principle can be used not just as an optimization, but as the foundation of a
reachability checking algorithm for timed automata.

7.3 Algorithm Idea

In a symbolic reachability checking algorithm such as described in Section 5.4 and
(more detailed) in Chapter 6 and [EGP10], different theories are combined in each
step of the state space exploration. Such an algorithm can prioritize one of these
theories over the other. That implies always looking for successors in the prioritized
theory, and only looking at the other theory when no further progress can be made
otherwise. As an example, if the location switches guarded by the same constraint
combination are encoded as one BDD—say the constraint a− 0 < 5 ∧ 0− b < 3 (or
shorter a < 5 ∧ b > 3) has an associated BDD that encodes all the edges that are
labeled with this constraint—the successor function using the BDD associated with
a < 5 ∧ b > 3 would be repeatedly applied until its fixed point is reached.

If the non-prioritized theory has certain features, this principle can be executed
in a stronger way. Assume the non-prioritized theory, difference logic in the exam-
ple, has constraints that induce an implication-semi-order. In difference logic, order
constraints talking about the same variables have an implication-semi-order: For exam-
ple, a− b < 5 =⇒ a− b < 7 =⇒ a− b < 42 and so on. This implication-semi-order
can be exploited to add implicitly enabled transitions to a symbolic operation that

7.4. CZM ALGORITHM 69

executes grouped transitions. In the example, the edges associated with the con-
straint a < 7 ∧ b > 2 could be added to those associated with a < 5 ∧ b > 3 as
(a < 5 =⇒ a < 7) ∧ (b > 3 =⇒ b > 2), thus including more enabled transitions in
the same symbolic operation.

7.4 CZM Algorithm

In the following, the algorithm idea from Section 7.3 will be explored by presenting a
CZM based symbolic forward reachability checking algorithm.

Symbolic Forward Reachability-Checking. A symbolic fixed point algorithm for
forward reachability checking of timed automata was presented in the work [EGP10]
described in Chapter 6. A mapping from clock zones, stored in DBMs, to the discrete
state sets, encoded in BDDs, represents the pre-fixed point. That algorithm uses
an encoding of the transition relation in BDDs. For each combination of guard and
reset-set that shows up on some transition, a BDD encoding all these transitions is
precomputed. During computation of the next pre-fixed point, each of these BDDs
is iteratively applied to each of the stored DBMs’ associated BDDs. The locations
associated with a specific invariant are also encoded in a BDD, and these are then
iteratively applied to the result of the application of the transition BDD. This allows
to compute the successor clock zone for all the successors computed using these BDDs,
as the successor clock zone depends only on the clock zone, the guard, the reset sets,
and the invariants of the target location.

7.4.1 Formalization of Algorithm Idea

As explained in Section 7.3, constraints can be semi-ordered.

For a given guard reset-set pair 〈ϕ, λ〉 where the intersection z∧ϕ of a clock zone z
with the guard ϕ is non-empty, this semi-order allows to find which guards φ implicitly
also give rise to non-empty intersections with z if ϕ does. Looking at all the guard reset-
set pairs with the same reset set λ, all transitions with a guard reset-set pair 〈φ, λ〉
where ϕ =⇒ φ are enabled by clock zone z with z ∧ ϕ not being empty. If all
transitions with such guard reset-set pairs 〈φ, λ〉 where ϕ =⇒ φ are added to the
transition BDD associated with the guard reset-set pair 〈ϕ, λ〉, all locations that are
reached additionally are actually reachable. However, before invariants are applied,
they will be associated with the successor clock zone (z ∧ ϕ)[λ := 0]⇑. This clock zone
can be smaller than the clock zone (z ∧ φ)[λ := 0]⇑ that they would be associated
with in the original algorithm, but, as ϕ =⇒ φ, z ∧ ϕ =⇒ z ∧ φ. Thus, they are
associated with a clock zone representing valuations that are reachable in this location
(in the absence of invariants), it may just be that some valuations that are reachable
are not represented.1 Hence, the reachable states are under-approximated in this step.

1This can lead to redundant clock zones later on, and it can cause harmful fragmentation, see
Section 7.4.1 Fragmentation.

70 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

This can easily be fixed later by applying the transition BDD associated with 〈φ, λ〉
to the BDD representing the locations reachable with clock zone z. Through encoding
more transitions into the transition BDD for 〈ϕ, λ〉, more locations can be recognized
as being reachable early, allowing to grow the BDDs encoding the reachable locations
faster.

Moreover, when invariants are replaced by constraints incorporated into guards,2

the successor clock zone computation does only rely on the clock zone, the guard and
the reset-set of the transition. Thus, the effects of guards and resets can, to a cer-
tain extend, be precomputed: If a transition BDD associated with the guard reset-set
pair 〈ϕ, λ1〉 has been applied to the locations associated with clock zone z, the newly
reachable locations are associated with the successor clock zone z′ = (z ∧ ϕ)[λ1 := 0]⇑.
These transitions were enabled, i.e., z ∧ ϕ is not empty. Let ϕ[λ1 := 0] denote the
conjunction of all constraints from ϕ that do not refer to a clock in λ1 and new con-
straints of the form c ≤ 0 for each clock c ∈ λ1. For a guard reset-set pair 〈φ, λ2〉 where
ϕ[λ1 := 0] =⇒ φ, z′ ∧ φ is not empty. Thus, from all locations l′ reached with clock
zone z′, transitions with a guard reset pair 〈φ, λ2〉 are enabled.

Moreover, if λ2 ⊆ λ1, i.e., all clocks in λ2 are already reset as they are also in λ1,
and ϕ[λ1 := 0] =⇒ φ, z′ contains only valuations that are reachable in locations l′′

reachable from l′ by these transitions: In the original algorithm, they would be found
to be reachable from states of the form 〈l′, z′〉 with a clock zone z′′ = (z′∧φ)[λ2 := 0]⇑.
Note that all valuations in z′ are also in z′′:

Proof. To show: z′ ⊆ z′′
Expand z′ in z′′ to obtain

z′′ = (((z ∧ ϕ)[λ1 := 0]⇑) ∧ φ)[λ2 := 0]⇑

The zone z′′ only looses valuations if the inner time elapse is omitted:

((z ∧ ϕ)[λ1 := 0] ∧ φ)[λ2 := 0]⇑ ⊆ (((z ∧ ϕ)[λ1 := 0]⇑) ∧ φ)[λ2 := 0]⇑

Because of ϕ[λ1 := 0] =⇒ φ, it holds that

((z ∧ ϕ)[λ1 := 0] ∧ φ) = (z ∧ ϕ)[λ1 := 0]

thus,
((z ∧ ϕ)[λ1 := 0] ∧ φ)[λ2 := 0]⇑ = ((z ∧ ϕ)[λ1 := 0])[λ2 := 0]⇑

holds. As furthermore λ2 ⊆ λ1, the clocks in λ2 are already reset:

((z ∧ ϕ)[λ1 := 0])[λ2 := 0] = (z ∧ ϕ)[λ1 := 0]

2Replacing invariants by adding them to all incoming or outgoing transitions will not make a
previously reachable state unreachable. The semantics of invariants also only enable the incoming
or outgoing transitions if the invariant is fulfilled. Of course, additional states can be reachable in a
thus transformed model, e.g., automata can remain in a location even though the invariant would be
violated in the original model. Replacing the invariants by adding them to the guards thus leads to an
over-approximation of the reachable state-space.

7.4. CZM ALGORITHM 71

this allows to prove that all valuations in z′ are in z′′:

((z ∧ ϕ)[λ1 := 0]⇑ ⊆ (((z ∧ ϕ)[λ1 := 0]⇑) ∧ φ)[λ2 := 0]⇑

Thus, after the execution of the transitions associated with the guard reset-set
pair 〈ϕ, λ1〉, all transitions associated with such guard reset-set pairs 〈φ, λ2〉 can be
executed. The transitions will be enabled for the clock zone z′. The argument above
applies to the locations reached by this step as well, thus the step can be repeated
until no further locations are found. States with locations reached in this way and a
valuation from z′ are indeed reachable. Of course, z′′ might contain more valuations, so
this algorithm delivers an underapproximation of the reachable valuations. This will be
fixed later, as the clock zone z′′ will be found upon application of the transition BDD
associated with 〈φ, λ2〉 to the BDD representing the locations reachable with clock
zone z′. But again, this allows to grow the BDDs representing the locations faster, as
it takes a look ahead at locations that are reachable, but would only have been found
later when their exact clock zones are computed, if the approach from [EGP10] had
been used. This gives rise to the description of the approach as an “underapproximating
look-ahead”.

Note that this approach does not only apply to the example of DBMs and BDDs, but
can be generalized to a setting of continuous state sets mapping to discrete state sets,
where transitions between discrete states are guarded by constraints on the continuous
states, and transitions can have side-effects on the continuous state (like resets in case
of clock zones).

Extended post operator

Generally, if the enabledness of a transition only depends on its guard ϕ, let the semi-
order GI be defined through implication: GI(ϕ, φ) if and only if ϕ =⇒ φ. GI can
easily be extended to guard side-effect pairs, e.g., guard reset-set pairs, as follows:

GI(〈ϕ, λ〉, 〈φ, λ〉) if and only if GI(ϕ, φ)

This provides the notion of “guard also fulfilled, same side effects”.

When building the symbolic transition relation, each guard side-effect pair will map
to a set of transitions. For a guard side-effect pair 〈ϕ, λ〉, this set will be the smallest
set that contains all the transitions labeled with 〈ϕ, λ〉 for the conventional symbolic
post operator. For the post operator extended by GI , it will additionally contain all
the transitions labeled with a guard side-effect pair 〈φ, λ〉 such that GI(〈ϕ, λ〉, 〈φ, λ〉).

Algorithm 1 can be extended with the extended post operator as shown in Algo-
rithm 4. The iteration over the guard side-effect pairs is made explicit to clarify the
input to the extended post operator. So for each guard side-effect pair 〈ϕ, λ〉, the succes-
sor states reachable in one step from the pre-fixed-point with the transitions associated
with 〈ϕ, λ〉 will be added to the next pre-fixed-point. Moreover, due to the extended

72 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

Algorithm 4 Computing the set of reachable states R using a post operator extended
with GI .

3

R0 := {initial states}
i := 0
repeat
i := i+ 1
Ri := Ri−1
for all guard side effect pairs 〈ϕ, λ〉 do
Ri := Ri ∪ postGI

(Ri−1, 〈ϕ, λ〉)
end for

until Ri = Ri−1
R := Ri

Algorithm 5 Computing the set of reachable states R using a post operator extended
with GI by iterating over the states in the pre-fixed-point.4

R0 := {initial states}
i := 0
repeat
i := i+ 1
Ri := Ri−1
for all guard side effect pairs 〈ϕ, λ〉 with associated discrete transition rela-
tion T〈ϕ,λ〉 do

for all pairs of sets of continuous states and discrete states 〈z, d〉 in Ri−1 do
Ri := Ri ∪ postGI

(〈z, d〉, 〈ϕ, λ〉)
end for

end for
until Ri = Ri−1
R := Ri

post operator, also the discrete states reachable in one step from the pre-fixed-point
with transitions associated with guard side-effect pairs 〈φ, λ〉 where GI(〈ϕ, λ〉, 〈φ, λ〉)
will be added to the next pre-fixed point. In this setting of symbolic state space repre-
sentation, the state space is represented by a set of pairs of sets of continuous states,
e.g., clock zones, and sets of discrete states, e.g., BDDs. So the discrete states found
due to including the transitions labeled with 〈φ, λ〉 will be paired with only a subset
of the continuous states that they would have been reachable with, namely with the
set of continuous states that would result if those transitions had been associated with
〈ϕ, λ〉 instead.

To make the iteration over the components of the stored reachable state space
more explicit, consider the more detailed Algorithm 5. This allows to give a more

3This Algorithm extends Algorithm 1. It is inspired by Algorithm 2.
4This Algorithm is a more detailed version of Algorithm 4. It is inspired by Algorithm 2.

7.4. CZM ALGORITHM 73

formal description of the extended post operator:

postGI
(〈z, d〉, 〈ϕ, λ〉) :=

{
∅ if z ∧ ϕ is empty

{〈λ(z ∧ ϕ)⇑, TGI(〈ϕ,λ〉)(d)〉} otherwise

where
TGI(〈ϕ,λ〉)(d) := T〈ϕ,λ〉(d) ∪

⋃
〈φ,λ〉 with GI(〈ϕ,λ〉,〈φ,λ〉)

T〈φ,λ〉(d)

is a precomputed GI -extended transition relation, λ(x) means applying the side effects
in λ to x, and (x)⇑ means executing all continuous steps (e.g., passing time) that are
independent of discrete steps.

Note that Algorithm 5 can associate some discrete states with several sets of con-
tinuous states, some of which can be fully contained in others of them, or even be the
same. This fragmentation of the state space will be reduced by treating the set of
reachable state not a set of pairs, but a mapping from sets of continuous states, e.g.,
clock zones, to sets of discrete states, e.g., BDDs; i.e., each set of continuous states will
only show up once, but some sets may still be fully contained in others. The remaining
fragmentation of the state space will be that some discrete states can be associated
with several sets of continuous states, some of them being redundant. Adapted like
this, the approach of Algorithm 6 does not introduce continuous states that would not
have been introduced otherwise. In the first iteration it does not even introduce sets
of continuous states that would not otherwise have been introduced as sets of their
own, it just associates more discrete states with the sets of continuous states.5 Thus,
it makes the discrete state sets grow faster. As this growth is due to redundancy being
introduced, it can be argued that the growth is not helpful, as each of the discrete
states additionally found to be reachable would have been found later in the iteration
over all guard side-effect pairs before the computation of the next pre-fixed point.6

However, an idea from [EGP10, Section 3.4] is also applicable here: As it is not neces-
sary to preserve the meaning of the index i (as in Ri containing the states reachable in
i steps), states newly found to be reachable can be immediately added to the pre-fixed
point that is used for finding new states. All it takes is the small change in selecting
the 〈z, d〉 in the inner loop not from the previous pre-fixed point Ri−1 but the current
pre-fixed point Ri as demonstrated in Algorithm 6. This then allows to use the bigger
discrete state sets already in the computation of the current pre-fixed point, as opposed
to only in the computation of the next pre-fixed point. Thus, the symbolic operations
can be applied to bigger sets earlier, allowing to potentially find the fixed point earlier,
i.e., calculating fewer pre-fixed points.

To add treatment of location invariants to the approach, invariants are enforced
before merging the newfound states with the set of already known to be reachable states.
In the timed automata setting used in this chapter, invariants may only enforce upper
bounds on continuous variables, that could only be violated when the (x)⇑ operation in

5It can however add to fragmentation in later iterations by introducing subsets of sets of continuous
states as sets of their own, as discussed in Section 7.4.1 Fragmentation.

6See Section 7.4.1 Fragmentation for an argument why this approach can be a bad idea.

74 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

Algorithm 6 Computing the set of reachable states R by iterating over the states in
the “next” pre-fixed-point Ri and treating invariants.7

R0 := {initial states}
i := 0
repeat
i := i+ 1
Ri := Ri−1
for all guard side effect pairs 〈ϕ, λ〉 with associated discrete transition rela-
tion T〈ϕ,λ〉 do

for all pairs of sets of continuous states and discrete states 〈z, d〉 in Ri do
{〈z′, d′〉} := postGI

(〈z, d〉, 〈ϕ, λ〉)
for all pairs 〈ι, dι〉 of invariant ι and set of locations dι where ι has to hold
do

if d′ ∩ dι 6= ∅ then
Ri := merge {〈z′ ∧ ι, d′ ∩ dι〉} with Ri

end if
end for

end for
end for

until Ri = Ri−1
R := Ri

the post operator relaxes their upper bounds, as the location invariants are required to
be a part of the guards on all transitions connecting to their location and clock resets
cannot violate upper bounds. More formally, for all guards ϕ of incoming edges of a
location l with invariant ιl, ϕ =⇒ ιl. In particular, if {〈z′, d′〉} = postGI

(〈z, d〉, 〈ϕ, λ〉),
for all invariants ιl associated with a location l ∈ d′, ϕ =⇒ ιl and thus z′ ∧ ιl 6= false
as z ∧ ϕ is not empty, ιl can only impose upper bounds, and λ cannot empty a set of
continuous states or violate upper bounds by setting variables to the minimal value 0.
With λ(z ∧ ϕ) not being empty, the relaxation of upper bounds in z′ = λ(z ∧ ϕ)⇑ can
violate ιl, but z′ ∧ ιl cannot become empty. In a more general setting, only invariants
that are implied by all incoming guards and cannot be violated by side effects are
allowed, so only the continuous operations independent of discrete transitions may
invalidate invariants. As invariants are based on location, i.e., on discrete state, they
may vary for the members of the set of discrete states being merged, thus resulting in
different sets of continuous states resulting from the application of different invariants
to the set of continuous states.

Discrete Lookahead

The only side effects, e.g., resets, of a transition besides the change of the discrete
state are made explicit by the set of side effects λ1 assigned to the transition. Let

7This Algorithm extends Algorithm 5. It is inspired by Algorithm 3.

7.4. CZM ALGORITHM 75

the semi-order R on sets of side effects be defined by hiding: R(λ1, λ2) if and only
if for any state x, the effects of applying λ1 hide any consecutive application of λ2,
formally ∀x.λ1(x) = λ2(λ1(x)). Let λ(ϕ) denote the guard equivalent with “ϕ held
before applying λ, and λ has been applied”: λ(ϕ)(y) = (∃x.(x =⇒ ϕ) ∧ (λ(x) = y))
where λ(x) means applying the side effects in λ to x. As an example, consider ϕ[λ := 0]
from above: the resets are applied using the new c ≤ 0 constraints for all clocks c ∈ λ
and, assuming ϕ was not contradictory, there was a valuation ~v such that ~v � ϕ, and
consequently ~v[λ := 0] satisfies all the constraints from ϕ that do not talk about a
clock from λ, so in this example, λ(ϕ) = ϕ[λ := 0].

This gives rise to the semi-order GS , where

GS(〈ϕ, λ1〉, 〈φ, λ2〉) if and only if R(λ1, λ2) ∧ (λ1(ϕ) =⇒ φ),

providing the notion of “guards also fulfilled, side-effects already taken care of”.
The empty guard side-effect pair is special in the sense that its associated tran-

sitions are always enabled, and they have no side effects which would have to be
taken care of. Thus, for all guard side-effect pairs 〈ϕ, λ1〉, GS(〈ϕ, λ1〉, 〈true, ∅〉) is
fulfilled. To grow the initial reachable state space, which just has the continuous
state set 0⇑, it is advisable to first saturate the transitions associated with the empty
guard side-effect pair. Algorithm 7 provides the context for the saturation post opera-
tor postGS

(d, 〈ϕ, λ〉) := TGS(〈ϕ,λ〉)(d) where

TGS(〈ϕ,λ〉)(d) :=
⋃

〈φ,λ′〉 with GS(〈ϕ,λ〉,〈φ,λ′〉)

T〈φ,λ′〉(d)

During the state space exploration, after executing the transitions associated with a
certain guard side-effect pair as well as those associated with a different guard but the
same side-effects and the guard is surely fulfilled, as indicated by the semi-order GI ,
the set of states L is found to be reachable. From those states, some other discrete
states might be surely reachable, without changing the continuous state. Those discrete
states are added to the newly reachable states using a fixed point iteration, saturating
the set of surely reachable discrete states of the resultant continuous state.

This allows the set of discrete states that is associated with the resultant continuous
state to be bigger, enabling a faster grow of the discrete state sets later on; this comes,
however, at the cost of additional discrete successor computations during the saturation
phase.

Fragmentation

In the original Algorithm 1, there may be redundant sets of continuous states associ-
ated with discrete states, if the representation of continuous states used can overlap
or be included in one-another. Reducing this redundancy is often unfeasible, as for
example checking for inclusion of a clock zone and it’s associated discrete states in
another such pair is expensive and would be required regularly. Also, two touching or
overlapping convex clock zones associated with the same set of discrete states might

76 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

Algorithm 7 Saturating the discrete state space exploration for each discovered set
of continuous states. Note: semicolon for sequential execution.8

R1 := R0 := {{〈0⇑ ∧ ιl0 , {l0}〉};
{〈z, d〉} := postGI

(〈0⇑ ∧ ιl0 , {l0}〉, 〈true, ∅〉);
i := 1; d′ := d;
repeat
d := d ∪ d′; d′ := postGS

(d, 〈true, ∅〉);
until d′ ⊆ d
for all pairs 〈ι, dι〉 of invariant ι and set of locations dι where ι has to hold do

if d ∩ dι 6= ∅ ∧ (z ∧ ι 6= ∅) then
R1 := merge {〈z ∧ ι, d ∩ dι〉} with R1;

end if
end for
repeat
i := i+ 1; Ri := Ri−1;
for all guard side effect pairs 〈ϕ, λ〉 with associated discrete transition rela-
tion T〈ϕ,λ〉 do

for all pairs of sets of continuous states and discrete states 〈z, d〉 in Ri do
L := postGI

(〈z, d〉, 〈ϕ, λ〉);
if L 6= ∅ then
{〈z′, d〉} := L; d′ := d;
repeat
d := d ∪ d′; d′ := postGS

(d′, 〈ϕ, λ〉);
until d′ ⊆ d
for all pairs 〈ι, dι〉 of invariant ι and set of locations dι where ι has to hold
do

if d ∩ dι 6= ∅ ∧ (z ∧ ι 6= ∅) then
Ri := merge {〈z′ ∧ ι, d ∩ dι〉} with Ri;

end if
end for

end if
end for

end for
until Ri = Ri−1
R := Ri

be representable in one convex clock zone, but again, regular checks for this would be
prohibitively expensive. So this type of fragmentation seems unavoidable. However,
the approach presented in this chapter might cause a lot of additional fragmentation
of the former type. The clock zones initially found by the approach described in this
chapter will only be clock zones that would have been found anyway, they just have

8This Algorithm extends Algorithm 6 and is thus inspired by Algorithm 3.

7.4. CZM ALGORITHM 77

〈x ≥ 5, {y}〉 〈x ≥ 3, {y}〉 〈x ≥ 2, ∅〉

Figure 7.1: Example iteration order tree induced by GS(〈x ≥ 3, {y}〉, 〈x ≥ 2, ∅〉),
GS(〈x ≥ 5, {y}〉, 〈x ≥ 3, {y}〉) and GS(〈x ≥ 5, {y}〉, 〈x ≥ 2, ∅〉)

more associated discrete states. Lets call those discrete states the clock zone z’s ad-
ditional discrete states, as opposed to the regular discrete states that would also have
been associated with z using the original Algorithm 1, and lets call a clock zone that is
associated with a discrete state as a regular discrete state a regular clock zone of this
discrete state. However, some of the additional discrete states of z might have enabled
outgoing transitions with a guard reset pair 〈ϕ, λ〉 that would not be on any of the
outgoing transitions of z’s regular discrete states. If these transitions are executed, the
intersection of their guard ϕ with z might be more restrictive than the intersection of
the guard ϕ with all regular clock zones z′ of these additional discrete states that are
associated with z and have an outgoing enabled transition with the guard reset pair
〈ϕ, λ〉. Then, applying the symbolic transition associated with 〈ϕ, λ〉 to z’s associated
locations does not result in an empty set, but in a set of locations now associated with
a clock zone arising from z ∧ ϕ[λ := 0] ⇑, which might be a clock zone that would not
have arisen at all in the original Algorithm 1. This clock zone is redundant, namely it
is contained in clock zones z′ ∧ ϕ[λ := 0] ⇑ that arise if the transitions associated with
〈ϕ, λ〉 are applied to some such regular clock zone z′.

This additional fragmentation can be harmful by making the state space represen-
tation bigger than necessary because of added redundant data entries, thus also making
iterating over all the entries in the state space representation slower.

Iteration order

To make the most of the potential benefit of the lookahead, the choice of in what
order to pick the guard side-effect pairs in the for-all clauses in the algorithm can be
made informed instead of arbitrary. The algorithm could choose the guard side-effects
pairs to explore first such that it explores the ones that are implied by others before
it explores the implying ones. A semi-order G on the guard side-effect pairs induces a
forest with shared nodes, where the nodes are labeled with the respective guard side-
effect pairs, as shown in Figure 7.1. This forest will be explored, giving rise to the
order of exploration of the guard side-effect pairs for the reachability checking.

The use of such an exploration-order-control using this forest has two advantages:
First, the extended transition relation for the guard side-effect pairs at the roots will
be bigger if the right semi-order, e.g., GI , is used, making the discrete state space
known to be reachable grow faster. Second, the exploration order of the forest can
be adjusted, allowing for several optimization possibilities. For example, searching the
roots first allows to grow the discrete state space very fast.

If depth-first search is employed on a forest induced by GS and Algorithm 7 is used,

78 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

after the respective root’s guard side-effect pair’s transition relation has been saturated,
no new discrete states can be found to be reachable from the newly discovered discrete
states using the transition relations associated with the guard side-effect pairs from
nodes on a path from this root to a leaf, because these discrete transitions are already
all executed during the saturation phase until no new reachable discrete states are
found.

However, it is still necessary to eventually explore the tree below the root in order
to find the exact continuous states. Moreover, the transitions further down in the tree
can give rise to new locations reachable in one step as well,9 if they are reachable from
the pre-fixed point with those transitions, but are not reachable with said transitions
from the newly discovered to be reachable states. The fact that the newly reachable
states do not give rise to more reachable states below the root allows to store the
results temporarily at the edges of the forest, and only add them to the set of states
from which to explore when backtracking over the edge. That will enable working from
a smaller set of reachable states without overlooking reachable discrete states. These
smaller sets of states are smaller in such a sense as they can contain fewer clock zones
with associated discrete-state-BDDs, thus hopefully reducing the number of BDDs to
iterate over.

