
Bounded Cycle Synthesis?

Bernd Finkbeiner and Felix Klein

Reactive Systems Group, Saarland University, Germany
{finkbeiner,fklein}@cs.uni-saarland.de

Abstract. We introduce a new approach for the synthesis of Mealy ma-
chines from specifications in linear-time temporal logic (LTL), where the
number of cycles in the state graph of the implementation is limited by
a given bound. Bounding the number of cycles leads to implementations
that are structurally simpler and easier to understand. We solve the syn-
thesis problem via an extension of SAT-based bounded synthesis, where
we additionally construct a witness structure that limits the number of
cycles. We also establish a triple-exponential upper and lower bound for
the potential blow-up between the length of the LTL formula and the
number of cycles in the state graph.

1 Introduction

There has been a lot of recent progress in the automatic synthesis of reactive
systems from specifications in temporal logic [4, 6, 7, 9, 12]. From a theoretical
point of view, the appeal of synthesis is obvious: the synthesized implementation
is guaranteed to satisfy the specification. No separate verification is needed.

From a practical point of view, the value proposition is not so clear. Instead
of writing programs, the user of a synthesis procedure now writes specifications.
But many people find it much easier to understand the precise meaning of a
program than to understand the precise meaning of a temporal formula. Is it
really justified to place higher trust into a program that was synthesized auto-
matically, albeit from a possibly ill-understood specification, than in a manually
written, but well-understood program? A straightforward solution would be for
the programmer to inspect the synthesized program and confirm that the imple-
mentation is indeed as intended. However, current synthesis tools fail miserably
at producing readable code.

Most research on the synthesis problem has focused on the problem of find-
ing some implementation, not necessarily a high-quality implementation. Since
specification languages like LTL restrict the behavior of a system, but not its
structure, it is no surprise that the synthesized implementations are often much
larger and much more complex than a manual implementation. There has been
some progress on improving other quality measures, such as the runtime per-
formance [4], but very little has been done to optimize the structural quality of

? Partially supported by the DFG project “AVACS” (SFB/TR 14). The second author
was supported by an IMPRS-CS PhD Scholarship.

1

3

2

5

4

7

6

1

3

2

5

4

7

6

24 2526

20

21

2223

1

3

2

5

4

7

6

9

8

11

10

13

12

1514

17

16

19

18

Fig. 1. Three implementations of the TBURST4 component of the AMBA bus con-
troller. Standard synthesis with Acacia+ produces the state graph on the left with 14
states and 61 cycles. Bounded synthesis produces the graph in the middle with 7 states
and 19 cycles. The graph on the right, produced by our tool, has 7 states and 7 cycles,
which is the minimum.

the synthesized implementations (cf. [14]). Can we develop synthesis algorithms
that produce implementations that are small, structurally simple, and therefore
easy to understand?
A first step into this direction is Bounded Synthesis [9]. Here, we bound the
number of states of the implementation and can therefore, by incrementally
increasing the bound, ensure that the synthesized solution has minimal size.

In this paper, we go one step further by synthesizing implementations where,
additionally, the number of (simple) cycles in the state graph is limited by a given
bound. Reducing the number of cycles makes an implementation much easier to
understand. Compare the three implementations of the TBURST4 component of
the AMBA bus controller shown in Figure 1: standard synthesis with Acacia+
produces the state graph on the left with 14 states and 61 cycles. Bounded
Synthesis produces the middle one with 7 states and 19 cycles. The graph on the
right, produced by our tool, has 7 states and 7 cycles, which is the minimum.

An interesting aspect of the number of cycles as a parameter of the imple-
mentations is that the number of cycles that is potentially needed to satisfy an
LTL specification explodes in the size of the specification: we show that there is
a triple exponential lower and upper bound on the number of cycles that can be
enforced by an LTL specification. The impact of the size of the specification on
the number of cycles is thus even more dramatic than on the number of states,
where the blow-up is double exponential.

Our synthesis algorithm is inspired by Tiernan’s cycle counting algorithm
from 1970 [17]. Tiernan’s algorithm is based on exhaustive search. From some
arbitrary vertex v, the graph is unfolded into a tree such that no vertices repeat
on any branch. The number of vertices in the tree that are connected to v then
corresponds to the number of cycles through v in the graph. Subsequently, v is
removed from the graph, and the algorithm continues with one of the remaining
vertices until the graph becomes empty. We integrate Tiernan’s algorithm into

1 2 3

1

2

3

2

3

3

Fig. 2. Witness for an example state graph with three cycles. The state graph is shown
on the left. The first graph on the right proves that vertex 1 is on two cycles (via vertex
2 and vertices 2 and 3). The second graph proves that vertex 2 is on a further cycle not,
containing vertex 1, namely via vertex 3. There are no further cycles through vertex 3.

the Bounded Synthesis approach. Bounded Synthesis uses a SAT-solver to simul-
taneously construct an implementation and a witness for the correctness of the
implementation [9]. For the standard synthesis from an LTL specification ϕ, the
witness is a finite graph which describes an accepting run of the universal tree
automaton corresponding to ϕ. To extend the idea to Bounded Cycle Synthesis,
we define a second witness that proves the number of cycles, as computed by
Tiernan’s algorithm, to be equal to or less than the given bound. An example
state graph with three cycles is shown on the left in Figure 2. The witness con-
sists of the three graphs shown on the right in Figure 2. The first graph proves
that vertex 1 is on two cycles (via vertex 2 and vertices 2 and 3). The second
graph proves that vertex 2 is on a further cycle, not containing vertex 1, namely
via vertex 3. There are no further cycles through vertex 3.

Our experiments show that Bounded Cycle Synthesis is comparable in per-
formance to standard Bounded Synthesis. The specifications that can be handled
by Bounded Cycle Synthesis are smaller than what can be handled by tools like
Acacia+, but the quality of the synthesized implementations is much better.
Bounded Cycle Synthesis could be used in a development process where the
programmer decomposes the system into modules that are small enough so that
the implementation can still be inspected comfortably by the programmer (and
synthesized reasonably fast by using the Bounded Cycle Synthesis approach).
Instead of manually writing the code for such a module, the programmer has
the option of writing a specification, which is then automatically replaced by the
best possible implementation.

