
Automatic Compositional Synthesis

of Distributed Systems

Werner Damm1 and Bernd Finkbeiner2

1 Carl von Ossietzky Universität Oldenburg
2 Universität des Saarlandes

Abstract. Given the recent advances in synthesizing finite-state controllers from

temporal logic specifications, the natural next goal is to synthesize more com-

plex systems that consist of multiple distributed processes. The synthesis of dis-

tributed systems is, however, a hard and, in many cases, undecidable problem.

In this paper, we investigate the synthesis problem for specifications that admit

dominant strategies, i.e., strategies that perform at least as well as the best al-

ternative strategy, although they do not necessarily win the game. We show that

for such specifications, distributed systems can be synthesized compositionally,

considering one process at a time. The compositional approach has dramatically

better complexity and is uniformly applicable to all system architectures.

1 Introduction

Synthesis, the automatic translation of specifications into implementations, holds the

promise to revolutionize the development of complex systems. While the problem

has been studied for a long time (the original formulation is attributed to Alonzo

Church [4]), recent years seem to have achieved the phase transition to practical tools

and realistic applications, such as the automatic synthesis of the AMBA bus proto-

col [1]. Tools like Acacia+ [3], Ratsy [2], and Unbeast [6] automatically translate a

specification given in linear-time temporal logic into finite-state machines that guaran-

tee that the specification holds for all possible inputs from the system’s environment.

Given the success of obtaining such finite-state controllers, the natural next step would

be to synthesize more complex systems, consisting of multiple distributed processes.

However, none of the currently available tools is capable of synthesizing systems with

as many as two processes. This is unfortunate, because a separation into multiple pro-

cesses is not only necessary to obtain well-structured and humanly understandable im-

plementations, but is in fact often a non-negotiable design constraint: for example, the

synchronization between different ECUs in a car involves explicit and time-consuming

bus communication; approximating the network of ECUs with a single process there-

fore usually produces unimplementable solutions.

The lack of tools for the synthesis of distributed systems is no accident. For most

system architectures, the distributed synthesis problem is undecidable [14], and for sys-

tem architectures where the problem is decidable, such as pipelines, the complexity has

been shown to be non-elementary in the number of processes. Experience with similar

problems with non-elementary complexity, such as WS1S satisfiability (implemented

in Mona [10]), suggests, however, that these results do not necessarily mean that the

synthesis of distributed systems is generally impossible. The specifications in the typ-

ical hardness arguments use the incomplete informedness of the processes to force the

processes into specific complex behaviors. For example, in the undecidability proof

due to Pnueli and Rosner, the specification forces the processes to simulate a Turing

machine. The question arises if such specifications are of practical interest in the devel-

opment of finite-state controllers. Can we obtain better complexity results if we restrict

the specifications to a “reasonable” subset?

The key idea to reduce the complexity is to work compositionally. Compositionality

is a classic concept in programming languages and verification where one ensures that

the results obtained for a process also hold for the larger system [15]; in the case of

synthesis, we want to ensure that the implementations found for individual processes

can be used to realize the larger multi-process system. Unfortunately, synthesis does not

lend itself easily to a compositional approach. In game-theoretic terms, synthesis looks

for winning strategies, i.e., strategies that ensure the satisfaction of the specification

under all circumstances. While the notion of winning is, in principle, compositional (if

each process guarantees a property no matter what the other processes do, then clearly

the system will guarantee the property as well), winning is too strong as a process re-

quirement, because properties can rarely be guaranteed by one process alone. Typically,

there exist input sequences that would prevent the process from satisfying the property,

and the processes in the environment cooperate in the sense that they do not produce

those sequences.

In this paper, we develop a synthesis technique for distributed systems that is based

on a weaker notion than winning: A strategy is dominant if it performs, in any situa-

tion, at least as well as the best alternative strategy. Unlike winning strategies, dominant

strategies are allowed to lose the game — as long as no other strategy would have won

the game in the same situation. In a distributed system, a dominant strategy requires

only a best effort – ensure the specification if you can – rather than a comprehensive

guarantee that the specification is satisfied. It turns out that, just like winning, dom-

inance is also a compositional notion. However, it is much more realistic to expect a

process to have a dominant strategy than it is to have a winning strategy. In cases where

the environment of the process behaves unreasonably, i.e., where it is made impossible

for the process to satisfy its specification, we no longer require the process to satisfy

the specification.

We call a specification that has a dominant strategy admissible. Intuitively, a specifi-

cation is admissible as long as we do not require a process to “guess” variables it cannot

see or to “predict” future inputs. Predicting future inputs is, of course, impossible; at

the same time, it is easy to choose, in retrospect for a specific sequence of inputs, an

alternative strategy that would have guessed correctly. Consider, for example, the LTL

specification ϕ = (a) ↔ b, where a is an input variable and b is an output variable.

By itself, ϕ is not admissible. Every specification can, however, be strengthened into an

admissible specification. For example, ϕ ∧ (b) is admissible.

As we show in the paper, there is a fundamental connection between admissibil-

ity and compositionality: a process has a dominant strategy if and only if there exists

a unique weakest environment assumption that would guarantee that the process can

2

ensure the satisfaction of the specification. We first exploit this connection in an incre-

mental synthesis algorithm: considering one process at a time, we compute the domi-

nant strategy and the unique environment assumption. For the remaining processes, we

replace the specification with the new assumption.

