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Abstract

We transform a Muller game with n vertices into a safety game with (n!)3

vertices whose solution allows us to determine the winning regions of the Muller
game and to compute a finite-state winning strategy for one player. This yields
a novel antichain-based memory structure, a compositional solution algorithm,
and a natural notion of permissive strategies for Muller games. Moreover, we
generalize our construction by presenting a new type of game reduction from
infinite games to safety games and show its applicability to several other winning
conditions.
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1. Introduction

Muller games are a source of interesting and challenging questions in the
theory of infinite games. They are expressive enough to describe all ω-regular
properties. Also, all winning conditions that depend only on the set of vertices
visited infinitely often can trivially be reduced to Muller games. Hence, they
subsume Büchi, co-Büchi, parity, Rabin, and Streett conditions. Furthermore,
Muller games are not positionally determined, i.e., both players need memory
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to implement their winning strategies. In this work, we consider three aspects
of Muller games: solution algorithms, memory structures, and quality measures
for strategies.

To date, there are two main approaches to solve Muller games: direct
algorithms and reductions. Examples for the first approach are Zielonka’s
recursive polynomial space algorithm [1] which is based on earlier work by
McNaughton [2], and Horn’s polynomial time algorithm for explicit Muller
games [3]. The second approach is to reduce a Muller game to a parity game
using Zielonka trees [4] or latest appearance records (LAR) [5].

In general, the number of memory states needed to win a Muller game is
prohibitively large [4]. Hence, a natural task is to reduce this number (if pos-
sible) and to find new memory structures which may implement small winning
strategies in subclasses of Muller games.

As for the third aspect, to the best of our knowledge there is no previous
work on quality measures for strategies in Muller games. This is in contrast to
other winning conditions. Recently, much attention is being paid to not just
synthesize some winning strategy, but to find an optimal one according to a
certain quality measure, e.g., waiting times in request-response games [6] and
their extensions [7], permissiveness in parity games [8, 9], bounds in finitary
games [10] and games with costs [11], and the use of weighted automata in
quantitative synthesis [12, 13].

Inspired by work of McNaughton [14], we present a framework to deal with
all three issues. Our main contributions are a novel algorithm and a novel
type of memory structure for Muller games. We also obtain a natural quality
measure for strategies in Muller games and are able to extend the definition of
permissiveness to Muller games.

While investigating the interest of Muller games for “casual living-room
recreation” [14], McNaughton introduced scoring functions which describe the
progress a player is making towards winning a play of the game: consider a
Muller game (A,F0,F1), where A is the arena and (F0,F1) is a partition of the
set of strongly connected subsets in A used to determine the winner. Then, the
score of a set F of vertices measures how often F has been visited completely
since the last visit of a vertex not in F . Player i wins a play in the Muller game
if and only if there is an F ∈ Fi such that the score of F tends to infinity while
being reset only finitely often (a reset occurs whenever a vertex outside F is
visited).

McNaughton proved the existence of strategies for the winning player that
bound her opponent’s scores by |A|! [14], if the play starts in her winning region.
The characterization above implies that such a strategy is necessarily winning.
The bound |A|! was subsequently improved to two (and shown to be tight) [15].
Since some score eventually reaches value three, the winning regions of a Muller
game can therefore be determined by solving the reachability game on a finite
tree in which a player wins if she is the first to reach a score of three 3. However,

3This reachability game was the object of McNaughton’s study of games playable by hu-

2



it is cumbersome to obtain a winning strategy for the infinite-duration Muller
game from a winning strategy for the finite-duration reachability game. The
reason is that one has to carefully concatenate finite plays of the reachability
game to an infinite play of the Muller game: reaching a score of three infinitely
often does not prevent the opponent from visiting other vertices infinitely often.

Our Contributions

The ability to bound the losing player’s scores can be seen as a safety con-
dition as well. We use this to devise an algorithm to solve Muller games that
computes both winning regions and a winning strategy for one player via a re-
duction to safety games. However, we do not obtain a winning strategy for the
other player. In general, it is impossible to reduce a Muller game to a safety
game whose solution yields winning strategies for both players, since safety
conditions are on a lower level of the Borel hierarchy than Muller conditions.

Given a Muller game, we construct a safety game in which the scores of
Player 1 are tracked (up to score three). Player 0 wins the safety game, if she
can prevent Player 1 from ever reaching a score of three for every F ∈ F1.
This allows us to compute the winning region of the Muller game by solving a
safety game. Making use of the conjunctive nature of the winning condition of
the safety game, we are also able to give a compositional algorithm for solving
Muller games by solving the resulting safety game compositionally.

Furthermore, by exploiting the intrinsic structure of the safety game’s arena
we present an antichain-based memory structure for Muller games. Unlike the
memory structures induced by Zielonka trees, which disregard the structure of
the arena, and the ones induced by LARs, which disregard the structure of
the winning condition (F0,F1), our memory structure takes both directly into
account: a simple arena or a simple winning condition should directly lead to
a small memory. The other two memory structures only take one source of
simplicity into account. Also, our memory implements the most general non-
deterministic winning strategy among those that prevent the opponent from
reaching a certain score in a Muller game. Thus, our framework allows us
to extend the notion of permissiveness from positionally determined games to
games that require memory.

Our idea of turning a Muller game into a safety game can be generalized to
other types of winning conditions. We define a novel notion of reduction from
infinite games to safety games which not only subsumes our construction but
generalizes several constructions found in the literature. Based on work on small
progress measures for solving parity games [16], Bernet, Janin, and Walukiewicz
showed how to determine the winning regions in a parity game and a winning
strategy for one player by reducing it to a safety game [8]. Furthermore, Schewe
and Finkbeiner [17] as well as Filiot, Jin, and Raskin [18] used a translation
from co-Büchi games to safety games in their work on bounded synthesis and
LTL realizability, respectively. We present further examples and show that our

mans, which, for practical reasons, should end after a bounded number of steps.
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reduction allows us to determine the winning region and a winning strategy
for one player by solving a safety game. Thus, all these games can be solved
by a new type of reduction and an algorithm for safety games. Our approach
simplifies the winning condition of the game, even down the Borel hierarchy.
However, this is offset by an increase in the size of the arena. Nevertheless,
in the case of Muller games, our arena is only cubically larger than the arena
constructed in the reduction to parity games. Furthermore, a safety game can
be solved in linear time, while the question of whether there is a polynomial
time algorithm for parity games is open.

2. Definitions

The power set of a set V is denoted by 2V , and N denotes the set of non-
negative integers. The prefix relation on words is denoted by v. For ρ ∈ V ω and
L ⊆ V ω we define Pref(ρ) = {w ∈ V ∗ | w v ρ} and Pref(L) =

⋃
ρ∈L Pref(ρ).

For w = w1 · · ·wn ∈ V +, let Last(w) = wn.
An arenaA = (V, V0, V1, E) consists of a finite, directed graph (V,E), V0 ⊆ V

and V1 = V \ V0, where Vi denotes the positions of Player i (Player 0’s vertices
are drawn as ellipses, Player 1’s as rectangles). We require every vertex to
have an outgoing edge to avoid the nuisance of dealing with finite plays. The
size |A| of A is the cardinality of V . A loop C ⊆ V in A is a non-empty
strongly connected subset of V , i.e., for every v, v′ ∈ C there is a path from
v to v′ that only visits vertices in C. A play in A starting in v ∈ V is an
infinite sequence ρ = ρ0ρ1ρ2 . . . such that ρ0 = v and (ρn, ρn+1) ∈ E for all
n ∈ N. The occurrence set Occ(ρ) and infinity set Inf(ρ) of ρ are given by
Occ(ρ) = {v ∈ V | ∃n ∈ N such that ρn = v} and Inf(ρ) = {v ∈ V | ∃ωn ∈
N such that ρn = v}. We also use the occurrence set of a finite play infix w,
which is defined in the same way. The infinity set of a play is always a loop in
the arena. A game G = (A,Win) consists of an arena A and a set Win ⊆ V ω of
winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win.

A strategy for Player i is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E
for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) for every
wv ∈ V ∗Vi. Often, we denote positional strategies as mappings σ : Vi → V .
A play ρ0ρ1ρ2 . . . is consistent with σ if ρn+1 = σ(ρ0 · · · ρn) for every n with
ρn ∈ Vi. For v ∈ V and a strategy σ, we define the behavior of σ from v
by Beh(v, σ) = {ρ ∈ V ω | ρ is a play that starts in v and is consistent with σ}
and Beh(W,σ) =

⋃
v∈W Beh(v, σ) for W ⊆ V .