2 Preliminaries

The non-negative integers are denoted by N. An alphabet Σ is a non-empty finite
set. Σω denotes the set of infinite words over Σ. If α ∈ Σω, then αn accesses the
n-th letter of α, starting at α0. For the rest of the paper we assume Σ = 2I∪O

to be partitioned into sets of input signals I and output signals O.
A Mealy machine M is a tuple (I,O, T, tI , δ, λ) over input signals I and

output signals O, where T is a finite set of states, tI ∈ T is the initial state,

δ : T × 2I → T is the transition function, and λ : T × 2I → 2O is the output
function. Thereby, the output only depends on the current state and the last
input letter. The size ofM, denoted by |M|, is defined as |T |. A path p of a Mealy
machine M is an infinite sequence p = (t0, σ0)(t1, σ1)(t2, σ2) . . . ∈ (T ×Σ)ω such
that t0 = tI , δ(tn, I ∩ σn) = tn+1 and λ(tn, I ∩ σn) = O ∩ σn for all n ∈ N.
We use π1(p) = σ0σ1σ2 . . . ∈ Σω, to denote the projection of p to its second
component. P(M) denotes the set of all paths of a Mealy machineM.

Specifications are given in Linear-time Temporal Logic (LTL). The atomic
propositions of the logic consist of the signals I ∪ O, resulting in the alphabet
Σ = 2I∪O. The syntax of an LTL specification ϕ is defined as follows:

ϕ := true | a ∈ I ∪ O | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕU ϕ

The size of a specification ϕ is denoted by |ϕ| and is defined to be the number of
sub-formulas of ϕ. The semantics of LTL are defined over infinite words α ∈ Σω.
We define the satisfaction of a word α at a position n ∈ N and a specification ϕ,
denoted by α, n � ϕ, for the different choices of ϕ, respectively, as follows:

– α, n � true
– α, n � a iff a ∈ αi
– α, n � ¬ϕ iff α, n 6� ϕ
– α, n � ϕ1 ∨ ϕ2 iff α, n � ϕ1 or α, i � ϕ2

– α, n � ϕ iff α, n+ 1 � ϕ
– α, n � ϕ1 U ϕ2 iff ∃m ≥ n. α,m � ϕ2 and ∀n ≤ i < m. α, i � ϕ1

An infinite word α satisfies ϕ, denoted by α � ϕ, iff α, 0 � ϕ. The language L(ϕ)
is the set of all words that satisfy ϕ, i.e., L(ϕ) = {α ∈ Σω | α � ϕ}. Beside the
standard operators, we have the standard derivatives of the boolean operators,
as well as ϕ ≡ true U ϕ and ϕ ≡ ¬ ¬ϕ. A Mealy machine M is an
implementation of ϕ iff π1(P(M)) ⊆ L(ϕ).

Let G = (V,E) be a directed graph. A (simple) cycle c of G is a tuple (C, η),
consisting of a non-empty set C ⊆ V and a bijection η : C 7→ C such that

– ∀v ∈ C. (v, η(v)) ∈ E and
– ∀v ∈ C. n ∈ N. ηn(v) = v ⇔ n mod |C| = 0,

where ηn denotes n times the application of η. In other words, a cycle of G is a
path through G that starts and ends at the same vertex and visits every vertex
of V at most once. We say that a cycle c = (C, η) has length n iff |C| = n.

We extend the notion of a cycle of a graph G to Mealy machines M =
(I,O, T, tI , δ, λ), such that c is a cycle ofM iff c is a cycle of the graph (T,E)
for E = {(t, t′) | ∃ν ∈ 2I . δ(t, ν) = t}. Thus, we ignore the input labels of the
edges ofM. The set of all cycles of a Mealy machineM is denoted by C(M).

A universal co-Büchi automaton A is a tuple (Σ,Q, qI , ∆,R), where Σ is the
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q×Σ ×Q
is the transition relation and R ⊆ Q is the set of rejecting states. A run r =
(q0, σ0)(q1, σ1)(q2, σ2) . . . ∈ (Q × Σ)ω of A is an infinite sequence such that
q0 = qI and (qn, σn, qn+1) ∈ ∆ for all n ∈ N. A run r is accepting if it has a suffix

qnqn+1qn+2 . . . ∈ (Q \R)ω for some n ∈ N. An infinite word α ∈ Σω is accepted
by A if all corresponding runs, i.e., all runs r = (q0, σ0)(q1, σ1)(q2, σ2) . . . with
α = σ0σ1σ2 . . ., are accepting. The language L(A) of A is the set of all α ∈ Σω,
accepted by A.

The run graph G of a universal co-Büchi automaton A = (2I∪O, Q, qI , ∆,R)
and a Mealy machineM = (I,O, T, tI , δ, λ) is a directed graph G = (T ×Q,E),
with E = {((t, q), (t′, q′)) | ∃σ. δ(t, I∩σ) = t′, λ(t, I∩σ) = O ∩ σ, (q, σ, q′) ∈ ∆}.
A vertex (t, q) of G is rejecting iff q ∈ R. A run graph is accepting iff there is no
cycle of G, which contains a rejecting vertex. If the run graph is accepting, we
say,M is accepted by A.

3 Bounds on the number of cycles

Our goal is to synthesize systems that have a simple structure. System qual-
ity most certainly has other dimensions as well, but structural simplicity is a
property of interest for most applications.

The purpose of this section is to give theoretical arguments why the number
of cycles is a good measure: we show that the number of cycles may explode
even in cases where the number of states is small, and even if the specification
enforces a large implementation, there may be a further explosion in the number
of cycles. This indicates that bounding the number of cycles is important, if
one wishes to have a structurally simple implementation. On the other hand, we
observe that bounding the number of states alone is not sufficient in order to
obtain a simple structure.

Similar observations apply to modern programming languages, which tend
to be much better readable than transition systems, because their control con-
structs enforce a simple cycle structure. Standard synthesis techniques construct
transition systems, not programs, and therefore loose this advantage. With our
approach, we get closer to the control structure of a program, without being
restricted to a specific programming language.