We then show that, for safety properties, true compositionality can be obtained by

synthesizing each process in isolation. Even without considering the environment as-

sumptions of the partner processes, the composition of the dominant strategies for two

subarchitectures is guaranteed to result in a dominant strategy for the composite archi-

tecture.

Unfortunately, this property does not hold for liveness properties; the problem is

that each process may have a dominant strategy that waits for the other process to make

the first step. If such strategies are combined, they wait forever. We address this prob-

lem with a new notion of dominance, which we call bounded dominance. Intuitively,

bounded dominance compares the number of steps that a strategy takes to satisfy a live-

ness objective with a (constant) bound. The dominant strategy must meet the bound

whenever some alternative strategy would meet the bound. The composition of two

strategies that are dominant for some bound is again dominant for the same bound.

Finally, we describe how to combine incremental and compositional synthesis, and

how to localize the analysis based on an automatic decomposition of the specification

into subsets of relevant properties for each process.

2 Synthesis of Distributed Systems

We are interested in synthesizing a distributed system for a given system architecture

A and an LTL formula ϕ. A solution to the synthesis problem is a set of finite-state

strategies {sp | p ∈ P}, one for each process in the architecture, such that the joint

behavior satisfies ϕ.

Architectures. An architecture A is a tuple (P,V, inp, out), where P is a set of system

processes, V is a set of (Boolean) variables, and inp, out : P→ 2V are two functions that

map each process to a set of input and output variables, respectively. For each process p,

the inputs and outputs are disjoint, inp(p) ∩ out(p) = ∅, and for two different processes

p , q, the output variables are disjoint: out(p) ∩ out(q) = ∅. We denote the set of

visible variables of process p with V(p) = inp(p)∪ out(p). If P is singleton, we call the

architecture single-process; if P contains at least two processes, we call the architecture

distributed.

For two architectures A1 = (P1,V, inp1, out1) and A2 = (P2,V, inp2, out2)

with the same variables, but disjoint sets of processes, P1 ∩ P2 = ∅, we define

the parallel composition as the architecture A1||A2 = (P1 ∪ P2,V, p 7→ if p ∈

P1 then inp1(p) else inp2(p), p 7→ if p ∈ P1 then out1(p) else out2(p)).

Implementations. An implementation of an architecture consists of strategies S = {sp |

p ∈ P} for the system processes. A system process p ∈ P is implemented by a strategy,

i.e., a function sp : (2inp(p))∗ → 2out(p) that maps histories of inputs to outputs. A strategy

is finite-state if it can be represented by a finite-state transducer (Q, q0, δ : Q×2inp(p) →

3

Q, γ : Q → 2out(p)), with a finite set of states Q, an initial state q0, a transition function

δ and an output function γ.

The parallel composition sp||sq of the strategies of two processes p, q ∈ P is a

function sp||q : (2I)∗ → 2O that maps histories of the remaining inputs I = (inp(p) ∪

inp(q)) \ (out(p) ∪ out(q)) to the union O = out(p) ∪ out(q) of the outputs: sp||q(σ) =

sp(αp(σ))∪sq(αq(σ)), where αp(ǫ) = ǫ and αp(υ0υ1 . . . υk) = ((υ0∪sq(ǫ))∩inp(p))((υ1∪

sq(αq(υ0)))∩ inp(p)) . . . ((υk∪ sq(αq(υ1υ2 . . . υk−1)))∩ inp(p)), and, analogously,αq(ǫ) =

ǫ and αq(υ0υ1 . . . υk) = ((υ0 ∪ sp(ǫ)) ∩ inp(q))((υ1 ∪ sp(αp(υ0))) ∩ inp(q)) . . . ((υk ∪

sp(αp(υ1υ2 . . . υk−1))) ∩ inp(q)).

A computation is an infinite sequence of variable valuations. For a sequence γ =

υ1υ2 . . . ∈ (2Vrout(p))ω of valuations of the variables outside the control of a process p,

the computation resulting from s is denoted by comp(s, γ) = (s(ǫ)∪υ1) (s(υ1∩ inp(p))∪

υ2) (s(υ1 ∩ inp(p)υ2 ∩ inp(p)) ∪ υ3)

Specification. We use ω-regular languages, which we also call properties, to specify

system behaviors. For a computation σ and an ω-regular language ϕ, we also write

σ |= ϕ if σ ∈ ϕ. To define ω-regular languages, we use automata or LTL formulas.

A strategy sp : (2I)∗ → 2O is winning for a property ϕ, denoted by sp |= ϕ, iff, for

every sequence γ = υ1υ2 . . . ∈ (2VrO)ω of valuations of the variables outside the con-

trol of p, the computation comp(sp, γ) resulting from sp satisfies ϕ. We generalize the

notion of winning from strategies to implementations (and, analogously, the notions of

dominance and bounded dominance later in the paper), by defining that an implemen-

tation S is winning for ϕ iff the parallel composition of the strategies in S is winning

(for their combined sets of inputs and outputs).

Synthesis. A property ϕ is realizable in an architecture A iff there exists an implemen-

tation that is winning for ϕ. We denote realizability by A� ϕ.