A strategy σ for Player i is a winning strategy from a set of vertices W ⊆ V
if every ρ ∈ Beh(W,σ) is won by Player i. The winning region Wi(G) of Player i
in G is the set of vertices from which Player i has a winning strategy. We always
have W0(G)∩W1(G) = ∅ and G is determined if W0(G)∪W1(G) = V . A winning
strategy for Player i is uniform, if it is winning from Wi(G).

A memory structure M = (M, Init,Upd) for an arena (V, V0, V1, E) consists
of a finite set M of memory states, an initialization function Init : V → M ,
and an update function Upd: M × V → M . The update function can be
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extended to Upd∗ : V + → M : Upd∗(ρ0) = Init(ρ0) and Upd∗(ρ0 . . . ρnρn+1) =
Upd(Upd∗(ρ0 . . . ρn), ρn+1). A next-move function (for Player i) Nxt: Vi×M →
V has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈M . It induces a strat-
egy σ for Player i with memory M via σ(ρ0 . . . ρn) = Nxt(ρn,Upd∗(ρ0 . . . ρn)).
The size of M (and, slightly abusive, σ) is |M |. A strategy is finite-state if it
can be implemented with a memory structure.

An arena A = (V, V0, V1, E) and a memory structure M = (M, Init,Upd)
for A induce the expanded arena A×M = (V ×M,V0 ×M,V1 ×M,E′) where
((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and Upd(m, v′) = m′. Every
play ρ in A has a unique extended play ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · in
A × M defined by m0 = Init(ρ0) and mn+1 = Upd(mn, ρn+1), i.e., mn =
Upd∗(ρ0 · · · ρn). A game G = (A,Win) is reducible to G′ = (A′,Win′) via M,
written G ≤M G′, if A′ = A ×M and every play ρ in G is won by the player
who wins the extended play ρ′ in G′, i.e., ρ ∈Win if and only if ρ′ ∈Win′.

Lemma 1. Let G be a game with vertex set V and W ⊆ V . If G ≤M G′ and
Player i has a positional winning strategy for G′ from {(v, Init(v)) | v ∈ W},
then she has a finite-state winning strategy with memory M for G from W .

We consider two types of games defined by specifying Win implicitly. A
safety game is a tuple G = (A, F ) with F ⊆ V and Win = {ρ ∈ V ω | Occ(ρ) ⊆
F}, i.e., Player 0 has to keep the play in F in order to win. Thus, vertices
in F are called safe while vertices in V \ F are called unsafe. In safety games,
we allow unsafe terminal vertices, since Player 1 wins a play passing through
such a vertex, i.e., there is no need to continue playing. A Muller game is a
triple G = (A,F0,F1) where F0 is a set of loops of A, F1 contains the loops
which are not in F0, and Win = {ρ ∈ V ω | Inf(ρ) ∈ F0}, i.e., ρ is winning for
Player i if and only if Inf(ρ) ∈ Fi. Safety games are determined with uniform
positional strategies and Muller games are determined with uniform finite-state
strategies of size |A|! [5].

3. Scoring Functions for Muller Games

In this section, we introduce scores and accumulators for Muller games.
These concepts describe the progress of a player throughout a play. Intuitively,
for each set F ⊆ V , the score of F of a play prefix w measures how often F has
been visited completely since the last visit of a vertex that is not in F or since
the beginning of w. The accumulator of the set F measures the progress made
towards the next score increase: AccF (w) contains the vertices of F seen since
the last increase of the score of F or the last visit of a vertex v /∈ F , depending
on which occurred later. For a more detailed treatment we refer to [14, 15].

Definition 1. Let w ∈ V ∗, v ∈ V , and ∅ 6= F ⊆ V .

• Define ScF (ε) = 0 and AccF (ε) = ∅.

• If v /∈ F , then ScF (wv) = 0 and AccF (wv) = ∅ (we say that ScF is reset).
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• If v ∈ F and AccF (w) = F \ {v}, then ScF (wv) = ScF (w) + 1 and
AccF (wv) = ∅ (we say that ScF is increased).

• If v ∈ F and AccF (w) 6= F\{v}, then ScF (wv) = ScF (w) and AccF (wv) =
AccF (w) ∪ {v}.

Also, for F ⊆ 2V define MaxScF : V ∗ ∪ V ω → N ∪ {∞} by MaxScF (ρ) =
maxF∈F supwvρ ScF (w).

Example 1. Let V = {0, 1, 2}, F = {0, 1}, and w = 10012100. We have
ScF (w) = 1 and AccF (w) = {0}, but MaxSc{F}(w) = 2, due to the prefix 1001.
The score for F is reset to 0 by the occurrence of 2, i.e., ScF (10012) = 0 and
AccF (10012) = ∅.

If w is a play prefix with ScF (w) ≥ 2, then the set F is a loop of the arena.
In an infinite play ρ, Inf(ρ) is the unique set F such that ScF tends to infinity
while being reset to 0 only finitely often, since the score for every superset of
Inf(ρ) is incremented only finitely often while the score for every other set (i.e.,
every non-superset) is reset infinitely often. Hence, MaxScF1−i

(ρ) <∞ implies
Inf(ρ) ∈ Fi. Also, we always have AccF (w) $ F . Next, we give a score-based
preorder and an induced equivalence relation on play prefixes.

Definition 2. Let F ⊆ 2V and w,w′ ∈ V +.

1. Define w ≤F w′, if Last(w) = Last(w′) and for all F ∈ F :

• ScF (w) < ScF (w′), or

• ScF (w) = ScF (w′) and AccF (w) ⊆ AccF (w′).

2. Furthermore, define w =F w
′, if w ≤F w′ and w′ ≤F w.

The condition w =F w′ is equivalent to Last(w) = Last(w′) and for ev-
ery F ∈ F the equalities ScF (w) = ScF (w′) and AccF (w) = AccF (w′) hold.
Thus, =F is an equivalence relation. Both ≤F and =F are preserved under
concatenation, i.e., =F is a congruence.

Lemma 2. Let F ⊆ 2V and w,w′ ∈ V +.

1. If w ≤F w′, then wu ≤F w′u for all u ∈ V ∗.
2. If w =F w

′, then wu =F w
′u for all u ∈ V ∗.

Proof. 1. It suffices to show that w ≤F w′ implies wv ≤F w′v for all v ∈ V . So,
let F ∈ F : if v /∈ F , then we have ScF (wv) = ScF (w′v) = 0 and AccF (wv) =
AccF (w′v) = ∅, i.e., wv =F w

′v.
Now, suppose we have v ∈ F . First, consider the case ScF (w) < ScF (w′):

then, either the score of F does not increase in wv and we have

ScF (wv) = ScF (w) < ScF (w′) ≤ ScF (w′v)

or the score increases in wv and we have

ScF (wv) = ScF (w) + 1 ≤ ScF (w′) ≤ ScF (w′v)
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and AccF (wv) = ∅, due to the score increase. Thus, wv ≤F w′v in both cases.
Now, consider the case ScF (w) = ScF (w′) and AccF (w) ⊆ AccF (w′). If

AccF (w) = F \ {v}, then also AccF (w′) = F \ {v}, as the accumulator for F
can never be F . In this situation, we have

ScF (wv) = ScF (w) + 1 = ScF (w′) + 1 = ScF (w′v)

and AccF (wv) = AccF (w′v) = ∅. Otherwise, we have

ScF (wv) = ScF (w) = ScF (w′) ≤ ScF (w′v) .

If ScF (w′) < ScF (w′v), then we are done. So, consider the case ScF (w′) =
ScF (w′v): we have

AccF (wv) = AccF (w) ∪ {v} ⊆ AccF (w′) ∪ {v} = AccF (w′v) ,

due to AccF (w) ⊆ AccF (w′) and the fact that the score for w′v does not increase,
which implies that the accumulator for w′v is obtained by adding v to the
accumulator of w′. This completes the proof.

2. Apply 1. to the definition of =F .

4. Solving Muller Games by Solving Safety Games

In this section, we show how to solve a Muller game by solving a safety game.
Our approach is based on the existence of winning strategies for Muller games
that bound the losing player’s scores by two.

Lemma 3 ([15]). In every Muller game G = (A,F0,F1) Player i has a uniform
winning strategy σ such that MaxScF1−i

(ρ) ≤ 2 for every ρ ∈ Beh(Wi(G), σ).

The following example shows that the bound two is tight.

Example 2. Consider the Muller game G = (A,F0,F1), where A is depicted in
Figure 1, F0 = {{0}, {2}, {0, 1, 2}}, and F1 = {{0, 1}, {1, 2}}. By alternatingly
moving to 0 and to 2, Player 0 wins from every vertex, and she bounds Player 1’s
scores by two. However, he is able to achieve a score of two: consider a play
starting at 1 and suppose (w.l.o.g.) that Player 0 moves to vertex 0. Then,
Player 1 uses the self-loop once before moving back to 1, thereby reaching a
score of two for the loop {0, 1} ∈ F1.