3.1 Upper bounds

First, we show that the number of cycles of a Mealy machineM, implementing
an LTL specification ϕ, is bounded triply exponential in the size of ϕ. To this
end, we first bound the number of cycles of an arbitrary graph G with bounded
outdegree.

On graphs with arbitrary outdegree, the maximal number of cycles is given
by a fully connected graph, where each cycle describes a permutation of states,
and vice versa. Hence, using standard math we obtain an upper bound of 2n logn

cycles for a graph with n states. However, our proof uses a more involved ar-
gument to improve the bound even further down to 2n log(m+1) for graphs with
bounded outdegree m. Such an improvement is desirable, as for LTL the state
graph explodes in the number of states, while the outdegree is constant in the
number of input and output signals.

Lemma 1. Let G = (V,E) be a directed graph with |V | = n and with maximal
outdegree m. Then G has at most 2n log(m+1) cycles.

Proof. We show the result by induction over n. The base case is trivial, so let
n > 1 and let v ∈ V be some arbitrary vertex of G. By induction hypothesis,
the subgraph G′, obtained from G by removing v, has at most 2(n−1) log(m+1)

cycles. Each of these cycles is also a cycle in G, thus it remains to consider
the cycles of G containing v. In each of these remaining cycles, v has one of
m possible successors in G′ and from each such successor v′ we have again
2(n−1) log(m+1) possible cycles in G′ returning to v′. Hence, if we redirect these
cycles to v instead of v′, i.e., we insert v before v′ in the cycle, then we cover
all possible cycles of G containing v1. All together, we obtain an upper bound
of 2(n−1) log(m+1) +m · 2(n−1) log(m+1) = 2n log(m+1) cycles in G. ut

We obtain an upper bound on the number of cycles of a Mealy machineM.

Lemma 2. LetM be a Mealy machine. Then |C(M)| ∈O(2|M|·|I|).

Proof. The Mealy machineM has an outdegree of 2|I| and, thus, by Lemma 1,
the number of cycles is bounded by 2|M| log(2

|I|+1) ∈O(2|M|·|I|). ut

Finally, we are able to derive an upper bound on the implementations realizing
a LTL specification ϕ.

Theorem 1. Let ϕ be a realizable LTL specification. Then there is a Mealy
machineM, realizing ϕ, with at most triply exponential many cycles in |ϕ|.

Proof. From [15, 16, 9] we obtain a doubly exponential upper bound in |ϕ| on
the size ofM. With that, applying Lemma 2 yields the desired result. ut

3.2 Lower bounds

It remains to prove that the bound of Theorem 1 is tight. To this end, we show
that for each n ∈ N there is a realizable LTL specification ϕ with |ϕ| ∈ Θ(n),
such that every implementation of ϕ has at least triply exponential many cycles
in n. The presented proof is inspired by [1], where a similar argument is used to
prove a lower bound on the distance of the longest path through a synthesized
implementationM. We start with a gadget, which we use to increase the number
of cycles exponentially in the length of the longest cycle ofM.

Lemma 3. Let ϕ be a realizable LTL specification, for which every implemen-
tationM has a cycle of length n. Then there is a realizable specification ψ, such
that every Mealy machineM′ implementing ψ contains at least 2n many cycles.

1 Note that not every such edge needs to exist for a concrete given graph. However,
in our worst-case analysis, every possible cycle is accounted for.

Proof. Let a and b be a fresh input and output signals, respectively, which do
not appear in ϕ, and letM = (I,O, T, tI , δ, λ) be an arbitrary implementation
of ϕ. We define ψ ::= ϕ ∧ (a↔ b) and construct the implementationM′ as

M′ = (I ∪ {a},O ∪ {b}, T × 2{b}, (tI , ∅), δ′, λ′),

where λ′((t, s), ν) = λ(t, I ∩ ν) ∪ s and

δ′((t, s), ν) =

{
(δ(t, I ∩ ν), ∅) if a ∈ ν
(δ(t, I ∩ ν), {b}) if a /∈ ν

We obtain thatM′ is an implementation of ψ. The implementation remembers
each input a for one time step and then outputs the stored value. Thus, it satisfies
(a↔ b). Furthermore,M′ still satisfies ϕ. Hence, ψ must be realizable, too.
Next, we pick an arbitrary implementationM′′ of ψ, which must exist accord-

ing to our previous observations. Then, after projecting away the fresh signals
a and b from M′′, we obtain again an implementation for ϕ, which contains a
cycle (C, η) of length n, i.e., C = {t1, t2, . . . , tn}. We obtain that M′′ contains
at least the cycles

C = {({(ti, f(ti)) | i ∈ {1, 2, . . . n}}, (t, s) 7→ (η(t), f(η(t)))) | f : C → 2{b}},

which concludes the proof, since |C| = 2n. ut

Now, with Lemma 3 at hand, we are ready to show that the aforementioned lower
bounds are tight. The final specification only needs the temporal operators ,

and , i.e., the bound already holds for a restricted fragment of LTL.

Theorem 2. For every n > 1, there is a realizable specification ϕn with |ϕn| ∈
Θ(n), for which every implementation Mn has at least triply exponential many
cycles in n.

Proof. According to Lemma 3, it suffices to find a realizable ϕn, such that ϕn
contains at least one cycle of length doubly exponential in n. We choose

ϕprem
n ϕcon

n

ϕn ::= (
n∧
i=1

(ai → bi)→
n∧
i=1

(ci → di)) ↔ s

with I = Ia ∪ Ib ∪ Ic ∪ Id and O = {s}, where Ix = {x1, x2, . . . , xn}. The
specification describes a monitor, which checks whether the invariant ϕprem

n →
ϕcon
n over the input signals I is satisfied or not. Thereby, satisfaction is signaled

by the output s, which needs to be triggered infinitely often, as long as the
invariant stays satisfied.

In the following, we denote a subset x ⊆ Ix by the n-ary vector ~x over {0, 1},
where the i-th entry of ~x is set to 1 if and only if xi ∈ x.