Note that this temporary storage method would also allow to mitigate one of the
drawbacks of the approach presented in this chapter, namely fragmentation of the state-
space due to many locations being associated with several clock zones where some are
contained in others: When backtracking, the nodes closer to the root give rise to clock
zones included in the ones given rise to by nodes further to a leaf on a path to this
leaf, so the locations could be associated with the biggest of these clock zones when
backtracking: When backtracking over an edge, add the associated results to the ones
stored at the node (initially none). When backtracking away from a node over an
incoming edge, remove the locations from results associated with the node from the
edge and then add the stored results from the node to the ones from the edge. Thus,
if a location is associated with a clock zone surely included in a clock zone that is also
associated with this location, the location can be removed from the included clock zone
to reduce redundancy.

Pre-computing the transition relations and the semi-orders

In order to build the symbolic transition relations, each transition has to be added to
some transition relation according to its guard side-effects pair. This can be done by
iterating once over all transitions. During this iteration, the semi-orders GS and GI
need to be computed using the implication-semi-order on guards, and the implication-
semi-order on side-effects.

In the case of timed automata, the semi-order on guards is a semi-order on con-
junctions of clock constraints. For each clock x, the guard is either not concerned with
x, or the guard contains exactly one constraint concerning x of one of the following

9Note that those states could be discovered as well during saturation, if the forest was induced by
GS ∧GI .

7.4. CZM ALGORITHM 79

forms: x < c, x ≤ c, x == c, x ≥ c, or x > c, where c is some constant in N0 and
x == c is represented by x ≤ c∧x ≥ c. The constraints concerning x are semi-ordered
in the obvious way:

• x < c =⇒ x < c′ if and only if c ≤ c′

• x < c =⇒ x ≤ c′ if and only if c ≤ c′

• x ≤ c =⇒ x < c′ if and only if c < c′

• x ≤ c =⇒ x ≤ c′ if and only if c ≤ c′

• x == c =⇒ x < c′ if and only if c < c′

• x == c =⇒ x ≤ c′ if and only if c ≤ c′

• x == c =⇒ x ≥ c′ if and only if c ≥ c′

• x == c =⇒ x > c′ if and only if c > c′

• x ≥ c =⇒ x ≥ c′ if and only if c ≥ c′

• x ≥ c =⇒ x > c′ if and only if c > c′

• x > c =⇒ x ≥ c′ if and only if c ≥ c′

• x > c =⇒ x > c′ if and only if c ≥ c′

Now for a guard ϕ, let clks(ϕ) be the set of clock variables for which ϕ contains a
constraint, and for clock x, let clkcx(ϕ) be this constraint. So for two guards ϕ, φ, the
implication-semi-order is

ϕ =⇒ φ if and only if clks(φ) ⊆ clks(ϕ) ∧ ∀x ∈ clks(φ) : clkcx(ϕ) =⇒ clkcx(φ).

Timed automata have only resets of clocks to 0 as side-effects, so the semi-order R
on reset sets is just inclusion: For two reset sets λ1, λ2,

R(λ1, λ2) if and only if λ2 ⊆ λ1.

The effect of applying a reset set to a guard is also straightforward:

λ(ϕ) := (
∧
y∈λ

y == 0) ∧ (
∧

x∈clks(ϕ)\λ

clkcx(ϕ))

Combining this, the implication semi-order on guards and resets applied to guards is:

λ(ϕ) =⇒ φ if and only if clks(φ) ⊆ clks(ϕ) ∧ λ ⊆ clks(φ)

∧ ∀x ∈ clks(φ) \ λ : clkcx(ϕ) =⇒ clkcx(φ)

∧ ∀y ∈ λ : clkcy = (y == 0)

80 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

In the following, an example algorithm of how the semi-orders and the iteration
order tree can be computed will be presented. During the initial iteration over all
transitions, the BFs for the symbolic transition relation are created.

In essence, an approach with quadratic runtime can just compare every guard/reset-
set pair with all the others after the transition relations have been built. Then, it can
just join the appropriate transition relations to build theGI andGS transition relations.
If a representation of the semi-order without transitive edges is needed, as it may lead
to more informed heuristics, the runtime becomes cubic.

However, this can be improved using several optimizations or heuristics. For each
pair of a set of clocks and a reset-set which derive from the pairs of guards and reset
sets by extracting the sets of clocks mentioned in the guard, other such pairs can be
excluded immediately from the consideration. Given a pair 〈clks, λ1〉 of a set of clocks
clks and a reset set λ1, for GI a pair 〈clks ′, λ2〉 can be quickly excluded if (a) the reset
set is not the same (λ1 6= λ2) or if (b) some clocks are not treated in the original
set (clks ′ * clks). Only if these checks do not exclude a pair, then (c) the actual
guard/reset-set pairs 〈ϕ, λ1〉 with clks = clks(ϕ) and 〈φ, λ2〉 with clks ′ = clks(φ) have
to be checked using ∃x ∈ clks ′ : clkcx(ϕ) 6=⇒ clkcx(φ) as an exclusion criterion.

Exploiting exclusion criterion (a), guard/reset-set pairs can be grouped according
to the reset-sets, and the checks only need to be performed inside these groups. The
worst case of this pre-computation, namely that all guard/reset-set pairs have the same
reset-set, or there would only be a very small number of reset-sets, would be a good
application of the overall approach, as the fewer reset-sets there are, the more likely it
is that guard/reset-set pairs are in the GI and GS relations, as their requirements on
the reset-sets are trivially fulfilled if the reset sets are the same.

For GS these criteria are slightly different. For convenience, it is assumed that
whenever a guard contains a constraint of the form x == 0, x is also included in
the reset set of that guard reset-set pair. This allows to capture all situations in
which a clock is known to be zero after application of a guard reset-set pair using just
the reset set. So for the pairs of sets of clocks and reset-sets, the exclusion criteria
for GS are (A) the reset-set is not contained (λ2 * λ1), (B) some clocks are not
treated in the original set and not reset (clks ′ * clks ∪ λ1), and (C) again relies on the
actual guard reset pairs as in the GI case, but uses the modified exclusion criterion
∃x ∈ clks ′ : λ1(clkcx(ϕ)) 6=⇒ clkcx(φ).

To exploit criterion (A), either an inclusion relation on the reset-sets is constructed,
namely a graph representing the transitive reduction of the transitive closure of the
partial order given by set-inclusion. As Aho et al. shows in [AGU72], for n sets, this
is as expensive as (n × n)-matrix multiplication, for which the best known algorithm
is in O(n2.3728639), as shown by [LG14]. On this graph, only the pairs associated with
reset-sets associated with nodes reachable from the node associated with the reset-set
under consideration would have to be checked. Or, as a cheaper alternative, which
would of course be less effective, collect the reset-sets according to their cardinality,
and only check pairs with reset-sets of smaller size and the pairs with the reset-set
under consideration.

To build the inclusion partial order, assume a set r is entered in the order, rep-

7.4. CZM ALGORITHM 81

resented by a forest with shared nodes, which is the same as a directed acyclic graph
(DAG). If transitive edges are allowed, a naive quadratic approach comparing each set
with all the others will suffice. Otherwise, a breadth first search looks for all nodes
where r is included in the nodes set:

• If such a node is found, immediately all children of the node are checked: If none
of them has a set that includes r, the node is added to the set of nodes including
r, otherwise, the node is not included.

• If a node’s set is included in r, the node’s set is checked against the set of included
sets:

– If the node’s set is included in one of the elements, the check can end early,

– if the set includes one of the elements, that element is removed from the
set,

– if the check against the set is finished regularly, not early, the node’s set is
added to the set.

• If a node’s set has an empty intersection with r, the nodes children are not added
to the to-search FIFO.

• If a node’s set intersection with r is non empty, the children are added to the
to-search FIFO.

After the FIFO is empty, a new node with set r is created, and edges from all the sets
in the set of including sets to this new node are added. Edges from the new node to all
sets from the included set are also added. Finally, all direct edges from a node in the
set of including sets to a node in the included set are deleted, as they are now transitive
to the path through the new node. This algorithm should work in O(n3). Note that in
this case, n is just the number of reset-sets, which is hopefully much smaller than the
number of guard/reset-set pairs.

For direct access to a specific node, a hash map mapping reset sets to the corre-
sponding node can be used. Each node n(r) will link to a set of clocks clks. This set can
be organized again as a partial order DAG, using the subset partial order of the clocks
treated in a guard. This structure can be built using the same algorithm as for the
rest-set DAG, and also have a hash map for quick access to the node associated with a
specific set of clocks. The algorithm would again be in O(n3), but this time n would be
just the number of sets of clocks treated by guards with this specific reset set. If all the
number of sets of clocks treated by guards associated with a some reset-set are summed
up over all reset-sets, this number is bounded by the number of guard/reset-set pairs,
but hopefully much smaller. So the complexity of building these auxiliary structures
is not asymptotically greater than building the final structures directly, but it could
be much less work in many cases. Each of the nodes would thus be labeled with set
of clocks clks, and would link to all guards ϕ with clks = clks(ϕ) that are paired with

82 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

the reset-set from the node n(r) on some transition. Of course, these guard/reset-set
pairs would also use a hash map to link to their associated transitions.

For building the GI transition relation, using criterion (a), only for each reset-set,
the guards associated with it have to be checked. Using criterion (b), only for the sets
of treated clocks that are included, the guards have to be checked. So by iterating over
all reset-sets, for a given reset-set, pick a node of the treated clock sets, and pick one
of the guards with this set, and compare it against all the others associated with this
set of treated clocks, and with all the included sets, i.e., the sets from nodes reachable
from there, using criterion (c). It seems advisable to do this in a bottom-up fashion,
starting at the leaves of the treated clock sets DAG. That would enable yet another
optimization, albeit a small one, namely, marking a node when all the guards associated
with all its associated clock sets have been treated and found to be in relation GI with
all the guards that could be reachable from there, enabling an early termination of
later checks after this node, as in that case, all transitions further down would already
be included in the respective GI transitions.

Similarly, for building the GS transition relation, using criterion (A), for each reset-
set, all guard reset-set pairs where the reset-set is included have to be checked. This
could be done by exploring the reset set inclusion DAG, starting from the node associ-
ated with the chosen reset set. Using criterion (B), only for the sets of treated clocks
that are included or reset, the guards have to be checked. Along with the treated
clock DAGs and the hash-map for direct access to its nodes, a data-structure can be
constructed that allows to access the sets of treated clocks for each reset set according
to the size of the set: Have the sets ordered into a list according to their size in a
descending fashion, and from |X| down to 0, let each number point to the first set in
the list which has this size, or a smaller one. In each node of the reset-set set inclusion
DAG, only check all sets of treated clocks whose size is smaller or equal to clks ∪ λ1,
using criterion (B). Only the guards that remain after this process need to be checked
with criterion (C). Note that a trick similar to the one used for criterion (b) above is not
applicable here, as there are multiple sets of treated clock sets involved due to multiple
reset sets being involved, the set λ1 is not known at the time of the pre-computation,
and a direct access to a surely included treated clock set to start the search from is
not always possible anyway, as the treated clock sets associated with other reset-sets
might not be the same.

Iteration Order DAG The iteration order DAG can be built using data collected
during the computation of GI and GS . For GS , for each guard reset-set pair 〈ϕ, λ1〉,
during the computation of the semi-order, all guard reset-set pairs 〈φ, λ2〉 such that
GS(〈ϕ, λ1〉, 〈φ, λ2〉) are stored. The same can be done for GI . If the iteration order
is induced by GI or GS building the DAG is straightforward. To build the DAG in
O(n3), for each guard reset-set pair 〈ϕ, λ1〉 a node is created, labeled with this pair.
Then, for each guard reset-set pair 〈ϕ, λ1〉, all the guard reset-set pairs 〈φ, λ2〉 stored
for this pair are checked: If a pair 〈φ, λ2〉 is not stored for some other pair stored for
〈ϕ, λ1〉, an edge is added from the node for 〈ϕ, λ1〉 to the node for 〈φ, λ2〉. If the order

7.5. EXAMPLE 83

00 01

10 11

〈x ≥ 5, {y}〉

〈
x
≥

3
,
{
y}〉

〈x ≥ 2, ∅〉 〈x
≥

3
,
{y
}〉

Figure 7.2: An example of a timed automaton with GI(〈x ≥ 5, {y}〉, 〈x ≥ 3, {y}〉),
GS(〈x ≥ 3, {y}〉, 〈x ≥ 2, ∅〉) and GS(〈x ≥ 5, {y}〉, t) for t ∈ {〈x ≥ 3, {y}〉, 〈x ≥ 2, ∅〉}

is induced by GI ∧GS , the stored sets of guard reset-set pairs from GI and GS are first
intersected, then the DAG can be built in the same way.

7.5 An Example with a Comparison to Symbolic Forward
Reachability-Checking

This section will compare the approach presented in this chapter to the approach
from [EGP10] by applying both approaches to the timed automaton shown in Fig-
ure 7.2. The reachable state space will be stored in a mapping of DBMs to BDDs, the
only side effects are clock resets. The discrete state space is described in terms of the
variables l0 and l1, where l0 is the rightmost digit of the locations label bitstring, and
l1 is the leftmost digit, i.e., state 01 will be represented by l0 ∧ ¬l1.

Both approaches start by creating the symbolic transition relations for each guard
reset pair. The CZM approach will iterate once over all edges and add them to a
transition BDD for each guard reset pair. The approach presented in this chapter will
do the same. But it will additionally calculate the GS and GI semi-orders, and build
the GS induced DAG. For each GI(a, b) that is discovered, it will add the transition
BDD for b to the GI transition BDD for a, which, in turn, will be initialized with the
transition BDD for a. Likewise, for each GS(a, b) that is discovered, it will add the
transition BDD for b to the GS transition BDD for a.

More concretely, the CZM approach will calculate the mapping for the transition
BDD:
〈guard,resets〉 BF

〈x ≥ 5, {y}〉 7→ ¬l0 ∧ ¬l1 ∧ ¬l′1 ∧ l′0
〈x ≥ 3, {y}〉 7→ (¬l0 ∧ ¬l1 ∧ l′1 ∧ ¬l′0) ∨ (l0 ∧ l1 ∧ ¬l′1 ∧ l′0)
〈x ≥ 2, ∅〉 7→ l0 ∧ ¬l1 ∧ l′1 ∧ l′0

The underapproximating lookahead approach will additionally calculate the tree shown
in Figure 7.1 on page 77, and the mapping for GI :
〈guard,resets〉 BF

〈x ≥ 5, {y}〉 7→ (¬l0 ∧ ¬l1 ∧ ¬l′1 ∧ l′0) ∨ (¬l0 ∧ ¬l1 ∧ l′1 ∧ ¬l′0)
∨(l0 ∧ l1 ∧ ¬l′1 ∧ l′0)

〈x ≥ 3, {y}〉 7→ (¬l0 ∧ ¬l1 ∧ l′1 ∧ ¬l′0) ∨ (l0 ∧ l1 ∧ ¬l′1 ∧ l′0)
〈x ≥ 2, ∅〉 7→ l0 ∧ ¬l1 ∧ l′1 ∧ l′0

84 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

The mapping for GS will also be calculated:
〈guard,resets〉 BF

〈x ≥ 5, {y}〉 7→ (¬l0 ∧ ¬l1 ∧ ¬l′1 ∧ l′0) ∨ (¬l0 ∧ ¬l1 ∧ l′1 ∧ ¬l′0)
∨(l0 ∧ l1 ∧ ¬l′1 ∧ l′0) ∨ (l0 ∧ ¬l1 ∧ l′1 ∧ l′0)

〈x ≥ 3, {y}〉 7→ (¬l0 ∧ ¬l1 ∧ l′1 ∧ ¬l′0) ∨ (l0 ∧ l1 ∧ ¬l′1 ∧ l′0) ∨ (l0 ∧ ¬l1 ∧ l′1 ∧ l′0)
〈x ≥ 2, ∅〉 7→ l0 ∧ ¬l1 ∧ l′1 ∧ l′0

The initial state set is 〈0 ↑, {00}〉 in both approaches. The CZM approach will
iterate over all stored clock zones, but initially there is only one. To this clock zone and
its associated location BDD, all guard reset-set pairs and their associated transition
BDDs will be applied. The specific order in which they are applied is not specified
in [EGP10]. However, for the optimization used in [EGP10, Section 3.4], this order
may be relevant. So lets look at the best case and worst case scenarios separately. In
the best case for some clock zone z, if there is a guard reset-set pair whose application
to z results in z again, this guard reset-set pair is applied first. If there are several such
pairs, the ones associated with transitions leading to not yet known to be reachable
locations are applied first. If again there are several of those, the ones leading to new
locations from where the other such pairs’ associated transitions lead to not yet known
to be reachable locations come first, and so on. There seems to be no way of enforcing
the best case that does not involve as much computation as applying the best case
would save, so the best case is a theoretical construct in the CZM approach. As is the
worst case, which is just the reversed best case order.

However, in this example in the first round there is no guard reset-set pair that
would preserve 0 ↑. In the first round, the CZM approach calculates the state set:
clock zone BF

0 ↑ {00}
x ≥ 5 ↑ {01}
x ≥ 3 ↑ {10}

This will be done with 3 successor clock zone calculations, and three BDD applications,
one for each guard reset-set pair. In the second round, in the worst case, the CZM
approach calculates the state set:
clock zone BF

0 ↑ {00}
x ≥ 5 ↑ {01}
x ≥ 3 ↑ {10, 11}

This will be done with 3 more successor clock zone calculations, and three more BDD
applications, one for each guard reset-set pair, for the clock zone x ≥ 3 ↑, discovering a
new location. The same is done again for the clock zone x ≥ 5, which would find that
the clock zone does not lead to new states anymore. So in total 9 successor clock zone
calculations and 9 BDD applications so far in the worst case. However, in the best
case, 〈x ≥ 2, ∅〉 is applied to x ≥ 3 ↑ before 〈x ≥ 3, {y}〉 or 〈x ≥ 5, {y}〉 are applied
to it. Thus when evaluating clock zone x ≥ 3 ↑, from the location 11 discovered with
〈x ≥ 2, ∅〉 that is again associated with clock zone x ≥ 3 ↑, 〈x ≥ 3, {y}〉 discovers the
location 01. So the CZM approach can explore the full reachable state space in this

7.5. EXAMPLE 85

example with just 5 successor clock zone calculations and 5 BDD applications. In this
best case, with 9 successor clock zone calculations and 9 BDD applications, the CZM
approach calculates the state set:
clock zone BF

0 ↑ {00}
x ≥ 5 ↑ {01}
x ≥ 3 ↑ {01, 10, 11}

In the worst case, this is the result after the third round, after 12 successor clock zone
calculations and 12 BDD applications, as all guard reset-set pairs have to be applied
to x ≥ 3 ↑. In the best case, the third round recognizes the fixed point and terminates
after a total of 12 successor clock zone calculations and 12 BDD applications. In the
worst case, the fixed point is only recognized after a fourth round, bringing the total
to 15 clock zone calculations and 15 BDD applications.

The underapproximating lookahead approach will apply the guard reset-pairs based
on the iteration order DAG from Figure 7.1. First, 〈x ≥ 5, {y}〉 will be applied in the
GI induced form, with one successor clock zone calculation and one BDD application,
recognizing the newly reachable states 〈x ≥ 5, {01, 10}〉. Then, the GS induced form
will be applied until saturation, resulting in 〈x ≥ 5, {01, 10, 11}〉 after one additional
BDD application, and then recognizing saturation after another one. Note that already
with two BDD operations and one successor clock zone calculation, all reachable loca-
tions have been discovered. So a location based error condition would already be met,
making this approach very useful for error finding. Second, 〈x ≥ 3, {y}〉 is applied in
the GI induced form, with a second successor clock zone calculation, and the 4th BDD
application, recognizing the newly reachable states 〈x ≥ 3, {10}〉. Note that as this is
a depth first situation in the iteration order DAG, so the states just discovered could
be ignored. Then, the GS induced form is saturated, resulting in 〈x ≥ 3, {10, 11}〉
after one additional iteration, 〈x ≥ 3, {01, 10, 11}〉, after another one, and recognizing
saturation after one more. So, with 2 successor clock zone calculations, and 6 BDD
applications, the full reachable state space is already discovered. Third, 〈x ≥ 2, ∅〉
is applied in the GI induced form, with a third successor clock zone calculation, and
the 8th BDD application, recognizing no newly reachable states. So the GS induced
form does not need to be applied. So, the underapproximating lookahead approach
calculates the state set:
clock zone BF

0 ↑ {00}
x ≥ 5 ↑ {01, 10, 11}
x ≥ 3 ↑ {01, 10, 11}

This will be done with 3 successor clock zone calculations, and 8 BDD applications.
This is a special case, as here GS(p, p) for all guard reset-set pairs p. As there is no
other root of the GS induced DAG, the fixed point is recognized: no more locations
can be found below this root from the newly known to be reachable locations, as they
would all have been found during saturation of the GS induced transition BDDs, and
all GI induced BDDs have been applied to the prefixed point. For those pairs p where
GS(p, p) does not hold, another round of applying them would be needed to see if

86 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

benchmark prototype runtime (s) reachable zones steps

short sample glitch underapprox 13,513.40 1,452,451 10,467,243
short sample glitch vanilla CZM 9,147.22 1,452,451 17,563,189
short real-time glitch underapprox memout > 7,648,741 > 45,575,000
short real-time glitch vanilla CZM memout > 7,813,125 > 43,216,000

Table 7.1: Comparison of the underapproximating lookahead approach to the vanilla
CZM algorithm. Executed on a Intel Core 2 Duo CPU P8600 Processor with 2.40 GHz
and 3.8 GiB RAM running Ubuntu 14.04 LTS.

something changes to recognize a fixed point.

So, in conclusion, in this example, the underapproximating lookahead terminates
with 3 successor clock zone calculations and 8 BDD applications, while the CZM ap-
proach needs between 12 and 15 of each. The underapproximating lookahead approach
also found all locations with just 1 successor clock zone calculation and 2 BDD appli-
cations, and the full state space with 2 successor clock zone calculations, and 6 BDD
applications. The CZM approach needed between 5 an 12 of each for both these goals.

7.6 Evaluation on FlexRay Benchmark

I implemented the algorithm presented in Section 7.4.1 as a prototype in C++ and
integrated it into the Synthia framework [PEM11] (a tool for verification and synthe-
sis for timed automata maintained by Hans-Jörg Peter), together with my prototype
re-implementation of the original CZM algorithm from Chapter 6 which served as a
reference point. The implementation of both algorithms is identical in the identical
parts of the algorithms, and differs just where the algorithms behave differently. This
allows a comparison of the approaches on a level playing field.

A benchmark based on the timed automata model ‡ of the FlexRay physical layer
protocol as presented in Chapter 10 was created in Uppaal and translated to Syn-
thia’s input format using a Python script. As shown in table 7.1, in the benchmark
with a short sample glitch as the error model, fragmentation did not cause a problem,
but the additional overhead of the underapproximating lookahead slowed the algo-
rithm down compared to the vanilla CZM version. When the model included a third
clock in the case of a short real-time glitch, the memory requirements exceeded the
available 3.8 GiB, so the algorithm was interrupted before the whole state space was
explored. Still, the underapproximating lookahead needed more steps to explore more
than 7.6 million states than the vanilla algorithm took to explore more than 7.8 million.

These results confirm that the FlexRay models are not structured in a way that
profits from the underapproximating lookahead approach: The timed constraints on
transitions are often equality constraints, and generally the model does not have many
transitions who’s enabledness implies the enabledness of other transitions that are
not already synchronizing with this transition. The total lack of fragmentation is

7.6. EVALUATION ON FLEXRAY BENCHMARK 87

another indicator that not many states of the FlexRay model are explored with an
underapproximated clock zone. Thus, a carefully optimized model of a real-world
system that avoids unnecessary uncertainties which could give rise to more implications
between enabledness conditions of transitions might not benefit from the approach
presented in this chapter. For a quick exploration of a draft model with the aim of
finding an error, the approach could be better suited, carefully optimized models will
most likely suffer from the underapproximating lookahead approach compared to the
vanilla CZM approach.

