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Abstract. We introduce Lola 2.0, a stream-based specification language
for the precise description of complex security properties in network traf-
fic. The language extends the specification language Lola with two new
features: template stream expressions, which allow input data to be car-
ried along the stream, and dynamic stream generation, where new mon-
itors can be invoked during the monitoring process for the monitoring of
new subtasks on their own time scale. Lola 2.0 is simple and expressive: it
combines the ease-of-use of rule-based specification languages like Snort
with the expressiveness of heavy-weight scripting languages or temporal
logics previously needed for the description of complex stateful depen-
dencies and statistical measures. Lola 2.0 specifications are monitored
by incrementally constructing output streams from input streams, while
maintaining a store of partially evaluated expressions. We demonstrate
the flexibility and expressivity of Lola 2.0 using a prototype implemen-
tation on several practical examples.

Keywords: Runtime verification, Monitoring, Network intrusion detec-
tion

1 Introduction

Automatic support for the monitoring of network traffic has become essential
in order to cope with the massive exchange of data over high-speed networks
and the constantly rising number of attacks. With the help of network intru-
sion detection systems (NIDS), system administrators check the network against
predefined malicious patterns and identify previously unknown attack patterns
based on irregularities observed in the network traffic. For instance, to check
whether a server is subject to a denial of service attack, one observes whether
a large number of connections are established to the server in a short period of
time from external TP addresses.

Traditionally, monitoring tasks in telecommunication networks have been
specified in powerful scripting languages, such as the N-Code language in the
Network Flight Recorder (NFR) [14]. Intrusion detection systems implemented
in such languages extract from the network traffic a complex combination of tem-
poral patterns and statistical measures that distinguish intrusions from normal
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network traffic. Such heavy-weight solutions are, however, expensive to develop
and maintain, since specification and monitoring algorithm are typically not
separated and dependencies on future behavior have to be explicitly encoded.

Descriptive specification languages allow us to naturally express future pro-
tocol behavior in concise and readable specifications. One such language is the
stream-based specification language Lola [7], which describes complex tempo-
ral patterns with references into the past and the future in a simple way and
can both monitor correctness properties and compute statistical measures. Lola
specifications resemble programs in a synchronous programming language like
Lustre [12], Esterel [5], or Signal [10], but may include formulas that refer to fu-
ture values of streams. For network monitoring tasks, however, specifying prop-
erties for individual connections of a network stream is cumbersome, because
every possible connection would need to be defined in a separate stream.

The contribution of the paper is to introduce new language features into the
Lola language that allow us to run each stream on an individual slice of the
incoming data and on an individual time scale. In this way, inexpensive patterns
can be used as filters that produce streams that run at slower speeds with less
data, and can therefore be analyzed against more expensive patterns.

To illustrate the need for the new language features of Lola, consider the
classic Lola specification

input bool loginSuccess
output int attempts := ite(loginSuccess, 0, attempts[+1,0] + 1)

which computes, from a given position in the stream, the number of overall failed
login attempts wntil that future point of time where either the login attempt
succeeds or the stream ends. Now, to distinguish the login attempts of individual
users, Lola 2.0 extends the streams of Lola to parameterized stream templates.
The instantiation of a template, as well as the speed in which an instance runs,
is determined dynamically by auxiliary invocation and extension streams. If, for
example, we wish to count the number of failed login attempts per user, we
might introduce a stream template

input bool loginSuccess

input String uid

output int attempts<user> : inv: uid; ext: useraction :=
ite(loginSuccess,O0,
attempts (user) [+1,0]+1)

where uid and useraction are auxiliary streams: the uid stream contains the id
of the user who is currently logging in, and causes an invocation of the instance
of the attempts stream corresponding to that user if that instance does not exist
already, i.e., during the first login attempt of that user; the useraction stream
extends the attempts stream whenever that user attempts another login:

output bool useraction<u> := (uid=u)

As a result, the attempts(u) stream of a particular user u consists of those
positions, and only those positions, where the user u tries to log on. The condition



under which the monitor should raise an alarm is indicated in Lola with the
keyword trigger. In Lola 2.0, the trigger condition might involve an aggregation
over the instances of a stream template, as in the following example:

output bool bruteforce<user> : inv: uid; ext: useraction :=
attempts (user)>3
trigger any(bruteforce)

The alarm is triggered if there exists a user who attempts more than three failed
login attempts. Note that the only expensive part of the monitoring happens
in the attempts(user) streams, which each run very slowly, at the pace of an
individual user, and deal with very little data. While many instances of the
attempts template might be active at the same time, this does not constitute a
performance bottleneck as the instances could easily be distributed over several
parallel machines.