10 2

Figure 1: The arena A for Example 2.
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A simple consequence of Lemma 3 is that a vertex v is in Player 0’s winning
region of the Muller game G if and only if she can prevent her opponent from
ever reaching a score of three for a set in F1. This is a safety condition which
only talks about small scores of one player. To determine the winning regions
of G, we construct an arena that keeps track of the scores of Player 1 up to
threshold three. The winning condition F of the safety game requires Player 0
to prevent a score of three for her opponent. This idea is formalized in the proof
of our main theorem, which we present in the remainder of this section.

Theorem 1. Let G be a Muller game with vertex set V . One can effectively
construct a safety game GS with vertex set V S and a mapping f : V → V S with
the following properties:

1. For every v ∈ V : v ∈Wi(G) if and only if f(v) ∈Wi(GS).

2. Player 0 has a uniform finite-state winning strategy for G with memory
states M ⊆W0(GS).

3. |V S | ≤ (|V |!)3.

Note that the first statement refers to both players while the second one only
refers to Player 0. This is due to the fact that the safety game keeps track of
Player 1’s scores only, which allows Player 0 to prove that she can prevent him
from reaching a score of three. But as soon as a score of three is reached, the
play is stopped. To obtain a winning strategy for Player 1, we have to swap the
roles of the players and construct a safety game which keeps track of the scores
of Player 0. Alternatively, we could construct an arena which keeps track of
both player’s scores. However, that would require us to define two safety games
in this arena: one in which Player 0 has to avoid a score of three for Player 1
and vice versa. This arena is larger than the ones in which only the scores of
one player are tracked (but still smaller than (|V |!)3). It is well-known that it is
impossible to reduce a Muller game to a single safety game and thereby obtain
winning strategies for both players. We come back to this in Section 7.

We begin the proof of Theorem 1 by defining the safety game GS . Let
G = (A,F0,F1) with arena A = (V, V0, V1, E). We define

Plays<3 = {w | w play prefix in G and MaxScF1
(w) < 3}

to be the set of play prefixes in G in which the scores of Player 1 are at most
two and we define

Plays=3 = {w0 · · ·wn+1 | w0 · · ·wn+1 play prefix in G,

MaxScF1
(w0 · · ·wn) ≤ 2, and MaxScF1

(w0 · · ·wnwn+1) = 3}

to be the set of play prefixes in which Player 1 just reached a score of three.
Furthermore, let Plays≤3 = Plays<3 ∪Plays=3. Note that these definitions ig-
nore the scores of Player 0. The arena of the safety game we are about to define
is the =F1

-quotient of the unraveling of A up to the positions where Player 1
reaches a score of three for the first time (if he does at all).

Formally, we define GS = ((V S , V S0 , V
S
1 , E

S), F ) where
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• V S = Plays≤3 /=F1
,

• V Si = {[w]=F1
| [w]=F1

∈ V S and Last(w) ∈ Vi} for i ∈ {0, 1},

• ([w]=F1
, [wv]=F1

) ∈ ES for every w ∈ Plays<3 and every v such that

(Last(w), v) ∈ E (thus, every vertex in Plays=3 /=F1
is terminal4), and

• F = Plays<3 /=F1
.

The definitions of V S0 and V S1 are independent of representatives, since
w =F1 w

′ implies Last(w) = Last(w′). Also, we have V S = V S0 ∪ V S1 due to
V = V0∪V1, and F is well-defined, since every equivalence class in Plays<3 /=F1

is also one in Plays≤3 /=F1
. Finally, let f(v) = [v]=F1

for every v ∈ V .

Remark 1. If ([w]=F1
, [w′]=F1

) ∈ ES, then we have (Last(w),Last(w′)) ∈ E.

For the sake of readability, we denote =F1
-equivalence classes by [w] from

now on. All definitions and statements below are independent of representatives
and we refrain from mentioning it from now on.

Example 3. To illustrate the definitions, Figure 2 depicts the safety game GS
for the Muller game G from Example 2. The vertices [v] for v ∈ V are in the
winning region of Player 0. This corresponds to the fact that Player 0’s winning
region in the Muller game contains every vertex.

The proof of Theorem 1 is split into several lemmata. Due to determinacy
of both games, it suffices to consider only one player (we pick i = 0) to prove
Theorem 1.1. To win the safety game, we simulate a winning strategy for the
Muller game that bounds Player 1’s scores by two. This suffices to avoid the
vertices in V S \ F , which encode that a score of three is reached.

Lemma 4. For every v ∈ V : if v ∈W0(G), then [v] ∈W0(GS).

Proof. Let σ be a uniform winning strategy for Player 0 for G that satisfies
MaxScF1

(ρ) ≤ 2 for every play ρ ∈ Beh(W0(G), σ). Due to Remark 1, ev-
ery play prefix [w1] · · · [wn] in GS can be mapped to a play p([w1] · · · [wn]) =
Last(w1) · · ·Last(wn) in G. We use this to define a strategy σ′ for GS by
σ′([w1] · · · [wn]) = [wn ·σ(p([w1] · · · [wn]))] for every play prefix [w1] · · · [wn] of GS
with [wn] ∈ V S0 \ F . This is a legal move due to the definition of ES and the
restriction to plays ending in V S0 \F is sufficient, since all other plays are already
losing for Player 0. A simple induction shows [w1] · · · [wn] being consistent with
σ′ implies p([w1] · · · [wn]) being consistent with σ.

It remains to show that σ′ is winning for Player 0 from {[v] | v ∈ W0(G)}.
So, suppose σ′ is not winning from some vertex [v] with v ∈ W0(G), i.e., there

4 This contradicts our requirements on an arena. However, every play visiting these vertices
is losing for Player 0 no matter how it is continued. To simplify the following proofs, we refrain
from defining outgoing edges for these vertices.
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W0(GS) W1(GS)

Figure 2: The safety game GS for G from Example 2 (vertices drawn with double lines are
in F ); the dashed line separates the winning regions.

exists a play prefix [w1] · · · [wn] that is consistent with σ′ such that w1 =F1
v

and wn ∈ Plays=3. Another simple induction shows p([w1] · · · [wn]) ∈ [wn].
However, this contradicts our assumption on σ, since p([w1] · · · [wn]) is consistent
with σ, but allows Player 1 to reach a score of three.

For the other direction of Theorem 1.1 we show that a subset of W0(GS)
can be turned into a memory structure for Player 0 in the Muller game that
induces a winning strategy. We use the =F1

-equivalence class of w as memory
state to keep track of Player 1’s scores in G. However, instead of keeping track
of the exact scores, it suffices to over-approximate them, which yields a smaller
memory structure: instead of using all equivalence classes in the winning region
of Player 0, we only use the maximal ones with respect to ≤F1 that are reachable
via a fixed positional winning strategy for her in the safety game. Formally, we
have to lift ≤F1

to equivalence classes by defining [w] ≤F1
[w′] if and only if

w ≤F1
w′.

The following proof is similar to the reductions from co-Büchi [17, 18, 19]
and parity games [8] to safety games, but for the more general case of Muller
games. We come back to the similarities to those reductions when we determine
permissive strategies in Section 6.

Lemma 5. For all v ∈ V : if [v] ∈W0(GS), then v ∈W0(G).

Proof. Let σ be a uniform positional winning strategy for Player 0 in GS and let
R ⊆ V S be the set of vertices reachable from W0(GS) ∩ {[v] | v ∈ V } by plays
consistent with σ. Every [w] ∈ R ∩ V S0 has exactly one successor in R (of the
form [wv] for some v ∈ V ) and dually, every successor of [w] ∈ R ∩ V S1 (which
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are exactly the classes [wv] with (Last(w), v) ∈ E) is in R. Now, let Rmax be
the set of ≤F1-maximal elements of R. Applying the facts about successors of
vertices in R stated above, we obtain the following remark.

Remark 2. Let Rmax be defined as above.

1. For every [w] ∈ Rmax ∩ V S0 , there is a v ∈ V with (Last(w), v) ∈ E and
there is a [w′] ∈ Rmax such that [wv] ≤F1 [w′].