Theorem 1. [12] The question whether a property given by an LTL formula is realiz-

able in an architecture with a single system process is 2EXPTIME-complete.

Theorem 2. [14] The question whether a property given by an LTL formula is realiz-

able in an architecture is undecidable for architectures with two or more system pro-

cesses.

3 Preliminaries: Automata over Infinite Words and Trees

We assume familiarity with automata over infinite words and trees. In the following, we

only give a quick summary of the standard terminology, the reader is referred to [9] for

a full exposition.

A (full) tree is given as the set Υ∗ of all finite words over a given set of directionsΥ.

For given finite sets Σ and Υ, a Σ-labeled Υ-tree is a pair 〈Υ∗, l〉with a labeling function

l : Υ∗ → Σ that maps every node of Υ∗ to a letter of Σ.

An alternating tree automaton A = (Σ, Υ,Q, q0, δ, α) runs on Σ-labeled Υ-trees.

Q is a finite set of states, q0 ∈ Q a designated initial state, δ a transition function

δ : Q × Σ → B+(Q × Υ), where B+(Q × Υ) denotes the positive Boolean combinations

4

of Q × Υ, and α is an acceptance condition. Intuitively, disjunctions in the transition

function represent nondeterministic choice; conjunctions start an additional branch in

the run tree of the automaton, corresponding to an additional check that must be passed

by the input tree. A run tree on a given Σ-labeled Υ-tree 〈Υ∗, l〉 is a Q ×Υ∗-labeled tree

where the root is labeled with (q0, l(ε)) and where for a node n with a label (q, x) and a

set of children child(n), the labels of these children have the following properties:

– for all m ∈ child(n) : the label of m is (qm, x ·υm), qm ∈ Q, υm ∈ Υ such that (qm, υm)

is an atom of δ(q, l(x)), and

– the set of atoms defined by the children of n satisfies δ(q, l(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity

condition is a function α from Q to a finite set of colors C ⊂ N. A path is accepted if the

highest color appearing infinitely often is even. The safety condition is the special case

of the parity condition where all states are colored with 0. The Büchi condition is the

special case of the parity condition where all states are colored with either 1 or 2, the co-

Büchi condition is the special case of the parity condition where all states are colored

with either 0 or 1. For Büchi and co-Büchi automata we usually state the coloring

function in terms of a set F of states. For the Büchi condition, F contains all states with

color 2 and is called the set of accepting states. For the co-Büchi condition, F contains

all states with color 1 and is called the set of rejecting states. The Büchi condition

is satisfied if some accepting state occurs infinitely often, the co-Büchi condition is

satisfied if all rejecting states only occur finitely often. A Σ-labeled Υ-tree is accepted

if it has an accepting run tree. The set of trees accepted by an alternating automatonA

is called its languageL(A). An automaton is empty iff its language is empty.

A nondeterministic automaton is an alternating automaton where the image of δ

consists only of such formulas that, when rewritten in disjunctive normal form, contain

at most one element of Q × {υ} for every direction υ in every disjunct. A universal au-

tomaton is an alternating automaton where the image of δ contains no disjunctions. A

deterministic automaton is an alternating automaton that is both universal and nonde-

terministic, i.e., the image of δ has no disjunctions and contains at most one element of

Q × {υ} for every direction υ.

A word automaton is the special case of a tree automaton where the set Υ of direc-

tions is singleton. For word automata, we omit the direction in the transition function.

4 Dominant Strategies

In game theory, strategic dominance refers to a situation where one strategy is better

than any other strategy, no matter how the opponent plays. In the setting of reactive

synthesis, remorsefree dominance [5] was introduced in order to accommodate situa-

tions that simply make it impossible to achieve the specified objective. For example, a

module might have an input signal that resets its computation; if the reset signal is set

too frequently it becomes impossible to complete the computation. In such a situation,

we would expect the module to try to finish the computation as quickly as possible,

to have the best chance to complete the computation before the next reset, but would

5

forgive the module for not completing the computation if the resets have made it im-

possible to do so.

Dominance can be seen as a weaker version of winning. A strategy t : (2I)∗ → 2O

is dominated by a strategy s : (2I)∗ → 2O, denoted by t � s, iff, for every sequence

γ ∈ (2VrO)ω for which the computation comp(t, γ) resulting from t satisfies ϕ, the com-

putation comp(s, γ) resulting from s also satisfies ϕ. A strategy s is dominant iff, for all

strategies t, t � s. Analogously to the definition of winning implementations, we say

that an implementation S is dominant iff the parallel composition of the strategies in S

is dominant.

Finally, we say that a property ϕ is admissible in an architecture A, denoted by

A� ϕ, iff there is a dominant implementation.

Informally, a specification is admissible if the question whether it can be satisfied

does not depend on variables that are not visible to the process or on future inputs. For

example, the specification ϕ = (a) ↔ b, where a is an input variable and b is an

output variable is not admissible, because in order to know whether it is best to set b in

the first step, one needs to know the value of a in the second step. No matter whether

the strategy sets b or not, there is an input sequence that causes remorse, because ϕ is

violated for the chosen strategy while it would have been satisfied for the same sequence

of inputs if the other strategy had been chosen.