Outline In Section 2, we relate Lola 2.0 to other specification mechanisms for
network monitoring. In Section 3 we discuss the syntax of Lola 2.0. In Section 4
we provide some illustrative examples of the application of Lola 2.0 to network
intrusion detection. In Section 5 we turn to describing the semantics of Lola
2.0 in more detail. In Section 6, we present a monitoring algorithm for Lola 2.0
specifications. We report on experimental results in Section 7 and conclude in
Section 8.

2 Related Work

Approaches to network intrusion detection are broadly classified into signature-
based [19,1,16,17,11] and anomaly-based [8,15] approaches. Signature-based
approaches monitor for known patterns of attacks, while anomaly-based ap-
proaches detect deviations from the usual behavior. Typically, signature-based
approaches run the risk of missing attacks that do not follow a known pattern,
anomaly-based approaches can recognize previously unseen attacks, but often
produce false alarms. While our approach belongs to the category of signature-
based approaches, it can, to some extent, emulate an anomaly-based approach
by computing certain statistics and raising an alarm if the values fall out of the
normal range.

Within the signature-based approaches, a wide range of specification lan-
guages has been proposed that differ significantly in expressiveness and ease-
of-use. One of the most common NIDS is the Snort system [19]. Specifications
for Snort are based on a simple rule-based model language that describes per
packet tests and actions. Snort rules can define statistical anomaly patterns
over packets and collect traffic based on data contained in the payload of the
packets. Suricata!, is a more recent implementation using the same rule-based
input language as Snort. The focus on individual packets, rather than the rela-
tion between multiple packets, is the key weakness of light-weight specification

! https://suricata-ids.org



approaches like Snort and Suricata rules. On the other end of the expressivity
spectrum, systems like Bro [18], which use an event-based scripting language as
a specification mechanism, fall into the category of heavy-weight specification
mechanisms, which have the full power of a programming language.

As first pointed out by Roger and Goubault-Larrecq [20], the temporal pat-
terns in the relations of multiple packets can naturally be expressed in a tem-
poral logic. Approaches to intrusion detection based on temporal logic include
the ORCHIDS [17], TeStID [2], and MONID [16] tools. ORCHIDS uses a spe-
cialized temporal logic tailored towards eventuality properties and employs an
expressive underlying rule-based language as well as the capability to spawn
monitors for individual instances of monitoring tasks. In comparison to Lola 2.0,
non-determinism in the specification has to be handled explicitly. TeStID uses
Many Sorted First Order Metric Temporal Logic (MSFOMTL). MONID uses
the temporal logic EAGLE, which is based on parameterized recursive equa-
tions. A simpler, and often more efficient version of EAGLE is the rule-based
specification language RuleR [4].

Our approach is based on the stream-based specification language Lola [7].
The definition of Lola output streams in terms of other streams resembles syn-
chronous programming languages (notably Lustre [12], Esterel [5], and Sig-
nal [10]). Unlike these languages, Lola is not, however, an ezecutable program-
ming language, but a descriptive specification language. Lola subsumes many
other specification languages, such as the temporal logics, and has been shown
to provide natural encodings for both the temporal and the statistical measures
needed to monitor industrial hardware designs. More theoretical work on Lola
concerns the complexity, expressiveness, succinctness, and closure properties of
Boolean streams [6]. The new version of Lola presented in this paper extends the
original language with the concepts of parameterization and multiple temporal
time scales.

Parameterization is a common concept in specification languages for runtime
verification. In parametric temporal logic [9], parameters refer to quantitative
measures, such as the number of steps until an eventuality is fulfilled. While
this type of parametric specification can also be encoded in Lola, the purpose
of the parameterization in Lola 2.0 is to run individual streams on small slices
of the incoming data stream. This type of parameterization is similar to the
parameterization in QEA (Quantified Event Automata) [3], an approach based
on state machines, where a given trace is sliced into separate projections for
different parameter values. Both types of parameterization appear in rule-based
specification languages like LogFire [13], where a set of facts F(v1,...,v,) for
some name F' and parameter values v, ..., v, is maintained. A generic approach
to add parameterization to an existing specification language was presented by
Rosu and Chen [21]. The parameterization in Lola 2.0 extends these approaches
with the dynamic creation and termination of streams and the aggregation of
statistics over the instances of a stream template.