2. For every [w] ∈ Rmax ∩ V S1 and each of its successors [wv], there is a
[w′] ∈ Rmax such that [wv] ≤F1 [w′].

Thus, instead of updating the memory from [w] to [wv] (i.e., keeping track of
the exact scores) when processing a vertex v, we directly update it to a maximal
element that is F1-larger than [wv] (i.e., we over-approximate the exact scores).
Formally, we define M = (M, Init,Upd) by M = Rmax ∪ {⊥} 5,

Init(v) =

{
[w] if [v] ∈W0(GS), for some [w] ∈ Rmax with [v] ≤F1 [w],

⊥ otherwise,

and

Upd([w], v) =

{
[w′] if there exists [w′] ∈ Rmax such that [wv] ≤F1

[w′],

⊥ otherwise.

This implies [w] ≤F1 Upd∗(w) for every w ∈ V + with Upd∗(w) 6= ⊥. Thus,
Last(w) = Last(w′), where [w′] = Upd∗(w). Using Remark 2, we define

Nxt(v, [w]) =


v′ if Last(w) = v, (v, v′) ∈ E, and there exists [w′] ∈ Rmax

such that [wv′] ≤F1
[w′],

v′′ otherwise (where v′′ is some vertex with (v, v′′) ∈ E),

and Nxt(v,⊥) = v′′ for some v′′ with (v, v′′) ∈ E. The second case is just to
match the formal definition of a next-move function; it is never invoked due to
Last(w) = Last(w′) for Upd∗(w) = [w′] or Upd∗(w) = ⊥.

It remains to show that the strategy σ implemented by M and Nxt is a
winning strategy for Player 0 from W = {v | [v] ∈ W0(GS)}. An inductive ap-
plication of Remark 2 shows that every play w that starts in W and is consistent
with σ satisfies Upd∗(w) 6= ⊥. This bounds the scores of Player 1 by two, as
we have [w] ≤F1

Upd∗(w) ∈ Rmax ⊆ Plays<3 for every such play. Hence, σ is
indeed a winning strategy for Player 0 from W .

This construction and Lemma 4 complete the proof of Theorem 1.1 and
imply Theorem 1.2.

5We use the memory state ⊥ to simplify our proof. It is not reachable via plays that are
consistent with the implemented strategy and can therefore be eliminated.
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Corollary 1. Player 0 has a uniform finite-state winning strategy whose mem-
ory states form an ≤F1-antichain in W0(GS).

To finish the proof of Theorem 1, we determine the size of GS to prove
the third statement. To this end, we use the concept of a latest appearance
record (LAR) [2, 5]. Note that we do not need a hit position for our purposes.

A word ` ∈ V + is an LAR if every vertex v ∈ V appears at most once
in `. We map each w ∈ V + to a unique LAR, denoted by LAR(w), as follows:
LAR(v) = v for every v ∈ V and for w ∈ V + and v ∈ V we define LAR(wv) =
LAR(w)v if v /∈ Occ(w) and LAR(wv) = p1p2v if LAR(w) = p1vp2. A simple
induction shows that LAR(w) is indeed an LAR, which also ensures that the
decomposition of w in the second case of the inductive definition is unique. We
continue by showing that LAR(w) determines all but |LAR(w)| many of w’s
scores and accumulators.

Lemma 6. Let w ∈ V + and LAR(w) = vkvk−1 · · · v1.

1. We can decompose w as w = xkvkxk−1vk−1 · · ·x2v2x1v1 where, for ev-
ery j, xj ∈ V ∗ with Occ(xj) ⊆ {v1, . . . , vj}.

2. ScF (w) > 0 if and only if F = {v1, . . . , vj} for some j.
3. If ScF (w) = 0, then AccF (w) = {v1, . . . , vj} for the maximal j such that
{v1, . . . , vj} ⊆ F and AccF (w) = ∅ if no such j exists.

4. If ScF (w) > 0 and F = {v1, . . . , vj}, then AccF (w) ∈ {∅}∪{{v1, . . . , vj′} |
j′ < j}.

Proof. 1. We prove the statement by induction over |w|. If |w| = 1, then the
claim follows immediately from w = LAR(w). Now, let |wv| > 1. If v /∈ Occ(w),
then LAR(wv) = LAR(w)v and the claim follows by induction hypothesis.

Now, suppose LAR(w) = p1vp2 with p1 = vk · · · vi+1 and p2 = vi−1 · · · v1,
and hence vi = v. By induction hypothesis, there exists a decomposition w =
xkvkxk−1vk−1 · · · v2x1v1 for some xj ∈ V ∗ such that for every j, Occ(xj) ⊆
{v1, . . . , vj}. Also, we have LAR(wv) = p1p2v = v′k · · · v′1 where v′1 = vi, v

′
j =

vj−1 for every j ∈ {2, . . . , i}, and v′j = vj for every j ∈ {i + 1, . . . , k}. Define
x′1 = ε, x′j = xj−1 for every j ∈ {2, . . . , i − 1}, x′i = xivixi−1, and x′j = xj
for every j ∈ {i + 1, . . . , k}. It is easy to verify that the decomposition wv =
x′kv
′
kx
′
k−1v

′
k−1 · · · v′2x′1v′1 has the desired properties.

2. We have ScF (w) > 0 if and only if there exists a suffix x of w with
Occ(x) = F . Due to the decomposition characterization, having a suffix x with
Occ(x) = F is equivalent to F = {v1, . . . , vj} for some j.

3. We have AccF (w) = Occ(x) where x is the longest suffix of w such that
the score of F does not change throughout x and Occ(x) ⊆ F . Consider the
decomposition characterization of w as above. We have {v1, . . . , vj} ⊆ AccF (w),
since x = xjvj · · · v1v1 is a suffix of w satisfying Occ(x) ⊆ F . Furthermore, since
vj+1 /∈ F by the maximality of j, this is the longest such suffix and we indeed
have AccF (w) = {v1, . . . , vj}, since Occ(x) is a strict subset of F .

4. The latest increase of ScF (w) occurs after or at the last visit of vj , since
Occ(vjxj−1 · · ·x1v1) = F . Hence, AccF (w) is the occurrence set of a suffix of
xj−1 · · ·x1v1 and the decomposition characterization yields the result.
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This characterization allows us to prove Theorem 1.3.

Lemma 7. We have |V S | ≤
(∑|V |

k=1

(|V |
k

)
· k! · 2k · k!

)
+ 1 ≤ (|V |!)3.

Proof. In every safety game, we can merge the vertices in V \ F to a single
vertex without changing W0(G). Since [v] ∈ F for every v, we also retain the
equivalence v ∈Wi(G)⇔ [v] ∈Wi(GS).

Hence, it remains to bound the index of Plays<3 /=F1
. Lemma 6 shows

that a play prefix w ∈ V + has |LAR(w)| many sets with non-zero score. Fur-
thermore, the accumulator of the sets with score 0 is determined by LAR(w).
Now, consider a play w ∈ Plays<3 and a set F ∈ F1 with non-zero score. We
have ScF (w) ∈ {1, 2} and there are exactly |F | possible values for AccF (w)
due to Lemma 6.4. Finally, LAR(w) = LAR(w′) implies Last(w) = Last(w′).
Hence, the index of Plays<3 /=F1

is bounded by the number of LARs, which is∑n
k=1

(
n
k

)
·k!, times the number of possible score and accumulator combinations

for each LAR ` of length k, which is bounded by 2k · k!.

In the proof of Theorem 1.2, we used the maximal elements of Player 0’s
winning region of the safety game that are reachable via a fixed winning strategy.
It is the choice of this strategy that determines the size of our memory structure,
which could be much smaller than the rough upper bound stated in Lemma 7.
However, finding a winning strategy for the safety game that visits at most
k ∈ N vertices in an arena (from a fixed initial vertex) for a given k is NP-
complete. This can be shown by a reduction from the vertex cover problem
(see, e.g., [20] where a more general result is shown). Moreover, it is not even
clear that a small strategy also yields few maximal elements.

In general, a player cannot prevent her opponent from reaching a score of
two, but there are arenas in which she can do so. By first constructing the
subgame G′S up to threshold two (which is smaller than GS), we can possibly
determine a subset of Player 0’s winning region faster and obtain a (potentially)
smaller finite-state winning strategy for this subset. But Example 2 shows that
this approach is not complete.

5. Solving Muller Games Compositionally

In this section, we show how to solve Muller games compositionally. Our
algorithm is again based on the reduction to safety games using scores. Remem-
ber that the winning condition of these games is conjunctive: for every F ∈ F1,
Player 1 does not reach a score of three for F . The drawback of the monolithic
algorithm in Section 4 is that the arena of GS can be quite large. To cope with
this, we use an algorithm that divides such a conjunctive winning condition into
smaller games whose solutions allow us to solve the original game. Our com-
positional algorithm can reduce the memory requirements, but needs to solve a
sequence of (smaller) safety games instead of one (large) game.