Consider an architecture with a single process p. For a property given as an LTL

formula, one can construct a nondeterministic parity tree automaton with an exponen-

tial number of colors and a doubly-exponential number of states in the length of the

formula, such that the trees accepted by the automaton define exactly the dominant

strategies. This can be done, following the ideas of [5], by first constructing a universal

co-Büchi word automatonA1 that accepts a sequence in (2V)ω iff it satisfies the specifi-

cation ϕ. The size ofA1 is exponential in the length of ϕ. This automaton will be used to

recognize situations in which the strategy satisfies the specification. Then, we construct

a universal co-Büchi word automaton A2 that accepts a sequence in (2Vrout(p))ω iff it

does not satisfy the specification ϕ for any choice of the outputs in out(p). The size of

A2 is also exponential in the length of ϕ. This automaton will be used to recognize sit-

uations in which the strategy does not need to satisfy the specification because no other

strategy would either. Automata A1 and A2 are combined in a product construction

to obtain the universal co-Büchi word automaton A3, which accepts all sequences in

(2V)ω that either satisfy ϕ or have the property that ϕ would be violated for all possible

choices of the outputs out(p). The size ofA3 is still exponential in the length of ϕ. We

then build a universal co-Büchi tree automaton B1 of the same size as A3 that accepts

a 2out(p)-labeled 2inp(p)-tree iff the sequence along every branch and for every choice of

the values of the variables in V r V(p) is accepted byA3. ConvertingB1 into an equiv-

alent nondeterministic tree automaton B2 results in the desired nondeterministic parity

tree automaton with an exponential number of colors and a doubly-exponential number

of states in the length of the formula.

The synthesis of a dominant strategy thus reduces to checking tree automata empti-

ness and extracting a representation of some accepted tree as a finite-state machine.

This can be done in exponential time in the number of colors and in polynomial time

in the number of states [11]. For a matching lower bound, note that standard LTL syn-

6

thesis is already 2EXPTIME-hard [12]. Since every winning strategy is also dominant,

we can reduce the standard synthesis problem to the synthesis of dominant strategies,

by first checking the existing of a dominant strategy; if the answer is no, then no win-

ning strategy exists. If the answer is yes, we synthesize a dominant strategy and verify

(which can be done in polynomial time) whether it is winning. If it is winning, we have

obtained a winning strategy, if not, then no winning strategy exists, because, otherwise,

the synthesized strategy would not dominate the winning strategy, and, hence, would

not be dominant.

Theorem 3. The problem of deciding whether a property given as an LTL formula is

admissible in a single-process architecture is 2EXPTIME-complete. A dominant strat-

egy can be computed in doubly-exponential time.

If the property is given as a deterministic automaton instead of as an LTL formula,

admissibility checking only takes exponential time, because the automata A1 and A2

have the same size as the property automaton.

5 Synthesis of Environment Assumptions

Standard compositional approaches for synthesis (cf. [7]) require the user to explicitly

state the assumptions placed by the individual components on their environment. These

assumptions need to be sufficiently strong so that each process can then be synthesized

in isolation, relying only on the assumptions instead of the actual (and yet to be synthe-

sized) implementation of the environment.

For admissible specifications, we can automatically construct the environment as-

sumption. Since the dominant strategy defines the greatest set of environment behaviors

for which the specification can be satisfied, the environment assumption is unique, and

can in fact be represented by an automaton.

Theorem 4. For an architecture A and a property ϕ such that A � ϕ, there ex-

ists a unique weakest environment assumption, i.e., a unique largest set of sequences

w(A, ϕ) ⊆ (2VrO)ω where O =
⋃

p∈P out(p), such that A � w(A, ϕ) → ϕ. If ϕ is given

as a deterministic parity word automaton, then there is a deterministic parity word

automaton for w(A, ϕ) with an exponential number of states. If ϕ is given as an LTL

formula, the number of states is doubly-exponential in the length of the formula.

Proof. We construct the deterministic parity automaton Aw(A,ϕ) for the weakest envi-

ronment assumption as follows. Applying Theorem 3, we compute a dominant strat-

egy s, represented as a transducer As = (Qs, qs,0, δs : Q × 2inp(p) → Q, γs : Q →

2out(p)). Assume ϕ is given as a deterministic parity automaton Aϕ = (Qϕ, qϕ,0, δϕ :

Q × 2V → Q, c). We combineAs andAϕ to obtain the deterministic parity automaton

Aψ = (Q′, q′
0
, δ′, c′) which recognizes all sequences that satisfy ϕ whenever the outputs

of the process are chosen according to As.

– Q′ = (Qs × Qϕ) ∪ {⊥},

– q′
0
= (qs,0, q

′
ϕ,0

),

7

For architectures A, B and properties ϕ,ψ:

A� ϕ

B� w(A, ϕ)

A||B� ϕ

For architecture A and property ϕ:

A� ϕ

w(A, ϕ)

A� ϕ

(a) Rule Inc-Synt (b) Rule A2R

Fig. 1. Rules Inc-Synt and A2R, implementing the incremental synthesis style.

– δ′((qs, qϕ), i) = (q′s, q
′
ϕ) where q′s ∈ δs(qs, i ∩ inp(p)), q′ϕ ∈ δϕ(qϕ, i)} if i ∩ out(q) =

γ(q′s), and δ′((qs, qϕ), i) = ⊥, δ(⊥, i) = ⊥, otherwise.