3 Stream-based Specifications

We introduce the syntax of stream-based Lola specifications in two steps. We
begin with “standard” Lola, as introduced in [7], where specifications are given
by equations over stream variables. In the second step, we introduce Lola 2.0,
by generalizing such stream equations to stream equation templates.

Lola 1.0 A Lola specification is a system of equations of stream expressions
over typed stream variables of the following form:

input T t1
input T,, t,,
output Tm+1 S1 ‘= el(tl, NN 7tm7 S1,y--- Sn)
output Tiin Sn = €n(t1, ..., tm, S1,..-5n)
Each stream expression e;(t1,...,tm,81,...8,), for 1 < i < n is defined over a
set of independent stream variables tq,...,t,, and dependent stream variables
$1,...,8n. Independent stream variables refer to input stream values, and de-

pendent stream variables refer to output stream values computed over the values
of all streams. All stream variables are typed: the type of an independent stream
variable ¢; is T;, the type of an dependent stream variable s; is T, 4.

A stream expression e(ty,...,tm, S1,...Syn) is defined recursively as follows:

— Let ¢ be a constant of type T and let s; for 1 < ¢ < n be a stream variable
of type T”, then both e = ¢ and e = s; are atomic stream expressions of type
T and T” respectively.

— Let f: Ty xTy x... Ty — T be a k-ary function, then for stream expressions
e1,...ex of type Th,..., Tk, the expression e = f(e1,...,ex) is a stream
expression of type T

— Let b be a boolean stream expression and e, e5 stream expressions of type
T, then e = ite(b,eq,e2) is a stream expression of type T. The expression
evaluates to e; when b is true and to es when b is false.

— Let ¢’ be a stream expression of type T, d a constant of type T, and i
an integer, then e = €’[i,d] is a stream expression of type T. The stream
expression €’[i, d] refers to the value of expression ¢’ offset ¢ positions from
the current position. If such a position is not defined, then the value of the
stream is the default value d.

In addition to the stream equations, Lola specifications often contain a list
of triggers

trigger 1, 92,..., ¢k

where 1, s, ..., i are expressions of type boolean over the stream variables.
Triggers generate notifications when their value becomes true.



Lola 2.0 Lola 2.0 extends Lola with stream equation templates of the following
form:
output T s(py : T1,...,p : T7) : inve Sipy;
ext: Seu;
ter: s =
e(tla cee 7tma S1y-+-8n,P15--- 7pl)

Each such stream equation template introduces a template variable s of type
T that depends on parameters pq,...,p; of types T, ,...T},, respectively. For
given values vy, ..., v; of matching types T}, ,...T),, we call

S<v17""vl> = e(tl’""tnl’517"'sn)p1""’pl)[pl//v]~7"'pl//vl]

an instance of s. The template variables s;,4, Sext, and S, indicate the following
auziliary streams:

— Sinv 1S the invocation template stream variable of s and has type Tj, x
- x Tp,. If some instance of s;n, has value (v1,...v;), then an instance
s(v1,...,v;) of s is invoked.

— Seqt 1S the extension template stream variable of s and has type bool and
parameter of type Tp,,...Tp,. If s is invoked with parameter values o =
(v1, ..., v1), then an extension stream s%,, is invoked with the same parameter
values. If s%,, is true, then the value of the output stream s{vy,...,v;) is
computed at the position.

— Ster 18 the termination template stream variable of s and has type bool and
parameters of type T,,,...Tp,. If s is invoked with parameter values a =
(v1,...,77), then a terminate stream s, is invoked with the same parameter
values. If 59, is true, then the output stream s(vi,...,v;) is terminated and
not extended until it is invoked again.

A template stream expression e(t1, ..., tm, 81, --Sn,P1,---,p1) is defined like
a stream expression in Lola 1.0, with the following additions:

— Let p; for ¢ € {1,...1} be a parameter. Then p; is a template stream expres-
sion of type T;.