The general idea is as follows. Let G = (A,F0,F1) be a Muller game and
(F1

1 ,F2
1 ) a partition of F1 into non-empty sets. Instead of constructing the
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whole safety game GS as in Section 4, we solve two restricted safety games G1S
and G2S where Player 0 has to avoid a score of three only for sets from F1

1 or F2
1 ,

respectively. The restricted games are smaller than the original game GS , since
they need to track fewer scores. By solving the restricted games, we obtain
two winning regions W i

1 (for i ∈ {1, 2}) that contain all vertices from which
Player 1 can enforce a score of three for sets in F i1. This information can be
used to identify vertices than can be removed from the original safety game GS
since Player 1 can win from these vertices already by considering only the set
F1

1 or only the set F2
1 . Thus, by solving two smaller safety games, we are able

to reduce the size of GS by identifying parts of Player 1’s winning region before
even solving GS . This process can then be recursively repeated by splitting
F1

1 and F2
1 until we have reached singletons. Note however that it is neither

a priori evident that this reduction is significant nor in which order the subsets
from F1 should be considered. In the worst case, the compositional algorithm
also needs to construct and solve the whole game GS . We discuss the advantages
and disadvantages of the compositional algorithm at the end of this section.

For technical reasons, we move to a slightly different setting. We first show in
Subsection 5.1 how to compositionally solve safety games whose set of vertices
is a product of an arena A and memory structures M1, . . . ,Mk and whose
winning condition depends on the memory states reached in the structures Mj .
Intuitively, Mj is used as “watchdog” for the scores of a set Fj ∈ F1 that signals
if a score of three has been reached. Then, in Subsection 5.2, we provide memory
structures such that their composition with the arena of the Muller game yields
a safety game that is isomorphic to the game GS as used in the monolithic
algorithm. This allows us to directly apply the compositional algorithm of
Subsection 5.1 to solve Muller games.

Finally, let us mention that the compositional solution of conjunctions of
safety conditions was already applied to LTL realizability [18]. Note, however,
that although the underlying ideas of our construction in Subsection 5.1 are the
same, our technical framework is different.

5.1. Solving Safety Games Compositionally

In this subsection, we describe a general framework to solve games whose
winning condition is a conjunction of safety conditions specified by a set of
memory structures. The intuition is that a memory structure M tracks the play
played to far and signals whether the play still satisfies a safety property specified
by M. This way, we can easily combine a conjunction of safety properties into
a single safety game by taking the product of the memory structures. When
applying this framework to Muller games, we use one memory structure for each
set F ∈ F1 that keeps track of the scores and accumulators up to the threshold
score three.

Given k > 1 memory structures Mj = (Mj , Initj ,Updj) for the same arenaA,
their parallel composition M1 × · · · ×Mk = (M1 × · · · ×Mk, Init,Upd) with
Init(v) = (Init1(v), . . . , Initk(v)) and

Upd((m1, . . . ,mk), v) = (Upd1(m1, v), . . . ,Updk(mk, v))

14



is again a memory structure for A. For Fj ⊆Mj we define the safety game

G = (A× (M1 × · · · ×Mk), V × F1 × · · · × Fk)) ,

i.e., Player 0 wins if the memory in every structure stays in Fj . The size of G
grows exponentially in k, the number of safety conditions implemented by the
memory structures Mj .

In the following, we show how to determine Player 0’s winning region in G
without constructing the complete arena A× (M1× · · ·×Mk). Let k′ be in the
range 1 ≤ k′ < k and consider the safety games

• G1 = (A× (M1 × · · · ×Mk′), V × F1 × · · · × Fk′), and

• G2 = (A× (Mk′+1 × · · · ×Mk), V × Fk′+1 × · · · × Fk).

We define

X = {(v,m1, . . . ,mk) |(v,m1, . . . ,mk′) ∈W0(G1) and

(v,mk′+1, . . . ,mk) ∈W0(G2)}

and the arena AX as restriction of A× (M1 × · · · ×Mk) to vertices in X. Note
that this arena might have terminal vertices. Denote the set of these vertices
by T and consider the safety game Gred = (AX , X \ T ), i.e., Player 0 has to
avoid the terminal vertices6.

The following theorem is proven in [18] in a different technical framework.
For the sake of completeness, we present the proof in terms of memory structures
here.

Theorem 2. W0(G) = W0(Gred).

Proof. Let (v,m1, . . . ,mk) ∈ W0(G), i.e., Player 0 has a winning strategy σ
for G from v. Towards a contradiction, assume (v,m1, . . . ,mk) /∈W0(Gred). We
consider two cases.

If (v,m1, . . . ,mk) is not even a vertex of AX , then Player 1 has a positional
winning strategy τ from (v,m0, . . . ,mk′) in G1 or from (v,mk′+1, . . . ,mk) in G2.
We only consider the first subcase, the second one is analogous. The strategy τ
for G1 can be lifted to a positional strategy τ ′ for G via

τ ′(v,m1, . . . ,mk) = (v′,Upd1(m1, v
′), . . . ,Updk(mk, v

′)) ,

where v′ is the first component of τ(v,m1, . . . ,mk′) = (v′,m′1, . . . ,m
′
k′). Note

that we have Updj(mj , v
′) = m′j for every j ≤ k′, i.e., taking the projection to

the first k′ memory states of a play in G that is consistent with τ ′ yields a play
in Gred that is consistent with τ . Let ρ be the unique play consistent with σ
and τ ′ that starts in (v,m1, . . . ,mk). Since its projection to the first k′ memory
states is consistent with τ , it reaches a vertex with a memory state in the j-th

6So, terminal vertices are unproblematic, as Player 0 loses plays that reach such a vertex.
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coordinate that is not in Fj (for some j ≤ k′). Thus, ρ is not a winning play for
Player 0 in G, which yields the desired contradiction.

Now, assume (v,m1, . . . ,mk) is a vertex of AX , but is in W1(Gred). This
implies that Player 1 has a strategy τ which ensures that every play that starts
in (v,m1, . . . ,mk) and is consistent with τ ends up in T . Furthermore, in G
every successor of a vertex in T is not a vertex of AX . In the previous case, we
have argued that Player 1 can win G from such vertices. Hence, he can do the
same from (v,m0, . . . ,mk) by first leaving X and then reaching a memory state
not in Fj as described above. Hence, (v,m1, . . . ,mk) is not in W0(G), which is
again a contradiction.

For the other direction, let (v,m1, . . . ,mk) ∈ W0(Gred), i.e., Player 0 has a
strategy σ for Gred that confines every play starting in (v,m1, . . . ,mk) to X \T .
The same strategy is also a strategy for G. Furthermore, every play that is
consistent with σ in G is also consistent with σ in Gred. Finally, as X only
contains vertices in V × F1 × · · · × Fk, σ is also a winning strategy for Player 0
in G from (v,m1, . . . ,mk).

Note that it is necessary to solve Gred: it is easy to construct examples where
W0(G) is a strict subset of X, e.g., Player 0 can avoid reaching M1 \ F1 in the
first memory structure and can avoid reaching M2 \ F2 in the second memory
structure, but not both at the same time.

So, to determine Player 0’s winning region in G it suffices to solve the safety
games G1, G2, and Gred. Both G1 and G2 are smaller than G, while Gred is at most
as large as G, and much smaller if Player 1’s winning regions in G1 and G2 are
large. Furthermore, the games G1 and G2 can again be split into smaller games.
By inductively splitting the conditions until we have reached safety games with
a single memory structure, we can solve G by solving at most 2k smaller safety
games: k with a single memory structure, at most dk2 e with (subsets of) two

structures, at most dk4 e with (subsets of) three structures, etc., until we are left
with one with (subsets of) k structures.

5.2. Solving Muller Games Compositionally

For the remainder of this section, we fix a Muller game G = (A,F0,F1) with
A = (V, V0, V1, E) and F1 = {F1, . . . , Fk}. We want to determine the winning
regions of G compositionally using the construction of the previous subsection.
To this end, we give a description of the safety game GS (as defined in Section 4)
for G in terms of a cartesian product of A and the parallel composition of
memory structures Mj for each set Fj .

For every set F ⊆ V , there is a deterministic finite automaton AF accepting
exactly those w ∈ V + with MaxSc{F}(w) ≥ 3. The automaton uses the state
space {0, 1, 2} × 2F (pairs of a score and an accumulator) with an additional
final (sink) state sF that is reached when the score is incremented to three for
the first time, while the transition function implements the definition of ScF
and AccF as described in Section 3.