– c′(qs, qϕ) = c(qϕ), c′(⊥) = 0.

The language ofAψ is the unique weakest environment assumption: suppose that there

exists an environment assumption ψ′ with L(Aψ) (ψ′, then there is a sequence γ in

ψ′ rL(Aψ) for which there exists a strategy t such that the computation resulting from

γ and t satisfies ϕ, while the computation resulting from γ and s does not satisfy ϕ. This

contradicts that s is dominant.

⊓⊔

Theorem 4 can be used to synthesize a distributed system incrementally, i.e., by

constructing one process at a time and propagating the environment assumptions. This

synthesis style corresponds to the repeated application of Rule Inc-Synt, shown in Fig-

ure 1a: in order to prove the admissibility of a specification ϕ in an architecture A||B, we

show that ϕ is admissible in A, and the resulting environment assumption is admissible

in B. Once the full system has been synthesized, we verify that the remaining envi-

ronment assumption is true, which proves that the specification holds for all possible

inputs. This last step corresponds to an application of Rule A2R, shown in Figure 1b.

Theorem 5. Rules Inc-Synt and A2R are sound.

6 Compositional Synthesis for Safety Properties

With the incremental synthesis approach of Rules Inc-Synt and A2R, we reduce the

synthesis problem for the distributed system to a sequence of admissibility checks over

individual processes. The disadvantage of incremental synthesis is its inherent sequen-

tiality: we cannot consider processes in parallel; additionally, each application of Rule

Inc-Synt increases the size of the specification.

In this section, we introduce a compositional approach, where the processes are

considered independently of each other. Figure 2a shows the compositional synthesis

rule Safety-Comp-Synt. In order to synthesize an implementation for specification ϕ in

the distributed architecture A1||A2, we check whether ϕ is admissible on both A1 and A2.

If ϕ is admissible on both A1 and A2, it is also admissible on A1||A2. For the final check

whether the specification is satisfied for all environment behaviors, we model check the

8

For architectures A, B and safety property ϕ:

A� ϕ

B� ϕ

A||B� ϕ

For architecture A, property ϕ, and

a strategy s:

s |= ϕ

A� ϕ

(a) Rule Safety-Comp-Synt (b) Rule MC

Fig. 2. Rules Safety-Comp-Synt and MC, implementing the compositional synthesis style.

resulting dominant strategy. This last step corresponds to an application of Rule MC,

shown in Figure 2b.

Note that Rule Safety-Comp-Synt is restricted to safety properties. The rule is in fact

not sound for liveness properties. Consider ϕ = ((a)↔ (c))∧ ((b)↔ (c)),

where a is the output of A1, b is the output of A2, and c is the output of the external

environment of A1||A2. A dominant strategy s1 for A1 is to wait for the first b and then,

in the next step, output a. Suppose there are, on some input sequence, infinitely many c

and some b, or only finitely many c, then s1 satisfies ϕ. On the other hand, if there are

infinitely many c but no b, then ϕ is violated no matter what strategy A1 chooses. Hence,

s1 is dominant. Likewise, a dominant strategy for A2 is to wait for the first a and then,

in the next step, produce a b. However, A1||A2 does not have a dominant strategy for ϕ,

because we require A1||A2 to predict whether or not the environment will set c to true

infinitely often. Any strategy will fail this objective on at least some input sequence;

however, given such an input sequence there is always a strategy that makes the correct

prediction for that particular sequence.

In the following, we prove that Rule Safety-Comp-Synt is sound for safety prop-

erties. We will adapt Rule Safety-Comp-Synt to arbitrary properties in Section 7. The

reason for the soundness of Rule Safety-Comp-Synt is that the parallel composition of

two dominant strategies is again dominant.

Lemma 1. For a safety property ϕ it holds that if s1 is dominant for A1 and s2 is domi-

nant for A2, then s1||s2 is dominant for A1||A2.

Proof. Let O1,O2, and O12 be the output variables of the processes in A1, A2, and

A12, respectively, and let V be the set of variables in all three architectures. Suppose,

by way of contradiction, that there exists a sequence γ ⊆ (2VrO12)ω of valuations of

variables outside the control of the processes in A1||A2 such that the computation σ =

comp(s1||s2, γ) resulting from s1||s2 does not satisfy ϕ, but there exists a strategy t such

that the resulting computation σ′ = comp(t, γ) satisfies ϕ. We pick the smallest prefix

δ ·η of σ, where δ ∈ (2V)∗, η ∈ 2V such that every infinite extension of δ ·η violates ϕ but

there is an infinite extension σ′′ of δ that agrees with σ on the variables V rO12 outside

the control of the processes in A1||A2 and that satisfies ϕ. Such a prefix exists because

ϕ is a safety property. The prefix cannot be the empty sequence, because otherwise

all sequences that agree with σ on V r O12, including σ′, would violate ϕ. The last

position η of the prefix contains decisions of both s1 and s2. We make the following

case distinction:

9

– There is an infinite extensionσ′′′ of δ·η′ for some η′ with η′∩(VrO1) = η∩(VrO1)

such that σ′′′ |= ϕ, i.e., the violation of ϕ is the fault of strategy s1. In this case, s1 is

not dominant, because the sequence that results from restrictingσ′′′ to the variables

V rO1 outside the control of A1 causes s1 to violate ϕ, while an alternative strategy,

producing the outputs of σ′′′, would satisfy ϕ.