— Let s be a template variable, and Op be an aggregation operator of type T.
For example, any is an aggregation operator of type bool, count is an ag-
gregation operator of type int. Then Op(s) is a template stream expression
of type T.

If a stream equation template has no parameters, we omit the empty param-
eter tuple (). We also permit that any of the auxiliary streams may be omitted,
in which case the invocation stream is set to the default stream og, which is the
constant stream that produces the empty tuple () in every position; the exten-
sion template stream is set to the constant stream that produces true in every
position, and the termination template stream is set to the constant stream that
produces false in every position. Note that in this way, Lola 1.0 stream equations
are special cases of Lola 2.0 stream equation templates. The same also holds for
independent stream variables. If omitted from the declaration, the invocation,
extension and termination streams are set to the default values.



4 Example Specifications

In this section we show how we can employ Lola 2.0 to define properties over
network traffic. Consider the Lola 2.0 specification given in Figure 1. The spec-
ification defines a pattern for detecting a web application fingerprinting attack.
In such an attack a hostile client sends arbitrary HT'TP requests and awaits the
responses from the server, which contain a HTTP response header with informa-
tion about the server software vendor, its version, and more. Such information
allows the client to determine known vulnerabilities according to the type of the
server. The attacker mostly requests access to random URLs, which may lead
in many cases to an HTTP response declaring either a bad HTTP request or a
page not found message. One way to observe such an attack is to observe server
responses containing either “Bad HTTP request” or “Page not found” messages
and then check whether the IP address, which initiated the request, continues
sending random requests to the server.

In the specification, the stream webApplicationFingerprinting is invoked
for a pair of source and destination addresses every time the invocation stream
badHttpRequestInvoke is extended with a new pair of addresses. Such a pair
is recorded whenever a bad request or no page found response is sent out, as
defined by the extension stream of badHttpRequestInvoke?.

Once an instance of webApplicationFingerprinting is invoked it tracks
the number of bad requests, using the extension stream badHttpRequestExtend
which is invoked simultaneously with the same pair of addresses. If at some point
the status code OK was returned then the instance is terminated via the ter-
mination stream webApplicationFingerprintingTerminate. This allows the
monitoring process to discard many instances of the template that otherwise
would cause many false positive alerts. If an instance is not terminated and its
value exceeds a certain threshold, then the monitoring algorithm alerts about
a potential web application fingerprinting threat. The latter is defined by the
keywords trigger and any.

We consider another example involving denial of service attacks (DoS). One
way of checking whether a server is subject to a DoS attack, is to observe whether
a large number of connections are established to the server in a short period of
time from external IP addresses. Consider a client that is trying to perform a
DoS attack via a TCP-SYN scan. The hostile client sends a SYN request to the
server to initiate a three-way handshake, upon which the server responds with
a SYN/ACK packet including the port number it was sent from. The malicious
client then sends no ACK packet to acknowledge the reception of the SYN/ACK
package, or might even request a reset of the communication, which leaves the
port and connection data structure open and thus leads to eventual resource
exhaustion. One way to monitor such an attack is to check whether a large
number of uncompleted handshakes are observed in the traffic.

2 In Figure 1 the extension stream of badHttpRequestInvoke is defined explicitly in
the output stream. This could also have been defined separately by a declaration of
another boolean output stream with the same condition.



input string Protocol, RequestMethod, ResponsePhrase, Source, Destination

output (string, string) badHttpRequestInvoke;
ext: Protocol="HTTP" & (ResponsePhrase="Bad Request" | "Not Found")
:= (Source, Destination)

output bool badHttpRequestExtend<src, dst>:
inv: badHttpRequestInvoke;

:= src=Source & dst=Destination &
ResponsePhrase = "Bad Request" | "Not Found"

output bool webApplicationFingerprintingTerminate<src,dst>:
inv: badHttpRequestInvoke;
:= src=Source & dst=Destination & ResponsePhrase = "OK"

output int webApplicationFingerprinting<src, dst>:
inv: badHttpRequestInvoke;

ext: badHttpRequestExtend;

ter: webApplicationFingerprintingTerminate

:= webApplicationFingerprinting(src, dst)[-1,0]+1

trigger any (webApplicationFingerprinting > threshold)