We turn this automaton into a memory structure MF = (Q, Init,Upd) with
Init(v) = δ(q0, v) and Upd = δ. Here, Q is the set of states, q0 is the initial state,
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and δ is the transition function of AF . The memory is constructed such that we
have Upd∗(w) = δ∗(w),7. Hence, we have Upd∗(w) = (ScF (w),AccF (w)) for
every w with MaxSc{F}(w) ≤ 2, and Upd∗(w) = sF , if we have MaxSc{F}(w) >
2.

For every j let Mj = (Mj , Initj ,Updj) be the memory structure for Fj
as described above. Furthermore, let Sj be the set of non-final states of the
automaton for Fj . We define AC to be A× (M1 × · · · ×Mk) restricted to the
vertices reachable from

I = {(v, (ScF1(v),AccF1(v)), . . . , (ScFk
(v),AccFk

(v))) | v ∈ V }

after we have deleted all outgoing edges of the vertices that are not in V ×S1×
· · · × Sk. Terminal vertices do not cause problems here since we define them
to be unsafe, i.e., as soon as a play reaches such a vertex the winner is certain.
Formally, we define the safety game GC = (AC , (V ×S1×· · ·×Sk)∩VC}), where
VC is the set of vertices of AC .

We are interested in the vertices in I, since they encode the vertices of the
original Muller game G. The following remark states that the winner from these
vertices is not changed by deleting the outgoing edges of the unsafe vertices.

Remark 3. Let v ∈ I. Then, v ∈ Wi(GC) if and only if v ∈ Wi(A × (M1 ×
· · · ×Mk), V × S1 × · · · × Sk).

We say that two safety games are isomorphic, if there is a bijection between
the sets of states that preserves the partition into the players’ positions, the
edge relation, and the set of safe states. In this situation, the isomorphism also
preserves winning regions. Recall that GS is the safety game tracking all scores
constructed in the previous section.

Lemma 8. The safety games GC and GS are isomorphic.

Proof. We begin by giving a mapping h from vertices of GS to vertices of GC .
For every w ∈ Plays<3 define

h([w]) = (Last(w), (ScF1(w),AccF1(w)), . . . , (ScFk
(w),AccFk

(w))) .

Recall that sF is the accepting sink state of the automaton AF that is reached
when a score of three is reached for F . Now, let w ∈ Plays=3 and let j be
the unique index such that ScFj

(w) = 3. It is unique, since no two scores can
increase to three at the same time [14, 15]. Furthermore, all other scores of w
are at most two. We define

h([w]) = (Last(w), (ScF1
(w),AccF1

(w)), . . . , (ScFj−1
(w),AccFj−1

(w)),

sFj
, (ScFj+1

(w),AccFj+1
(w)), . . . , (ScFk

(w),AccFk
(w))) .

7δ∗(w) denotes the state reached after processing w in AF .
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It is easy to prove that the mapping is independent of representatives and
therefore well-defined, that it is injective, and that it preserves the partition
into the players’ positions and the edge relation. The only non-trivial property
is surjectivity.

Recall that no two scores can be increased to three at the same time. Hence,
no two automata AF can reach their sink state at the same time. Furthermore,
we have deleted all outgoing edges of the vertices of AC that contain at least
one sink state. Thus, every vertex of AC has at most one sink state in its
components.

First consider vertices of the form (v, (s1, A1), . . . , (sk, Ak)) without a sink
state. Since this state is reachable, there is a play prefix w such that Last(w) = v
and ScFj (w) = sj and AccFj (w) = Aj for every j. Furthermore, w is in Plays<3

since no sink state is reached. Thus, [w] is a vertex of GS , and it is mapped to
(v, (s1, A1), . . . , (sk, Ak)).

Now, consider a vertex of the form (v, (s1, A1), . . . , sFj
, . . . , (sk, Ak)), i.e.,

there is a single sink state in the j-th component. Again, as this vertex is
reachable, there is a play prefix w = w0 · · ·wnwn+1 such that wn+1 = v and
ScFj′ (w) = sj′ and AccFj′ (w) = Aj′ for every j′ 6= j. Furthermore, we have
MaxSc{Fj}(w) = 3, as the final state sFj

is reached. Since we have deleted all
outgoing edges of the unsafe vertices of AC , we conclude that the sink vertex
sFj

is reached by processing wn+1, i.e., the score for Fj is bounded by two in
w0 · · ·wn. Hence, we have w ∈ Plays=3, which implies that [w] is a vertex of GS
and is mapped to (v, (s1, A1), . . . , sFj , . . . , (sk, Ak)).

Thus, the mapping is also surjective and therefore an isomorphism.

So, due to Theorem 1 and the fact that the isomorphism preserves winning
regions, to determine whether Player 0 wins the Muller game G from v, it suffices
to determine whether Player 0 wins GC from

h([v]) = (v, (ScF1
(v),AccF1

(v)), . . . , (ScFk
(v),AccFk

(v))) .

Due to Remark 3, this is equivalent to Player 0 winning (A×(M1×· · ·×Mk), V ×
S1×· · ·×Sk) from h([v]). So, to determine whether v is in the winning region of
Player 0 in the Muller game, it suffices the solve a safety game that is induced
by a cartesian product of memory structures. Theorem 2 shows that we can
do this by splitting the safety game into smaller games and combining their
solutions.

To conclude this section, let us briefly discuss the advantages and disad-
vantages of the compositional algorithm. To this end, consider a Muller game
(A,F0,F1). First, we observe that the compositional algorithm is preferable in
situations where there are a lot of vertices vj and small subsets Fj ⊆ F1 such
that Player 1 wins the Muller game (A,F0∪(F1 \Fj),Fj) from vj . This implies
that Player 1 also wins the original Muller game from vj and all vertices with vj
in the first component are eliminated from GS by the compositional algorithm
as soon as all memory structures for the sets F ∈ Fj are present in a single
subgame. The most extreme example is where each vertex of the Muller game
is in V1, has a self-loop, and each singleton {v} is in F1. Then, solving the
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safety games A×Mj for the singleton sets Fj = {vj} eliminates all vertices of
the arena, while the monolithic algorithm from Section 4 constructs the whole
safety game GS .

On the other hand, assume Player 1’s winning region in the safety game GS
contains only the unsafe vertices. Then, no vertex can be eliminated by the
compositional algorithm. Thus, the monolithic algorithm is preferable since it
only has to solve the game GS whereas the compositional algorithm solves many
smaller games and also needs to solve the whole game GS in the last step.

Furthermore, the performance of the compositional algorithm is influenced
by the choice of the splits. For example, consider the situation where Player 1
can enforce a score of three for the same set F ∈ F1 from every vertex in V ,
but Player 0 can prevent a score of three for all other sets in F1. Then, the
best partition of F1 is ({F},F1 \ {F}), which allows us to solve the given game
very quickly by considering the set F first. However, every combination of splits
where F is considered as one of the last sets makes the algorithm solve many
safety games in vain.

6. Permissive Strategies for Muller Games

A parity game (A,Ω) consists of an arena A and a priority function Ω: V →
N. A play ρ is winning for Player 0 if the minimal priority seen infinitely often is
even. Bernet et al. introduced permissive strategies for parity games [8], a non-
deterministic winning strategy that subsumes the behavior of every positional
(non-deterministic) winning strategy. To compute such a strategy, they reduce a
parity game to a safety game. The main observation underlying their reduction
is the following: if we denote the number of vertices of priority c by nc, then
a (non-deterministic) positional winning strategy for Player 0 does not allow
a play in which an odd priority c is visited nc + 1 times without visiting a
smaller priority in between. This property can be formulated using scoring
functions for parity games as well. The scoring function for a priority c counts
the occurrences of c since the last occurrence of a smaller priority (such an
occurrence resets the score for c to 0). Hence, our work on Muller games can
be seen as a generalization of Bernet et al.’s work. While the bound nc on the
scores in a parity game is straightforward, the bound three for Muller games is
far from obvious.

Since both constructions are very similar, it is natural to ask whether we
can use the concept of permissive strategies for Muller games. In parity games,
we ask for a non-deterministic strategy that subsumes the behavior of every
positional strategy. As positional strategies do not suffice to win Muller games,
we have to give a new definition of permissiveness for such games. In other
words, we need to specify the strategies whose behaviors a permissive strategy
for a Muller game should subsume. One way to do this is to fix a sufficiently
large bound M and to require that a permissive strategy for a Muller game
subsumes the behavior of every finite-state winning strategy of size at most M
(this was already proposed for parity games in [8]).
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However, we prefer to take a different approach. By closely inspecting the re-
duction of parity to safety games, it becomes apparent that the induced strategy
does not only subsume the behavior of every positional winning strategy, but
rather the behavior of every strategy that prevents the opponent from reach-
ing a score of nc + 1 for some odd priority c (in terms of scoring functions
for parity games). It is this formulation that we extend to Muller games: a
(non-deterministic) winning strategy for a Muller game is permissive, if it sub-
sumes the behavior of every (non-deterministic) winning strategy that prevents
the losing player from reaching a score of three. We formalize this notion in
the following and show how to compute such strategies from the safety game
constructed in the previous section.