88 CHAPTER 7. UNDERAPPROXIMATING LOOKAHEAD

Part III

Modeling Principles

89

Table of Contents

8 Selection of Theories 93

8.1 Property to Check . 93

8.2 Relevance of System Behaviors . 94

8.3 Case Study: FlexRay . 95

9 Tailoring to Data-Structures and Algorithms 97

9.1 Modeling Time . 97

9.2 Modeling Discrete State . 99

10 Modeling FlexRay 101

10.1 Parametric Timed Automata Models . 102

10.2 Modeling Principles . 103

10.3 Structure of the FlexRay Model . 103

10.4 Hardware Environment and Possible Errors 105

10.4.1 Ignore Constant Delays in One-way Communication 106

10.4.2 A Register with Asynchronous Input 106

10.4.3 Error Types . 109

10.5 Modeling the Bus . 110

10.6 Glitches . 116

10.6.1 Sample Glitches . 117

10.6.2 Real-Time Glitches . 120

10.7 Oscillators . 121

10.8 Modeling the FlexRay Protocol . 124

10.8.1 Modeling the Sender . 124

10.8.2 Modeling the Receiver . 128

92 TABLE OF CONTENTS

11 Model Checking FlexRay 139

11.1 First Verification of FlexRay . 140

11.2 Thorough Verification of FlexRay . 142

11.2.1 Analyzing the Parameters . 143

11.3 Analysis of Glitch Patterns . 145

11.3.1 Pattern 1 out of 4 . 146

11.3.2 Pattern 2 out of 88 . 147

12 Conclusion 149

12.1 Contributions . 150

12.2 Advancing the State of the Art . 150

12.3 Impact . 151

Chapter 8

Selection of Theories

Contents

8.1 Property to Check . 93

8.2 Relevance of System Behaviors 94

8.3 Case Study: FlexRay . 95

Abstract. The choice of theories to be used when modeling a system needs to take
several factors into account: The property to be verified needs to be expressible and
the system itself needs to be describable after abstraction and overapproximation
have been used to make the system model simpler. In the case of verifying a correct
message transfer in FlexRay, this property is best described in the model of the
protocol, so expressing the reachability of the error state is sufficient. The protocol
is stateful with discrete states, and the hardware behavior can be abstracted to
discrete states and time. Thus timed automata and timed computation tree logic
(TCTL) are selected, as supported, e.g., by Uppaal.

Formal verification needs a formal language. The formal language needs to be able to
express the properties that are to be verified, and to describe the model to be verified
itself. The language thus needs to be expressive enough for the verification project.
However, if a language is very expressive, it can formulate problems that are hard to
solve. It may also contain very complex constructs, that could be computationally
expensive to treat. So the language should be as expressive as needed, but also as
simple as possible.

Simple statements can be categorized in terms of the theories that contain them.
In order to formulate the properties and the model, a set of theories has to be chosen,
thus defining the set of statements that can be used.

8.1 Property to Check

The property that is to be verified needs to be formalized. So every aspect of it needs
to be phrasable as a statement in a specific theory. For example, if a value is to be

93

94 CHAPTER 8. SELECTION OF THEORIES

asserted, the theory of equality will be needed, if a sum of two integers should not
exceed a value, the theory of linear arithmetics would be adequate.

However, the borderline between the property to check and the model is blurred,
so it is possible to shift complexity between the property and the model. Usually,
models will contain a lot of complexity due to the complexity of the system, while the
property will and should contain considerably less complexity. Thus, a property that
takes into account a lot of details from the model is best partially formulated inside
the model. Formulating a part of the property inside the model allows to describe
the property using these added aspects of the model. For example, a complex error
condition of a stateful model could be formulated in terms of a dedicated error state
of the model, reducing the part of the property that is not part of the model to a
simple statement about the reachability of the error state. Verification tools often have
limited expressivity of the accepted property-language, usually much more limited than
the model-language. This is a design choice in order to improve human-readability of
the property and enables the use of more efficient algorithms and data-structures, thus
making it mandatory to move more complex aspects of the property to the model.

8.2 Relevance of System Behaviors

The system will have aspects that cannot be described in all detail in the model be-
cause reality is neither fully describable nor fully known. Those aspects can however
not be ignored altogether without an argument why they can be ignored or an explicit
assumption stating that they can be ignored, but often they can be treated by ab-
straction. Olderog and Dierks [OD08, p. 27] argue that abstracting details of larger
real-time systems is necessary anyway to reduce the size of hard-to-deal-with huge state
spaces.

Abstraction can even turn models that would require hybrid variables on top of
real-time into easier, pure real-time, models.1 For example, almost all physical pro-
cesses take time and are gradual. Consider a physical system transitioning from one
stable state to another. To model this, if a notion of time is given, the state of the
gradual process could be abstracted into the prior state, the intermediate state, and
the posterior state. In the prior and posterior states, the behavior of the system will
usually be easily modeled. In the intermediate state, the behavior, even if it is well
defined, might be too complex to model precisely, in which case nondeterminism can
be used to over-approximate the possible behaviors of the system. In turn, the time
aspect might be linked to the exact state of the gradual process. If this gradual pro-
cess is not modeled in detail, the time-behavior as well cannot be modeled in detail,
which can usually be resolved using over-approximation of the duration of the interme-
diate state at the expense of the prior and/or posterior states, and nondeterminism to
resolve the system behavior during this prolonged time, again resulting in an overes-

1Olderog and Dierks [OD08, p. 3] advocate to abstract time-dependent continuous physical variables,
giving the example of abstracting physical attributes of a train like speed and position into the discrete
values far away, near by or crossing with respect to a railway crossing to be modeled.

8.3. CASE STUDY: FLEXRAY 95

timation of the possible system behaviors. With an accompanying argument how the
over-approximation affects the property, thus securing the correctness of this approach,
considerable complexity can be avoided in the model.

It is imperative to abstract away aspects of the system to enable the description of
the model in a reasonably expressive language using statements from reasonably hard
to treat theories. Many behaviors of the system might not be relevant directly for the
property that needs to be verified and could be abstracted away if their indirect rele-
vance for the property has been resolved, e.g., by approximation and non-determinism.
Selection of the modeling language should thus be done not only after enough under-
standing of the system is gained to model it at all, but after additional analysis on
what can be abstracted away, and what price to pay for those abstractions.

8.3 Case Study: FlexRay

For the verification of the FlexRay physical layer protocol, the property to check is the
correct reception of the transmitted message stream. As the reception of the message
stream is part of the protocol to be verified, the verification of the stream format is
naturally incorporated into the model. Correctness of reception of the message content
might seem an easy concept, however, to accurately describe it is most easily done using
references to protocol details, e.g., to the relative position of a given bit in the message,
or the time taken to transfer a bit from sender to receiver. Thus, it is way easier to
incorporate the check for message equality inside the model than leave it inside the
property. If message equality was violated, the model could enter its terminal error
state. Additionally, after correct reception of a message, the model should enter its
terminal safe state. If this is done, the property to check boils down to a simple
reachability check of the dedicated error state of the model or a check that the safe
state is reached eventually.

The restricted version of timed computation tree logic (TCTL) admitted by Uppaal,
which allows only very restricted use of quantifiers, is sufficient to express the notion of
non-reachability of the error state, namely that on all executions, in all time instances,
the model is not in the error state. The property that a message is eventually received
can be expressed as well, namely that on all executions eventually the safe state is
reached.

Note that, as checking the safety property of non-reachability of an error state is
usually easier than checking the liveness property that a safe state is always eventually
reached, one can also incorporate the liveness property that some message is eventually
received into the model. To do so, the model is constructed such that not receiving
a message (after the process of receiving a message has started) causes the model to
eventually enter the error state. This is usually a given, as checking whether what
is received is what is expected entails reading from the communication medium (thus
receiving something, as the medium will be sampled independently of its state and
the samples will be interpreted) and entering the error state if it is not what was
expected, especially if it is not consistent with a message. This, in turn, allows to

96 CHAPTER 8. SELECTION OF THEORIES

check reception of a message by just adding a check of the liveness property that the
reception of a message is always eventually started—which is way easier to check than
that this reception always eventually finishes—to the check of the safety property that
the error state is never entered. Combined, these two checks provide the property that
the message will eventually be correctly received. To get rid of the liveness check that
message reception always eventually starts, one could furthermore build the model in
such a way that from the initial state the reception of a message will clearly always
eventually be started.2 Obvious tricks such as forcing the receiver model to enter
the error state after a certain time if reception of the message has not started would
introduce unnecessary complexity and reduce the model’s readability, but would make
this liveness check redundant as the safety check of non-reachability of the error state
would cover the eventual start of the reception in addition to the reception itself.

To model the FlexRay physical layer protocol and the hardware running it, several
aspects have to be covered.

FlexRay is a stateful protocol, and the FlexRay specification is given in UML, e.g.,
using behavior diagrams, thus automata seem to be a natural choice for modeling the
protocol. Automata provide a visual representation which is easy to read alongside the
UML specification. Compared to UML, automata can also be more easily automatically
translated into a precise logical representation.

In order to describe the hardware, the usual boolean abstraction is not sufficient
for all aspects, as the hardware is distributed, but not synchronized on the lowest
level. Thus, whenever one component communicates with another, non-synchronized
one, voltages and durations of voltage changes can no longer be safely ignored. How-
ever, using over-approximation and nondeterminism, the continuous voltage can be
abstracted to discrete levels. Durations on the other hand are also continuous and
have to be treated, thus timed automata are a good choice. Uppaal’s modeling lan-
guage is extended timed automata, which includes timed automata.

To model the error resilience of the FlexRay physical layer protocol, an error model
is needed as part of the model. Similarly to the hardware model, the errors can have
voltage and duration aspects which can be resolved using the same methods as used in
the hardware model. The error model can thus be integrated into the hardware model
which is modeled as a network of timed automata.

2However, while the FlexRay models presented in this work do all eventually start the process of
receiving of a message, this is not immediately obvious at first glance, so the eventual start of reception
was additionally easily and quickly verified using Uppaal.

Chapter 9

Tailoring the Model to the
Data-Structures and Algorithms

Contents

9.1 Modeling Time . 97

9.2 Modeling Discrete State . 99

Abstract. The data-structures used to store the states of the model have a
strong influence on the memory requirement of verification. During modeling,
the memory requirements can be reduced: For timed automata, the size of the
difference bound matrices (DBMs) scales quadratically with the number of clocks,
so using the same clock for several different but interdependent purposes helps.
Tight bounds on discrete variables reduce the discrete state space.

The data-structures to be used during the verification have to be kept in mind when
modeling, as they will be used to store the states of the model. This will have a
dominant influence on the memory requirements of any automated verification effort.
However, the model can and should be tailored such as to reduce the amount of memory
required to store a state of the model in a given data-structure.

As timed automata are used in this work to model the FlexRay physical layer
protocol, the hardware, and the errors, the notion of real-valued continuous time will be
provided by clocks. The notion of internal discrete state will be provided by the location
of the automata. To make things more readable, the notion of bounded variables is
introduced, which, though borrowed from extended timed automata, is easy to translate
to timed automata and adds useful syntactic sugar making the models easier to read.

9.1 Modeling Time

A single explicit state of the model’s clocks would be a vector giving the concrete real-
value of each clock. However, using these directly is clearly infeasible, as there are
uncountably many valuations in every non trivial execution of a timed automaton.

97

98 CHAPTER 9. TAILORING TO DATA-STRUCTURES AND ALGORITHMS

As timed automata only refer to time using comparisons to integers, it is possible
to collect valuations in a symbolic representation which represents a set of (usually
uncountably many) valuations. The effects of changing the state of the model are then
taken into account as additional constraints on this set or by changing all constraints
in a consistent way. The data-structure of choice for handling clocks, which is also
used by Uppaal, is a difference bound matrix (DBM), as described in Section 3.4 on
page 35.

DBMs also offer certain efficient operations, like letting time evolve on all clocks
with the same speed, or resetting a set of clocks to zero, or intersecting with a constraint.
Thus, clocks in the model should only be either reset to zero, not touched, or be
compared to a constraint—and should let time pass at the uniform constant rate of 1.

A DBM stores upper bounds of the differences between the various clocks of the
model, and between them and zero. Assuming n clocks, this allows to store any convex
zone in the n-dimensional space of clock values in a single (n + 1) ∗ (n + 1)-matrix.
Non-convex zones would be split into convex parts and stored as a set of convex zones.
Thus, the memory requirement for storing convex clock zones grows quadratically with
the number of clocks. Moreover, the number of different values of this data-structure
that are encountered during a run of a model checker typically grows exponentially with
the number of clocks. According to Olderog and Dierks [OD08, p. 18], the exponential
complexity in the number of clocks limits the use of timed automata for the verification
of larger real-time systems.

Keeping the number of clocks low, as demonstrated in Section 10.5, is thus ad-
visable, if the price to pay for it in terms of discrete complexity is not to high (see
Section 11.2). This can be achieved by finding the source of an action in the model.
The FlexRay model can logically be divided into four parts: the sender, the receiver,
the bus and the glitches.

If the sender triggers certain behaviors, their timing could possibly be modeled
using the same clock if they are dependent on each other or on the same root cause.
As the sender’s behavior is dependent on the ticks of the local oscillator, which, being
imprecise, is a source of real-timed behavior anyway, the timing of the behavior of the
sender can be modeled in terms of one clock.

As the receiver is not synchronized to the sender, its behaviors cannot directly
depend on the clock used to model behavior of the sender. However, behavior in the
receiver being dependent on the receivers local oscillator, its time related behavior can
be modeled in terms of one clock as well.

Considering the time-behavior of the bus, as the bus is driven by the sender, its
behavior can be modeled using the clock used to model the sender as well. However,
to model glitches, which are independent of the sender or receiver, either a third clock
needs to be introduced, or the glitch can be abstracted to its effects on the receiver,
which again would allow to use the clock used in modeling the receiver. As the glitch
does only affect the receiver, this abstraction is sound: instead of modeling a glitch, the
glitch affected samples are modeled. But as glitches can only occur so often without
destroying communication, some notion of time between glitches is needed as well,
requiring the introduction of counters if no extra clock is introduced for the glitches,

9.2. MODELING DISCRETE STATE 99

which, depending on the bounds of the counter variable, can increase the discrete
state space significantly. This trade-off does make the introduction of a third clock for
modeling glitches advisable in some cases in order to reduce memory consumption and
runtime.

9.2 Modeling Discrete State

An explicit discrete state of a system is the valuation of all its variables. It is desir-
able to have a finite number of discrete states, as it allows to enumerate them during
verification. Nevertheless, enumerating all the discrete states should be avoided by
using a symbolic representation for the discrete states as well, as even a finite number
of discrete states may be to many to enumerate them within a reasonable amount of
time, or remember them explicitly using only a reasonable amount of memory.

To keep the number of discrete states finite, the automaton representing the model
may only have a finite number of locations, and all discrete variables should be bounded.
Not least to increase the readability of the model, the model can be represented by
a network of communicating automata, whose product can be computed on the fly
in the exploration algorithm, avoiding the work of constructing the complete product
automaton before the exploration can start. The locations can be represented by
bounded variables as well, as each finite component automaton’s locations can be
considered to be the possible values of some enumerable data type variable.

If all variables are bounded and the number of locations is finite, they can be
represented by boolean variables such that a valuation of the variables and the current
location in each component can be represented by a bitvector.1 Thus, reduced ordered
binary decision diagrams (BDDs), as discussed in Chapter 4, can be used to represent
the state space as well as the transition relation, which allows to apply a BDD based
symbolic exploration algorithm like the one presented in Chapter 6.

If possible, bounded variables with a big range should be avoided, as they can blow
up the state space considerably.

1BDD libraries like Cudd [Som09] bring their own variable reordering heuristics, so determining
the order of the boolean variables can be delegated to the libraries.

100 CHAPTER 9. TAILORING TO DATA-STRUCTURES AND ALGORITHMS

Chapter 10

Modeling FlexRay1

Contents

10.1 Parametric Timed Automata Models 102

10.2 Modeling Principles . 103

10.3 Structure of the FlexRay Model 103

10.4 Hardware Environment and Possible Errors 105

10.4.1 Ignore Constant Delays in One-way Communication 106

10.4.2 A Register with Asynchronous Input 106

10.4.3 Error Types . 109

10.5 Modeling the Bus . 110

10.6 Glitches . 116

10.6.1 Sample Glitches . 117

10.6.2 Real-Time Glitches . 120

10.7 Oscillators . 121

10.8 Modeling the FlexRay Protocol 124

10.8.1 Modeling the Sender . 124

10.8.2 Modeling the Receiver . 128

1This chapter contains parts already published in [GEFP12b], [GEFP12a], and [GEFP10].

101

102 CHAPTER 10. MODELING FLEXRAY

Abstract. The modeling of an industrially used protocol like FlexRay was an en-
deavor posing considerable challenges and took a lot of time. The process did not
only enable the verification of the resilience of the FlexRay physical layer protocol,
but also involved a lot of learning. The lessons learned about the modeling of such
a physical layer protocol provide an excellent example to illustrate useful model-
ing patterns and principles. This chapter presents several aspects of the FlexRay
physical layer protocol and its environment and demonstrates the modeling pro-
cess through several stages, ranging from naive first attempts to the sophisticated
optimized models finally used for the verification effort. It elaborates on the under-
lying principles and patterns employed during the evolution of the models, most
importantly abstraction and nondeterminism. The FlexRay physical layer proto-
col specification makes some assumptions on the underlying hardware. To enable
the investigation of these assumptions, the final models allow to evaluate the ef-
fect of changes to the physical setting to the fault tolerance of the protocol. These
models thus need to be precise enough to allow to describe the intricate real-time
interplay between the hardware and the protocol, while also being “small” enough
to allow for automatic verification.

Modeling the FlexRay physical layer protocol requires to also model its underly-
ing hardware environment. Being designed for an automotive context, FlexRay makes
several assumptions on the hardware it will be deployed on. Not all of these are
necessarily true in other contexts. For example, there is interest in FlexRay in the
aeronautics community, due to the low level error correction and recognition and the
predictable timing properties of FlexRay. And upgrading existing physical layers, for
example from CAN bus systems, with FlexRay is attractive, as inexpensive FlexRay
hardware is available commercially of the shelf [HR09, PH08]. For X-by-wire, strict
requirements regarding the quality of service of the bus protocol have to be met. Thus,
investigating how changes to the physical layer affect the protocol is necessary when
employing the protocol in a new environment. For example, as a requirement typi-
cally met by cars but not by planes, FlexRay assumes a maximal harness length of
at most 24 meters [HR09, Fle06a]. To verify that the protocol still has the same fault
tolerance in an environment that does not fulfill all assumptions underlying the pro-
tocol’s specification, the protocol model together with an adjusted hardware model
taking the changed assumptions into account will have to be verified again. A para-
metric hardware model can be quickly adapted to a changed hardware environment
by changing the values of some parameters. This adapted model can then be used for
the automatic verification of protocol properties under the changed assumptions on
the hardware. This approach requires the extension of the timed automaton model by
Alur and Dill (see Chapter 3) through the introduction of parameters.

10.1 Parametric Timed Automata Models

In the following, the description of timed automata will be syntactically extended by
bounded integer variables and arrays of integers with a bounded domain. They will
be referenced in integer expressions, which can use basic arithmetic to arrive at integer
values. Calls to pseudo-code functions will also be used for better readability in some

10.2. MODELING PRINCIPLES 103

descriptions of early model versions. Boolean expressions of the form a ≺ b, where a and
b are integer variables and ≺ ∈ {<,≤,=,≥, >} will also be used. For updating integer
variables, edges can be extended by update expressions of the form a := x, . . . , c := z
assigning the values of the integer expressions x, . . . , z to the integer variables or
arrays a, . . . , c. Paramters are integer variables which are treated like constants, and
do not appear on the left hand side of an update expression. This yields a parametric
model that has to be instantiated to a concrete one by giving all the parameters an
integer value before the start of the verification procedure.

10.2 Modeling Principles

Model checking a scenario as complex as a FlexRay physical layer protocol message
transfer, and using an off-the-shelf model checker to do so, requires a carefully crafted
model. Unlike testing, model checking has to account for every possible behavior of
a system. This complete coverage is computationally very expensive: model checking
a network of timed automata takes exponential time in the size of the network. To
keep this complexity as low as possible, the presented models aim to use clocks and
data as economically as possible. Several modeling principles were employed. In the
following sections, these principles will be introduced in detail using the models as
an example. Each principle will also be highlighted in a box together with a short
summary description.

10.3 Structure of the Model of the FlexRay Physical
Layer Protocol

The scenario of a message transfer in the FlexRay physical layer protocol is quite
complex. To ease understanding and thus avoid modeling errors, a monolithic modeling
approach is not advisable. Instead, separating the scenario into parts and modeling
these individually leads to a collection of much more desirable small models, which are
individually easier to understand. Of course, these models need to communicate with
each other in order to jointly model the whole scenario, but if the interfaces between
them are kept simple enough, it seems a less daunting task to understand several
individual components of lower complexity and their interplay, than understanding a
huge monolithic model.

Moreover, if the model needs to be changed, it is usually easier to change one
component while keeping its interface intact than it is to change a huge model.

Thus, the model will be presented as a network of parametric timed automata.

Separate into Components

For a separation of concerns, better understandability and easier modification,
model the scenario as a network of smaller components.

104 CHAPTER 10. MODELING FLEXRAY

The FlexRay model’s components can roughly be divided into the parts pertaining
to the protocol, and the parts describing the hardware and the error model, as shown
in Figure 10.1.

Hardware
Bus & Jitter Model Glitch Model

Sender

Add redun-
dancy

Assemble bit
stream

Message

Receiver

Remove re-
dundancy

Check bit
stream

Message=

Protocol

Figure 10.1: The structure of the model. The arrows indicate the flow of information.2

The hardware model can be separated in two main parts, on the one hand the
actual hardware of the bus and the clocks which introduce jitter, and on the other
hand the glitch model that represents interference on the bus. The protocol also has
two main parts, the sender and the receiver.

Each part, in turn, consists of one or more timed automata. In the following, the
name of the corresponding component is given in brackets. The sender generates a
message stream and puts it on the bus (sender control). The receiver has several com-
ponents: it samples the bus (bus-sampler), flattens the sample stream (voting), selects
bits from the flattened stream (strobing), and checks whether the received message
stream has the correct format (receiver control). In order to verify the protocol, the
receiver control automaton also checks whether the message was correctly transmitted.
The bus is a physical medium that needs time to change its value (bus). The jitter
model is co-located with the bus. Glitches (glitch) are introduced between the bus and
the sampler. As the receiver and the sender are implemented as hardware, all their
steps are triggered by their respective oscillators (sender clock, receiver clock).

As shown in Figure 10.2, the oscillator components can be modeled as individual
automata that synchronize with the respective sender or receiver components. The
behavior of an individual oscillator is easy to grasp in such small model components:
Each clock cycle takes between CYCLE MAX and CYCLE MIN time units and its end is
marked with a tick, which is either for the sender components (ticksd) or for the receiver
components (tickrc). It can also quickly be seen that the two oscillators are independent
of each other, their only relation being the same parameters configuring a minimal and
a maximal duration of a clock cycle.

The difference between the maximal or minimal duration of a clock cycle depends
on the precision of the hardware, and the ideal length of a clock cycle is derived from
the frequency of the oscillator and thus also depends on the hardware used. As the

2This figure is based on a figure already published in [Ger10, Figure 6.1], [GEFP10, Fig. 1]
and [GEFP12b, Figure 8]. It has already been published in [GEFP12a, Figure 1].

10.4. HARDWARE ENVIRONMENT AND POSSIBLE ERRORS 105

x ≤ CYCLE MAX

Sender oscillator

tick sd ,
x ≥ CYCLE MIN,

x := 0

Sender components
synchronizing on

tick sd

y ≤ CYCLE MAX

Receiver oscillator

tick rc ,
y ≥ CYCLE MIN,

y := 0

Receiver components
synchronizing on

tick rc

‖ ‖ ‖

Figure 10.2: Network of parametric timed automata showing the oscillators for sender
and receiver.3

behavior of the hardware is described in terms of real-time, the model of the hardware
is best kept parameterized. This allows to change the assumptions on the performance
of the hardware by just changing a handful of parameters, making the re-verification
of properties of the FlexRay physical layer protocol on a changed hardware platform a
“push button” procedure. In turn, this means that certain hardware model parameters
can be explored and their effect on the protocol’s properties be analyzed, yielding
reliable requirements for the hardware.

Parameterized Model

For quick adoption to specific assumptions on the underlying hardware, keep the
hardware model parameterized. For quick adoption of protocol changes, keep the
protocol model parameterized. A parameterized model allows to easily explore
the effect of changing parameters.

10.4 Hardware Environment and Possible Errors

In a FlexRay network, each controller has its own local oscillator supplying the clock
signal to its local circuits. These controllers communicate via the shared bus. However,
on the level of the physical layer protocol, this communication is asynchronous, as each
controller only uses its own local oscillator. So we cannot simply ignore the continuous
behavior of the hardware at the interface between the components, which would allow to
work in an abstracted digital model—we have to face the underlying analogous nature
of microelectronics. This becomes visible in the behavior of the bus when driven to a
new value by the sender and the behavior of the register used to sample from the bus
at the receivers side. We can avoid having to deal with this in several components by
modeling the behavior of the bus as the value at the input of the sampling register,
thus isolating the issue into one component automaton.

3This figure has already been published in [GEFP12b, Figure 17].

106 CHAPTER 10. MODELING FLEXRAY

10.4.1 Ignore Constant Delays in One-way Communication

But how to model the delays to the signal at the receivers sampling register’s input
introduced by the bus or the circuit design of the sender? Well, they do not necessarily
need to be modeled: As visible in Figure 10.1, information flows strictly in one direction:
From the sender to the receiver. As there is no feedback from the receiver to the sender
on the bus, all constant delays to the flow of the information can be ignored, as they
will be invisible to the receiver anyway.

Ignore Constant Delays in one-way Communication

All constant delays, even inside a component, can be ignored (or chosen arbitrarily)
if information flows strictly in one direction.

Differences between the constant delays relating two different controllers in a send-
ing or receiving role are handled by the upper layers of the FlexRay protocol, using a
time division multiple access scheme. Thus the scenario for the analysis of the FlexRay
physical layer protocol can be simplified to one sender and one receiver, which allows
to drop all constant delays. Constant delays inside the receiver model can also be
dropped if the information flow is strictly in one direction: from the bus sampler to
voting, from voting to strobing and from strobing to the receiver control. The only
feedback inside the receiving controller is the signal enabling the synchronization of the
strobing mechanism, which is sent by the receiver control to the strobing component.
However, this signal is sent after receiving the next-to-last formated message stream bit
before it is used, so a correct implementation of the receiving controller can easily make
sure that the signal arrives in time, as can a carefully designed model of the receiving
controller’s components, allowing to ignore the constant delays inside the receiver as
well.