Fig. 1. A Lola 2.0 specification for a web application fingerprinting pattern

Figure 2 shows a specification for checking whether the number of open
TCP requests exceeds a given threshold using the stream template tcpSynScan.
Whenever there is a TCP request from a client to the server, the monitor waits
for an acknowledgment from the client. This is determined by the specification
waitForAck which is invoked by the stream incompleteHandshakeInvoke for
a pair of addresses. At the same time the stream incompleteHandshakeInvoke
also invokes an instance of the template tcpSynInvoke. If a certain time passes
without seeing an acknowledgement, then the instance is extended by the pair
of source and destination addresses and an instance of tcpSynScan is invoked to
monitor a potential TCP SYN scan attack for this pair of IP addresses. From this
position on the monitor keeps track of how many TCP requests are received from
an [P address or whether Syn requests keep being sent from one address without
acknowledgements. When one of the thresholds threshold2 and threshold3 is
exceeded, the monitor triggers an alert. This is achieved using the keywords
trigger, any and count.

5 Lola 2.0 Semantics

We now give a formal definition of the Lola 2.0 semantics. Let @ be a specification
with independent stream variables ¢1, ..., t,, of type 11, ...T,,, respectively, and
template stream variables si,..., s, of types Ti41, ... Tm+n, respectively.



input string Protocol, Syn, Ack, Source, Destination

output (string,string) incompleteHandshakeInvoke:
ext: Protocol= "TCP" & Syn="Set" & Ack="Not Set";
:= (Source,Destination)

output bool incompleteHandshakeTerminate<src, dst>:
inv: incompleteHandshakeInvoke;
=Source=src & Destination=dst & Syn="Not Set" & Ack="Set"

output int waitForAck<src,dst>:
inv: incompleteHandshakeInvoke;
ter: incompleteHandshakeTerminate
= waitForAck(src, dst)[-1,0]+1

output (string,string) tcpSynInvoke<src, dst>:
inv: incompleteHandshakeInvoke;

ext: waitForAck(src,dst) [0,0] > threshold
ter: waitForAck(src,dst) [0,0] > threshold

= (src,dst)

output bool tcpSynExtend<src,dst>:
inv:tcpSynInvoke;
= src = Source & dst = Destination & Syn = "Set"

output bool tcpSynTerminate<src,dst>:
inv:tcpSynInvoke;
= src = Source & dst = Destination & Syn = "Not Set" & Ack="Set"

output int tcpSynScan<src,dst>:
inv:tcpSynInvoke;
ext:tcpSynExtend;
ter:tcpSynTerminate;
=tcpSynScan(src,dst) [-1,0] +1

trigger count (tcpSynScan) > threshold2
trigger any (tcpSynScan > threshold3)

Fig. 2. A specification of a TCP SYN scan pattern

We fix a natural number N > 0 as the length of the traces. An evaluation
model of @ is a set I' of streams of length IV, where each stream has type
Toni U{#} for 1 < i < n. The symbol # is added to the types to indicate that
the stream does not exist yet at a particular position, for example if the stream
has not been invoked yet. In the following, we use s to refer to the instance of a
template variable s; with parameter values a, and o to refer to a corresponding

stream in ['.



We now pose several conditions that evaluation models must satisfy. Intu-
itively, the conditions concern the two mutually dependent requirements that
(1) the evaluation model is populated with a sufficiently large set of streams,
and that (2) each stream actually produces the right values. To guarantee re-
quirement (1), we describe the elements of I" inductively as follows:

— 09 € I', where oy is the constant stream that produces the empty tuple ()
in every position.

— For each template stream variable s;, we consider the associated invocation
stream variable s;,,. If I' contains some stream o, for some parameter
values a € T{™ x -+ x T”“’ then I' must also contain a stream for every
instance of s; invoked by o% . at some position; i.e., for all 5 < N where

> o(d) # #, there must exist some stream af € I for the instance of s;

given by the parameter values 5 = o, (7).

inv
g

To guarantee condition (2), that each stream actually produces the right
values, we first characterize the positions in which the stream exists.