The specification ϕn is realizable. First, consider that to check the fulfillment
of ϕprem

n (ϕcon
n), an implementationM needs to store the set of all requests ~a (~c),

whose 1-positions have not yet been released by a corresponding response ~b (~d).
Furthermore, to monitor the complete invariant ϕprem

n → ϕcon
n , M has to

guess at each point in time, whether ϕprem
n will be satisfied in the future (under

the current request ~a), or not. To realize this guess, M needs to store a map-
ping f , which maps each open request ~a to the corresponding set of requests ~c 2.
This way, M can look up the set of requests ~c, tracked since the last occur-
rence of ~a, whenever ~a gets released by a corresponding vector ~b. If this is the
case, it continues to monitor the satisfaction of ϕcon

n (if not already satisfied)
and finally adjusts the output signal s, correspondingly. Note that M still has
to continuously update and store the mapping f , since the next satisfaction of
ϕprem
n may already start while the satisfaction of current ϕcon

n is still checked.
There are double exponential many such mappings f , hence,M needs to be at
least doubly exponential in n.

It remains to show that every such implementationM contains a cycle of at
least doubly exponential length. By the aforementioned observations, we can as-
sign each state of M a mapping f , that maps vectors ~a to sets of vectors ~c.
By interpreting the vectors as numbers, encoded in binary, we obtain that
f : {1, 2, . . . , 2n} 7→ 2{1,2,...,2

n}. Next, we again map each such mapping f to
a binary sequence bf = b0b1 . . . bm ∈ {0, 1}m with m = 2n. Thereby, a bit bi of
bf is set to 1 if and only if i ∈ f(i). It is easy to observe, that if two binary
sequences are different, then their related states have to be different as well.

To conclude the proof, we show that the environment has a strategy to ma-
nipulate the bits of associated sequences bf via the inputs I.

To set bit bi, the environment chooses the requests ~a and ~c such that they
represent i in binary. The remaining inputs are fixed to ~b = ~d = ~0. Hence, all
other bits are not affected, as possible requests of previous ~a and ~c remain open.

To reset bit bi, the environment needs multiple steps. First, it picks ~a =
~c = ~d = ~0 and ~b = ~1. This does not affect any bit of the sequence bf , since
all requests introduced through vectors ~c are still open. Next, the environment
executes the aforementioned procedure to set bit bj for every bit currently set to
1, except for the bit bi, it wants to reset. This refreshes the requests introduced
by previous vectors ~a for every bit, except for bi. Furthermore, it does not affect
the sequence bf . Finally, the environment picks ~a = ~b = ~c = ~0 and picks ~d such
that it represents i in binary. This removes i from every entry in f , but only
resets bi, since all other bits are still open due to the previous updates.

With these two operations, the environment can enforce any sequences of
sequences bf , including a binary counter counting up to 22

n

. As different states
are induced by the different sequences, we obtain a cycle of doubly exponential
length in n by resetting the counter at every overflow. ut

2 Our representation is open for many optimizations. However, they will not affect the
overall complexity result. Thus, we ignore them for the sake of readability here.

t0 t1

t2

t′2

· · ·

· · ·

tk

t′k

t∗∗/{c}

∅/∅
{a}/∅

∅/∅

{a}/∅

∅/{b}

{a}/{b}

∅/∅

{a}/∅

∅/{b}

{a}/{b}

∗/{b}

∗/∅

∗/{b}

∗/∅

∗/{c}

Fig. 3. The Mealy automataMn (red/dotted) andM′n (blue/dashed). Solid edges are
shared between both automata.

3.3 The trade-off between states and cycles

We conclude this section with some observations regarding tradeoffs between the
problem of synthesizing implementations, which are minimal in the number of
states, versus the problem of synthesizing implementations, which are minimal
in the number of cycles. The main question we answer, is whether we can achieve
both: minimality in the number of states and minimality in the number of cycles.
Unfortunately, this is not possible, as shown by Theorem 3.

Theorem 3. For every n > 1, there is a realizable LTL specification ϕn with
|ϕ| ∈ Θ(n), such that

– there is an implementation of ϕ consisting of n states and
– there is an implementation of ϕ containing m cycles,
– but there is no implementation of ϕ with n states and m cycles.

Proof. Consider the specification

ϕn = (¬b ∧ c) ∧ k+2(¬b ∧ c) ∧
k∧
i=1

i(¬c ∧ ¬c ∧ (a↔ b))

over I = {a} and O = {b, c}, where i denotes i times the application of . The
specification ϕn is realizable with at least n = 2k + 1 states. The corresponding
Mealy machine Mn is depicted in Figure 3. However, Mn has m = 2k many
cycles. This blowup can be avoided by spending the implementation at least one
more state, which reduces the number of cycles to m = 1. The resultM′n is also
depicted in Figure 3. ut

Our results show that the number of cycles can explode (even more so than the
number of states), and that sometimes this explosion is unavoidable. However,
the results also show that there are cases, where the cycle count can be improved
by choosing a better structured solution. Hence, it is desirable to have better
control over the number of cycles that appear in an implementation. In the
remainder of the paper, we show how to achieve this control.

4 Bounding the Cycles

In this section, we show how to synthesize an implementation M from a given
LTL specification ϕ, while giving a guarantee on the size and the number of
cycles of M. We first show how to guarantee a bound on the number of states
of M, by reviewing the classical Bounded Synthesis approach. Our encoding
uses Mealy machines as implementations, and Boolean Satisfiability (SAT) as
the underlying constraint system.

We then review the classical algorithm to count the cycles of M and show
how this algorithm gets embedded into a constraint system, such that we obtain
a guarantee on the number of cycles ofM.

4.1 Bounded Synthesis

In the bounded synthesis approach [9], we first translate a given LTL specifica-
tion ϕ into an equivalent universal co-Büchi automaton A, such that L(A) =
L(ϕ). Thus, we reduce the problem to finding an implementationM that is ac-
cepted by A, i.e., we look for an implementationM such that the run graph of
M and A contains no cycle with a rejecting vertex. This property is witnessed
by a ranking function, which annotates each vertex of G by a natural number
that bounds the number of possible visits to rejecting states. The annotation
itself is bounded by n · k, where n is the size bound on M and k denotes the
number or rejecting states of A.