10.4.2 A Register with Asynchronous Input

Consider the hardware scenario described in Figure 10.3, where the sender begins a
transmission of a bit by storing its value in a register Tx. The bus content is represented
as the output of register Tx, which is connected to a register Rx on the receiver’s side.
Following [GEFP12a, GEFP10, BBG+05, Sch06, Sch07, KP07, ABK08b], as proposed
by [Män98], the output of register Rx is forwarded through a consecutive register Rxx

to suppress metastability problems. This adds a delay of one clock cycle and resolves
an unstable value in Rx to either 1 or 0 in Rxx. However, as constant delays can be
ignored as explained in Section 10.4.1, Rxx does not have to be modeled: instead, an
unstable register Rx can immediately be resolved nondeterministically to 1 or 0.

Following the setting of [GEFP12a, GEFP10, BBG+05, Sch06, Sch07, KP07,
ABK08b], a register semantics is assumed to model the timing behavior of the bus
which connects the sender and the receiver. This model is easily adaptable to other
implementations, as properties like transmission delay and sampling interval can be
used to describe most implementations, just the parameters that describe them have

10.4. HARDWARE ENVIRONMENT AND POSSIBLE ERRORS 107

Hardware Model

Clock Clock
Register
Tx

Bus = RxIn

Register
Rx

Rxx

Send Stream Receive Stream

Figure 10.3: Overview of the hardware sub-architecture.4

to be changed accordingly. Before diving into the the actual transmission of bit val-
ues via the bus, first consider the following general description of the low-level timing
behavior of registers.

Register Semantics. The behavior of a particular enabled register hardware is de-
scribed in terms of the following parameters:

• SETUP is the setup time, i.e., the time that the value on the input of a register is
required to be stable before the occurrence of a tick-event;

• HOLD is the hold time, i.e., the time that the value on the input of a register is
required to be stable after the occurrence of a tick-event;

• PMIN is the minimal propagation delay, i.e., the minimal time after which a register
changes its output to an undefined value after the occurrence of a tick-event.

• PMAX, where PMIN ≤ PMAX, is the maximal propagation delay, i.e., the maximal
time after which a register changes its output to the new value after the occurrence
of a tick-event.

If a register is not enabled, its output will stay the same. In the following, it is assumed
that the register is enabled. The register content represents a particular Boolean value
using voltage levels: A value below a certain voltage level is considered as 0 and a
voltage above a certain level is considered as 1, as shown in Figure 10.4. However,
there is a certain range of voltage levels between the two thresholds that cannot be
interpreted as any Boolean value.

Figure 10.5 illustrates a scenario in which first a register’s input I and, after a tick-
event, also its output R changes from X to Y . Here, τ refers to the time between two
consecutive tick events and Ω indicates an undefined state of the register’s output.

The unknown value is assumed to be stable before τ − SETUP, i.e., before it could
violate the setup times of connected registers in the next cycle. In the FlexRay context,
for a particular controller, all inputs of registers are connected to circuits that use the
same oscillator as the registers. Hence, according to [KP95, Sect. 5.2], all local inputs
can be assumed to be stable.

4This figure has already been published in [Ger10, Figure 5.5], [GEFP10, Fig. 13], and [GEFP12a,
Figure 12].

108 CHAPTER 10. MODELING FLEXRAY

Volt

Time

tick sd

tick sd

high

low

undef

≥ PMIN

≤ PMAX

Figure 10.4: Characteristic timing diagram of a transition between voltage levels.5

More generally, let R(t) and I(t) be a register’s output and input at a point of time
t, respectively, and let T be the point of time of a tick event, told = T − τ + PMAX, and
tnext = T + τ + PMIN. Furthermore, let there be a point of time t′ where the register’s
input changes, i.e., T − SETUP ≤ t′ ≤ T + HOLD such that I(t′) 6= R(told). Then, the
output of a register at time t, told ≤ t ≤ tnext , is formally defined as

R(t) =

R(told) told ≤ t ≤ T + PMIN,

Ω T + PMIN < t < T + PMAX,

X T + PMAX ≤ t ≤ tnext ,

where X =

{
I(T) if ∀t′.(T − SETUP ≤ t′ ≤ T + HOLD)⇒ (I(t′) = I(T)),

Ω otherwise.

Note that this is a case of continuous behavior that can be abstracted away using
continuous time and nondeterminism, as described in Section 8.2: In a voltage change
at the input of a register, there is a stable anterior state, a stable posterior state,
and a passing intermediate state between the thresholds were behavior is not well
defined.

5This figure has already been published in [GEFP12b, Figure 18].

10.4. HARDWARE ENVIRONMENT AND POSSIBLE ERRORS 109

R

I

tick

X Y

ΩX Y

PMIN

PMAX

τ

PMIN− HOLD τ − PMAX− SETUP

SETUP

HOLD

Figure 10.5: Value change scenario of a register R.6

Model continuous aspects other than time using nondeterminism and
the timing of their transitions between stable states

If a continuous aspect of the scenario has several stable states with a well defined
effect on the digital world, model this aspect using continuous time to model the
transitions between its stable states. Use nondeterminism to over-approximate
effects that are not well defined, e.g., during the unstable transition-states.

As we assume metastability (which could occur in the X = Ω case) to be resolved
nondeterministically by the Rxx register, a violation of stability during setup and hold
times can be modeled by nondeterministically resolving the register to either 1 or 0.
This also accounts for cases in which a transition between voltage levels is faster than
the worst case assumed in the definition: As the register’s content can be nondeter-
ministically be resolved to the new (or the old) value if its content is read during the
unstable period, this includes all behaviors where the register’s output already has the
new value (or still has the old value) even if the register is not known to be stable at
the time.

10.4.3 Error Types

Jitter. Errors introduced through the violation of setup or hold times due to the non-
synchronized communication are called jitter. Nondeterministically resolving unstable
register values to a stable 0 or 1 (as metastability has been excluded) models this type

6This figure is based on a figure already published in [Ger10, Figure 5.6], which, in turn, was based
on a figure already published in [Ger05, Figure 10], which, in turn again, was based on [BBG+05,
Figure 1]. It has already been published in [GEFP10, Fig. 15] and [GEFP12a, Figure 14].

110 CHAPTER 10. MODELING FLEXRAY

of error which can have either have the effect of receiving a new value a little to early,
or the old value for a little too long. Jitter will be treated in Section 10.5.

Glitches. However, disturbances of the signal on the bus are another possible er-
ror scenario, called glitches [Fle05, Section 3.2.2][Fle06b, Section 12.2][Fle06a, Sec-
tion 3.6.3]. A sample taken from the bus might have been replaced by an arbitrary
value. This error scenario can be modeled by assuming an unstable bus: either the bus
can be assumed to be unstable when a sample is taken from it, leading to nondetermin-
istically sampling either 0 or 1 independent of the value that was send (called sample
glitch in this work), or the bus can be set to an unstable value for a certain time period
(called real-time glitch in this work), resulting in nondeterministically sampling either
0 or 1 if a sample is taken from the bus

(a) during that time period,

(b) closer than the hold time before that time period, or

(c) closer than the setup time after that time period.

If too many glitches occur, the message might be compromised. However, the FlexRay
physical layer protocol compensates for infrequent glitches. The two glitch modeling
paradigms are explored in Section 10.6:

(i) sample glitches, parameterized in the number of glitch-affected samples that may
occur in any sequence of a parameterized number of consecutive samples.

(ii) real-time glitches, parameterized in the duration of a glitch and the minimum
glitch-free period between any pair of glitches;

10.5 Modeling the Bus and the Sampling from the Bus

Taking the background described in Section 10.4 into account, let’s consider the mod-
eling of a propagation of signals along the bus. A timed automaton network for this
scenario is shown in Figure 10.6. The model starts in a state where the bus value is
stable. When a clock tick occurs (driven by the local oscillator of the sender), the
sender can begin to drive a new value on the bus. The receiver does not immedi-
ately see the new value. Only after PMIN time units, the sender has driven the voltage
on the bus beyond the threshold for recognizing the old bus value. After additional
PNEW = PMAX − PMIN time units, the value of the bus at the receiver’s side has been
driven beyond the threshold for the new bus value, as shown in Figure 10.4. In the mo-
del, this is implemented by measuring three time spans: the length of the clock cycle,
the time to drive the bus beyond the first threshold, and the time to drive it beyond
the second threshold. A clock cycle does not always have the same length (there are
no perfect oscillators in practice), but its length is always in between CYCLE MIN and
CYCLE MAX. Naively, a separate clock is used for measuring each of these time spans.

10.5. MODELING THE BUS 111

x ≤ CYCLE MAX

Oscillator

tick sd,
x ≥ CYCLE MIN,

x := 0

‖

y ≤ PMIN

z ≤ PNEW

Stable bus value
Changing bus value

Between thresholds

tick sd, y := 0

y ≥ PMIN,
Bus := undef ,

z := 0

z ≥ PNEW,
Bus := new value

tick sd

Figure 10.6: Model of the sender’s oscillator and the bus, synchronizing on action tick sd.
One clock is used for the oscillator, one clock for the time to reach the first threshold,
and another one for the time to reach the second threshold.7

Section 9.1 advocates to reduce the number of clocks by exploiting dependencies
between the clocks.

Exploit (Causal) Dependencies Between Clocks

If some event triggers another event, then the clock measuring the timing of the
first event can (often) also be used to measure the timing of the second event.
Find those dependencies by looking at the source of real-time behavior and try to
partition the model into parts dependent on the same source.

In FlexRay, such dependencies start with the two oscillators in the sender and
receiver, which each cause various dependent events. As a result, the entire physical
layer protocol and the hardware can be modeled with just two clocks.8

An analysis of the model shown in Figure 10.6 reveals dependencies between the
clocks: The events on the bus are triggered by the sender. The sender’s actions are
triggered by a tick from its oscillator. Thus, the events on the bus are triggered by a
tick from the sender’s oscillator. This allows to describe events on the bus using the
clock for generating the ticks of the sender’s oscillator. Of course, using the sender’s
clock for the bus limits the description of the behavior of the bus to behavior faster
than one clock cycle, as the senders clock will be reset at the beginning of the next
clock cycle. More precisely, this limits the model to describing a bus were the sum of
its delay variance, its maximal duration of an undefined bus state of neither 0 nor 1
during a change of the bus state, and the setup time of the bus-samplers register is

7This figure is based on a figure already published in [GEFP12b, Figure 9].
8This does not include the glitch model, which may need separate clocks.

112 CHAPTER 10. MODELING FLEXRAY

x ≤ CYCLE MAX

Oscillator

tick sd,
x ≥ CYCLE MIN,

x := 0

‖

x ≤ PMIN

x ≤ PMAX

Stable bus value
Changing bus value

Between thresholds

tick sd

x ≥ PMIN,
Bus := undef

x ≥ PMAX,
Bus := new value

tick sd

Figure 10.7: Optimized model of the sender’s oscillator and the bus, synchronizing on
action tick sd. Here, just the clock needed to generate the tick sd action of the sender’s
oscillator is used, under the assumption that PMIN ≤ PMAX ≤ CYCLE MIN holds.10

smaller than the minimal duration of a clock cycle. As FlexRay operates at 80 MHz,9

this requirement is easily fulfilled by standard hardware. Observe that it is possible to
deduce the values of y and z from the clock value of x. In the model of Figure 10.6,
x and y always have the same value, and z is equal to x + PMIN in the “Between
thresholds” location, which is the only location in which the value of z is used. Thus,
the clocks y and z can be removed by replacing any reference to y by x and replacing
any reference to z by x+ PMIN. Exploiting the equality PNEW = PMAX− PMIN results in
the simplified model shown in Figure 10.7.

So far, the models shown have been toy examples. In the following, automata from
models actually used for verifying the FlexRay physical layer protocol will be shown
as well, using the syntax described in Section 3.2. There are two separate models:

• an Uppaal specific early model also presented in [GEFP10] that will be marked
with † and uses syntax specific to Uppaal (like committed locations or broadcast
synchronization), and

• a refined later evolution of the model, also presented in [GEFP12a], not using
Uppaal specific syntax, and marked with ‡.

The bus has two stable states, either low (0) or high (1). Figure 10.8 shows the
automaton from model † modeling the transmission of a bit value according to the
register semantics defined in Section 10.4.2. Recall the structure of the hardware sub-
architecture shown in Figure 10.1. The model represents the sender’s register Tx’s

9Here, a configuration of FlexRay with a 10 Mbit/s data rate is assumed. Note that parameters
for slower bit rates of either 2.5 Mbit/s or 5 Mbit/s are also supplied in the FlexRay specification,
see [Fle05, Appendix B.1].

10This figure is based on a figure already published in [GEFP12b, Figure 10].

10.5. MODELING THE BUS 113

StableHIGH
C

CheckForLOW
x ≤ HLMIN

ChangeToLOW x ≤ HLMAX + SETUPUnstableLOW

StableLOW
C

CheckForHIGH
x ≤ LHMIN

ChangeToHIGH
x ≤ LHMAX + SETUP

UnstableHIGH

SenderCLK?

Tx = 1

Tx = 0

x ≥ HLMIN

RxIn := 2

x ≥ HLMAX + SETUP
RxIn := 0

SenderCLK?

Tx = 0

Tx = 1
x ≥ LHMIN
RxIn := 2

x ≥ LHMAX + SETUP
RxIn := 1

Figure 10.8: Model of the bus.†11

content by a variable Tx, and the receiver’s register Rx’s input (which also represents
the bus’ content) by a variable RxIn. As the bus value is high whenever it is idle [Fle05,
Section 3.2.4], RxIn is initialized with 1 and the automaton starts with the bus in a
stable high state.

At every tick of the sender’s clock (SenderCLK), the variable Tx is checked: if the
sender is still writing the same value to the bus, nothing changes, but if the sender
tries to write a different value to the bus, RxIn changes its value. This change will
be delayed: Initially, the old value is still preserved, then the value on the bus is
undefined, and then, finally, the new stable value is reached. Here, an undefined bus
content is represented by a value of 2 for RxIn. The parameters HLMIN, HLMAX, LHMIN,
and LHMAX are used to model the delays induced by the hardware: As a conservative
approximation, it is assumed that

HLMIN = LHMIN = PMIN and HLMAX = LHMAX = PMAX.

Note that the possible violation of setup times is modeled by extending the unstable
period of the bus by the setup time. Thus, if the receiver samples from the bus less
than SETUP time units after the bus should have reached a stable value, the violation
of the setup time will be modeled by sampling an unstable value.

The violation of hold times is checked when the receiver tries to sample at a tick of its
local oscillator: Figure 10.9 shows an automaton from model † modeling the sampling
process on the receiver’s side. The receiver samples a value from the bus using the
register Rx. After exactly HOLD time units following a tick-event (ReceiverCLK), Rx is
updated either

(i) nondeterministically with 1 or 0 if Rx’s input RxIn changes (which is checked with
the help of variable OldRxIn) or is undefined (2), or

11This figure is based on a figure already published in [Ger10, Figure 6.4]. It has already been
published in [GEFP10, Fig. 16].

114 CHAPTER 10. MODELING FLEXRAY

(ii) with RxIn otherwise.

For the sake of simplicity, the model nondeterministically resolves an unstable or
undefined value, which is represented by a value of 2, either to logical 1 or to logical 0.
This value is propagated through the consecutive register Rxx.

WaitForClocktick TryToSample
y ≤ HOLD

ReceiverCLK?
OldRxIn := RxIn

y ≥ HOLD ∧ RxIn 6= 2 ∧ OldRxIn = RxIn
Rx := RxIn

y ≥ HOLD∧
(
OldRxIn 6= RxIn∨RxIn = 2

)
Rx := 1

y ≥ HOLD∧
(
OldRxIn 6= RxIn∨RxIn = 2

)
Rx := 0

ConsecutiveRegisterRxx

ReceiverCLK?
Rxx := Rx

Figure 10.9: Model of the sampling process without glitches.†12

Note that the trick of extending the unstable interval of the bus by adding the setup
time does not only make it easier to check at the time of a receivers clock tick for a
violation of the setup time in the immediate past. It also shows a way of making the
model simpler: In essence, the automata shown in Figures 10.8 and 10.9 check for the
intersection of the interval were the bus is unstable with the interval were the receiver
needs a stable bus.

Check Interval Intersection Using Only One Interval

Check if one of the two intervals to be intersected can be extended by the size of
the other interval in the model, removing the need to actually check an interval
intersection, such that an interval membership test for one point will suffice.

As the constant delay of the bus is irrelevant as there is no feedback to the sender,
the delay can be ignored as explained in Section 10.4.1—but it can also be set to any
arbitrary value chosen such that checking the intersection of the two intervals boils
down to simply testing if a clock tick of the receiver occurs in a certain period of time
after a tick of the sender’s clock. Here, WIREDELAY = HOLD− PMIN is chosen.

Remember that the register requires a stable input in the sampling interval
[Tr − SETUP, Tr + HOLD] around Tr, where Tr is the time of the receiver’s clock’s tick
event. If a new value is put on the bus with a tick of the sender’s clock at time Ts,
the bus has change its value and thus will be unstable at the receiver’s side during

12This figure is based on a figure already published in [GEFP10, Fig. 17], which, in turn, was based
on figures already published in [Ger10, Figures 6.5 and 6.6].

10.5. MODELING THE BUS 115

the interval [Ts + WIREDELAY+ PMIN, Ts + WIREDELAY+ PMAX]. Thus, a stable sampling
requires:

Ts + PMAX + WIREDELAY < Tr − SETUP⇔ Ts + PMAX + WIREDELAY + SETUP < Tr

and also:

Ts+PMIN+WIREDELAY > Tr+HOLD⇔ Ts+PMIN+HOLD−PMIN > Tr+HOLD⇔ Ts > Tr

So, an unstable value will be sampled when a receiver’s clock’s tick event occurs in the
interval [Ts, Ts + PMAX + WIREDELAY + SETUP].

StableHIGH x ≤ HLMAX + SETUP + WIREDELAYUnstableLOW

StableLOW
x ≤ LHMAX + SETUP + WIREDELAY

UnstableHIGH

SenderCLK 1?
Tx = 1

SenderCLK 1?
Tx = 0
volt := 2

x
≥

L
H
M
A
X
+
S
E
T
U
P
+
W
I
R
E
D
E
L
A
Y

v
o
l
t
:=

0

SenderCLK 1?
Tx = 0

SenderCLK 1?
Tx = 1
volt := 2

x
≥

L
H
M
A
X
+
S
E
T
U
P
+
W
I
R
E
D
E
L
A
Y

v
o
l
t
:=

1

Figure 10.10: Simple model of the bus.‡13

In Figure 10.10, showing the bus as modeled in model ‡, Tx is checked to see whether
the bus should change its value. In case of a change, the variable volt is set to the
unstable value 2 during the extended interval, and to 0 (or 1) outside the interval,
depending on whether the bus should then be in a stable low (or high) state.

This variable volt could then be used directly to determine whether the receiver’s
clock tick occurred during the interval by the automaton from Figure 10.11, showing
the receiver’s sampling from the bus in model ‡. At every tick of the receiver’s clock
(ReceiverCLK), the receiver samples a value from the bus using the register Rx. As-
suming a perfect physical layer, the register Rx’s input, represented by a variable RxIn,
would be equal to the value of the variable volt. However, as the analysis assumes an
unreliable physical layer, volt can be used by a glitch model to set the value of RxIn.

13This figure has already been published in [GEFP12a, Figure 15].

116 CHAPTER 10. MODELING FLEXRAY

WaitForClocktick

ReceiverCLK 1?
RxIn 6= 2
Rx := RxIn

ReceiverCLK 1?
RxIn = 2
Rx := 1

ReceiverCLK 1?
RxIn = 2
Rx := 0

Figure 10.11: Simple model of the sampling process.‡14

If the value of RxIn is stable, Rx is updated to RxIn. If the value of RxIn is unstable
(RxIn = 2), Rx is nondeterministically assigned 1 or 0, as metastability is suppressed as
explained in Section 10.4.2. Moreover, as constant delays can be ignored in the absence
of feedback, as detailed in Section 10.4.1, model ‡ does not model Rxx at all, exposing
Rx to the rest of the receiver in its stead.

10.6 Glitches

As the bus is not assumed to be a perfect medium, information on the bus may be
destroyed by glitches. As these glitches are caused by external interference, they should
only be analyzed independently of the FlexRay protocol. The position of the glitches
in the message stream on the bus is thus not measured in terms of what part of the
stream is affected, but only relative to the other glitches. The analysis focuses on
patterns of glitches. To describe these patterns, two approaches are described in the
following: either

(a) give the maximal duration of a glitch and the minimum glitch free time after a
glitch, or

(b) consider the number of received samples that can be compromised by a glitch in
a certain sequence of consecutive samples.

The resulting glitch patterns of the two approaches are contrasted in Figure 10.12.

Approach (a), real-time glitches, introduces yet another source of real-time behavior,
and is well suited to describe glitches.

Approach (b), sample glitches, adds only discrete behavior, and is well suited to
describe the effects of glitches on the protocol.

Both approaches will be explored separately in the following, but the choice only
affects the glitch model, and not the model of the protocol itself. In model †, which
uses only sample glitches, the glitch model is co-located with the model of sampling

14This figure has already been published in [GEFP12a, Figure 16].

10.6. GLITCHES 117

glitch glitch

· · · · · ·

< ERRDUR > ERRDISTt

(a) Real-time glitch pattern, parametrized in the duration ERRDUR and glitch-free
period ERRDISTt.

> ERRDISTs

samples

> ERRDISTs

samples

glitch-affected
sample

glitch-affected
sample

glitch-affected
sample

· · · · · ·

(b) Sample glitch pattern: 1 out of ERRDISTs + 1.

Figure 10.12: Real-time vs. sample glitch patterns.15

from the bus. In model ‡, the glitch model is independent of the rest of the model, so
also its hardware model is unaffected by the choice of glitch model.

10.6.1 Sample Glitches

To avoid handling more continuous time than absolutely necessary, a discrete way to
model glitches is to abstract away the disturbance on the bus caused by a glitch and
just model the glitch in terms of affected samples, as done in [GEFP10].

More than 2 glitch-affected samples in a voting window of size 5 are not interesting
(they positively can change the (possibly strobed) voted value), so there are only two
interesting scenarios:

(1) one glitch-affected sample, or

(2) two glitch-affected samples,

both in some sequence of consecutive samples, respectively. Case (2) can be divided
into sub-scenarios for a more detailed analysis:

(i) two glitch-affected samples next to each other, or

(ii) two independent glitch-affected samples.

15This figure has already been published in [GEFP12b, Figure 19].

118 CHAPTER 10. MODELING FLEXRAY

Lets consider the model for one glitch-affected sample co-located with the model of
sampling from the bus in model †, as shown in Figure 10.13. Note that the automata
shown are meant to replace the ones from the glitch free scenario shown in Figure 10.9.

WaitForClocktick TryToSample
y ≤ HOLD

ReceiverCLK?
lasterror ≥ ERRDIST
OldRxIn := RxIn

ReceiverCLK?
lasterror ≥ ERRDIST
OldRxIn := 2, lasterror := 0

ReceiverCLK?
lasterror < ERRDIST
OldRxIn := RxIn, lasterror++

y ≥ HOLD ∧ RxIn 6= 2 ∧ OldRxIn = RxIn
Rx := RxIn

y ≥ HOLD∧
(
OldRxIn 6= RxIn∨RxIn = 2

)
Rx := 1

y ≥ HOLD∧
(
OldRxIn 6= RxIn∨RxIn = 2

)
Rx := 0

ConsecutiveRegisterRxx

ReceiverCLK?
Rxx := Rx

Figure 10.13: Model of the sampling process with up to one glitch-affected sample in
every sequence of ERRDIST + 1 consecutive samples.†16

For modeling glitches, a variable lasterror is introduced that counts the number
of samples without a glitch. To avoid unnecessary complexity, lasterror is bounded
by ERRDIST. All glitch free consecutive sample sequences longer than ERRDIST are
represented by a lasterror value of ERRDIST.17 Whenever lasterror ≥ ERRDIST, the
sampling process nondeterministically decides whether the current sample is affected
by a glitch. A bit flip is modeled by assigning a nondeterministic value to the bit, which
is achieved by re-purposing OldRxIn to force an unstable or undefined value. For the
sake of simplicity, the model nondeterministically resolves an unstable or undefined
value, which is represented by a value of 2, either to logical 1 or to logical 0. As this
includes all cases in which the sample was resolved to the value it would not have had
in the glitch free case, this does not affect a reachability analysis.

For a cleaner separation of concerns, model ‡ uses a separate automaton for its
glitch model. Located between the bus model from Figure 10.10 and the model of
sampling from the bus from Figure 10.11, this automaton describes how the value of
the bus relates to the input of the register sampling from the bus, i.e., how the variable
volt relates to the variable RxIn.

If just one sample can be glitch-affected in a sequence of consecutive samples,
this automaton looks like the one shown in Figure 10.14, which nondeterministically
chooses some sample to be glitch-affected and then lets the next ERRDISTs samples not
be affected by a glitch. The not glitch-affected samples are counted using the variable

16This figure is based on figures already published in [Ger10, Figures 6.5 and 6.6]. It has already
been published in [GEFP10, Fig. 17].