Let alive(s;, (v1,...,v,),7) be true for some stream position j if the stream
was actually 1nvoked i.e., there is a stream Ufm € I for some instance of the
associated invocation stream variable s;,, (with arbitrary parameter values f3)
and an earlier stream position j' < j such that Uzﬁm}(]’) = (v1,...,v), and
the stream was not terminated in the meantime, i.e., for j/ < j” < j we have
afe,T(j” ) = false for all instances of the termination stream variable with 8 =
(U1, 07).

If a stream exists in some position, we determine its value by evaluating
the corresponding stream expression. For each stream o € I" for the instance

a = (v1,...,v;,;) of some stream template variable s;,

ar o Jvalleilpy/vi, .o /ol g) i alive(ss, (v, .., v1), )
() = -
# otherwise

where the evaluation function val(e;[p1/v1,. .., 1, /v1,],J) is defined as follows:

— if 0¢,(§) = true, where o%
defined as follows:

o . is the extension stream of of, then wval(e, j) is

e val
val(ty)(j ) h(j) for1<h<m

(
* val(
. val(f(el,.. 7eh))(]) (val(el).(j),...,val(eh)(j)) _
o valli J) else val(e2)(j)

B ; ]
. oy (j) alive(sp, B, j
° val(sf[O, d])(]) = h( ) other(W}ilSe )

k+1,d)(—1) ifk<0,0°,(j) = true
k,d))(j + 1) it k>0
k,d

ifj>Norj<0
val(e[k: 1 d])(] + 1) ifk>0 Uezt( ) true
o val(s) [k, d])(j) = < val(e|
(ef
(elk,d])(j — 1) otherwise



— otherwise val(e;[p1/v1,...,pi,/vi,],J) = #

Intuitively, the extend stream defines a local clock for every template variable.
Unlike in Lola, where all streams follow the same one clock, streams in Lola 2.0
follow several clocks depending on their invocation time and the extension pace.
The invoke stream starts new instances of the template output stream whenever
it evaluates to a fresh parameter instantiation. The extend stream is evaluated
for all instances which are active on a current stream. Whenever it evaluates to
true, the template output stream instance advances on its timeline. A template
output stream instance is terminated whenever its terminate stream evaluates
to true for its parameter instantiation. The clocks can be inductively defined on
top of the clock of stream g, which we call the base clock.

Well-defined specifications. We say a specification is well-defined, if for any
set of appropriately typed input streams of length IV for the independent stream
variables, it has a unique evaluation model. In general, specifications need not
be well-defined, for example through self-references without offsets in stream
expressions or circular offsets via multiple stream variables, which lead to the
non-existence of evaluation models or lead to infinitely many evaluation models
for a given set of input streams.

Since well-definedness is a semantic condition and expensive to check, we give
a syntactic criterion, called well-formedness, which implies well-definedness and
can be checked by a simple check on the dependency graph. For a specification
@, its associated dependency graph is a weighted and directed multi-graph G =
(V,E) with V. = {s1,...,8n,t1,...,tm}. We add an edge e € E where e =
(84, Sk, w) from s; to s with weight w iff the stream expression of s; contains
the subexpression s [w, d] for some default value d. Edges leading to ¢, are added
analogously. Thus, the edges represent the fact that expression s; depends on
sk at (positive or negative) offset w. Since each stream may be used more than
once with different offsets in an expression, the graph may contain multiple edges
between vertices. A cycle in the graph is a sequence wvq S gy R
vg+1 such that all e; = (v, viq1,w;) € E, and v = vg41. The total weight of
the cycle is the sum of all weights w; along the cycle. A specification is well-
formed, iff it does not contain a zero-weight cycle. Well-formed specifications are
guaranteed to be well-defined.

6 The Monitoring Algorithm

We now describe a monitoring algorithm for the evaluation of a given Lola
2.0 specification on a set of input streams for the independent stream variables.
The streams become available online, i.e., one position at a time. The length of
the streams is a-priori unknown and the full streams may be too large to store
in memory.

The central data structure of the algorithm is the equation store, which con-
sists of the following parts: A store S, in which we keep a set of the currently



active instances of template stream variables; a store of resolved equations R,
which are fully evaluated but may still be used by other streams, and a store of
unresolved equations U, which are not yet fully evaluated.