Fix some set of states T with |T | = n and let A = (2I∪O, Q, qI , ∆,R). Then, to
guess a solution within SAT, we introduce the following variables:

– trans(t, ν, t′) for all t, t′ ∈ T and ν ∈ 2I , for the transition relation ofM.
– label(t, ν, x) for all t ∈ T , ν ∈ 2I and x ∈ O, for the labels of each transition.
– rgstate(t, q) for all t ∈ T and q ∈ Q, to denote the reachable states of the

run graph G ofM and A. Only reachable states have to be annotated.
– annotation(t, q, i) for all t ∈ T , q ∈ Q and 0 < i ≤ log(n · k), denoting the

annotation of a state (t, q) of G. Thereby, we use a logarithmic number of
bits to encode the annotated value in binary. We use annotation(t, q) ◦m
for ◦ ∈ {<,≤,=,≥, >}, to denote an appropriate encoding of the relation of
the annotation to some value m or other annotations annotation(t′, q′).

Given a universal co-Büchi automaton A and a bound n on the states of the
resulting implementation, we encode the Bounded Synthesis problem via the
SAT formula FBS(A, n), consisting of the following constraints:

– The target of every transition is unambiguous:∧
t∈T, ν∈2I

exactlyOne({trans(t, v, t′) | t′ ∈ T})

where exactelyOne : X 7→ B(X) returns a SAT query, which ensures that
among all variables of the set X exactly one is true and all others are false.

– The initial state (tI , qI) of the run graph for some arbitrary, but fix, tI ∈ T is
reachable and annotated by one. Furthermore, all annotations are bounded
by n · k:

rgstate(1, 1)∧annotation(1, 1) = 1∧
∧

t∈T, q∈Q
annotation(t, q) ≤ n ·k

– Each annotation of a vertex of the run graph bounds the number of visited
accepting states, not counting the current vertex itself:∧

t∈T, q∈Q
rgstate(t, q)→

∧
σ∈2Σ

label(t, σ)→
∧
t′∈T

trans(t, I ∩ σ, t′)→

∧
q′∈∆(q,σ)

rgstate(t′, q′) ∧ annotation(t, q) ≺q annotation(t′, q′)

where ≺q equals < if q ∈ R and equals ≤ otherwise. Furthermore, we use
the function label(t, σ) to fix the labeling of each transition, i.e., label(t, σ) =∧
x∈O∩σ label(t, I ∩ σ, x) ∧

∧
x∈Orσ ¬label(t, I ∩ σ, x).

Theorem 4 (Bounded Synthesis [9]). For each bound n ∈ N and each uni-
versal co-Büchi automaton A, the SAT formula FBS(A, n) is satisfiable if and
only if there is a Mealy machineM with |M| = n, which is accepted by A.

4.2 Counting Cycles

Before we bound the number of cycles of a Mealy machineM, we review Tier-
nan’s classical algorithm [17] to count the number of cycles of a directed graph G.
The algorithm not only gives insights into the complexity of the problem, but
also contains many inspirations for our latter approach.

Algorithm 1. Given a directed graph G = (V,E), we count the cycles of G using
the following algorithm:

(1) Initialize the cycle counter c to c := 0 and some set P to P := ∅.
(2) Pick some arbitrary vertex vr of G, set v := vr and P := {vr}.
(3) For all edges (v, v′) ∈ E, with v′ /∈ P \ {vr}:

(3a) If v′ = vr, increase c by one.
(3b) Oherwise, add v′ to P and recursively execute (3). Afterwards, reset P

to its value before the recursive call.

(4) Obtain the sub-graph G′, by removing vr from G:

(4a) If G′ is empty, return c.
(4b) Otherwise, continue from (2) with G′.

The algorithm starts by counting all cycles that contain the first picked vertex vr.
This is done by an unfolding of the graph into a tree, rooted in vr, such that
there is no repetition of a vertex on any path from the root to a leaf. The number
of vertices that are connected to the root by an edge of E then represents the
corresponding number of cycles through vr. The remaining cycles of G do not
contain vr and, thus, are cycles of the sub-graph G′ without vr, as well. Hence,
we count the remaining cycles by recursively counting the cycles of G′. The
algorithm terminates as soon as G′ gets empty.

The algorithm is correct [17], but has the drawback, that the unfolded trees,
may become exponential in the size of the graph, even if none of their vertices
is connected to the root, i.e., even if there is no cycle to be counted. For an
example consider the induced graph of M′n, as depicted in Figure 3. However,
this drawback can be avoided by first reducing the graph to all its strongly
connected components (SCCs) and then by counting the cycles of each SCC
separately [18, 13]. A cycle never leaves an SCC of the graph.

As a result, we obtain an improved algorithm, which is exponential in the
size of G, but linear in the number of cycles m. Furthermore, the time between
two detections of a cycle, during the execution, is bounded linear in the size of
the graph G.

4.3 Bounded Cycle Synthesis

We combine the insights of the previous sections to obtain a synthesis algorithm,
which not only bounds the number of states of the resulting implementationM
but also bounds the number of cycles ofM. We use the unfolded trees from the
previous section as our witnesses.

We call a tree that witnesses m cycles in G, all containing the root r of the
tree, a witness-tree Tr,m of G. Formally, a witness-tree Tr,m of G = (V,E) is
a labeled graph Tr,m = ((W,B ∪ R), τ), consisting of a graph (W,B ∪ R) with
m = |R| and a labeling function τ : W → V , such that:

1. The edges are partitioned into blue edges B and red edges R.
2. All red edges lead back to the root:

R ⊆W × {r}
3. No blue edges lead back to the root:

B ∩W × {r} = ∅
4. Each non-root has at least one blue incoming edge:

∀w′ ∈W \ {r}. ∃w ∈W. (w,w′) ∈ B
5. Each vertex has at most one blue incoming edge:

∀w1, w2, w ∈W. (w1, w) ∈ B ∧ (w2, w) ∈ B ⇒ w1 = w2

6. The graph is labeled by an unfolding of G:
∀w,w′ ∈ B ∪R. (τ(w), τ(w′)) ∈ E,

7. The unfolding is complete:
∀w ∈W. ∀v′ ∈ V. (τ(w), v′) ∈ E ⇒ ∃w′ ∈W. (w,w′) ∈ B ∪R∧ τ(w′) = v′

8. Let wi, wj ∈ W be two different vertices that appear on a path from the
root to a leaf in the r-rooted tree (W,B)3. Then the labeling of wi and wj
differs, i.e., τ(vi) 6= τ(vj).