17Note that a large value for ERRDIST can lead to a considerable state space explosion.

10.6. GLITCHES 119

Normal
Glitch

ReceiverCLK 0?
Lerr = ERRDISTs
RxIn := 2,
Lerr := 0

ReceiverCLK 0?
RxIn := volt,
Lerr++

ReceiverCLK 0?
Lerr = ERRDISTs
RxIn := volt

ReceiverCLK 0?
Lerr < ERRDISTs
RxIn := volt,
Lerr++

Figure 10.14: Model of sample glitches: at most 1 glitch-affected sample in ERRDISTs+1
consecutive samples.‡18

Lerr which is used to make sure that a glitch can only occur if the last ERRDISTs
samples were not glitch-affected. In case of a glitch affected sample, RxIn is set to an
unstable value to be nondeterministically resolved as described above. If the sample is
not affected by a glitch, volt is forwarded to RxIn. The automaton starts in the case
where there have not been glitches before, so Lerr is initialized with ERRDISTs.

Normal
Glitch1

Glitch2

ReceiverCLK 0?
Lerr = ERRDISTs
RxIn := 2,
Lerr := 0

R
e
c
e
iv
e
rC

L
K

0
?

R
ec
ei
ve
rC
L
K
0?

Rx
In

:=
vo
lt
,

Le
rr
+
+

ReceiverCLK 0?
Lerr = ERRDISTs
RxIn := volt

ReceiverCLK 0?
Lerr < ERRDISTs
RxIn := volt,
Lerr++

Figure 10.15: Model of sample glitches: at most 2 glitch-affected samples, next to each
other, in every sequence of ERRDISTs + 2 consecutive samples.‡19

The automaton from Figure 10.14 can be extended as shown in Figure 10.15 to
model two glitch-affected samples next to each other where the next ERRDISTs samples
will not be affected by a glitch.

18This figure has already been published in [GEFP12a, Figure 19].
19This figure has already been published in [GEFP12a, Figure 20].

120 CHAPTER 10. MODELING FLEXRAY

Normal
Glitch

ReceiverCLK 0?
Lerr = ERRDISTs
RxIn := 2,
Lerr := 0

ReceiverCLK 0?
Lerr < ERRDISTs∧
NLerr = ERRDISTs
RxIn := 2,
Lerr := 0,
NLerr := Lerr + 1

ReceiverCLK 0?
NLerr = ERRDISTs
RxIn := volt,
Lerr++

ReceiverCLK 0?
NLerr < ERRDISTs
RxIn := volt,
Lerr++,
NLerr++

ReceiverCLK 0?
NLerr == ERRDISTs
Lerr := 0,
NLerr := 1

ReceiverCLK 0?
Lerr = ERRDISTs
RxIn := volt

ReceiverCLK 0?
Lerr < ERRDISTs∧
NLerr = ERRDISTs
RxIn := volt,
Lerr++

ReceiverCLK 0?
NLerr < ERRDISTs
RxIn := volt,
Lerr++,
NLerr++

Figure 10.16: Model of sample glitches: at most 2 glitch-affected samples in
ERRDISTs + 1 consecutive samples.‡20

If two arbitrary samples can be glitch-affected in a sequence of consecutive samples,
this is modeled by nondeterministically choosing an affected sample, then nondeter-
ministically choosing another one, making sure that at least ERRDISTs samples have
been received since the next-to-last glitch-affected sample before a third sample may
be nondeterministically chosen to be glitch-affected.

Replacing the automaton from Figure 10.14 or Figure 10.15 with the automaton
shown in Figure 10.16 allows to check for two independent glitches in a consecutive
sequence of samples. The number of samples since the last glitch-affected one are
counted using the variable Lerr, and the number of samples since the next-to-last
glitch-affected sample are counted using the variable NLerr.

10.6.2 Real-Time Glitches

To reduce the discrete complexity of the model, glitches can also be described in terms
of continuous time. While a FlexRay model with sample glitches only needs two clocks,
a third clock, a, is introduced to measure the duration of a glitch in case of real-
time glitches. Real-time glitches are only used with model ‡ here, as model † does
not have a dedicated glitch model automaton that could easily be replaced with an
automaton having extra real-time behavior. The versatility of the component-wise
modeling approach, advocated in Section 10.3 (and used more thoroughly in model ‡
by having a separate glitch model), makes it easier to experiment with alternative glitch
models.

If a glitch occurs, the bus will be unstable for ERRDUR time units, as described
in Figure 10.12(a). Sampling a value from the bus will be unaffected by the glitch if
the sampling occurs at least ERRDUR + SETUP time units after the glitch, due to the

20This figure has already been published in [GEFP12a, Figure 21].

10.7. OSCILLATORS 121

Normal a < ERRDUR + SETUP + HOLD

Glitch
a > ERRDISTt−SETUP−HOLD∨A
a := 0,
RxIn := 2,
A := false

a := 0,
RxIn := volt

ReceiverCLK 0?
RxIn = volt ReceiverCLK 0?

Figure 10.17: Model of real-time glitches: At most one glitch in ERRDISTt.‡21

requirement of a stable bus value during the sampling interval. Similarly, sampling a
value from the bus before the glitch will be unaffected by the glitch if the sampling
occurs at least HOLD time units before the glitch. Thus, the automaton shown in
Figure 10.17 moves to the location Glitch HOLD time units before the occurrence of
the glitch, and leaves it ERRDUR + SETUP time units after the occurrence of the glitch.

Clock a is reused after the glitch to measure the period after the glitch in which
no other glitch can occur, defined by ERRDISTt. As the clock is reset ERRDUR + SETUP

time units after the occurrence of the last glitch, there will be no glitch for the next
ERRDISTt − SETUP time units, and thus no move to the location Glitch for the next
ERRDISTt − SETUP − HOLD time units. The boolean variable A, initialized to true, is
used to allow the occurrence of the first glitch at an arbitrary position, as clocks are
automatically initialized with 0 (DBMs only offer efficient support for resetting clocks
to 0, and not to any other value, see Section 3.4).

This model allows a very natural description of the glitch pattern as there are just
two parameters: how long a glitch can last, and how long it takes after a glitch until
another glitch may happen. Note that this allows to analyze glitches that affect two
consecutive samples, but the affected samples will only be next to each other.

However, analyzing the effects of two short glitches not next to each other during
an otherwise glitch-free period independently of the samples needs the introduction
of a fourth clock, b, and one more boolean variable, B, which is initialized to true.
The automaton shown in Figure 10.17 is then replaced by the automaton shown in
Figure 10.18. This automaton works similar to the one it replaces, the difference being
that it has two glitch locations which are independent of each other, but work the same
way with b replacing a and B replacing A in the one of the glitch locations (GlitchB).

10.7 Oscillators

The local oscillators of the sender and the receiver are modeled as automata that emit
tick -events (SenderCLK and ReceiverCLK) which, in turn, are received by other au-
tomata modeling connected circuits. According to the specification, distributed oscilla-
tors may deviate from the standard rate up to a certain bound [Fle05, Appendix A.1].

21This figure has already been published in [GEFP12a, Figure 17].

122 CHAPTER 10. MODELING FLEXRAY

Normal a < ERRDUR + SETUP + HOLD

GlitchA

b < ERRDUR + SETUP + HOLD

GlitchB

a > ERRDISTt−SETUP−HOLD∨A
a := 0,
RxIn := 2,
A := false

a := 0,
RxIn := volt

ReceiverCLK 0?
RxIn = volt ReceiverCLK 0?

b
>
ERRDIST

t−
SETUP−

HOLD∨
B

b
:=

0,

RxIn
:=

2,

B
:=

false
b
:=

0,

RxIn
:=

volt

ReceiverCLK 0?

Figure 10.18: Model of real-time glitches: At most 2 glitches in ERRDISTt.‡22

Furthermore, as these oscillators are not started at the same time, their periods can
be shifted arbitrarily. This is modeled by not specifying a minimum length for the
first cycle of the receiver’s oscillator in Figures 10.19 and 10.20. Here, x and y are
continuous-valued clock variables.

x ≤ CYCLE MAX

SenderCLK!
x ≥ CYCLE MIN
x := 0

y ≤ CYCLE MAX y ≤ CYCLE MAX

ReceiverCLK!
y := 0

ReceiverCLK!
y ≥ CYCLE MIN
y := 0

Figure 10.19: Oscillators for sender and receiver.†23

The models are parametrized in the length of an ideal clock cycle (which is the
same for each controller) by CYCLE. To model the deviation, the parameter DEVIATION
is used. This provides a lower and an upper bound for tick-events:

CYCLE MIN = CYCLE− DEVIATION

2
and CYCLE MAX = CYCLE +

DEVIATION

2
.

Note that the local behavior of the protocol in the sender and in the receiver can
be described in discrete terms. Each controller is assumed to work as specified and

22This figure has already been published in [GEFP12a, Figure 18].
23This figure is based on figures already published in [Ger10, Figures 6.2 and 6.3]. It has already

been published in [GEFP10, Fig. 14].

10.7. OSCILLATORS 123

the model focuses solely on the interaction between the controllers and the physical
layer. This narrows the focus of the modeling effort to the interaction of the controllers
with the bus and to the drift between the two controller’s oscillators [MP11]. In turn,
this allows to model the preparation of the message stream and the handling of the
received sample stream as stepwise processes, where the steps are triggered by the local
oscillators and are instantaneous. So all the computations of one logical step in the
protocol are modeled as happening in one clock cycle, at the exact time of the clock
edge, with no time passing during these computations.

Replacing Time with Order

To reduce the number of clocks in the model, and thus keep model checking
efficient, replacing time with order where possible can be helpful—that is, if this
does not introduce too much discrete complexity like large extra counters.

The order in which the data is processed by the different components is important and
is fixed using a chain of components. In a setting in which the events are ordered, two
different forms of communication between components are available. For asynchronous
communication, shared variables can be used, as the order of accesses to the variables
is fixed by the order. For synchronous communication, the handshake synchronization
channels of timed automata can be used directly. To avoid blocking in synchronous
handshake communication, “receiving” components are designed to have an enabled
transition labeled with the respective communication channel at any point in time.

Model † uses separate broadcast synchronization channels and committed locations
to achieve an order on all steps. For model ‡, the oscillator components as shown
in Figure 10.20 generate a chain of synchronization signals for each clock edge, so
each component gets its clock edge signal on its dedicated handshake synchronization
channel, triggering the components in the correct order.

x ≤ CYCLE MAX

x ≤ 0

S
e
n
d
e
rC

L
K

0
!

x
≥

C
Y
C
L
E
M
I
N

x
:=

0

S
e
n
d
e
rC

L
K

1
!

y ≤ CYCLE MAX y ≤ 0 y ≤ 0

y ≤ 0y ≤ CYCLE MAX

ReceiverCLK 0!
y := 0 ReceiverCLK 1!

R
e
c
e
iv
e
rC

L
K

2
!

ReceiverCLK 3!

R
e
c
e
iv
e
rC

L
K

0
!

y
≥

C
Y
C
L
E
M
I
N

y
:=

0

Figure 10.20: Oscillators for sender and receiver.‡24

The SenderCLK event is signaled first on channel SenderCLK 0 and then on channel
SenderCLK 1, with no time allowed to pass between the activation of the two channels,
allowing to structure the sender’s process into two consecutive steps. The ReceiverCLK
event is signaled on 4 channels in a similar manner to trigger automata in a chained
order, allowing to partition the model of the computations in a receiver’s clock cycle
into 4 consecutive steps.

24This figure has already been published in [GEFP12a, Figure 13].

124 CHAPTER 10. MODELING FLEXRAY

10.8 Modeling the FlexRay Protocol

Recall the description of the FlexRay physical layer protocol from Section 2.2. As
explained in Section 10.4.1, the scenario to be considered is one sender connected to
one receiver.

10.8.1 Modeling the Sender

The sender has to assemble a redundant bit stream from the message to be sent, as
shown in Figure 10.1. The number of possible messages in a transmission protocol
is astronomic: in the case of FlexRay, there are more than 10600 possible different
messages.25 Protocols typically have a fixed format for messages, such as the format
of FlexRay message frames shown in Figure 2.2 on page 15. Moreover, the bit stream
to be assembled from the message also has a specific format, as shown in Figure 2.4 on
page 18.

x ≤ 0

payload := guess(),
byte := 0, bit := 0,
x := 0 msg := frame(payload)

bit = 8 ∧
byte < len(msg)− 1,

bit := 0, byte ++

tick ,
bit < 8,

send(msg [byte][bit]),
bit ++

bit = 8 ∧
byte = len(msg)− 1

Figure 10.21: Generating a message payload, encasing it in the frame format, and
sending it.26

Since a natural specification of the correctness of the protocol would require ev-
ery message to be transmitted correctly, the large number of messages immediately
translates to an equally large state space: for example, a model might first fix and
store the data to be sent, then transmit the message via sender and receiver, and fi-
nally compare the stored data against the delivered message. Consider the automaton
shown in Figure 10.21. The data to be transmitted is initialized in some array payload ,
whose values are chosen nondeterministically using the (pseudocode) function guess().
Then, pseudocode is used to encase payload in the frame format shown in Figure 2.2

25Moreover, if the fact that each message byte generates 10 bits in the formated message stream, and
every bit in that stream generates on average 8 samples and each of these samples could be affected
by a bit flip due to a transmission error (if glitches are to be considered) are taken into account, more
than 106000 scenarios need to be considered.

26This figure has already been published in [GEFP12b, Figure 11].

10.8. MODELING THE FLEXRAY PROTOCOL 125

on page 15 using the function frame(), which generates a message frame that is stored
in an array msg containing len(msg) bytes. The bits of msg are then sent to a mes-
sage stream generator (not depicted) using the function send(). The generator then
guarantees the format seen in Figure 2.4 on page 18.

Such a naive approach would result in a huge state-space for all nontrivial messages.
To not blow up the state-space, storing the actual data has to be avoided.

Replacing Data with Nondeterminism

If there are several possibilities for valid values of a variable, one can often let
the model forget the actual data, and instead nondeterministically guess the data
whenever the model’s behavior depends on its value: whenever the choice of a
transition in the model depends on the actual data (e.g., the message), it just
nondeterministically chooses a transition

This might over-approximate behaviors of the protocol, but if a reachability check
still validates the property to be checked (no spurious error was introduced due to
the approximation), it is a valid modeling choice that hugely reduces the number of
scenarios to be checked (by making similar situations undistinguishable , e.g, situations
just distinguished by no longer relevant stored data from the past) as well as the
memory needed to store a state of the model.

In case of a physical layer protocol, in addition to the data to be sent, one can often
also ignore the format of the message. This format often only contains information for
higher protocol levels which is not used by the physical layer protocol. The components
needed to enforce this format can be eliminated here, as the modeled protocol layer
does not depend on the format.

bit ≤ 8
bit := 0

tick ,
bit ++,
send(0)

tick ,
bit ++,
send(1)

bit = 8
bit := 0

bit = 8

Figure 10.22: Generating and sending of a message while abstracting from its actual
length, contents and format.27

27This figure has already been published in [GEFP12b, Figure 12].

126 CHAPTER 10. MODELING FLEXRAY

Dropping the idea that only message frames in a legal format are to be transmitted
in the model, but rather all messages of a possible length, altogether removes the
necessity to store the initial message: the message bits can be just guessed on-the-fly
whenever needed. Additionally, the length of the message can also be guessed on-the-fly
by nondeterministically deciding whether to send another byte after a byte has been
sent. Thus, the message can have an arbitrary length (in bytes) and it is not even
necessary to store how many bytes have already been sent. The resulting automaton
is shown in Figure 10.22. Its state space is reduced to only 11 states: The automaton
could be in the first location, it could be in the second location and bit could have any
integer value from 0 to 8, or it could be in the last state, where only 8 is a possible
value for bit .

The drawback of ignoring the message is, of course, that it is no longer possible
to specify that the messages are received correctly. It is sufficient, however, to store
a single bit of the message, as long as the bit is chosen nondeterministically. If a bit
is not correctly transmitted, the nondeterminism guarantees that there is at least one
trace of the model where this bit is stored. In order to verify that the one stored bit
is correctly received, the received bit that corresponds to the stored bit needs to be
identified. For this purpose, the model of the sender shown in Figure 10.23 stores the
position posstored of the bit in the message, and the model of the receiver shown in
Figure 10.24 counts the received message bits until it identifies the bit corresponding
to the stored bit bitstored .

Abstracting from the actual message also keeps the sender process model small
and simple, as it is not concerned with the message composition this way. A core
component of FlexRay’s physical layer protocol, namely the assembly of the message
stream, still needs to be modeled, as it is crucial for error correction on the receiver
side, as described in Section 10.8.2.

Both model † and model ‡ thus have a sender model that is mainly concerned
with the assembly of the structured stream and adding redundancy to it by sending
every bit of the stream as a bit cell of a length of 8 sample clock cycles, while the
actual frame bits are guessed on the fly. Both models avoid storing the position of
the nondeterministically chosen frame bit to be stored for verification in terms of its
position in the message by storing its position in the byte only, fully eliminating the
need to count bytes. In fact, the models are identical, the only difference being the
clock signal marking the sample ticks, which is SenderCLK for model † and SenderCLK 0

for model ‡. In Figures 10.25 to 10.27, only the automata for model ‡ will be shown.30

The start of the stream is the so-called transmission start sequence (TSS), which
consists of a sequence of low bits. The length of the sequence is fixed for the cluster
and may vary from 3 to 15 bits see [Fle05, Section B.2.1]. It precedes every trans-

28This figure has already been published in [GEFP12b, Figure 13].
29This figure has already been published in [GEFP12b, Figure 14].
30The Model for † can be obtained by replacing SenderCLK 0 with SenderCLK in these figures, as

they are based on figures already published in [GEFP10, Fig. 3 to 5], which, in turn, were closely
based on figures already published in [Ger10, Figures 6.10 to 6.12]. They have already been published
in [GEFP12a, Figures 5 to 7].

10.8. MODELING THE FLEXRAY PROTOCOL 127

bitsd ≤ 8

bitsd ≤ 8

bitsd ≤ 8

bitsd := 0,
possd := 0,

posstored := −1

tick sd ,
bitsd ++,
send(0)

posstored := possd ,
bitstored := 0

possd ++

tick sd ,
bitsd ++,
send(0)

tick sd ,
bitsd ++,
send(1)

bitsd = 8
bitsd := 0

tick sd ,
bitsd ++,
send(1)

posstored := possd ,
bitstored := 1

possd ++

bitsd = 8
bitsd := 0

bitsd = 8

Figure 10.23: Generating and sending of a message while abstracting from its actual
length, contents and format. The sender model nondeterministically chooses a bit to
store and stores its position as well.28

bitrc ≤ 8

bitrc ≤ 8

bitrc ≤ 8

Error
bitrc := 0,
posrc := 0

tick rc ,
bitrc ++,
received(0)

posrc = posstored ,
bitstored = 0

posrc = posstored ,
bitstored = 1

posrc ++

tick rc ,
bitrc ++,
received(0)

tick rc ,
bitrc ++,
received(1)

bitrc = 8
bitrc := 0

tick rc ,
bitrc ++,
received(1)

posrc = posstored ,
bitstored = 1

posrc = posstored ,
bitstored = 0

posrc ++

bitrc = 8
bitrc := 0

Figure 10.24: Receiving a message while abstracting from its actual length, contents
and format. The receiver model checks that the bit received at the position of the
stored bit has the same value as the stored bit.29

128 CHAPTER 10. MODELING FLEXRAY

mission. After the TSS, the frame start sequence (FSS) signals the start of a message
transmission. The FSS consists of a single high bit. The receiving controller accepts a
transmission even if the FSS is received zero or two times. This aspect of the models
is shown in Figure 10.25. Note that each stream bit is used to drive the bus through
the variable Tx for a bit cell of 8 sample ticks.

The bit string of the frame is partitioned into bytes. Each frame byte is prefixed
with a byte start sequence (BSS). The BSS consists of one high bit followed by one low
bit. As shown in Figure 2.5 on page 19, each bit is put on the bus for a bit cell with
a duration of 8 sample ticks. The high to low transition in the middle of the BSS is
used as a trigger for the bit clock alignment. In the model shown in Figure 10.26, the
frame bits are nondeterministically chosen. The decision to store a bit to be verified
is also made nondeterministically, and the bit is stored in savedTx. Its offset within
the current byte is stored in savedindex.31 Note that several bits could be chosen
to be stored, each bit overwriting the previous one. After each byte, the model can
nondeterministically decide to either end the transmission or go on.

At the end of the message, a frame end sequence (FES) is appended. The FES
consists of one low bit followed by one high bit. In Figure 10.27, the variable End is
used to signal to the receiver that the bit stream is about to end—an addition to the
model required to compensate for the lack of a predefined number of message bytes.
This variable will be used to force the receiver to check the correct reception of a FES
and then stop checking afterwards only when the message transfer is actually about
to end, and not earlier, e.g, due to (hypothetical) errors in receiving some BSS. Note
that End is only used here in a model for verification purposes, and is not part of the
protocol.

The models of the sender do not have to model its internal structure or its processes,
just its output. Basically, its purpose in the verification scenario is solely to provide
the input for the transmission over the hardware in the expected form and to acquire
the data needed to check the correctness of the reception of the transmission by the
receiver after the physical layer protocol (which is the focus of the verification effort
and thus modeled in detail together with the hardware and the error model) has done
its job.

10.8.2 Modeling the Receiver

The receiver samples from the bus, resulting in a stream of samples with a lot of
redundancy, as several samples will be taken from each bit cell. Before the steps
depicted in Figure 10.1 on page 104 of removing this redundancy, checking the formated
stream, and extracting the frame (and extracting the message from the frame, which
will not be considered in the model as the frame was nondeterministically generated,
see Section 10.8.1), the redundancy is put to use.

31The initial value savedindex = 8 means “no bit to test”.

10.8. MODELING THE FLEXRAY PROTOCOL 129

TSS FSS (BSShigh)

SenderCLK 0?
samplecounter < 8
samplecounter++

SenderCLK 0?
TSScount < TSSlength ∧
samplecounter = 8
samplecounter := 1, Tx := 0,
TSScount++

SenderCLK 0?
TSScount ≥ TSSlength ∧
samplecounter = 8
samplecounter := 1, Tx := 1

SenderCLK 0?
samplecounter < 8
samplecounter++

SenderCLK 0?
samplecounter = 8
samplecounter := 1, Tx := 1

Figure 10.25: Model of the start of the transmission.‡30

(from FSS)
BSShigh BSSlow

SendBit

(FESlow)

SenderCLK 0?
samplecounter < 8
samplecounter++

SenderCLK 0?
samplecounter = 8
samplecounter := 1, Tx := 0

SenderCLK 0?
samplecounter < 8
samplecounter++

S
e
n
d
e
rC

L
K

0
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,
T
x
:=

1
,

s
a
v
e
d
T
x
:=

1
,

s
a
v
e
d
i
n
d
e
x
:=

0

S
e
n
d
e
rC

L
K

0
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,
T
x
:=

0
,

s
a
v
e
d
T
x
:=

0
,

s
a
v
e
d
i
n
d
e
x
:=

0

S
e
n
d
e
rC

L
K

0
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,

s
a
v
e
d
i
n
d
e
x
:=

8
,
T
x
:=

0

S
e
n
d
e
rC

L
K

0
?

s
a
m
p
l
e
c
o
u
n
t
e
r
=

8
s
a
m
p
l
e
c
o
u
n
t
e
r
:=

1
,

s
a
v
e
d
i
n
d
e
x
:=

8
,
T
x
:=

1

Se
nd
er
C
L
K
0?

sa
mp
le
co
un
te
r
=
8
∧
bu
ff
er
in
de
x
=
7

sa
mp
le
co
un
te
r
:=

1,
Tx

:=
1,

bu
ff
er
in
de
x
:=

0

SenderCLK 0?
samplecounter = 8 ∧
bufferindex = 7
samplecounter := 1, Tx := 0

SenderCLK 0?
samplecounter < 8
samplecounter++

SenderCLK 0?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, Tx := 1,
bufferindex++

SenderCLK 0?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, Tx := 0,
bufferindex++

SenderCLK 0?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, savedTx := 1,
Tx := 1, savedindex := bufferindex+1,
bufferindex++

SenderCLK 0?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, savedTx := 0,
Tx := 0, savedindex := bufferindex+1,
bufferindex++

Figure 10.26: Model of the transmission of the message bytes.‡30

(from SendBit)
FESlow FEShigh Done

SenderCLK 0?
samplecounter < 8
samplecounter++

SenderCLK 0?
samplecounter = 8
samplecounter := 1,
End := 1, Tx := 1

SenderCLK 0?
samplecounter < 8
samplecounter++

SenderCLK 0?
samplecounter = 8

Figure 10.27: Model of the end of the transmission.‡30

130 CHAPTER 10. MODELING FLEXRAY

voted value

1

0

Rxx

1

0

voting window

g
li
tc
h

Figure 10.28: Correction of a glitch through majority voting.32

Recalling the description of the FlexRay physical layer protocol from Section 2.2,
two processes deal with the redundancy:

1. Voting

2. Strobing and bit clock alignment

As shown in Figure 2.5 on page 19, voting uses the redundancy to compensate for
glitches, while strobing, which is enabled by the bit clock alignment, gets rid of the
redundancy in a way that helps to compensate for glitches and jitter.