For each position, we begin the evaluation by adding the input stream values
at the current position to the store R. As we are adding resolved equations to
R, we always check whether they start new invocations for any of the template
stream expressions. Should this happen, we add these to the store S and add
corresponding unresolved equations to the store U. We then continue by simpli-
fying the equations in U by function applications, rewriting rules for conditionals
and resolving stream access and offsets by the equations from store R. The invo-
cation check and the simplification step are repeated until nothing new is added
to R and no new streams are invoked. The number of repetitions depends on the
structure and dependencies of the specification. Equations are removed from the
store R whenever they are not needed anymore.

To simplify the presentation of the algorithm, we assume that all extension
and termination streams are locally determined, i.e., their value at every position
can be calculated just from the values of the input streams at the same or earlier
positions. Let, for each independent stream variable ¢;, the corresponding input
stream be denoted by 7;. Starting at position j = 0 with the empty equation
stores, the algorithm performs the following steps for each position:

1. For each input stream ¢;, add 7;(j) = ¢ to store R.

2. Add o¢(j) = () to R.

3. Initialize the set of active stream valuations: For all template streams s;, and
valuations « such that o € S(s;,5 — 1), if 08, = true and o, = false then
a € S(si,j).

Then repeat the following steps until a fixpoint is reached:

1. Simplify all equations in U, if any expression is now constant, add to R.

2. Check for new invocations, extensions and terminations by the additions to
R.

3. If for some stream template s;, and any position k, o, (k) = 8 is added to
R, then S(s;, k) = S(s;, k) U B and we add o” (k) = e to U.

4. Tf for some stream template s;, and any position k, 0%,,(k) = true is added
to R, we add o®(k) = e to U.

The equations in U are simplified according to the following rules:

— Function application: e.g. 0+ — x, ...

— Rewriting for conditionals: ite(true, eq, ea) — e, ite(false,eq,e2) — ea.

Resolve stream access: If 0; (j) = ¢ in R, replace every occurence of a; «(5)

by cin U.

— Resolve stream offsets: If some 0 (j) = e; in U contains a subexpression
oia(i)[k,d], 0%,.(7) = cisin R for c € {true, false}, and 0@, (j) = false then

ext



0ia(d) if k=0,02,(j) = true
oia(j+1)[k—-1,d ifk>0,02,0) = true
ot o) d] — O'zva(j: — D[k +1,d %f k<0,0%,(j) = true
’ 0ia(j + 1)k, d] ifk>0
oi.a(j — 1)k, d] ifk>0,j>0
d otherwise

— Resolve nonliving stream offsets: If some 0; o(j) = €; in U contains a subex-
pression o; o(j)[k, d], and o ¢ S(s;,7), then o o(j)[k,d] — d.

During the monitoring, we use a garbage collection process to remove entries
from store R that are no longer needed. For each template stream expression
s;, we initially calculate the cutoff vector, which determines when a resolved
stream expression can be cleared from store R. The vector records the usage of
the stream expression within the definition of other streams and the maximal
offset value. The vector contains one entry for every other stream, with default
value 0. If there exits a reverse path in the dependency graph from stream sy
to stream s;, we use the path with the smallest negative weight occuring on the
edge originating in s, on the path as the value. This yields the longest time we
keep a value for s; in memory for any dependency of sy.

In an extra garbage collection store GC, we keep track of the current vectors
of stream extensions which need to occur before a value can be eliminated.
Whenever a new stream is invoked, we initialize GC(s;, o, j) = (c1, ..., ¢,) With
the cutoff vector (cq,...,c,). Whenever a stream sy, is extended, we increment
the corresponding component ¢ of all vectors in GC. If a vector in GC' for any
«a and any s; reaches strictly positive values in all elements at position j, we can
safely remove o; (j) from R.

Once the stream has terminated, we replace all open offset expressions beyond
the end of the stream with the specified default value and compute the fixpoint
once again.

Efficiently monitorable specifications A specification is called efficiently
monitorable if its memory consumption is constant in the length of the input
streams. In Lola 1.0, a specification is guaranteed to be efficiently monitorable,
if the value of every stream depends, at every position, only on values of other
streams up to a bounded number of steps into the future [7]. A corresponding
result for Lola 2.0 does not hold, because we do not know how many streams
are invoked during run-time. Thus, the memory needed for a Lola 2.0 specifi-
cation therefore might grow with the length of generated traces. In practice, it
is, however, often possible to bound the number of instances invoked during the
monitoring process. This additional assumption in fact allows us to syntactically
characterize a class of efficiently monitorable specifications. The restriction from
Lola 1.0 that future dependencies are bounded is, however, not strong enough
for Lola 2.0. The reason is that, even when a reference in a Lola 2.0 specification
looks only a constant number of steps into the future, the actual occurrence of
these future events might be delayed indefinitely by the extension stream. To



obtain an efficiently monitorable fragment for Lola 2.0, we must therefore forbid
all future references. Arbitrary references into the past remain allowed.