We begin by introducing some additional notation. A multi-strategy for
Player i in (V, V0, V1, E) is a mapping σ : V ∗Vi → 2V \ {∅} such that v′ ∈ σ(wv)
implies (v, v′) ∈ E. A play ρ is consistent with σ if ρn+1 ∈ σ(ρ0 · · · ρn) for
every n with ρn ∈ Vi. We still denote the plays starting in a vertex v that
are consistent with σ by Beh(v, σ) and define Beh(W,σ) =

⋃
v∈W Beh(v, σ) for

every subset W ⊆ V . A multi-strategy σ is winning for Player 0 from a set of
vertices W in a game (A,Win) if Beh(W,σ) ⊆ Win, and a multi-strategy τ is
winning for Player 1 from W , if Beh(W, τ) ⊆ V ω \Win. It is clear that the
winning regions of a game do not change when we allow multi-strategies instead
of standard strategies.

To define finite-state multi-strategies we have to allow a next-move function
to return more than one vertex, i.e., we have Nxt: Vi×M → 2V \ {∅} such that
v′ ∈ Nxt(v,m) implies (v, v′) ∈ E. A memory structure M and Nxt implement
a multi-strategy σ via σ(wv) = Nxt(v,Upd∗(wv)).

Definition 3. A multi-strategy σ′ for a Muller game G is permissive, if

1. σ′ is a winning strategy from every vertex in W0(G), and

2. Beh(v, σ) ⊆ Beh(v, σ′) for every multi-strategy σ and every vertex v with
MaxScF1(ρ) ≤ 2 for every ρ ∈ Beh(v, σ).

The original definition for parity games replaces the second condition by
the following requirement: Beh(v, σ) ⊆ Beh(v, σ′) for every positional multi-
strategy σ and every v from which σ is winning.

Example 4. Once again consider the Muller game of Example 2. Starting at
vertex 1, moving to 0 is consistent with a winning strategy for Player 0 that
bounds Player 1’s scores by two. Similarly, moving to 2 is also consistent with
a winning strategy for Player 0 that bounds Player 1’s scores. Hence, we have
σ′(1) = {0, 2} for every permissive strategy σ′. Now consider the play prefix
10. Here it is Player 1’s turn and he can use the self-loop either infinitely often
(which yields a play that is winning for Player 0) or only finitely often (say n
times) before moving back to vertex 1. In this situation, i.e., with play prefix
10n+11, a strategy that bounds Player 1’s scores by two has to move to vertex 2.
Hence, we must have σ′(10n+11) ⊇ {2}. However, it is possible that we also
have 1 ∈ σ′(10n+11), since a permissive strategy may allow more plays than the
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ones of strategies that bound Player 1’s scores by two. However, at some point,
σ′ has to disallow the move back to vertex 0, otherwise it would allow a play
that is losing for her.

Using the safety game GS from Section 4 we prove that Player 0 always has
a finite-state permissive strategy and show how to compute one.

Theorem 3. Let G be a Muller game and GS the corresponding safety game as
above. Then, Player 0 has a finite-state permissive strategy for G with memory
states W0(GS).

The proof is very similar to the one for Theorem 1.2 (cf. the construction
in the proof of Lemma 5), but we have to use all vertices in W0(GS) as memory
states to implement a permissive strategy, only using the maximal ones (re-
stricted to those reachable by some fixed winning strategy for the safety games)
does not suffice. Furthermore, the next-move function does not return one suc-
cessor that guarantees a memory update to a state from W0(GS), but it returns
all such states.

Proof. We define M = (M, Init,Upd) where M = W0(GS) ∪ {⊥} 8,

Init(v) =

{
[v] if [v] ∈W0(GS),

⊥ otherwise,

and

Upd([w], v) =

{
[wv] if [wv] ∈W0(GS),

⊥ otherwise.

Hence, we have Upd∗(w) = [w] ∈W0(GS) as long as every prefix x of w satisfies
[x] ∈W0(GS), and Upd∗(w) = ⊥ otherwise. We define Nxt by Nxt(v,⊥) = {v′}
for some successor v′ of v and

Nxt(v, [w]) =

{
{v′ | [wv′] ∈W0(GS)} if [w] ∈W0(GS) and Last(w) = v,

{v′′} otherwise, for some successor v′′ of v.

Since every vertex in W0(GS) ∩ V S0 has at least one successor in W0(GS), the
next-move function always returns a non-empty set of successors of v in G.

It remains to show that the strategy σ′ implemented by M and Nxt is per-
missive. We begin by showing that σ′ is winning from every vertex v ∈W0(G):
due to Lemma 4, we have [v] ∈ W0(GS). Hence, the memory is initialized with
[v] ∈ W0(GS). A simple induction shows Upd∗(w) = [w] ∈ W0(GS) for every
play prefix that starts in [v] is consistent with σ′. This bounds Player 1’s scores
by two. Hence, σ′ is indeed winning from v.

8Again, we use the memory state ⊥ to simplify our proof. It is not reachable via plays
that are consistent with the strategy implemented by M and can therefore eliminated and its
incoming transitions can be redefined arbitrarily.
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Finally, consider a multi-strategy σ and a vertex v with MaxScF1(ρ) ≤ 2 for
every play ρ ∈ Beh(v, σ). We have to show that every play ρ ∈ Beh(v, σ)
is consistent with σ′. Since σ is winning from v (as it bounds Player 1’s
scores), we have v ∈ W0(G). Now, assume ρ is not consistent with σ′ and
let ρ0 · · · ρnρn+1 be the shortest prefix such that ρn+1 /∈ σ′(ρ0 · · · ρn). Then, we
have [ρ0 · · · ρnρn+1] /∈W0(GS). Hence, Player 1 has a strategy to enforce a visit
to V S \ F in GS starting in [ρ0 · · · ρnρn+1]. Player 1 can mimic this strategy
in G to enforce a score of three against every strategy of Player 0 when starting
with the play prefix ρ0 · · · ρnρn+1. Since this prefix is consistent with σ, which
we have assumed to bound Player 1’s scores by two, we have derived the desired
contradiction.

7. Safety Reductions for Infinite Games

Recall that the classical notion of a game reduction (as defined in Section 2)
requires the extended play ρ′ to be winning for the same player that wins the
original play ρ. It is well known that there are no such classical game reductions
from Muller games to safety games. The reason is that a reduction induces a
continuous function mapping (winning) plays of the original game to (winning)
plays of the reduced game. The existence of such functions is tied to topological
properties of the sets of winning plays in both games, which are not satisfied in
the case of Muller and safety games. However, we transformed a Muller game to
a safety game which allowed us to determine the winning regions and a winning
strategy for one player. This is possible, since our reduction does not induce a
continuous function: a play is stopped as soon as Player 1 reaches a score of
three. As it can (in general) be extended to be winning for both players, i.e.,
also for Player 0, this violates the requirement on a classical reduction.

In this section, we briefly discuss the reason why Muller games can not be
reduced to safety games using classical reductions, and then we present a novel
type of game reduction that allows us to reduce many games known from the
literature to safety games. The advantage of this safety reduction is that the
reduced game is always a safety game. Hence, we can determine the winning
regions of various games from different levels of the Borel hierarchy using the
same technique. However, we only obtain a winning strategy for one player,
and we need some information on the type of winning strategies a player has in
such a game.

Formally, the set WinM ⊆ V ω of winning plays of a Muller game is in
general on a higher level of the Borel hierarchy than the set WinS ⊆ Uω of
winning plays of a safety game. Hence, in general, there exists no continuous
(in the Cantor topology) function f : V ω → Uω such that ρ ∈ WinM if and
only if f(ρ) ∈WinS (see, e.g., [21]). Since the mapping from a play in A to its
extended play in A ×M is continuous, we obtain the following negative result
(which holds for other pairs of games as well).

Corollary 2. In general, Muller games cannot be reduced to safety games.
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To overcome this, we present a new type of game reduction which encom-
passes the construction presented above and applies to many other games.

Definition 4. A game G = (A,Win) with vertex set V is (finite-state) safety
reducible, if there is a regular language L ⊆ V ∗ of finite words such that:

• For every play ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈Win.

• If v ∈W0(G), then Player 0 has a strategy σ with Pref(Beh(v, σ)) ⊆ L.