Voting

The whole point of having redundancy at all is to compensate for glitches and jitter.
Consider Figure 10.28 showing the relationship between the stabilized samples in Rxx

(see Figure 10.3) from model † (model ‡ directly uses Rx for this) and the voted value
resulting from the voting process: The five most recent samples always form the so-
called voting window.33 In each clock cycle, a voted value, i.e., the value of the majority
of the five samples in the voting window, is computed from these. As the size of the
voting window is odd, there will always be a clear majority. Infrequently occurring
glitches are mostly filtered out directly. However, voting also introduces a delay of
two clock cycles for recognizing a changed value on the bus, as it takes three samples
instead of one to make this change visible as a new majority in the voting window.

However, if a glitch occurs close to a change in the sample sequence, it leads to
a premature or delayed change of the voted value, as depicted in Figure 10.29. More
precisely, if the glitch inverts one of the samples of the new value, it takes one more
cycle until the new value becomes the majority in the voting window. On the other
hand, if the glitch inverts one sample of the old value, the value will change one cycle
too early. Such untimely changes of the voting value may also be the result of jitter,
as described in Section 10.4.2, though only if sampling occurs to close to the change in

32This figure is based on a figure already published in [Ger05, Figure 6]. It has already been published
in [Ger10, Figure 5.8] and [GEFP10, Fig. 6].

33According to the FlexRay standard [Fle05, Section 3.2.6], one sample is taken in one sample
clock period, which is derived “from the oscillator clock period directly or by means of division
or multiplication”. Here, a sample clock period of one clock cycle is assumed in accordance with
[BBG+05, Sch06, Sch07, ABK08b, KP07, GEFP10, GEFP12a].

10.8. MODELING THE FLEXRAY PROTOCOL 131

wire de-
lay and Rx

omitted

voted value

1

0

Rxx

1

0

Tx

1

0

g
li
tc
h

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

S
en

d
er

R
ec
ei
v
er

Figure 10.29: Combination of jitter and glitch.34

the bus value at the edges of a bit cell such that hold or setup times are violated, as is
the case in Figure 10.29.

WaitForSample
C

Vote

ReceiverCLK?
window4 := window3, window3 := window2,
window2 := window1, window1 := window0,
window0 := Rxx

ValueVoted!
window0 + window1 + window2 + window3 + window4 ≥ 3
VV := 1

ValueVoted!
window0 + window1 + window2 + window3 + window4 < 3
VV := 0

SaveOldVV

ReceiverCLK?
OldVV := VV

Figure 10.30: Model of the voting process.†35

The receiver model always maintains the respective previous four samples and the
sample obtained in the current clock cycle. The variable window0 always holds the
newest value. In every clock cycle, the values of the window variables are shifted
accordingly. If the majority of the window variables contains a 1, the voted value VV

is set to 1, and to 0 otherwise. The respective previous value of VV is stored in OldVV.
As shown in Figure 10.30, model † takes the samples from register Rxx and uses a
construction with a committed location to make sure the old voted value is stored and
the voting window is updated before a new majority is checked for and a new voted
value is declared. To declare a new voted value, it uses the channel ValueVoted.

Its chaining of clock signals from Section 10.7 enables the model for ‡ to be simpler.
As shown in Figure 10.31, the voting window is updated together with checking for a
new majority in the third step of each receiver clock cycle. This is enabled by using
Rx directly and also allows to get rid of the variable window4, reducing the state-space
even further. The old voted value is saved in the first step of each receiver cycle.

34This figure is based on a figure already published in [Ger10, Figure 5.9]. It has already been
published in [GEFP10, Fig. 7].

35This figure is based on figures already published in [Ger10, Figures 6.7 and 6.8]. It has already
been published in [GEFP10, Fig. 8].

132 CHAPTER 10. MODELING FLEXRAY

Vote

ReceiverCLK 2?
Rx + window0 + window1 + window2 + window3 ≥ 3
VV := 1,
window3 := window2, window2 := window1,
window1 := window0, window0 := Rx

ReceiverCLK 2?
Rx + window0 + window1 + window2 + window3 < 3
VV := 0,
window3 := window2, window2 := window1,
window1 := window0, window0 := Rx

SaveOldVV

ReceiverCLK 0?
OldVV := VV

Figure 10.31: Model of the voting process.‡36

Strobing and Bit Clock Alignment

From each bit cell, only one voted value is used to reassemble the bit stream, as shown
in Figure 2.5 on page 19. To avoid choosing values that are affected by glitches, the
fifth voted value (computed from samples from the middle of the bit cell) is taken as
the so-called strobed value.

In order to identify the (approximate) boundaries of the bit cells and thus the
strobed values, the receiver keeps the variable strobecounter synchronized to the
stream of received voted values.

This bit clock alignment mechanism makes use of the bit stream format shown in
Figure 2.4. At the beginning of the transmission and during the byte start sequences,
the first transition of the voted value from high to low is detected and strobecounter

is reset to 2 for the next voted value. Thus, the second recognized voted value of this
low bit cell is considered to be the second voted value of the bit cell.

If a combination of clock drift and a glitch interferes with the bit clock alignment
mechanism by delaying the recognition of the high to low transition, strobecounter
will be off by more than 1, thus parts of the next bit cell are also taken into account
when computing the strobed value. This situation is shown in Figure 10.29; recall the
delay of two cycles introduced by the voting process. The bit clock alignment can
analogously also happen too early.

In the model, strobecounter has no default value, but is initialized nondeterminis-
tically in order to model the absence of bit clock alignment at the start of the verification
scenario. When the new voted value, VV, is 0 and the voted value from the cycle before,
OldVV, is 1, and EnableSyncEdgeDetect enables the bit clock alignment mechanism,
strobecounter is reset to 2, as the received 0 was the first bit of the new bit cell, and
the bit clock alignment mechanism is deactivated using EnableSyncEdgeDetect.

The variable strobecounter is incremented whenever a new voted value has been
calculated until it reaches 8, then it is set to 1 in the next cycle, if the bit clock
alignment does not interfere. When strobecounter has a value of 5 and the voted
value for this cycle of the receiver’s clock is ready, VV is chosen as the voted value to
be strobed.

36This figure is partially based on a figure already published in [Ger10, Figure 6.8]. It has already
been published in [GEFP12a, Figure 8].

10.8. MODELING THE FLEXRAY PROTOCOL 133

C WaitForStrobe

C

CheckForSync

C

StrobeIfNoSync

In
itia

liz
e
S
tro

b
e
c
o
u
n
te

r

strobecounter := 1

strobecounter := 2

strobecounter := 3

strobecounter := 4

strobecounter := 5

strobecounter := 6

strobecounter := 7

strobecounter := 8

V
al
ue
V
ot
ed
?

st
ro
be
co
un
te
r
=
5

st
ro
be
co
un
te
r
:=

6

V
alueV

oted?

strobecounter 6=
5

strobecounter
:=

(strobecounter

m
od

8)
+
1

VV
=
0
∧
Ol
dV
V
=
1∧

En
ab
le
Sy
nc
Ed
ge
De
te
ct

=
1

En
ab
le
Sy
nc
Ed
ge
De
te
ct

:=
0,

st
ro
be
co
un
te
r
:=

2

St
ro
b
ed
!

VV
=
1
∨
Ol
dV
V
=
0∨

En
ab
le
Sy
nc
Ed
ge
De
te
ct

=
0

bs
tr

:=
VV

VV
=
0 ∧

OldVV
=
1∧

EnableSyncEdgeDetect
=
1

EnableSyncEdgeDetect
:=

0,

strobecounter
:=

2

VV
=
1 ∨

OldVV
=
0∨

EnableSyncEdgeDetect
=
0

Figure 10.32: Model of the strobing process.†37

Figure 10.32 shows how the model for model † uses the variable bstr to store
the strobed voted value and uses the channel Strobed to allow other automata to
synchronize on this event in order to use the new bstr value. Channel ValueVoted
is used to synchronize to the event of the current receiver’s clock cycle’s voted value
being chosen, again using a construction with committed locations to chain the steps
in the right order without the passing of time.

y ≤ 0
WaitForStrobe

Strobe

y ≤ 0

In
itia

liz
e
S
tro

b
e
c
o
u
n
te

r

strobecounter := 1

strobecounter := 2

strobecounter := 3
strobecounter := 4

strobecounter := 5

strobecounter := 6

strobecounter := 7

strobecounter := 8

ReceiverCLK 3?
strobecounter = 5∧
¬
(
VV = 0 ∧ OldVV = 1∧

EnableSyncEdgeDetect = 1
)

strobecounter := 6

ReceiverCLK 3?
strobecounter 6= 5∧
¬
(
VV = 0 ∧ OldVV = 1∧

EnableSyncEdgeDetect = 1
)

strobecounter :=
(strobecounter mod 8) + 1

ReceiverCLK 3?
VV = 0 ∧ OldVV = 1∧
EnableSyncEdgeDetect = 1
EnableSyncEdgeDetect := 0,
strobecounter := 2

Strobed 1!
VV = 1

Strobed 0!
VV = 0

Figure 10.33: Model of the strobing process.‡38

37This figure is based on a figure already published in [Ger10, Figure 6.9]. It has already been
published in [GEFP10, Fig. 9].

38This figure has already been published in [GEFP12a, Figure 9].

134 CHAPTER 10. MODELING FLEXRAY

The model for model ‡, as shown in Figure 10.33, activates the strobing and bit clock
alignment process in the 4th step of the receiver’s clock cycle. Using a construction
with locations that do not allow time to pass—using a constraint on the clock used by
the model of the receiver’s oscillator, y, which is known to have been reset to 0—a 5th
step of the receiver’s clock cycle is introduced: The channels Strobed 1 and Strobed 0

allow other automata to synchronize to a new strobed value encoded in the choice of
which of the two channels is used. This allows to omit the variable bstr, making the
model smaller.

Communication via Synchronization

If a one bit value has to be communicated at a specific point in time or step in the
order, communicating it via a shared variable can often be replaced by encoding
it in a synchronization signal if it is consumed directly and does not need to be
stored, getting rid of the variable in the process.

Note that the trick of not letting time pass works well in model ‡, because it is done
after the last step in the chain of clock signals, thus not introducing an alternative order
in which the individual chained processes could be triggered.

Checking the Received Bit Stream

Similarly to the model of the sender, the model of the part of the receiver that extracts
information from the stream of received strobed values does not need to be modeled
in detail. It is enough to basically encode the property that the stream was correctly
received into the form of an automaton. However, that entails more than just checking a
stored bit as done in Figure 10.24: In order to enable the bit clock alignment mechanism
from Section 10.8.2 at the right time, the format of the structured stream needs to be
used.

As soon as a new strobed value is signaled, the receiver model checks if it is con-
sistent with the expected format of the bit stream. As soon as a received value is not
the expected one, the error state DECerr is entered.

Note that as discussed in Section 8.3, the non-reachability of this error state is also
used to encode the liveness property that, when the process of checking the received
bit stream for the expected stream format has started (by having received the first bit
of the TSS), a message is eventually received (in case of finite messages). Thus, most
of the correctness property that a message is received as it was sent is encoded in the
model, just the reachability of a location needs to be encoded in the specification the
model is checked against.

The received TSS is accepted if it contains at least TSSmin bits. Further bits of the
TSS are accepted if not more than TSSmax bits have been received before.39

39In the FlexRay specification [Fle05], the parameter gdTSSTransmitter is used, which corresponds
to TSSlength in the model. To replicate the behavior described in [Fle05], TSSmax should be set to
TSSlength, and TSSmin should be set to 1. In a newer version of the FlexRay specification, [Fle10b],

10.8. MODELING THE FLEXRAY PROTOCOL 135

During the reception of the TSS or after the reception of a message byte, the
variable EnableSyncEdgeDetect is used to enable the bit clock alignment mechanism.
During the reception of a message byte, the number of bits received so far within this
byte is counted using the variable bufferindex. When savedindex indicates that
the current message bit is to be verified, the received strobed value is compared to
savedTx. The variable End is checked to prohibit entering the location Done too early
after (hypothetically) erroneously classifying a BSS as the FES.

Note that the model neither checks the number of received message bytes nor the
format of the message as required by [Fle05, Section 3.3.6], as the model abstracts from
the content and the length of the message.

Furthermore, no time will pass after the end of the scenario, i.e., when either the
location Done has been safely entered, or an error moved the model into DECerr.

Dedicated End Locations

As soon as the scenario has reached a state that indicates that either the property
to check has been violated or can no longer be violated, the exploration of the
model does not need to continue. These locations can thus be made to stop time,
limiting the state-space reachable from them to make the model checking stop
earlier.

The presented models contain exactly two dedicated end locations: The absence of
transmission errors can be checked by determining the reachability of the error location,
as advocated in Section 8.1. After the complete reception of a FlexRay message stream,
the receiver controller enters the safe location, which cannot be left again.

To speed up the model-checking process, both the error location and the safe lo-
cation cause a deadlock, i.e., time stops after one of the locations has been entered,
limiting the exploration of these states that can no longer reach the error location when
the safe location has been entered, or cannot undo the error in case the error location
was entered.

Furthermore, this allows to check for absence of transmission errors and the absence
of other deadlocks in the same model checking run by checking for the reachability of
deadlocks outside of the safe location. This then also covers the case of erroneous
non-reachability of the error location in a badly designed model that got stuck in a
deadlock before a path to the error location was discovered.

For model †, the channel Strobed signals that a new value has been stored in bstr.
Figures 10.34, 10.35 and 10.36 show the use of a construction with committed locations
in order to make sure that the check of correct reception indeed happens at the last
step of the current receiver’s clock cycle.

For model ‡, Figures 10.37 and 10.38 show how using the channels Strobed 0 and
Strobed 1 instead of a variable like bstr allows to make the model smaller and easier

this behavior was modified to accept a longer TSS. The model can, however, easily be adopted to
the modified behavior by setting TSSmax to TSSlength + 1. This demonstrates the robustness of a
parameterized model to small changes of the specification.

136 CHAPTER 10. MODELING FLEXRAY

WaitForCE

C
CheckForCE TSS

C

CheckTSS
FSSBSShigh

C
(CheckFSS)

C
DECerr

S
tro

b
e
d
?

bstr = 0
TSScount := 1

b
s
t
r
=

1

Strobed?

(bstr = 1 ∧ TSScount < TSSmin)∨
(bstr = 0 ∧ TSScount > TSSmax)

bstr = 0∧
TSScount ≤ TSSmax
TSScount++

bstr = 1∧TSScount ≥ TSSmin
EnableSyncEdgeDetect := 1 Strobed?

Figure 10.34: Model of the start of the reception.†40

C (from FSSBSShigh)
CheckFSSBSS

C
CheckBSS

BSShigh
C

CheckBSSlow BSSlow
C

CheckBit

C
DECerr

GetByte
C

BitOK

WaitForFESlow

C
CheckFESlow (FESlow)

bstr = 1

bstr
=

0

S
tro

b
e
d
?

b
s
t
r
=

1

bstr =
0

Strobed? bstr = 0

b
s
t
r
=

1

Strobed?

buf
fer

ind
ex

= sav
edi

nde
x∧

bst
r 6=

sav
edT

x

(
buf

fer
ind

ex
=

sav
edi

nde
x∧

bst
r =

sav
edT

x
) ∨

buf
fer

ind
ex
6= sav

edi
nde

xS
tro

b
e
d
?

bu
ff
er
in
de
x
=
7

En
ab
le
Sy
nc
Ed
ge
De
te
ct

:=
1

bufferindex < 7
bufferindex++

St
ro
b
ed
?

bstr = 0

bstr = 1bufferindex := 0

Figure 10.35: Model of the reception of the message bytes.†41

(from CheckFESlow)

FESlow
C

CheckFEShigh
C

Done

C

DECerr

Strobed? bstr = 1∧ End = 1
bs
tr

=
0
∨
En
d
=
0

Figure 10.36: Model of the end of the reception.†42

10.8. MODELING THE FLEXRAY PROTOCOL 137

WaitForCE TSS
(FSSBSShigh)

DECerr
y ≤ 0

Strobed 1?

Strobed 0?
TSScount := 1

S
tr
o
b
e
d

0
?

T
S
S
c
o
u
n
t
>

T
S
S
m
a
x

S
tr
o
b
e
d

1
?

T
S
S
c
o
u
n
t
<

T
S
S
m
i
n

Strobed 0?
TSScount ≤ TSSmax
TSScount++

Strobed 1?
TSScount ≥ TSSmin
EnableSyncEdgeDetect := 1

Figure 10.37: Model of the start of the reception.‡43

(from TSS)

FSSBSShighBSShigh

BSSlow Byte

DECerr
y ≤ 0

FESlow

FEShigh Done
y ≤ 0

Strobed 1?
Strobed

0?

St
ro
b
ed

1?

Strobed 0?

Strobed 0?

S
tro

b
ed

1
?

St
ro
be

d
0?

bu
ff
er
in
de
x
=

sa
ve
di
nd
ex
∧

sa
ve
dT
x
=

1
St
ro
be

d
1?

bu
ff
er
in
de
x
=

sa
ve
di
nd
ex
∧

sa
ve
dT
x
=

0

Strobed 0?(
(bufferindex = savedindex∧

savedTx = 0)∨
bufferindex 6= savedindex

)
∧

bufferindex = 7
EnableSyncEdgeDetect := 1

Strobed 1?(
(bufferindex = savedindex∧

savedTx = 1)∨
bufferindex 6= savedindex

)
∧

bufferindex = 7
EnableSyncEdgeDetect := 1

Strobed 0?(
(bufferindex=

savedindex∧
savedTx = 0)∨
bufferindex 6=
savedindex

)
∧

bufferindex < 7
bufferindex++

Strobed 1?(
(bufferindex =

savedindex∧
savedTx = 1)∨
bufferindex 6=
savedindex

)
∧

bufferindex < 7
bufferindex++

Strobed 1?
bufferindex := 0

Strob
ed

0? Strobed 1?
End = 1

Strobed 1?

End = 0
Strobed 0?

Figure 10.38: Model of the reception of the message bytes and the end of the
reception.‡44

to understand and how the order imposed by them and the chain of ReceiverCLK
synchronizations as described in Section 10.7 gets rid of committed locations.

40This figure is based on figures already published in [Ger10, Figure 6.13 and A.2]. It has already
been published in [GEFP10, Fig. 10].

41This figure is based on figures already published in [Ger10, Figure 6.14 and A.1]. It has already
been published in [GEFP10, Fig. 11].

42This figure is based on a figure already published in [Ger10, Figure 6.15]. It has already been
published in [GEFP10, Fig. 12].

43This figure has already been published in [GEFP12a, Figure 10].
44This figure has already been published in [GEFP12a, Figure 11].

138 CHAPTER 10. MODELING FLEXRAY

Chapter 11

Model Checking the FlexRay
Physical Layer Protocol1

Contents

11.1 First Verification of FlexRay 140

11.2 Thorough Verification of FlexRay 142

11.2.1 Analyzing the Parameters . 143

11.3 Analysis of Glitch Patterns 145

11.3.1 Pattern 1 out of 4 . 146

11.3.2 Pattern 2 out of 88 . 147

Abstract. Using the models presented in Chapter 10, Uppaal is used to prove
the error resilience of the FlexRay physical layer protocol against various glitch
patterns. Exploring the effect of changing assumptions on hardware properties on
this error resilience, the robustness of the FlexRay physical layer protocol against
lower quality hardware or changes in the hardware is evaluated. A comparison
of the analysis results obtained with an early model version and those obtained
with an optimized model version shows the importance of finely crafted models for
the success of such a model checking endeavor. An analysis of the glitch patterns
shown to be tolerable reiterates the need for automatic model checking to support
and improve on manual analysis of complex systems.

In Chapter 10, two models for model checking the FlexRay physical layer protocol
have been described:

1. the early model †, which uses Uppaal specific syntax and has been presented
in [GEFP10], and

2. as an evolution of it the optimized model ‡, which has been presented
in [GEFP12a] and avoids using Uppaal specific syntax.

1This chapter contains parts already published in [GEFP12a], and [GEFP10].

139

140 CHAPTER 11. MODEL CHECKING FLEXRAY

Both models have been model checked in order to analyze the FlexRay physical
layer protocol. While Section 2.3.1 gave a preview of the results of this analysis, a
detailed description of those results and an analysis of the findings is given in the fol-
lowing. Section 11.1 discusses the results obtained from model † with a 32-bit version of
Uppaal, which have been presented in [GEFP10]. Section 11.2 describes how model ‡,
and the use of a newer 64-bit version of Uppaal, allowed to improve on the previous
results. Finally, Section 11.3 interprets the obtained resilience results against specific
glitch patterns.

11.1 A First Verification of the FlexRay Physical Layer
Protocol2

Consider the following analysis of the model † with fixed values for the model pa-
rameters and a check of several correctness properties (shown in Table 11.1) using the
real-time model checker Uppaal [BDL04] in its 32-bit version. This first analysis uses
conservative approximations based on [Fle05, Nan09], which are listed in Table 11.2(a).

Table 11.1: Satisfied correctness properties of † and corresponding running times of
Uppaal on a computer with an AMD Opteron 2.6 GHz processor and 4 GiB RAM.3

Property MC Time
A<> Receiver Control.TSS 0.65 sec
It is always the case that the reception of the bit stream eventually
starts.
A<> Receiver Control.CheckFESlow 7624.90 sec
It is always the case that the first byte of a message is eventually
correctly received.
A[] !Receiver Control.DECerr 73.08 sec
Invariantly, the received bit stream is in the correct format and the
received message is correct.
A[] (!Deadlock || Receiver Control.Done) 136.47 sec
Invariantly, there is no deadlock before the message is completely
received.

Initially, an error distance of four is assumed, which corresponds to one glitch in
a voting window (1 out of 5). This intuitive choice is overly pessimistic: in fact, the
experiments show that for the standard parameters, the physical layer protocol model
can tolerate an error distance of three (1 out of 4) without violating any correctness
property.

The impact of changing the hardware parameters PMIN, PMAX, or DEVIATION on
the amount of tolerable glitches (such that the properties from Table 11.1 are still pre-
served) is shown in Table 11.2(b). To adjust the glitch model, the automaton from

2This section contains parts already published in [GEFP10].
3This table has already been published in [GEFP10, Table 1].

11.1. FIRST VERIFICATION OF FLEXRAY 141

Table 11.2: Standard values based on conservative approximations of the parameters
taken from the FlexRay standard [Fle05] and the Nangate Open Cell Library [Nan09],
as well as the impact of changed parameters on the tolerable glitches in †. Here, “1 out
of x” stands for “at most 1 glitch in x consecutive samples” and thus an error distance
of x− 1, and “at most y” means “at most y glitches in the overall stream at arbitrary
positions”.4

(a) Standard parameter values.

Parameter Value Corresponds to
CYCLE 10000 1

80MHz = 12.5 ns
DEVIATION 30 ±0.15 %
SETUP 368 460 ps
HOLD 1160 1450 ps
PMIN 12 15 ps
PMAX 1160 1450 ps
ERRDIST 4 1 out of 5

(b) Changed parameter values.

Changed parameter Tolerable glitches
PMAX− PMIN ≤ 6086 1 out of 4
PMAX− PMIN ≤ 6086 at most 2
PMAX− PMIN ≤ 9616 at most 1
DEVIATION ≤ 92 1 out of 4
DEVIATION ≤ 92 at most 2
DEVIATION ≤ 218 at most 1
DEVIATION ≤ 348 none
Voting window size = 3 1 out of 3
Voting window size = 5 1 out of 4
Voting window size = 7 1 out of 5
Voting window size = 9 1 out of 6

Figure 10.13 was modified as needed. Interestingly, this further analysis of model †
demonstrates the robustness of the FlexRay physical layer protocol even for more
pessimistic hardware assumptions: beyond the initial conservative choice of the pa-
rameters, there is still a comfortable safety margin when reasonable glitch models are
used.

Also explored was the size of the voting window. The last four rows of Table 11.2(b)
show what happens to glitch tolerance if the voting windows size is changed. Note that
a voting window needs an odd size to have a clear majority, a size of 1 would mean
no voting and thus no glitch tolerance, and as a bit cell is only 8 sample ticks long, no
more than 9 samples could ever be sampled from one bit cell, even if the receiver’s clock
is faster than the sender’s one, as 9 ∗ CYCLE MIN > 8 ∗ CYCLE MAX for all viable clock
deviation values. Here, the tolerable error distance between glitches affecting a single
sample increases linearly in the size of the window. These results suggest that the
relationship is ERRDIST = d voting window size

2 e, i.e., that an error distance between single
glitches equal to the number of samples needed for a majority in the voting window is
tolerable.

Lastly, some more elaborate adjustments to the automaton from Figure 10.13 al-
lowed to investigate an error model with two arbitrary glitches within every sequence
of samples of a certain length. For instance, assuming the standard parameters from
Table 11.2(a), it turns out that two glitches in a sequence of up to 82 samples lead
to a violation of the correctness properties. This partial result will be completed to
a more useful one in the analysis of model ‡ in Section 11.2. The limitation to 4 GiB

4This table has already been published in [GEFP10, Table 2].

142 CHAPTER 11. MODEL CHECKING FLEXRAY

here and the absence of real-time glitches in model † only allow to look at 2 arbitrary
glitches, which may occur closer together than an ERRDIST of 3 allows, just once in the
context of the whole scenario (at most 2)—as opposed to 2 arbitrary glitches in every
consecutive sequence of a length of more then 82.