9. The root of the tree is the same as the corresponding vertex of G, i.e.,
τ(r) = r.

Lemma 4. Let G = (V,E) be a graph consisting of a single SCC, r ∈ V be
some vertex of G and m be the number of cycles of G containing r. Then there
is a witness-tree Tr,m = ((W,B ∪R), τ) of G with |W | ≤ m · |V |.

Proof. We construct Tr,m according to the strategy induced by Algorithm 1,
where an edge is colored red if and only if it leads back to the root. The con-
structed tree satisfies all conditions 1 – 9. By correctness of Algorithm 1, we have
that |R| = m.

Now, for the sake of contradiciton, assume |W | > m · |V |. First we observe,
that the depth of the tree (W,B) must be bounded by |V | to satisfy Condition 8.
Hence, as there are at most m red edges in Tr,m, there must be a vertex w ∈W
without any outgoing edges. However, since G is a single SCC, this contradicts
the completeness of Tr,m (Condition 7). ut

Lemma 5. Let G = (V,E) be a graph consisting of a single SCC and let Tr,m
be a witness-tree of G. Then there are at most m cycles in G that contain r.

Proof. Let Tr,m = ((W,R ∪B), τ). Assume for the sake of contradiction that G
has more than m cycles and let c = (C, η) be an arbitrary such cycle. By the
completeness of Tr,m, there is path w0w1 . . . w|C|−1 with w0 = r and τ(wi) =
ηi(r) for all 0 ≤ i < |C|. From wi 6= r and Condition 2, it follows (wi−1, wi) ∈ B
for all 0 < i < |C|. Further, η|C|(r) = r and thus (w|C|−1, w0) ∈ R. Hence, by
the tree shape of (W,B), we get |R| > m, yielding the desired contradiction. ut

From Lemma 4 and 5 we derive that Tr,m is a suitable witness to bound the
number of cycles of an implementationM. Furthermore, from Lemma 4 we also
obtain an upper bound on the size of Tr,m.

We proceed with our final encoding. Therefore, we first construct a simple di-
rected graph G out of the implementationM. Then, we guess all the sub-graphs,
obtained from G via iteratively removing vertices, and split them into their cor-
responding SCCs. Finally, we guess the witness-tree for each such SCC.

To keep the final SAT encoding compact, we even introduce some further
optimizations. First, we do not need to introduce a fresh copy for each SCC, since
the SCC of a vertex is always unique. Thus, it suffices to guess an annotation for
each vertex, being unique for each SCC. Second, we have to guess n trees Ti,ri ,
each one consisting of at most i·n vertices, such that the sum of all i is equal to the
3 Note that the tree property is enforced by Conditions 3 – 5.

overall number of cyclesm. One possible solution would be to overestimate each i
by m. Another possibility would be to guess the exact distribution of the cycles
over the different witness-trees Ti,ri . However, there is a smarter solution: we
guess all trees together in a single graph bounded by m ·n. Additionally, to avoid
possible interleavings, we add an annotation of each vertex by its corresponding
witness-tree Ti,ri . Hence, instead of bounding the number of each Ti,ri separately
by i, we just bound the number of all red edges in the whole forest by m. This
way, we not only reduce the size of the encoding, but also skip the additional
constrains, which would be necessary to sum the different witness-tree bounds i
to m, otherwise.

Let T be some ordered set with |T | = n and S = T × {1, 2, . . . ,m}. We use T
to denote the vertices of G and S to denote the vertices of the forest of Ti,ri s.
Further, we use M = T ×{1} to denote the roots and N = S \M to denote the
non-roots of the corresponding trees. We introduce the following variables:

– edge(t, t′) for all t, t′ ∈ T , denoting the edges of the abstraction ofM to G.
– bedge(s, s′) for all s ∈ S and s′ ∈ N , denoting a blue edge.
– redge(s, s′) for all s ∈ S and s′ ∈M , denoting a red edge.
– wtree(s, i) for all s ∈ S, 0 < i ≤ log n, denoting the witness-tree of each s.

As before, we use wtree(s)◦x to relate values with the underlying encoding.
– visited(s, t) for all s ∈ S and t ∈ T , denoting the set of all vertices t, already

visited at s, since leaving the root of the corresponding witness-tree.
– rbound(c, i) for all 0 < c ≤ m, 0 < i ≤ log(n ·m), denoting an ordered list

of all red edges, bounding the red edges of the forest.
– scc(k, t, i) for all 0 < k ≤ n, t ∈ T, and 0 ≤ i < log n, denoting the SCC

of t in the k-th sub-graph of G. The sub-graphs are obtained by iteratively
removing vertices of T , according to the pre-defined order. This way, each
sub-graph contains exactly all vertices that are larger than the root.

Note that by the definition of S we introduce m explicit copies for each vertex
of G. This is sufficient, since each cycle contains each vertex at most once. Thus,
the labeling τ of a vertex s can be directly derived from the first component of s.

Given a universal co-Büchi automaton A, a bound n on the states of the
resulting implementationM, and a bound m on the number of cycles ofM, we
encode the Bounded Cycle Synthesis problem via the SAT formula FBS(A, n)∧
FCS(A, n,m)∧FSCC(n). The constraints of FCS(A, n,m), bounding the cycles
of the system, are given by Table 1. The constraints of FSCC(n), enforcing that
each vertex is labeled by a unique SCC, can be found in the technical report [8].

Theorem 5. For each pair of bounds n,m ∈ N and each universal co-Büchi
automaton A with |A| = k, the formula F = FBS(A, n) ∧ FCS(A, n,m) ∧
FSCC is satisfiable if and only if there is a Mealy machine M with |M| = n
and |C(M)| = m, accepted by A. Furthermore, F consists of x variables with
x ∈O(n3+ n2(m2+ 2|I|)+n|O|+nk log(nk)) and |F| ∈O(n3+n2(m2+ k|Σ|)).

Table 1. Constraints of the SAT formula FCS(A, n,m).