Note that a strategy σ satisfying Pref(Beh(v, σ)) ⊆ L is winning for Player 0
from v. Many games appearing in the literature on infinite games are safety re-
ducible, although these reductions neither yield fast solution algorithms nor
optimal memory structures. However, all the winning conditions presented be-
low are on a higher level of the Borel hierarchy than safety conditions, i.e., all
these games can not be (classically) reduced to safety games. For definitions
see [22] or the papers cited below.

• In a Büchi game G, Player 0 has a positional winning strategy. Every play
consistent with this strategy visits a vertex in F at least every k = |V \F |
steps. Hence, G is safety reducible with L = Pref(((V \ F )≤k · F )ω).

• In a co-Büchi game G, Player 0 has a positional winning strategy. Every
play consistent with this strategy stays in F after visiting each vertex in
V \ F at most once. Hence, G is safety reducible with L = Pref({w · Fω |
each v ∈ V \ F appears at most once in w}).

• In a request-response game G, Player 0 has a finite-state winning strategy
such that in every consistent play every request is answered within k =
|V | · r · 2r+1 steps, where r is the number of request-response pairs [23].
Hence, G is safety reducible to the language of prefixes of plays in which
every request is answered within k steps.

• In a parity game, Player 0 has a positional winning strategy. Every play
consistent with this strategy does not visit nc + 1 vertices with an odd
priority c without visiting a smaller priority in between, where nc is the
number of vertices with priority c. Hence, G is safety reducible to the
language of prefixes of plays satisfying this condition for every odd c.

• The results of Piterman and Pnueli on progress-measures for Rabin and
Streett games [24] can also be rephrased in terms of safety reductions.

• Energy progress measures for solving energy (and mean-payoff) games can
also be used to give a safety reduction for such games, as described in [25].

• Lemma 3 shows that a Muller game is safety reducible to the language of
prefixes of plays that never reach a score of three for Player 1.
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• In a finitary parity game G, Player 0 has a positional winning strategy [10].
Such a strategy guarantees that all but |V | vertices of odd color are fol-
lowed by a vertex of smaller even color within |V | steps. Hence, G is
reducible to the language of play prefixes satisfying this condition. The
same is true for finitary Streett games (albeit with larger bounds) and
parity and Streett games with costs [11].

Let G be a game with arena A = (V, V0, V1, E) and let A = (Q,V, q0, δ, F )
be a deterministic finite automaton (DFA) recognizing a language over V . As
in Section 5, we turn A into a memory structure M = (Q, Init,Upd) with
Init(v) = δ(q0, v) and Upd = δ.

Theorem 4. Let G, A, and M be as above such that G is safety reducible with
language L(A). Define the safety game G′ = (A×M, V × F ).

1. Let v ∈ V . Then, v ∈W0(G) if and only if (v, Init(v)) ∈W0(G′).

2. Player 0 has a uniform finite-state winning strategy for G with memory Q.

Proof. 1. Let v ∈ W0(G) and let σ be a winning strategy for Player 0 from v
that satisfies Pref(Beh(v, σ)) ⊆ L(A). We define σ′((v1,m1) · · · (vn,mn)) =
(v′,Upd(mn, v

′)) where v′ = σ(v1 · · · vn). We show that σ′ is winning for
Player 0 from (v, Init(v)) in G′. A simple induction shows that (v1,m1) · · · (vn,mn)
being consistent with σ′ implies v1 · · · vn being consistent with σ.

So, suppose σ′ is not winning in the safety game, i.e., there exists a play
prefix w′ = (v1,m1) · · · (vn,mn) in G′ starting in (v, Init(v)) that is consistent
with σ such that (vn,mn) /∈ V × F . Let w = v1 · · · vn. Since q0m1 · · ·mn is the
run of A on w, we have w /∈ L(A). Furthermore, as w′ is consistent with σ′, w
is consistent with σ. This contradicts our assumption on σ allowing only play
prefixes that are in L(A).

For the other direction, we use M to implement a uniform finite-state win-
ning strategy for G. Fix a uniform positional winning strategy σ′ for Player 0
for G′ and define Nxt by Nxt(v,m) = v′, if σ′(v,m) = (v′,m′) for some m′. Let
(v, Init(v)) ∈ W0(G′). We show that the strategy σ induced by M and Nxt is
winning for Player 0 from v. If v1 · · · vn starts in v and is consistent with σ,
then the extended play (v1,m1) · · · (vn,mn) of w (where mj = Upd∗(v1 · · · vj))
starts in (v, Init(v)) and a simple induction shows that it is consistent with σ′.
Hence, we have Pref(Beh(v, σ)) ⊆ L(A), as the memory simulates the run of A
on w and does not leave F . Hence, σ is indeed a winning strategy from v.

2. We have {(v, Init(v)) | v ∈ W0(G)} ⊆ W0(G′) due to the first part of the
proof for Statement 1 of this theorem. Hence, the construction in the second
part of the proof yields a uniform finite-state winning strategy for Player 0 with
memory states Q.

It is easy to show that every game in which Player 0 has a finite-state winning
strategy is safety-reducible to the prefixes of plays consistent with this strategy,
which is a regular language. However, this construction requires a finite-state
winning strategy to begin with, i.e., there is no need for a safety reduction.
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If G is determined, then Theorem 4.1 is equivalent to v ∈Wi(G) if and only if
(v, Init(v)) ∈Wi(G′). Hence, all games discussed above can be solved by solving
safety games. Furthermore, the new notion of reduction allows us to generalize
permissiveness to all games discussed in Example 3: if a game is safety reducible
to L, then we can construct a multi-strategy that allows every play ρ in which
Player 1 cannot leave L starting from any prefix of ρ. Thereby, we obtain what
one could call L-permissive strategies. For example, this allows us to construct
the most general non-deterministic winning strategy in a request-response game
that guarantees a fixed bound on the waiting times.

Let us conclude by mentioning that safety reducibility of parity games was
used to construct an algorithm for parity games [16] and to compute permissive
strategies for parity games [8] while safety reducibility of energy games was used
to design an algorithm for solving energy and mean-payoff games [25]. Further-
more, the safety reducibility of co-Büchi games is used in work on bounded
synthesis [17] and LTL realizability [18], so-called “Safraless” constructions [19]
which do not rely on determinization of automata.

8. Conclusion

We have shown how to translate a Muller game into a safety game to deter-
mine both winning regions and a finite-state winning strategy for one player.
Then, we generalized this construction to a new type of reduction from infinite
games to safety games with the same properties. We exhibited several implicit
applications of such reductions in the literature as well as several new ones.
Our reduction from Muller games to safety games is implemented in the tool
GAVS+9 [26].

Our construction is based on the notion of scoring functions for Muller games.
Considering the maximal score the opponent can achieve against a strategy leads
to a hierarchy of all finite-state strategies for a given game. Previous work has
shown that the third level of this hierarchy is always non-empty, and there are
games in which the second level is empty. Currently, there is no non-trivial
characterization of the games whose first or second level of the hierarchy is
non-empty, respectively.

The quality of a strategy can be measured by its level in the hierarchy. We
conjecture that there is always a finite-state winning strategy of minimal size
in the least non-empty level of this hierarchy, i.e., there is no tradeoff between
size and quality of a strategy. This tradeoff may arise in many other games for
which a quality measure is defined. Also, a positive resolution of the conjecture
would decrease the search space for a smallest finite-state strategy.

Furthermore, we used scores to construct a novel antichain-based memory
structure for Muller games. The antichain is induced by a winning strategy for
the safety game. It is open how the choice of such a strategy influences the size
of the memory structure and how heuristic approaches to computing winning

9See http://www6.in.tum.de/~chengch/gavs/ for details and to download the tool.
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strategies that only visit a small part of the arena [27] influence the performance
of our reduction.

Finally, tracking score values allows us to develop a compositional algo-
rithm for solving Muller games. Rather than solving a large safety game as the
monolithic algorithm above, our compositional algorithm solves several (smaller)
safety games. An investigation of classes of Muller games on which the compo-
sitional method runs faster or needs less memory than the monolithic algorithm
is a part of further research. It is also open whether there are classes of Muller
games for which the antichain based memory structure is smaller than the LAR
memory and the one induced by Zielonka trees.

Furthermore, there is a tight connection between permissive strategies, progress
measure algorithms, and safety reductions for parity games: the progress mea-
sure algorithm due to Jurdziński [16] and the reduction from parity games to
safety game due to Bernet et al. [8] to compute permissive strategies are essen-
tially the same. Whether the safety reducibility of Muller games can be turned
into a progress measure algorithm is subject to ongoing research.

Finally, strategies that bound the losing player’s scores exist even in games
in infinite arenas [28]. It remains to be investigated whether the results proven
for Muller games in the present paper can be lifted to infinite games in infinite
arenas.
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