– There is no infinite extensionσ′′′ of δ·η′ for some η′ with η′∩(VrO1) = η∩(VrO1)

such that σ′′′ |= ϕ, i.e., the violation of ϕ is (at least also) the fault of strategy s2.

In this case, s2 is not dominant, because the sequence that results from restricting

σ′′ to the variables V r O2 outside the control of A2 causes causes s2 to violate ϕ,

while an alternative strategy, producing the outputs of σ′′, would satisfy ϕ.

Either case contradicts the assumption that s1 and s2 are dominant. ⊓⊔

In light of the observation that Rule Safety-Comp-Synt cannot be generalized to

liveness properties, it is not surprising that Lemma 1 does not hold for liveness proper-

ties either. Consider the specification (a)∧ (b), where a is the output of A1 and b is

the output of A2. A dominant strategy s1 for A1 is to wait for the first b and then, in the

next step, output a. The strategy guarantees the specification on all paths that have a b

somewhere; no strategy for A1 satisfies the specification on paths without a b. Likewise,

a dominant strategy for A2 is to wait for the first a and then, in the next step, produce

a b. The composition s1||s2, will, however, never output an a or b and therefore violate

the specification, despite the fact that even winning strategies exist, such as the strategy

that immediately outputs a and b.

Lemma 1 implies the soundness of Rule Safety-Comp-Synt. The soundness of Rule

MC is trivial, as the strategy s is guaranteed to satisfy the specification ϕ.

Theorem 6. Rules Safety-Comp-Synt and MC are sound.

7 Compositional Synthesis for Liveness Properties

We saw in the preceding section that the soundness of Rule COMP-SYNT breaks for

liveness properties, because the composition of two dominant strategies is not neces-

sarily also dominant. In this section, we propose an alternative notion of admissibility,

which we call bounded admissibility, which is preserved under composition.

We motivate bounded dominance with the example from Section 6. Consider again

the property ϕ = (a)∧ (b) where a is the output of A1 and b is the output of A2. We

introduced the dominant strategy s1 for A1, which waits for the first b before outputting

a. Strategy s1 is problematic, because it is dominant for A1, but does not result in a

dominant strategy s1||s2 for A1||A2, when combined with the corresponding strategy s2

for A2, which waits for the first a before outputting b.

The problem is that both s1 and s2 postpone their respective output indefinitely,

because they both wait for the other strategy to start. Bounded dominance refines the

valuation of the strategy by counting the number of steps it takes before a and b become

true. This number is compared to a fixed bound n, say n = 5. Strategy s1 is not dominant

with respect to bound n, because it may unnecessarily exceed the bound. There is an

n-dominant strategy s′
1
, which sets a in the very first step and therefore meets the bound

10

1

2 3

∗

¬a ¬b

¬a ¬b

Fig. 3. Universal co-Büchi automaton for the LTL formula ϕ = ((a) ∧ (b)). The states

depicted with double circles (2 and 3) are the rejecting states in F.

whenever possible, i.e., as long as b arrives within 5 steps. The corresponding strategy

s′
2

for A2, which outputs b in the first step, is n-dominant for A2. Replacing s1 and

s2 with s′
1

and s′
2

solves the problem: The combined strategy s1||s2 is n-dominant for

A1||A2.

We prepare the definition of bounded dominance by defining the measure of a com-

putation. The measure captures how quickly a strategy makes progress with respect to

a liveness property. We define the measure with respect to a representation of the spec-

ification as a universal co-Büchi automaton. Such an automaton can be produced with

standard LTL-to-Büchi translation algorithms, by first constructing a nondeterministic

Büchi automaton for the negation of the specification and then dualizing the automaton

to obtain a universal co-Büchi automaton for the complement language [13, 8]. If the

specification is a conjunction of properties, the size of the automaton is linear in the

number of conjuncts: we apply the translation to the individual conjuncts, resulting in

automata with an exponential number of states in the length of the conjunct, and then

compose the automata by branching (universally) from the initial state into the other-

wise disjoint subautomata for the conjuncts.

Lemma 2. Let ϕ = ϕ1∧ϕ2∧. . .∧ϕn be an LTL formula that consists of a conjunction of

properties. There is a universal co-Büchi automaton that accepts exactly the computa-

tions that satisfy ϕ, such that the automaton consists of subautomata for the individual

conjuncts that only overlap in the initial state. The size of the automaton is exponential

in the length of the largest conjunct and linear in the number of conjuncts.

The automaton accepts a computation iff the number of visits to rejecting states

is finite on every path of the run tree. We define the measure of the computation σ,

denoted by measureϕ(σ) as the supremum of the number of visits to rejecting states

over all paths of the run tree of the automaton for ϕ. If there is no run tree, we set the

measure to ∞.