∧
t,t′∈T,ν∈2I

trans(t, ν, t′)→ edge(t, t′)
Construction of G fromM.∧

t,t′∈T
edge(t, t′)→

∨
ν∈2I

trans(t, ν, t′)∧
r∈T

wtree((r, 1)) = r Roots indicate the witness-tree.∧
s∈S, (r,1)∈M

redge(s, (r, 1))→ wtree(s) = r
Red edges only connect vertices
of the current Ti,ri .∧

s∈S, s′∈N

bedge(s, s′)
→ wtree(s) = wtree(s′)

Blue edges only connect vertices
of the current Ti,ri .∧

s′∈N

exactlyOne(
{bedge(s, s′) | s ∈ S})

Every non-root has exactly one
blue incoming edge.∧

(t,c)∈S, r∈T,
redge((t, c), (r, 1))→ edge(t, r)

Red edges are related to the
edges of the graph G.∧

(t,c)∈S, (t′,c′)∈N
bedge((t, c), (t′, c′))→ edge(t, t′)

Blue edges are related to the
edges of the graph G.∧

(t,c)∈S, r∈T,
t≥r

edge(t, r) ∧ scc(r, t) = scc(r, r) ∧
wtree((t, c)) = r
→ redge((t, c), (r, 1))

Every possible red edge must be
taken.

∧
(t,c)∈S, r,t′∈T,

t≥t′

edge(t, t′) ∧ scc(r, t) = scc(r, t′) ∧
wtree((t, c)) = r ∧ visited((t, c), t′)
→

∨
0<c′≤m

bedge((t, c), (t′, c′))

Every possible blue edge must
be taken.

∧
r∈T

∧
t≤r
¬visited((r, 1), t) ∧∧

t>r

visited((r, 1), t)

Only non-roots of the corre-
sponding sub-graph can be suc-
cessors of a root.

∧
(t,c)∈S, s∈N

bedge((t, c), s)
→ ¬visited(s, t) ∧

(visited(s, t′)
↔ visited((t, c), t′))

Every vertex appears at most
once on a path from the root to
a leaf.

∧
s∈S, s′∈M

redge(s, s′)
→

∨
0<c≤m

rbound(c) = f(s)

The list of red edges is com-
plete. (f(s) maps each state
of S to a unique number in
{1, . . . , n ·m})∧

0<c≤m
rbound(c) < rbound(c+ 1) Red edges are strictly ordered.

5 Experimental Results

We have implemented the Bounded Cycle Synthesis approach in our tool BoWSer,
the Bounded Witness Synthesizer, and compared it against standard Bounded
Synthesis and Acacia+ (v2.3) [6, 7]. To ensure a common encoding, we used
BoWSer for both, the Bounded Synthesis and the Bounded Cycle Synthesis ap-
proach. Our tool uses LTL3BA (v1.0.2) [3] to convert specifications to universal

Table 2. Results of the tools LTL3BA, Aca(cia)+ and BoWSer. The LTL3BA tool was
used to generate the universal co-Büchi tree automataAUCT . The Bo(unded) Sy(nthesis)
and Bo(unded) Cy(cle Synthesis) encodings were generated by BoWSer.

Benchmark
Size Cycles Time (s)

AUCT Aca+
BoSy/

Aca+ BoSy BoCy Aca+
SAT UNSAT

BoCy BoSy BoCy BoSy BoCy

ARBITER[2] 6 26 2 5439901 3 3 0.261 0.847 0.868 0.300 0.836

ARBITER[3] 20 111 3 > 9999999 8 4 0.511 9.170 9.601 3.916 9.481

ARBITER[4] 64 470 4 > 9999999 8 5 12.981 105.527 109.180 56.853 106.803

LOCK[2] 12 4 3 12 6 5 0.459 0.395 0.522 0.165 0.487

LOCK[3] 20 4 3 12 5 5 55.917 1.037 1.245 0.433 1.107

LOCK[4] 36 – 3 – 6 5 > 999 4.419 4.761 1.407 3.726

ENCODE[2] 3 6 2 41 3 3 0.473 0.071 0.089 0.048 0.084

ENCODE[3] 5 16 3 90428 8 8 1.871 0.292 0.561 0.200 0.503

ENCODE[4] 5 20 4 > 9999999 24 24 4.780 1.007 16.166 0.579 > 999

DECODE 1 4 1 8 1 1 0.328 0.055 0.051 – –

SHIFT 3 6 2 31 3 3 0.387 0.060 0.072 0.041 0.071

TBURST4 103 14 7 61 19 7 0.634 8.294 206.604 6.261 > 999

TINCR 43 5 3 7 5 2 0.396 2.262 2.279 0.845 2.221

TSINGLE 22 8 4 12 5 4 0.372 1.863 2.143 1.165 2.067

co-Büchi automata. The created SAT queries are solved by MiniSat (v.2.2.0) [5]
and clasp (v.3.1.4) [10], where the result of the faster solver is taken.

The benchmarks are given in TLSF [11] and represent a decomposition of
Arm’s Advanced Microcontroller Bus Architecture (AMBA) [2]. They are created
from the assumptions and guarantees presented in [12], which were split into
modules, connected by new signals. A detailed description of the benchmarks is
given in [11].

All experiments were executed on a Unix machine, operated by a 64-bit
kernel (v4.1.12) running on an Intel Core i7 with 2.8GHz and 8GB RAM. Each
experiment had a time limit of 1000 seconds and a memory limit of 8GB. When
counting cycles of a solution, the limit was set to 10000000 cycles.

The results of the evaluation are shown in Table 2, which displays the sizes of
the intermediate universal co-Büchi tree automata AUCT , the sizes of the syn-
thesized implementationsM, the number of cycles of each implementationM,
and the overall synthesis time. Thereby, for each instance, we guessed the mini-
mal number of states for the Bounded Synthesis approach and, additionally, the
minimal number of cycles for the Bounded Cycle Synthesis approach, to obtain
a single satisfiable instance. Further, to verify the result, we also created the
unsatisfiable instance, where the state bound was decreased by one in the case
of Bounded Synthesis and the cycle bound was decreased by one in the case of
Bounded Cycle Synthesis. Note that these two instances already give an almost
complete picture, since for increased and decreased bounds the synthesis times

behave monotonically. Hence, increasing the bound beyond the first realizable
instance increases the synthesis time. Decreasing it below the last unsatisfiable
instance decreases the synthesis time. The results for the TBURST4 component
are additionally depicted in Figure 1.