11.2 A Thorough Verification of the FlexRay Physical
Layer Protocol5

To pick up where the analysis presented in the previous section fell flat, a non-
reachability check of the error location in model ‡, which will be used in this section
together with Uppaal version 4.1.4-64bit, verified that a voting window of size five
allows for up to two glitch-affected samples at arbitrary positions in every sequence of
88 consecutive samples (2 out of 88). This was achieved using the sample glitch mo-
del shown in Figure 10.16. Here and in the following, the non-reachability of location
DECerr will be used as the model checked property. However, the counting associated
with the sample glitch model introduced a considerable amount of discrete complex-
ity: Uppaal needed 210 minutes using 83 GiB of memory to verify this property. This
check needed an advanced machine and required the employment of a newly available
Uppaal version that supported 64 bit and could thus address more than 4 GiB of mem-
ory. If the glitch-affected samples were next to each other, it took only 262 seconds
and 2.1 GiB of memory to verify this property in the improved model (‡).

The property that up to one glitch-affected sample in every sequence of four con-
secutive samples is allowed for (1 out of 4), which was already shown in [GEFP10] and
is here also presented in Section 11.1, took 21 seconds to verify with the sample glitch
model shown in Figure 10.14, using 207 MiB of memory.

Introducing real-time glitches helped to improve on those results. While tools
specializing on handling discrete complexity should be able to handle the verification
task more space-efficiently, introducing a third (and fourth) clock in the real-time glitch
model instead of counting unaffected samples, as done in the sample glitch model, turns
out to be better suited to Uppaal. The real-time glitch model decouples the occurrence
of a glitch from the number of samples affected, but allows to analyze the relationship
between maximal glitch duration and the minimal glitch-free time between two glitches.
The model ‡ with the real-time glitch model shown in Figure 10.17 could be analyzed
with Uppaal version 4.1.4-64bit in just 30 seconds using only 204 MiB for the short
glitch (affects at most one sample in the sequence) version, and in just 43 seconds using
only 311 MiB for the long glitch (affects at most consecutive 2 samples in the sequence)
version.

The results from this real-time glitch model confirmed the findings from the sample
glitch model: a glitch of less than 2∗CYCLE MIN−SETUP−HOLD and a glitch-free period
of more than 86 ∗ CYCLE MAX + HOLD + SETUP in between two glitches are allowed for.
So, if a glitch can affect at most two adjacent samples, the next 86 samples have to be

5This section contains parts already published in [GEFP12a].

11.2. THOROUGH VERIFICATION OF FLEXRAY 143

unaffected by glitches, confirming that two glitch-affected samples next two each other
in a sequence of 88 consecutive samples are allowed for. If the glitch is shorter than
1 ∗ CYCLE MIN − SETUP − HOLD, the glitch-free period in between two glitches can be
shortened to longer than 3 ∗ CYCLE MAX + HOLD + SETUP. So, if a glitch can affect at
most one sample, the next 3 samples have to be unaffected by glitches, confirming that
one glitch-affected sample in a sequence of four consecutive samples is allowed for.

Using both the third and the fourth clock, a and b, allows to model two independent
glitches, represented by the automata locations GlitchA and GlitchB, as shown in
Figure 10.18. Clock a is associated to GlitchA and clock b to GlitchB. The clocks are
used to measure the duration of a glitch modeled by their associated location, and the
period after the glitch that is free of glitches modeled by this location. For example, if
a glitch is modeled by GlitchA, another glitch modeled by GlitchB could occur during
the “glitch modeled by GlitchA”-free period after the former glitch, but no further
glitch could occur after the latter one until the period measured by a is over, as the
period free of “glitches modeled by GlitchB” after the latter glitch leaves no location
that could be used to model this additional glitch. This model (the glitches affect
at most two arbitrary samples in the sequence) was analyzed with Uppaal version
4.1.4-64bit in 335 seconds using 1.3 GiB of memory.

Again, these results confirmed the findings from the sample glitch model: if you
have two arbitrary glitches, and each glitch is shorter than 1∗CYCLE MIN−SETUP−HOLD,
the “glitch modeled by the same location”-free period in between two glitches modeled
by the same location should be longer than 87 ∗ CYCLE MAX + HOLD + SETUP to allow
the glitches to be tolerated. So, two arbitrary glitch-affected samples in each sequence
of 88 consecutive samples can be tolerated.

When comparing Uppaal’s time and memory consumption of the sample glitch
model with the real-time glitch model, it can be seen that the introduction of large
discrete counters, as needed to count the glitch free samples in the 2 in 88 case, can be
more expensive than introducing additional clocks, depending on the tool used.

11.2.1 Analyzing the Parameters

The analysis of the hardware parameters is based on using Uppaal version 4.1.4-64bit
to check the non-reachability of location DECerr, i.e., a check that no transmission
error occurs. Additional properties were checked in [GEFP10] in the basic model †,
but, being the essential property, only absence of transmission errors was checked in
the model ‡ with varied parameters.

The analysis uses conservative approximations for the hardware parameters, based
on [Fle05, Nan09], which are listed in Table 11.3. The results of the initial analysis
using all the standard parameter values from Table 11.3 are summarized in Table 11.4.
In a further analysis, the impact of changing either the hardware parameters PMIN and
PMAX or DEVIATION on the amount of tolerable glitches is shown in Table 11.5.

Note the subtle difference in the maximal tolerable delay variance PMAX−PMIN and
clock drift DEVIATION between short real-time glitches and long ones. This shows that
there is an intricate relationship between the glitch patterns and the tolerable parameter

144 CHAPTER 11. MODEL CHECKING FLEXRAY

Table 11.3: Standard parameter values for ‡ based on conservative approximations of
the parameters taken from the FlexRay standard [Fle05] and the Nangate Open Cell
Library [Nan09].6

Parameter Value Corresponds to

CYCLE 10, 000 1
80MHz = 12.5 ns

DEVIATION 30 ±0.15 %
SETUP 368 460 ps
HOLD 1160 1450 ps
PMIN 12 15 ps
PMAX 1160 1450 ps

Table 11.4: Tolerable glitch patterns in ‡ with standard parameter values. The glitch
pattern “y (adj.) out of x” stands for “at most y (adjacent) glitch-affected samples in
x consecutive samples”.7

Glitch pattern Parameter Value Corresponds to

1 out of 4 ERRDISTs 3 3 samples
2 adj. out of 88 ERRDISTs 86 86 samples
2 out of 88 ERRDISTs 87 87 samples

Short real-time glitch
ERRDUR CYCLE MIN− SETUP− HOLD 10.57125 ns
ERRDISTt 3 ∗ CYCLE MAX + HOLD + SETUP 39.46625 ns

Long real-time glitch
ERRDUR 2 ∗ CYCLE MIN− SETUP− HOLD 23.0525 ns
ERRDISTt 86 ∗ CYCLE MAX + HOLD + SETUP 1078.5225 ns

2 independent real-time glitches
ERRDUR CYCLE MIN− SETUP− HOLD 10.57125 ns
ERRDISTt 87 ∗ CYCLE MAX + HOLD + SETUP 1091.04125 ns

changes. Nevertheless, the analysis provides stringent hardware requirements which, if
met, will guarantee robustness against the respective glitch patterns.

The results of Müller and Paul [MP11] demonstrate that a controller with a
DEVIATION of 76 is safe for a FlexRay like bus if a reliable physical layer is assumed.
Together with the result from the analysis presented in this chapter, namely that the
FlexRay physical layer protocol running on hardware with a DEVIATION of 80 can tol-
erate an unreliable physical layer with glitch patterns described in Table 11.4, this
demonstrates the resilience of the FlexRay physical layer protocol as well as its clock
synchronization and time-division-multiple-access scheme against less precise oscilla-
tors.

Furthermore, the presented results demonstrate a high resilience of the FlexRay
physical layer protocol against changes in the variance of the propagation delay.
From [Nan09], the initial assumption of variance in the propagation delay was 1435 ps,
but this could be increased to 7570 ps without changing the tolerable error patterns.
If the length of the harness is increased, this will be vital, as the delay variance of a

6This table has already been published in [GEFP12a, Table 1] and [GEFP12b, Table 1].
7This table has already been published in [GEFP12a, Table 2] and the first two lines of data have

also already been published in [GEFP12b, Table 2].

11.3. ANALYSIS OF GLITCH PATTERNS 145

Table 11.5: Impact of changes to the parameter values in ‡ on the tolerable glitch
patterns. The glitch pattern “at most y” means “at most y glitch-affected samples in
the overall stream at arbitrary positions”. For the DEVIATION measurements, the values
ERRDUR and ERRDISTt correspond to are the changed results yielded by the formulas
for their value.8

Changed parameter Tolerable glitch patterns

PMAX− PMIN ≤ 6086 1 out of 4
PMAX− PMIN ≤ 6086 at most 2
PMAX− PMIN ≤ 6056 2 adj. out of 88
(PMAX− PMIN ≤ 6056)a 2 out of 88
PMAX− PMIN ≤ 6086 short real-time glitch
PMAX− PMIN ≤ 6056 long real-time glitch
PMAX− PMIN ≤ 6056 2 ind. real-time glitches
DEVIATION ≤ 92 1 out of 4
(DEVIATION ≤ 80)a 2 out of 88
DEVIATION ≤ 90 2 adj. out of 88
DEVIATION ≤ 92 at most 2
DEVIATION ≤ 218 at most 1
DEVIATION ≤ 348 none
DEVIATION ≤ 92 short real-time glitch
DEVIATION ≤ 90 long real-time glitch
DEVIATION ≤ 80 2 ind. real-time glitches

aLargest value which cannot be shown to be unsafe with 2 arbitrary glitch affected samples out of
88 consecutive samples when Uppaal is limited to 127 GiB of memory, the maximum available during
the experiment. However, substituting the sample glitch model with the real-time glitch model shows
that 2 independent real-time glitches yield the same results, confirming the correctness of this value.

longer harness will be greater than that of a short one [HR09].

If the model is configured with the properties of a specific hardware environment,
it is easy to reevaluate which error patterns are tolerable, and thus provide hard guar-
antees on error resilience, which is very desirable in an application area like aerospace.

11.3 An Analysis of the Tolerable Glitch Patterns9

Consider the glitch patterns that where shown to be tolerable. In hindsight, the re-
silience of the protocol against these glitch patterns can be partially explained using
insight into the protocol.

More than two glitch affected samples in a voting window of size 5 can change the
voted value, so this case has to be excluded up front. The cases where two or fewer
glitches happen in one voting window are the interesting ones. For these, two patterns
have been identified as tolerable:

8This table has already been published in [GEFP12a, Table 3] and some of the data has also already
been published in [GEFP12b, Table 3] .

9This section contains parts already published in [GEFP12a].

146 CHAPTER 11. MODEL CHECKING FLEXRAY

1. not more than 1 glitch affected sample in every sequence of 4 consecutive samples
(1 out of 4), and

2. not more than 2 glitch affected samples in every sequence of 88 consecutive sam-
ples (2 out of 88).

If at least one of these patterns applies to a given scenario with glitches on a stream
of samples, the scenario will not lead to a transmission error. In the case of real-time
glitches, this is analogous: If at least one of the tolerable patterns of maximal glitch
duration and minimal glitch free period between glitches applies to a scenario with
glitches in some time periods during the transmission, the scenario will not lead to a
transmission error.

To understand what problems can still be caused if the glitch-affected samples
do not constitute a majority in some voting window, keep in mind that the FlexRay
physical layer protocol uses the strobing process to pick the 5th voted value out of
the 8 voted values corresponding to the 8 samples a bit cell is composed of in the
ideal case. This strobing mechanism uses the counter variable strobecounter which
is synchronized by the bit clock alignment to the sample stream at sync edges, which
occur during the Byte Start Sequences (BSSs). The sync edges are thus separated by
10 bit cells, which consist of 8 samples each in the ideal case, yielding 88 samples. It
is the interference of glitches with this bit clock alignment process and consequently
with strobing that allows the glitches to wreck havoc, even if they do not constitute a
majority in a voting window.

11.3.1 Tolerable Glitch Pattern 1 out of 4

One glitch-affected sample in a sequence of 4 consecutive samples can lengthen or
shorten a received bit cell by at most one sample. If there is just one glitch in a voting
window, this is easily seen.

However, in a voting window of size five, there can be 2 glitch-affected samples, but
only if the last and the first sample of the voting window are glitch-affected. As such
a voting window contains 3 not glitch-affected samples, this means that the majority
of the voting window can only be changed if the three other samples in the voting
window do not agree on a value. In turn, this means that the voting window without
the glitches would be filled with samples of value j ∈ {0, 1} up to a position 1 < i < 4,
and would be filled with samples of value (1−j) in the positions after i. As the position
1 and 5 are glitch affected, they could both flip their value, which would not affect the
majority, or just one of them flips its value, which can change one sample of the five
from j to (j − 1) or vice versa, resulting in a changed voted value one receiver clock
cycle to late or to early.

Even the sync edges can be delayed or arrive early by up to 1 sample. In this case,
the 4th or 6th voted value may be strobed instead of the 5th, while only the 1st or 8th

can be affected by a glitch. Clockdrift can lead to one FlexRay controller overtaking
the other once every CYCLE MAX/(CYCLE MAX − CYCLE MIN) samples, so the 3rd or 7th

voted value may also be strobed, but these cannot be affected by glitches.

11.3. ANALYSIS OF GLITCH PATTERNS 147

Thus, 1 glitch-affected sample in every sequence of 4 consecutive samples does not
cause a transmission error.

11.3.2 Tolerable Glitch Pattern 2 out of 88

Two glitch-affected samples can lengthen or shorten a received bit cell by up to two
samples. The sync edges can be delayed or arrive early by up to 2 samples. Thus,
strobecounter can be up to 2 samples late or early due to glitches. This can cause
the 3rd or the 7th voted value to be strobed. Accounting for drift, the 2nd or 8th voted
value could be strobed. However, the 1st, 2nd, 7th or 8th voted value of a bit cell could
be affected by a glitch. Thus, another glitch-affected sample before resynchronization
of the counter strobecounter could lead to a glitch-affected voted value being strobed,
which, in turn, could violate the stream format or flip a message bit—this has to be
excluded by increasing the glitch free period.

Resynchronization of strobecounter will happen at the next sync edge, every
80 samples in the ideal case. To justify the number of 88 samples in the case of two
glitch-affected samples occurring next to each other, lets consider an example: Assume
that 2 samples are flipped 2 samples before a sync edge, i.e., the ith sample and the
(i+ 1)th sample are flipped, and the sync edge occurs after the (i+ 3)th sample. The
counter strobecounter would be 2 samples early, strobing the 3rd voted value of each
bit cell. Assume drift moves this to strobing the 2nd voted value, assuming that the
receiver’s oscillator is faster than the sender’s oscillator. The next sync edge will occur
after the (i + 3 + 80 + 1)th sample, the drift having added one extra sample. If the
(i+ 3 + 80 + 1 + 3)th and (i+ 3 + 80 + 1 + 4)th samples are flipped, the strobecounter
would not only be 2 samples late after resynchronization: for the bit-cell composed
of the samples send after the sync edge, the 2nd voted value, which would be strobed
immediately before the late resynchronization, would be flipped. As this scenario
assumes 4 glitch-affected samples in a sequence of 1 + 3 + 80 + 1 + 4 = 89 samples, it
can be excluded as each sequence of 88 samples may contain at most 2 glitch-affected
samples.

However, this example is not sufficient to explain the result obtained from the real-
time glitch model in model ‡ that a glitch of less than 2 ∗ CYCLE MIN and a glitch-free
period of more than 86∗CYCLE MAX in between two glitches are allowed for, as it assumes
a receiver’s oscillator being faster than the sender’s one, thus adding one extra sample.
It would have to be added in the glitch-free period of more than 86 ∗ CYCLE MAX,
yielding 87 not glitch-affected samples in that period. However, only 86 not glitch-
affected samples are required for the example, so for the 87th sample, the requirement
that it is not affected by a glitch could be dropped. This thus cannot explain the result
that the glitch free period has to be longer than 86 ∗ CYCLE MAX, as even a glitch free
period of exactly 86 ∗ CYCLE MAX can lead to a transmission error. As the example
assumed that the receiver’s clock is so much faster (and thus not using CYCLE MAX as
the duration of many of its clock cycles) that it overtakes the slower sender’s clock,
there must be another scenario that is behind this result.

The discrepancy between the requirements on the glitch patterns in the scenario

148 CHAPTER 11. MODEL CHECKING FLEXRAY

constructed using hindsight with the results in mind and the stricter requirements
on the glitch pattern induced by model-checking the real-time glitch model reiterate
the need for automatic analysis of such intricate scenarios, as manual analysis fails
to achieve the same precision, even if the desired results of the analysis are known
beforehand.

Chapter 12

Conclusion

This thesis presented detailed models of FlexRay’s Physical Layer Protocol, a protocol
that is used in industry in safety critical contexts. The models did not only help in
gaining a better understanding of the inner workings of the protocol, they also were
combined with a parameterized model of the underlying hardware and several error
models. This combination allowed to verify error resilience guarantees for the protocol
that were more precise than the relatively vague error resilience claims the designers
of the protocol made in the specification [Fle05, Section 3.2.7]. The process of creating
such models and optimizing them for verification was also documented in this thesis,
providing a valuable case study that can serve as a road-map for similar endeavors.

As the verification of the protocol involved a lot of complexity in the discrete
aspects of the model, parts of the verification effort turned out to be quite memory
intensive. To conquer this challenge, not only less memory intensive models were
presented, but also the fully symbolic data-structure CZMs and several algorithms
using them were presented, which are tailored to handle a full state space exploration of
a timed automaton model with little timing complexity but a lot of discrete complexity.
This does not only offer an alternative to semi-symbolic approaches like Uppaal, but
an alternative that is strong in exactly the area were semi-symbolic approaches are
weak, namely when a lot of discrete complexity meets a limited timing complexity.
The CZM approach was the basis for CMDs, which, in turn, were met with interest in
the community. CZMs were also the basis for the novel approach that was presented
in Chapter 7, which, being tailored to bug finding, might in some cases offer a faster
exploration of the discrete state space of timed automata.

This thesis thus documents a verification effort that, being sparked by investigation
of a new industrially used protocol, developed both modeling methods and advanced the
state of the art in fully symbolic model checking for timed automata, while succeeding
in providing proof of greater error resilience of the protocol under investigation than
assumed in the protocols specification, and giving a precise descriptions of the errors
against which the protocol has guaranteed resilience.

149

150 CHAPTER 12. CONCLUSION

12.1 Contributions

This thesis presents work that makes three main contributions:

• The verification of the error resilience of the FlexRay physical layer protocol.

• The development of a model of the FlexRay physical layer protocol (including
modeling principles).

• Fully symbolic algorithms and data-structures for reachability checking of timed
automata.

The verification results presented in Chapter 11 and previewed in Section 2.3 provide
trust into the error resilience and correct operation of the FlexRay physical layer pro-
tocol and inform researchers and engineers about the worst-case requirements on hard-
ware timing behavior in relation to the desired resilience against disturbances on the
transmission medium.

The modeling effort presented in Part III provides not only a family of models, but
also the methodology used to derive it and the lessons learned, of which not the least
is that it is possible to model an industrially used protocol in such a way that it can
be verified using model checking with only moderate computing resources.

The fully symbolic algorithms and data-structures presented in Part II provide novel
approaches to the problem of reachability checking for timed automata, which already
led to a much noted enhancement, presented in work together with Rüdiger Ehlers,
Daniel Fass and Hans-Jörg Peter [EFGP10], of the approach presented in this thesis in
Chapter 6.

12.2 Advancing the State of the Art

Recalling the challenges of overcoming the limitations of previous efforts to verify com-
plex real-time systems as described in Section 1.4, the presented modeling methodology
and the algorithm and data-structure for fully symbolic model checking of timed au-
tomata successfully addressed the two standing in the way of using model checking
on timed automata models of complex systems: Even though FlexRay’s physical layer
protocol is a rather complex scenario, a realistic model that keeps timing and discrete
complexity on a manageable level was arrived at. Also, the fully symbolic approach
to model checking timed automata keeps the memory requirement of storing the dis-
crete parts of the statespace down, albeit there is the trade-off of often having a higher
running time compared to semi-symbolic approaches.

The presented work thus paves the way to automatic verification of more complex
real-time systems, breaking out of the realm of overly simplified or toy examples by
showing that and how industrial protocols can be model checked in a real-time setting.
The growing ubiquity of embedded and reactive systems even in safety critical areas
like automotive or aerospace environments makes automatic verification of such sys-
tems imperative, and model checking optimized timed automata models provides one

12.3. IMPACT 151

solution to this ever more pressing need. It will, however, prove a challenge to keep
pace with the rising complexity of the systems to be verified, reiterating the need to
explore further approaches to keep pushing the capabilities of automatic verification
to verify new generations of reactive and embedded systems as well as the protocols
employed to connect them.

12.3 Impact

The parts of the work presented in this thesis that have already been published
([GEFP10], [EGP10], [GEFP12b], [GEFP12a]) have influenced and enabled work by
others in the same or related fields. This section discusses this impact on published
works.

Guo et al. [GLYA13] develop a framework for verifying properties of FlexRay with
varying configurations using Uppaal. They assume the startup of FlexRay to work
as expected, which is verified by Malinský and Novák [MN10] using Uppaal, and
they assume the correct transmission of messages in the physical layer protocol with
fault tolerance as verified in [GEFP10]. Even though built on these assumptions,
which allow their model to ignore the physical layer protocol and the startup phase,
the model, which focuses heavily on the dynamic segment and is presented in more
detail by Guo [Guo12], needed a lot of abstraction and further simplifying assumptions
such as perfect synchronization and absence of transmission errors (to avoid delays)
to reduce its complexity and counteract state space explosion. Such an approach is
only viable on the basis of assumptions about the correctness and resilience of the
physical layer protocol [GEFP10], the startup mechanism [MN10, Tra16], and also
the clock synchronization as shown by Böhm [Böh07]. Demonstrating the correctness
of such assumptions thus enables work focusing on aspects of FlexRay which rely on
these underlying mechanisms. However, manual verification efforts assisted by theorem
provers like [MP11, Mül11] have so far been unable to take the unreliability of the
physical transmission medium as described in Section 10.6 (glitches) into account. The
verification effort described in Chapter 11 provides such works with the assurance that
FlexRay is indeed provably resilient against certain patterns of glitches, and informs
such approaches about the maximal resilience against jitter, which Müller an Paul
[MP11, Mül11] identify as a target for future theorem proving approaches.

Neumann [Neu13] points out that real-time behavior such as drift and jitter need
to be taken into account for the verification of distributed systems, and has desig-
nated an integration of verification work based on timed automata models as presented
in [GEFP10] into his framework of Language Progressive behavior, that allows for mod-
ular analysis of real-time behavior in component based development contexts such as
AUTomotive Open System ARchitecture (AUTOSAR) [FBH+06], as a topic that needs
investigation.

The FlexRay model (†) developed in [GEFP10] and presented in Chapter 10 was
used as a basis for a simplified FlexRay model that Miller, Gitina and Becker [MGB11]
use to evaluate their bounded model checking approach with quantified SMT formulas

152 CHAPTER 12. CONCLUSION

using And Inverter Graphs (AIGs), where they blackbox several components of the
protocol. Tran [Tra16] uses the model (†) from [GEFP10] (see Chapter 10) to evaluate
various exploration orders for timed automata model checking and verifies the startup
mechanism of a FlexRay network in several configurations.

The modeling methodology as described in Part III can inform and inspire people
trying to model comparable scenarios. A very similar problem to the verification of
FlexRay’s physical layer protocol’s resilience against transmission faults is explored by
Tóth, Vörös and Majzik [TVM15], who also use a timed automaton model. They verify
master election and identifier assignment in a communication protocol for a distributed
Supervisory Control and Data Acquisition (SCADA) system and its resilience against
transient faults using Uppaal, applying the same data abstraction used in [GEFP10]
and described in Chapter 10, combining it with a cone of influence abstraction and
decomposition of the temporal specification.

Feo-Arenis et al. [FAWD+16] took up the challenge formulated in [GEFP10] to ap-
ply such a verification approach not a posteriori to an already standardized protocol,
but a priori during the development of a protocol. Together with SeCa GmbH, a small
radio technology company, Feo-Arenis et al. developed a timed automata model of a
wireless fire alarm system that was under development and formalized the requirements
of the certification authority. Employing a component based model with error model
components, an approach advocated in Part III for providing flexibility in respect to
changes in the design and clarity with a neat separation of concerns, they where able
to apply Uppaal after a quasi-equal clocks abstraction [HWFA+12]. The results led
to the early discovery of design flaws and provided information about time behavior
to the designers before building of prototypes made such data available through mea-
surements. This process of development aided by the verification effort significantly
reduced the number of problems discovered at late stages of the development process
and during testing of the protoypes, and enabled the developed wireless fire alarm sys-
tem to pass all tests of the certification agency flawlessly, proving the value of informing
the design of a protocol through a model based verification effort.

The sheer scale of the undertaking to model and verify a protocol like FlexRay or
a meaningful part of it can be daunting. Thus, demonstrating the feasibility of model
based verification of a bus architecture used by industry as done by [GEFP10], which
is now one of the success stories for the application of Uppaal [GLLN18], encourages
people to tackle similarly complicated protocols with model based approaches. For
example, Graf-Brill, Hermanns and Garavel [GBHG14] use formal model based con-
formance testing with the aim of integrating it into the certification process of the
EnergyBus standard.