7 Experimental Results

We have implemented the monitoring algorithm for the efficiently monitorable
fragment of Lola 2.0 as a command-line tool in C. As an input, it takes pre-
processed network capture files (using the tool Wireshark®), which contain only
the relevant input data defined by the input streams in the specification, and a
Lola specification and produces output streams and statistics according to the
specification.

Our experiments use network capture files from the Malware Capture Facility
Project*. The network capture files range from 0.9 million up to 2.4 million
packets and capture the traffic in a time frame of 24 hours. All experiments were
run on a single quad-core machine with an 3.6 GHz Intel Xeon processor with
32 GB RAM. The input stream files were stored on an internal SSD drive.

Table 1 shows the result of the monitoring tool on the specification in Fig-
ure 2. We computed the number of count triggers, whose task was to observe
the number of open handshake communications that have been waiting for more
than 500 packets for an acknowledgment. We also observed the any trigger which
checked whether any TCP request was not acknowledged after 600 packets. We
compare the results of our specification with a Snort specification that checks
whether the number of TCP Syn requests exceeds a threshold of 100 requests per
60 seconds. The results show that the specification in Figure 2 never triggered,
and therefore all Syn-requests were acknowledged eventually. In comparison, a
large number of Snort alerts were issued on the trace files for the Snort speci-
fication. The reason for that is that Lola 2.0 allows an intermediate step using
the templates waitForAck and tcpSynScan, where the monitor waits for the
acknowledgment for a pair of IP-addresses before triggering. The high number
of waitForAck invocations in comparison to the number of tcpSynScan invo-
cations shows that Lola 2.0 allows to filter many TCP communications before
starting the check for a possible TCP-Syn scan.

However, on the trace files used in the experiment of Table 1, Snort was
able to return all the alerts in less than a minute. Since the following manual
inspection of the Snort alerts is necessary to evaluate the potential TCP Syn
Scan attack, this points to an interesting trade-off between the expressiveness of
the specification mechanism and the time needed to analyze large trace files.

8 Conclusion

We have extended the stream-based specification language Lola with stream
templates. Lola 2.0 is a descriptive language that subsumes many other spec-
ification languages and we showed how one can provide natural encodings for

3 http://www.wireshark.org
4 http://mefp.weebly.com



Table 1. A comparison between our Lola 2.0 prototype and the rule-based language
Snort for detecting a simple pattern of TCP SYN scans.

#Packets|Snort alerts|Invocation|Count Trigger|Any Trigger| Time
Wait|Scan (sec)

901710 613| 53654| 340 323 0| 2550.31
1710372 472| 95983| 260 254 0| 6279.87
1857752 1699(107721| 280 274 0| 6786.06
1954427 2428|115787| 379 369 0| 7160.27
2419006 2036(146748| 869 835 0[10347.96

properties and attack patterns over network traffic. The extended language pro-
vides a bridge between more light-weight approaches and monitoring techniques
based on expensive formalisms such as the temporal logics, combining both sim-
plicity and expressiveness. During runtime, each template can be instantiated
dynamically to obtain new streams. This allows each stream to run on an indi-
vidual slice of the incoming data. In this way, Lola 2.0 can combine specifications
that run on widely varying amount of data, and with widely varying speed. In-
expensive patterns can be used as filters that produce streams that run with less
data, which can subsequently be analyzed against more expensive patterns.

Even though our prototype is an online monitoring tool, we have evaluated
the tool on previously recorded pcap log data. In future work, we plan to de-
ploy the monitor directly in the network. Since Lola specifications can easily
be parallelized, such an implementation will likely consist of several connected
nodes, placed at strategically chosen positions within the network. Further in-
vestigating the trade-off between the expressiveness and efficiency in descriptive,
stream-based approaches for network monitoring remains an interesting topic for
future work.
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