On most benchmarks, Acacia+ solves the synthesis problem the fastest, fol-
lowed by Bounded Synthesis and our approach. (On some benchmarks, Bounded
Synthesis outperforms Acacia+.) Comparing the running times of Bounded Syn-
thesis and Bounded Cycle Synthesis, the overhead for bounding the number of
cycles is insignificant on most benchmarks. The two exceptions are ENCODE,
which requires a fully connected implementation, and TBURST4, where the re-
duction in the number of cycles is substantial. In terms of states and cycles, our
tool outperforms Bounded Synthesis on half of the benchmarks and it outper-
forms Acacia+ on all benchmarks.

The results of Acacia+ show that the number of cycles is indeed an explosive
factor. However, they also show that this explosion can be avoided effectively.

6 Conclusions

We have introduced the Bounded Cycle Synthesis problem, where we limit the
number of cycles in an implementation synthesized from an LTL specification.
Our solution is based on the construction of a witness structure that limits the
number of cycles. The existence of such a witness can be encoded as a SAT
problem. Our experience in applying Bounded Cycle Synthesis to the synthesis
of the AMBA bus arbiter shows that the approach leads to significantly better
implementations. Furthermore, the performance of our prototype implementa-
tion is suffient to synthesize the components (in a natural decomposition of the
specification) in reasonable time.

Both Bounded Synthesis and Bounded Cycle Synthesis can be seen as the
introduction of structure into the space of implementations. Bounded Synthe-
sis structures the implementations according to the number of states, Bounded
Cycle Synthesis additionally according to the number of cycles. The double ex-
ponential blow-up between the size of the specification and the number of states,
and the triple exponential blow-up between the size and the number of cycles
indicate that, while both parameters provide a fine-grained structure, the num-
ber of cycles may even be the superior parameter. Formalizing this intuition and
finding other useful parameters is a challenge for future work.

Our method does not lead to a synthesis algorithm in the classical sense,
where just a specification is given and an implementation or an unsatisfiability
result is returned. In our setting, the bounds are part of the input, and have to be
determined beforehand. In Bounded Synthesis, the bound is usually eliminated
by increasing the bound incrementally. With multiple bounds, the choice which
parameter to increase becomes non-obvious. Finding a good strategy for this
problem is a challenge on its own and beyond the scope of this paper. We leave
it open for future research.

References

1. Alur, R., La Torre, S.: Deterministic Generators and Games for
LTL Fragments. ACM Trans. Comput. Log. 5(1), 1–25 (2004),
http://doi.acm.org/10.1145/963927.963928

2. ARM Ltd.: AMBA Specification (rev. 2) (1999), available at www.arm.com
3. Babiak, T., Kretínský, M., Rehák, V., Strejcek, J.: LTL to Büchi Automata Trans-

lation: Fast and More Deterministic. In: Flanagan, C., König, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 18th International Con-
ference, TACAS 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7214, pp. 95–109. Springer
(2012), http://dx.doi.org/10.1007/978-3-642-28756-5_8

4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in
Synthesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.)
Computer Aided Verification, 21st International Conference, CAV 2009, Greno-
ble, France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer
Science, vol. 5643, pp. 140–156. Springer (2009), http://dx.doi.org/10.1007/978-
3-642-02658-4_14

5. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003), http://dx.doi.org/10.1007/978-3-540-24605-3_37

6. Filiot, E., Jin, N., Raskin, J.: Antichains and Compositional Algorithms for
LTL Synthesis. Formal Methods in System Design 39(3), 261–296 (2011),
http://dx.doi.org/10.1007/s10703-011-0115-3

7. Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis. STTT 15(5-6),
541–561 (2013), http://dx.doi.org/10.1007/s10009-012-0222-5

8. Finkbeiner, B., Klein, F.: Bounded Cycle Synthesis. CoRR abs/1605.01511 (2016),
http://arxiv.org/abs/1605.01511

9. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013),
http://dx.doi.org/10.1007/s10009-012-0228-z

10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp : A Conflict-Driven
Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) Logic Program-
ming and Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007,
Tempe, AZ, USA, May 15-17, 2007, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4483, pp. 260–265. Springer (2007), http://dx.doi.org/10.1007/978-3-
540-72200-7_23

11. Jacobs, S., Klein, F.: A High-Level LTL Synthesis Format: TLSF v1.1 (Extended
Version). CoRR abs/1604.02284 (2016), http://arxiv.org/abs/1604.02284

12. Jobstmann, B.: Applications and Optimizations for LTL Synthesis. Ph.D. thesis,
Graz University of Technology (Mar 2007)

13. Johnson, D.B.: Finding All the Elementary Circuits of a Directed Graph. SIAM J.
Comput. 4(1), 77–84 (1975), http://dx.doi.org/10.1137/0204007

14. Kupferman, O.: Recent Challenges and Ideas in Temporal Synthesis. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012:
Theory and Practice of Computer Science - 38th Conference on Current Trends
in Theory and Practice of Computer Science, Špindlerův Mlýn, Czech Republic,
January 21-27, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7147,
pp. 88–98. Springer (2012), http://dx.doi.org/10.1007/978-3-642-27660-6_8

15. Kupferman, O., Vardi, M.Y.: Safraless Decision Procedures. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings. pp. 531–542. IEEE Computer Society
(2005), http://dx.doi.org/10.1109/SFCS.2005.66

16. Piterman, N.: From Nondeterministic Büchi and Streett Automata to Deter-
ministic Parity Automata. Logical Methods in Computer Science 3(3) (2007),
http://dx.doi.org/10.2168/LMCS-3(3:5)2007

17. Tiernan, J.C.: An Efficient Search Algorithm to Find the Elemen-
tary Circuits of a Graph. Commun. ACM 13(12), 722–726 (1970),
http://doi.acm.org/10.1145/362814.362819

18. Weinblatt, H.: A New Search Algorithm for Finding the Simple
Cycles of a Finite Directed Graph. J. ACM 19(1), 43–56 (1972),
http://doi.acm.org/10.1145/321679.321684