In the field of conformance testing, there is also interest in fully symbolic methods
for real-time systems, e.g., as voiced by Andrade and Machado [AM13], who bemoan the
lack of approaches such as constraint matrix diagrams (CMDs) [EFGP10], which further
evolve the approach described in Chapter 6 [EGP10], in the context of conformance
testing for real-time systems. Bouyer et al. [BFGL+18] see promise in CMDs, and they
could fill a real need, as Cordy [Cor14] voices interest in a more organic combination of
decision-diagram based boolean encoding and DBMs such as CMDs. Cordy investigates

12.3. IMPACT 153

model checking of product lines by extending timed automata with features, which
configure the model’s behaviors to represent the products of the product line. These
features are treated by BDDs while the real-time aspects are treated by DBMs, so the
combination of BDDs with DBMs does work for more purposes than those described
in Chapter 6 [EGP10]. The evolution of the approach from Chapter 6 [EGP10] into
CMDs) [EFGP10] has thus created a data-structure that has been noted by a wider
audience, e.g., Morbé, Pigorsch and Scholl [MPS11], Morbé and Scholl [MS12, MS13,
MS14, MS15], Lu et al. [LMM+12], Wang and Jiao [WJ14], and Aicher, Rehberger and
Vogel-Heuser [ARVH15].

154 CHAPTER 12. CONCLUSION

Bibliography

[AB19] Omar Abbosh and Kelly Bissell. Securing the Digital Economy: Rein-
venting the Internet for Trust. Technical report, Accenture, 2019.

[ABK+97] Eugene Asarin, Marius Bozga, Alain Kerbrat, Oded Maler, Amir Pnueli,
and Anne Rasse. Data-structures for the verification of timed automata.
In Hybrid and Real-Time Systems, pages 346–360. Springer, 1997.

[ABK08a] E. Alkassar, P. Böhm, and S. Knapp. Correctness of a Fault-Tolerant
Real-Time Scheduler and its Hardware Implementation. In Sixth ACM &
IEEE International Conference on Formal Methods and Models for Code-
sign (MEMOCODE’08), pages 175–186. IEEE Computer Society, 2008.

[ABK08b] Eyad Alkassar, Peter Böhm, and Steffen Knapp. Formal Correctness of
an Automotive Bus Controller Implementation at Gate-Level. In Bernd
Kleinjohann, Lisa Kleinjohann, and Wayne Wolf, editors, 6th IFIP Work-
ing Conference on Distributed and Parallel Embedded Systems (DIPES
2008), volume 271 of International Federation for Information Process-
ing, pages 57–67. Springer, 2008.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-Checking
for Real-Time Systems. In LICS, pages 414–425. IEEE Computer Society,
1990.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems.
In Automata, languages and programming, pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AGU72] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137,
1972.

[Alu98] Rajeev Alur. Timed automata. NATO ASI Summer School on Verification
of Digital and Hybrid Systems, 1998.

155

156 BIBLIOGRAPHY

[AM13] Wilkerson L. Andrade and Patricia Machado. Generating Test Cases for
Real-Time Systems Based on Symbolic Models. IEEE Trans. Softw. Eng.,
39(9):1216–1229, Sep 2013.

[ARVH15] T. Aicher, S. Rehberger, and B. Vogel-Heuser. Towards finding the ap-
propriate level of abstraction to model and verify automated production
systems in discrete event simulation. In 2015 IEEE International Confer-
ence on Automation Science and Engineering (CASE), pages 1048–1053,
Aug 2015.

[BBG+05] Sven Beyer, Peter Böhm, Michael Gerke, Mark Hillebrand, Tom In der
Rieden, Steffen Knapp, Dirk Leinenbach, and Wolfgang J. Paul. Towards
the Formal Verification of Lower System Layers in Automotive Systems. In
ICCD ’05: Proceedings of the 2005 International Conference on Computer
Design, pages 317–326. IEEE Computer Society, 2005.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic Model Checking: 1020 States and Beyond.
Inf. Comput., 98(2):142–170, 1992.

[BDL04] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A Tu-
torial on Uppaal. In Marco Bernardo and Flavio Corradini, editors,
SFM, volume 3185 of Lecture Notes in Computer Science, pages 200–236.
Springer, 2004.

[BDL+11] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Petters-
son, and Wang Yi. Developing Uppaal over 15 years. Software: Practice
and Experience, 41(2):133–142, 2011.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: A model-checking tool for real-time
systems. In Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 298–302. Springer, 1998.

[Ben02] Johan Bengtsson. Clocks, DBM, and States in Timed Systems. PhD
thesis, Uppsala University, 2002.

[Bey01] Dirk Beyer. Improvements in BDD-Based Reachability Analysis of Timed
Automata. In José Nuno Oliveira and Pamela Zave, editors, FME, volume
2021 of Lecture Notes in Computer Science, pages 318–343. Springer, 2001.

[BFGL+18] Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey,
Joël Ouaknine, and James Worrell. Model checking real-time systems. In
Edmund M. Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 1001–1046. Springer,
2018.

BIBLIOGRAPHY 157

[BGJ+07] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. Specify, Compile, Run: Hardware from
PSL. Electr. Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[BLP+99] Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise,
and Wang Yi. Efficient Timed Reachability Analysis Using Clock Differ-
ence Diagrams. In Nicolas Halbwachs and Doron Peled, editors, CAV, vol-
ume 1633 of Lecture Notes in Computer Science, pages 341–353. Springer,
1999.

[BMPY97] Marius Bozga, Oded Maler, Amir Pnueli, and Sergio Yovine. Some
Progress in the Symbolic Verification of Timed Automata. In Orna Grum-
berg, editor, CAV, volume 1254 of Lecture Notes in Computer Science,
pages 179–190. Springer, 1997.

[Böh06] Peter Böhm. Implementation of the High-Level Components of a Bus
Controller for a Time Triggered Serial Bus. Bachelor thesis, Universität
des Saarlandes, 2006.

[Böh07] Peter Böhm. Formal Verification of a Clock Synchronization Method in a
Distributed Automotive System. Master thesis, Universität des Saarlan-
des, 2007.

[BP06] Geoffrey M. Brown and Lee Pike. Easy Parameterized Verification of
Biphase Mark and 8N1 Protocols. In TACAS, volume 3920 of LNCS,
pages 58–72. Springer, 2006.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. NuSMV: A New Symbolic Model Checker. STTT, 2(4):410–425,
2000.

[CE82] Edmund M. Clarke and E. Allen Emerson. Logics of Programs: Workshop,
Yorktown Heights, New York, May 1981, chapter Design and synthesis of
synchronization skeletons using branching time temporal logic, pages 52–
71. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E.Allen Emer-
son and AravindaPrasad Sistla, editors, Computer Aided Verification, vol-
ume 1855 of Lecture Notes in Computer Science, pages 154–169. Springer
Berlin Heidelberg, 2000.

158 BIBLIOGRAPHY

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 2001.

[Con00] Condor Engineering, Inc. MIL-STD-1553 Tutorial, 2000.

[Cor14] Maxime Cordy. Model checking for the masses. PhD thesis, University of
Namur, 2014.

[Dil89] David L. Dill. Timing Assumptions and Verification of Finite-State Con-
current Systems. In Joseph Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, volume 407 of Lecture Notes in Computer
Science, pages 197–212. Springer, 1989.

[dW08] Gerit de Wagt. EMI-Hardened Operational Amplifiers for Robust Circuit
Design. Application Note AN-1874, National Semiconductor Corporation,
2008.

[DWT95] David L. Dill and Howard Wong-Toi. Verification of Real-Time Systems
by Successive Over and Under Approximation. In Pierre Wolper, editor,
CAV, volume 939 of Lecture Notes in Computer Science, pages 409–422.
Springer, 1995.

[EFGP10] Rüdiger Ehlers, Daniel Fass, Michael Gerke, and Hans-Jörg Peter. Fully
Symbolic Timed Model Checking Using Constraint Matrix Diagrams. In
IEEE Real-Time Systems Symposium (RTSS), pages 360–371. IEEE Com-
puter Society, 2010.

[EGP10] Rüdiger Ehlers, Michael Gerke, and Hans-Jörg Peter. Making the Right
Cut in Model Checking Data-Intensive Timed Systems. In J.S. Dong and
H. Zhu, editors, Proceedings of the 12th International Conference on For-
mal Engineering Methods (ICFEM 2010), volume 6447 of Lecture Notes
in Computer Science, pages 565–580, Berlin Heidelberg, 2010. Springer-
Verlag.

[EMP10] Rüdiger Ehlers, Robert Mattmüller, and Hans-Jörg Peter. Combining
symbolic representations for solving timed games. Springer, 2010.

[EMST10] Erik Endres, Christian Müller, Andrey Shadrin, and Sergey Tverdyshev.
Towards the Formal Verification of a Distributed Real-Time Automotive
System. In Proceedings of the Second NASA Formal Methods Symposium
(NFM 2010), NASA/CP-2010-216215, pages 212–216, Langley Research
Center, Hampton VA 23681-2199, USA, April 2010. NASA.

[FAWD+16] Sergio Feo-Arenis, Bernd Westphal, Daniel Dietsch, Marco Muñiz, Siyar
Andisha, and Andreas Podelski. Ready for Testing: Ensuring Confor-
mance to Industrial Standards Through Formal Verification. Form. Asp.
Comput., 28(3):499–527, may 2016.

BIBLIOGRAPHY 159

[FBH+06] Helmut Fennel, Stefan Bunzel, Harald Heinecke, Jürgen Bielefeld, Simon
Fürst, Klaus-Peter Schnelle, Walter Grote, Nico Maldener, Thomas We-
ber, Florian Wohlgemuth, et al. Achievements and exploitation of the
AUTOSAR development partnership. Convergence, 2006:10, 2006.

[Fle05] FlexRay Consortium. FlexRay Communications System Protocol Specifi-
cation Version 2.1 Revision A, 2005.

[Fle06a] FlexRay Consortium. FlexRay Communications System Electrical Physi-
cal Layer Application Notes Version 2.1 Revision B, 2006.

[Fle06b] FlexRay Consortium. FlexRay Communications System Electrical Physi-
cal Layer Specification Version 2.1 Revision B, 2006.

[Fle10a] Nic Fleming. Toyota car recall sparks ’drive by wire’ concerns. New Sci-
entist, February 2, 2010. https://www.newscientist.com/article/dn18485-
toyota-car-recall-sparks-drive-by-wire-concerns/ accessed April 21, 2019.

[Fle10b] FlexRay Consortium. FlexRay Communications System Protocol Specifi-
cation Version 3.0.1, 2010.

[Fur17] Steve Furber. Microprocessors: the engines of the digital age.
Proc Math Phys Eng Sci, 473(2199):20160893–20160893, Mar 2017.
PMC5378251[pmcid].

[GBHG14] Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel. A Model-
Based Certification Framework for the EnergyBus Standard. In Erika
Ábrahám and Catuscia Palamidessi, editors, 34th Formal Techniques for
Networked and Distributed Systems (FORTE), volume LNCS-8461 of For-
mal Techniques for Distributed Objects, Components, and Systems, pages
84–99, Berlin, Germany, June 2014. Springer. Part 2: Monitoring and
Testing.

[GEFP10] Michael Gerke, Rüdiger Ehlers, Bernd Finkbeiner, and Hans-Jörg Peter.
Model Checking the FlexRay Physical Layer Protocol. In Formal Methods
for Industrial Critical Systems (FMICS), volume 6371 of Lecture Notes in
Computer Science, pages 132–147. Springer-Verlag, 2010.

[GEFP12a] Michael Gerke, Rüdiger Ehlers, Bernd Finkbeiner, and Hans-Jörg Peter.
Automatic Protocol Verification with Parametric Physical Layers. Reports
of SFB/TR 14 AVACS 86, SFB/TR 14 AVACS, 2012. ISSN: 1860–9821,
http://www.avacs.org.

[GEFP12b] Michael Gerke, Rüdiger Ehlers, Bernd Finkbeiner, and Hans-Jörg Peter.
FlexRay for Avionics: Automatic Verification with Parametric Physical
Layers. In AIAA Infotech@Aerospace (I@A 2012). American Institute of
Aeronautics and Astronautics, 2012.

160 BIBLIOGRAPHY

[Ger05] Michael Gerke. Flex Ray: Coding and Decoding, Media Ac-
cess Control, Frame and Symbol Processing and Serial Interface.
Seminar report, Institut für Rechnerarchitektur und Parallelrech-
ner, Universität des Saarlandes, 2005. URL: http://www-wjp.cs.uni-
sb.de/lehre/seminar/ss05/reports/gerke-report.pdf.

[Ger07] Michael Gerke. Implementation of Frame and Symbol Transmission in a
Time Triggered Serial Bus Architecture. Bachelor thesis, Universität des
Saarlandes, 2007.

[Ger10] Michael Gerke. Zone State Diagrams. Master thesis, Universität des
Saarlandes, 2010.

[Gil18] Martin Giles. At Least Three Billion Computer Chips Have
the Spectre Security Hole. MIT Technology Review, January 5,
2018. https://www.technologyreview.com/s/609891/at-least-3-billion-
computer-chips-have-the-spectre-security-hole/ accessed April 20, 2019.

[GLLN18] Kim Guldstrand Larsen, Florian Lorber, and Brian Nielsen. 20 years
of real real time model validation. In Klaus Havelund, Jan Peleska, Bill
Roscoe, and Erik de Vink, editors, Formal Methods, pages 22–36. Springer,
2018.

[GLYA13] Xiaoyun Guo, Hsin-Hung Lin, Kenro Yatake, and Toshiaki Aoki. An UP-
PAAL Framework for Model Checking Automotive Systems with FlexRay
Protocol. In Second International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS 2013), page 67, 2013.

[Guo12] Xiaoyun Guo. Model Checking of FlexRay Communication Protocol. Mas-
ter thesis, Japan Advanced Institute of Science and Technology, 2012.

[HNSY94] Thomas A Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Information and compu-
tation, 111(2):193–244, 1994.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
21(8):666–677, August 1978.

[HR09] Christoph Heller and Reinhard Reichel. Enabling FlexRay for Avionic
Data Buses. In IEEE/AIAA 28th Digital Avionics Systems Conference
(DASC), 2009.

[HWFA+12] Christian Herrera, Bernd Westphal, Sergio Feo-Arenis, Marco Muñiz, and
Andreas Podelski. Reducing Quasi-equal Clocks in Networks of Timed
Automata. In Proceedings of the 10th International Conference on Formal
Modeling and Analysis of Timed Systems, FORMATS’12, pages 155–170,
Berlin, Heidelberg, 2012. Springer-Verlag.

BIBLIOGRAPHY 161

[KDL86] Uwe Kiencke, Siegfried Dais, and Martin Litschel. Automotive serial con-
troller area network. In SAE Technical Paper. SAE International, 02 1986.

[KG93] H. Kopetz and G. Grunsteidl. TTP - A time-triggered protocol for fault-
tolerant real-time systems. In Fault-Tolerant Computing, 1993. FTCS-23.
Digest of Papers., The Twenty-Third International Symposium on, pages
524–533, June 1993.

[KP95] Jörg Keller and Wolfgang J. Paul. Hardware design: Formaler Entwurf
digitaler Schaltungen, volume 15 of Teubner-Texte zur Informatik. Teub-
ner, 1995.

[KP07] Steffen Knapp and Wolfgang Paul. Realistic Worst Case Execution Time
Analysis in the Context of Pervasive System Verification. In Thomas Reps,
Mooly Sagiv, and Jörg Bauer, editors, Program Analysis and Compilation,
Theory and Practice: Essays Dedicated to Reinhard Wilhelm on the Oc-
casion of His 60th Birthday, volume 4444 of Lecture Notes in Computer
Science, pages 53–81. Springer, 2007.

[Kri12] Michael Krigsman. Worldwide cost of IT failure (revisited): $3 trillion.
ZDNet, April 10, 2012. https://www.zdnet.com/article/worldwide-cost-
of-it-failure-revisited-3-trillion/ accessed April 21, 2019.

[LG14] François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In
Proceedings of the 39th International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’14, pages 296–303, New York, NY, USA, 2014.
ACM.

[LLPY97] Kim G Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient
verification of real-time systems: compact data structure and state-space
reduction. In Real-Time Systems Symposium, 1997. Proceedings., The
18th IEEE, pages 14–24. IEEE, 1997.

[LMM+12] Qi Lu, Michael Madsen, Martin Milata, Sren Ravn, Uli Fahrenberg, and
Kim G. Larsen. Reachability analysis for timed automata using max-plus
algebra. The Journal of Logic and Algebraic Programming, 81(3):298 –
313, 2012.

[LWYP98] Kim G Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock
difference diagrams. BRICS Report Series, 5(46), 1998.

[Män98] R. Männer. Metastable states in asynchronous digital systems: Avoidable
or unavoidable? Microelectronics Reliability, 28(2):295–307, 1998.

[MGB11] Christian Miller, Karina Gitina, and Bernd Becker. Bounded Model
Checking of Incomplete Real-time Systems Using Quantified SMT For-
mulas. In Proceedings of the 2011 12th International Workshop on Micro-

162 BIBLIOGRAPHY

processor Test and Verification, MTV ’11, pages 22–27, Washington, DC,
USA, 2011. IEEE Computer Society.

[MLAH99] Jesper B. Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Hen-
rik Hulgaard. Fully Symbolic Model Checking of Timed Systems using
Difference Decision Diagrams. Electr. Notes Theor. Comput. Sci., 23(2),
1999.

[MN10] J. Malinský and J. Novák. Verification of FlexRay start-up mechanism
by timed automata. Metrology and Measurement Systems, Vol. 17, nr
3:461–480, 2010.

[MOR+04] Leonardo Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar,
Maria Sorea, and Ashish Tiwari. Computer Aided Verification: 16th In-
ternational Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004.
Proceedings, chapter SAL 2, pages 496–500. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[MP11] Christian Müller and Wolfgang Paul. Complete Formal Hardware Verifica-
tion of Interfaces for a FlexRay-Like Bus. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer
Science, pages 633–648. Springer, 2011.

[MPS11] Georges Morbé, Florian Pigorsch, and Christoph Scholl. Fully Symbolic
Model Checking for Timed Automata. In Proceedings of the 23rd In-
ternational Conference on Computer Aided Verification, CAV’11, pages
616–632, Berlin, Heidelberg, 2011. Springer-Verlag.

[MS12] G. Morbé and C. Scholl. Guaranteeing Termination of Fully Symbolic
Timed Forward Model Checking. In 13th International Workshop on Mi-
croprocessor Test and Verification (MTV), pages 35–40. IEEE Computer
Society, December 2012.

[MS13] G. Morbé and C. Scholl. Fully Symbolic TCTL Model Checking for Incom-
plete Timed Systems. In H. Treharne and S. Schneider, editors, Automated
Verification of Critical Systems 2013 (AVoCS), volume 66, Guildford, Sur-
rey, United Kingdom, 2013. EASST.

[MS14] Georges Morbé and Christoph Scholl. Fully Symbolic TCTL Model
Checking for Complete and Incomplete Real-Time Systems. Reports
of SFB/TR 14 AVACS 104, SFB/TR 14 AVACS, September 2014.
http://www.avacs.org.

[MS15] Georges Morbé and Christoph Scholl. Fully Symbolic TCTL Model Check-
ing for Complete and Incomplete Real-time Systems. Sci. Comput. Pro-
gram., 111(P2):248–276, nov 2015.

BIBLIOGRAPHY 163

[Mül11] Christian Müller. Complete Formal Hardware Verification of Interfaces
for a FlexRay-like Bus. PhD thesis, Universität des Saarlandes, 2011.

[Nan09] Nangate Inc. Nangate 45nm Open Cell Library Databook, 2009.

[Neu13] Stefan Neumann. Modular Timing Analysis of Component-Based Real-
Time Embedded Systems. PhD thesis, Hasso Plattner Institute at the
University of Potsdam, 2013.

[Nie81] Paul Nielsen. EMP/EMI Hardening of Electrical Conduit Systems. Tech-
nical Report CERL-TR-M-292, Construction Engineering Research Lab-
oratory of the United States Army Corps of Engineers, September 1981.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[OD08] E.R. Olderog and H. Dierks. Real-Time Systems: Formal Specifica-
tion and Automatic Verification. Cambridge University Press, 2008.
doi:10.1017/CBO9780511619953.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, Feb 1995.

[Pau94] Lawrence C Paulson. Isabelle-A Generic Theorem Prover (with a contri-
bution by T. Nipkow), volume 828 of Lecture Notes in Computer Science,
1994.

[PB61] W. W. Peterson and D. T. Brown. Cyclic Codes for Error Detection.
Proceedings of the IRE, 49(1):228–235, Jan 1961.

[PEM11] Hans-Jörg Peter, Rüdiger Ehlers, and Robert Mattmüller. Synthia: Verifi-
cation and synthesis for timed automata. In Computer Aided Verification,
pages 649–655. Springer, 2011.

[PH08] Michael Paulitsch and Brendan Hall. FlexRay in Aerospace and Safety-
Sensitive Systems. IEEE Aerospace and Electronic Systems Magazine,
23(9):4–13, 2008.

[PSD06] Florian Pigorsch, Christoph Scholl, and Stefan Disch. Advanced Un-
bounded Model Checking Based on AIGs, BDD Sweeping, And Quantifier
Scheduling. In FMCAD, pages 89–96, 2006.

[SB03] Sanjit A. Seshia and Randal E. Bryant. Unbounded, Fully Symbolic Model
Checking of Timed Automata using Boolean Methods. In Warren A. Hunt
Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture Notes in
Computer Science, pages 154–166. Springer, 2003.

164 BIBLIOGRAPHY

[Sch06] Julien Schmaltz. A Formal Model of Lower System Layers. In Formal
Methods in Computer Aided Design (FMCAD’06), pages 191–192. IEEE
Computer Society, 2006.

[Sch07] J. Schmaltz. A Formal Model of Clock Domain Crossing and Auto-
mated Verification of Time-Triggered Hardware. In J. Baumgartner and
M. Sheeran, editors, 7th International Conference on Formal Methods in
Computer-Aided Design (FMCAD’07), pages 223–230. IEEE Press Soci-
ety, November 11–14 2007.

[Sch11] Mareike Dorothee Schmidt. Formal verification of a small real-time op-
erating system. PhD thesis, Universität des Saarlandes, Postfach 151141,
66041 Saarbrücken, 2011.

[Sch16] Klaus Schwab. The fourth industrial revolution. Crown Publishing, 2016.
LCCN 2016032826.

[SL02] J. Srinivasan and K. Lundqvist. Real-time Architecture Analysis: A
COTS Perspective. In Digital Avionics Systems Conference, 2002, vol-
ume 1, pages 5D4–1 – 5D4–9, 2002.

[Som09] Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.4.2,
2009.

[SSL+92] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P.R. Stephan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthe-
sis. Technical Report UCB/ERL M92/41, EECS Department, University
of California, Berkeley, 1992.

[TA08] S. Tverdyshev and E. Alkassar. Efficient Bit-Level Model Reductions
for Automated Hardware Verification. In Temporal Representation and
Reasoning, 2008. TIME ’08. 15th International Symposium on, pages 164–
172, June 2008.

[Tom00] James E Tomayko. Computers take flight: A history of NASA’s pioneering
digital Fly-by-wire project. Number NASA SP-2000-4224 in The NASA
history series. NASA, 2000. LCCN 99047421.

[Tra16] Thanh Tung Tran. Verification of timed automata : reachability, liveness
and modelling. Theses, Université de Bordeaux, Nov 2016.

[Tur99] Jim Turley. Embedded Processors by the Num-
bers. Electronic Engineering Times, January 5, 1999.
https://www.eetimes.com/author.asp?doc id=1287712 accessed April 20,
2019.

BIBLIOGRAPHY 165

[Tve05] Sergey Tverdyshev. Frontiers of Combining Systems: 5th International
Workshop, FroCoS 2005, Vienna, Austria, September 19-21, 2005. Pro-
ceedings, chapter Combination of Isabelle/HOL with Automatic Tools,
pages 302–309. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[Tve09] Sergey Tverdyshev. Formal Verification of Gate-Level Computer Systems.
PhD thesis, Universität des Saarlandes, 2009.

[TVM15] Tamás Tóth, András Vörös, and István Majzik. A Decomposition Method
for the Verification of a Real-Time Safety-Critical Protocol. In Proceedings
of the 7th International Workshop on Software Engineering for Resilient
Systems - Volume 9274, SERENE 2015, pages 31–45, New York, NY,
USA, 2015. Springer-Verlag New York, Inc.

[VG06] F.W. Vaandrager and A.L. de Groot. Analysis of a Biphase Mark Protocol
with Uppaal and PVS. Formal Aspects of Computing Journal, 18(4):433–
458, December 2006.

[Wan04] Farn Wang. Efficient verification of timed automata with BDD-like data
structures. STTT, 6(1):77–97, 2004.

[WJ14] Weifeng Wang and Li Jiao. Trace abstraction refinement for timed au-
tomata. In Franck Cassez and Jean-François Raskin, editors, Automated
Technology for Verification and Analysis: 12th International Symposium,
ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings,
pages 396–410. Springer International Publishing, 2014.

[WKTZ05] Xu Wang, Marta Z. Kwiatkowska, Georgios K. Theodoropoulos, and
Qianyi Zhang. Towards a Unifying CSP approach to Hierarchical Ve-
rification of Asynchronous Hardware. Electr. Notes Theo. Comp. Sci.,
128(6):231–246, 2005.

[YN04] Satoshi Yamane and Kazuhiro Nakamura. Development and evaluation
of symbolic model checker based on approximation for real-time systems.
Systems and Computers in Japan, 35(10):83–101, 2004.

[Yov97] Sergio Yovine. KRONOS: A Verification Tool for Real-Time Systems.
STTT, 1(1-2):123–133, 1997.