As an example, consider ϕ = ((a) ∧ (b)). The universal co-Büchi automaton

for ϕ is shown in Figure 3. The computation {a, b}ω has measure 0, because the run tree

only has a single path, labeled everywhere with state 1. The computation ∅{a}{a, b}ω has

measure 2: There are three paths, an infinite path labeled with state 1 everywhere, and

two finite paths, one labeled with state 1 followed by state 2, and one labeled with state

11

1, followed by two times state 3. The number of visits to rejecting states are thus 0, 1,

and 2, respectively, and the supremum is 2.

Let n be a fixed natural number. We say that a strategy t : (2I)∗ → 2O is dominated

with bound n (or short: n-dominated) by a strategy s : (2I)∗ → 2O, denoted by tEn s, iff,

for every sequence γ ∈ (2VrO)ω for which the measure of the computation comp(t, γ)

resulting from t is less than or equal to n, the measure of the computation comp(s, γ)

resulting from s is also less than or equal to n. A strategy s is n-dominant iff, for all

strategies t, t En s. A property ϕ is n-admissible in an architecture A, denoted by A�n

ϕ, iff there is an n-dominant implementation.

If the universal automaton is a safety automaton, then dominance and n-dominance

are equivalent. Since the safety automaton does not have any rejecting states, the mea-

sure is either 0, if the property is satisfied, or ∞, if the property is violated and there

is, therefore, no run tree. Hence, the definitions of dominance and bounded dominance

agree for any choice of the bound.

As an example property that has a dominant strategy but no n-dominant strategy

for any bound n, consider (a) ↔ (b), where a is the input and b the output. This

property can be satisfied for every possible input by waiting for an a before setting the b.

For example, setting b in the step after the first a is observed is a winning and therefore

dominant strategy. However, this strategy, as well as any other strategy that waits for an

a before setting b, is not n-dominant for any choice of n: consider the situation where a

occurs exactly every n steps; then the measure of the strategy would be n + 1, while an

alternative strategy that produces a b every n steps has only measure n.

Note that bounded admissibility does not imply admissibility; any specification of

the form (a) ∧ (¬a) ∧ (¬a) ∧ ϕ, where a is an output, is 1-admissible, because it

is impossible to achieve a measure ≤ 1; obviously, there are formulas ϕ for which this

specification is not admissible.

Bounded dominance can be checked with a small variation of the construction from

Section 4: we simply modify the universal automaton A1, which verifies that strategy

sp achieves its goal, as well as the universal automatonA2, which checks whether any

alternative strategy would achieve the goal, by counting the number of visits to rejecting

states up to n.

Theorem 7. For a fixed bound n, the problem of deciding whether a property given

as an LTL formula is n-admissible in a single-process architecture is 2EXPTIME-

complete. An n-dominant strategy can be computed in doubly-exponential time.

Rule General-Comp-Synt, shown in Figure 4a, generalizes the compositional syn-

thesis approach from Rule Safety-Comp-Synt to general properties. Because Rule

General-Comp-Synt is based on bounded admissibility �n instead of standard ad-

missibility�, Lemma 1 now holds for general properties:

Lemma 3. For an arbitrary property ϕ it holds that if s1 is n-dominant for A1 and s2 is

n-dominant for A2, then s1||s2 is n-dominant for A1||A2.

The proof of Lemma 3 is analogous to the proof of Lemma 1. Lemma 3 implies the

soundness of Rule General-Comp-Synt.

Theorem 8. Rule General-Comp-Synt is sound.

12

For architectures A, B and

arbitrary property ϕ:

A�n ϕ

B�n ϕ

A||B�n ϕ

For architecture A, property ϕ given as

an LTL formula over V r
⋃

p∈P out(p), and

property ψ given as an LTL formula over V :

A�n ψ

A�n ϕ ∧ ψ

(a) Rule General-Comp-Synt (b) Rule Decomp

Fig. 4. Rules General-Comp-Synt and Decomp.

8 Property Decomposition

Specifications are usually given as a conjunction of properties. The goal of property

decomposition is to avoid analyzing all properties in the synthesis of every process, and

instead only focus on a small set of “relevant” properties for each process.

In general, it is not sound to leave out conjuncts when checking the admissibility

of the specification for some process, even if, overall, every conjunct is “covered” by

some process. The problem is that the missing conjuncts may invalidate admissibility.

Consider, for example, the properties ϕ = (a ↔ b) and ψ = (c ↔ b), where

a is an input variable, and b and c are output variables. Individually, both ϕ and ψ are

admissible, but their conjunction ϕ ∧ ψ is not: in order to set the value of c correctly, a

dominant strategy would need to predict the future input a.

Conjuncts that do not refer to output variables enjoy, however, the following

monotonicity property: if ϕ does not refer to the output variables, then for every

(n-)admissible property ψ it holds that ϕ ∧ ψ is also (n-)admissible.

Theorem 9. Let ϕ be an LTL formula over V r
⋃

p∈P out(p), and ψ an LTL formula

over V. Then it holds that if ψ is (n-)admissible, then ϕ ∧ ψ is also (n-)admissible.

Proof. Suppose, by way of contradiction, that there is a strategy s : (2I)∗ → 2O that

is dominant for ψ, but not for ϕ ∧ ψ. Then there exists a strategy t and a sequence γ ∈

(2VrO)ω of variable valuations that are not under the control of the process, such that the

computation resulting from t satisfies ϕ ∧ ψ and the computation resulting from s does

not. Since ϕ only refers to uncontrollable variables, the truth value of ϕ is determined

by γ; we therefore know that ϕ must also be satisfied by the computation resulting from

s. Hence, ψ must be violated on the computation resulting from s, while it is satisfied

by the computation resulting from t. This contradicts the assumption that s is dominant

for ψ.

For bounded admissibility assume, analogously, that there is a strategy s that is

n-dominant for ψ, but not for ϕ ∧ ψ. Then there exists a strategy t and a sequence

γ ∈ (2VrO)ω such that measureϕ∧ψ(comp(t, γ)) ≤ n < measureϕ∧ψ(comp(s, γ)). Since

the subautomata for the conjuncts only intersect in the initial state, every path of the run

tree is, starting with the second state, either completely in the subautomaton for ϕ or in

the subautomaton for ψ. Since ϕ only refers to uncontrollable variables, the paths, and,

hence, the number of visits to rejecting states in the subautomaton of ϕ are the same

13

for comp(s, γ) as for comp(t, γ). Hence, there must be some path in the subautomaton

for ψ where comp(s, γ) visits rejecting states more than n times, while comp(t, γ) visits

rejecting states less than or equal to n times. This contradicts the assumption that s is

n-dominant for ψ. ⊓⊔

Theorem 9 can be used to eliminate conjuncts that do not refer to output vari-

ables. This decompositional synthesis style corresponds to applications of Rule Decomp,

shown in Figure 4b.

9 The Compositional Synthesis Algorithm

Putting the results from the preceding sections together, we obtain the following synthe-

sis algorithm. For an architecture A = A1||A2|| . . . composed of multiple single-process

architectures and a specification ϕ, given as a conjunction ϕ = ϕ1 ∧ ϕ2 ∧ . . . ϕm of LTL

formulas, we do the following:

1. Applying Rule General-Comp-Synt, check for all subarchitectures Ai whether

Ai �n ϕ; if so, synthesize a dominant (or n-dominant, for liveness properties)

strategy.

– for this purpose, use Rule Decomp to identify a subset C ⊆ {1, 2, . . . ,m} of the

conjuncts such that Ai �n

∧
j∈C ϕ j, and

– compose the n-dominant strategies according to Lemma 3.

2. Apply Rule MC to check whether the resulting strategy satisfies ϕ. If yes, a correct

implementation has been found.

For specifications given as LTL formulas, the complexity of the compositional syn-

thesis algorithm is doubly-exponential in the length of the formula. Since the synthesis

of the strategies for the subarchitectures is independent of each other, the complexity

of finding the strategies is linear in the number of processes; the complexity of com-

posing the strategies and checking the resulting strategy is exponential in the number of

processes.

10 Conclusions

We have presented an approach for the synthesis of distributed systems from temporal

specifications. For admissible specifications, the complexity of our construction is dra-

matically lower than that of previously known algorithms. Since the synthesis method

is compositional, it can easily be parallelized. The constructed implementations are

modular and much smaller than those constructed by previous approaches that work on

a “flattened” state space. The construction is furthermore universally applicable to all

system architectures, including the large class of architectures for which the standard

synthesis problem is undecidable.

14

References

1. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Automatic

hardware synthesis from specifications: A case study. In: Proc. DATE. pp. 1188–1193 (2007)

2. Bloem, R.P., Gamauf, H.J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthesizing ro-

bust systems with RATSY. In: Association, O.P. (ed.) SYNT 2012. vol. 84, pp. 47 – 53.

Electronic Proceedings in Theoretical Computer Science (2012)

3. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL synthesis. In:

Madhusudan, P., Seshia, S.A. (eds.) CAV. LNCS, vol. 7358, pp. 652–657. Springer (2012)

4. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math. pp. 23–25.

Upsala (1963)

5. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: But-

ler, M., Schulte, W. (eds.) FM. Lecture Notes in Computer Science, vol. 6664, pp. 12–26.

Springer (2011)

6. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)

TACAS. Lecture Notes in Computer Science, vol. 6605, pp. 272–275. Springer (2011)

7. Finkbeiner, B., Schewe, S.: Semi-automatic distributed synthesis. In: ATVA 2005. pp. 263–

277. Springer Verlag (2005)

8. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software Tools for

Technology Transfer 15(5-6), 519–539 (2013)

9. Grädel, E., Thomas, W., Wilke, Th. (eds.): Automata, Logics, and Infinite Games, LNCS,

vol. 2500. Springer-Verlag (2002)

10. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.:

Mona: Monadic second-order logic in practice. In: Tools and Algorithms for the Construction

and Analysis of Systems, First International Workshop, TACAS ’95, LNCS 1019 (1995)

11. Jurdziński, M.: Small progress measures for solving parity games. In: Proc. STACS. pp.

290–301 (2000)

12. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Proc. of ICTL (1997)

13. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings 46th IEEE Sym-

posium on Foundations of Computer Science (FOCS 2005), 23–25 October, Pittsburgh, PA,

USA. pp. 531–540 (2005)

14. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc.

FOCS’90. pp. 746–757 (1990)

15. de Roever, W.P., Langmaack, H., Pnueli, A. (eds.): Compositionality: The Significant Dif-

ference, International Symposium, COMPOS’97, Lecture Notes in Computer Science, vol.

1536. Springer (1998)

15

