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Abstract. Alternating automata have been commonly used as a basis for static
verification of reactive systems. In this paper we show how alternating automata
can be used in runtime verification. We present three algorithms to check at runtime
whether a reactive program satisfies a temporal specification, expressed by a linear-
time temporal logic formula. The three methods start from the same alternating
automaton but traverse the automaton in different ways: depth-first, breadth-first,
and backwards, respectively. We then show how an extension of these algorithms,
that collects statistical data while verifying the execution trace, can be used for
a more detailed analysis of the runtime behavior. All three methods have been
implemented and experimental results are presented.

1. Introduction

Software model checking is hard, and in the majority of cases infeasible.
A practical alternative might be to monitor the running program, and
check on the fly whether desired temporal properties hold. Another sit-
uation in which runtime monitoring may be the only option is when the
program must run in an environment that does not tolerate violations
of the specification, but the source code is unavailable for inspection
for proprietary reasons or due to outsourcing. Thus there is a need for
efficient methods that, given a specification, will check program output
or state against this specification.

Alternating automata are an efficient data structure for many prob-
lems in the specification and verification of reactive systems. Because of
their succinctness they are a convenient way to represent temporal spec-
ifications (Vardi, 1996; Vardi, 1997). They also have been commonly
used as a basis for static verification (Vardi, 1995).

In this paper we show how alternating automata can be used in the
verification of individual traces, also known as runtime verification. In
our approach, alternating automata are used as an intermediate data
structure to check whether a program trace satisfies a (future) linear-
time temporal specification. We present three algorithms that each take
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as input the same automaton, but traverse the automaton in different
ways, which allows us to easily vary the runtime characteristics of the
runtime checking without affecting its semantics.

The first algorithm uses a depth-first strategy: following the struc-
ture of the automaton, it attempts to construct a tree that maps the
trace onto an unrolled version of the automaton. This algorithm is
the most intuitive and easiest to implement. However, it is generally
inefficient for long traces because large parts of the trace may have to
be traversed multiple times in the search for a satisfying state.

The second algorithm overcomes this problem by using a breadth-
first strategy, allowing it to traverse the trace only once. At every
position of the trace it keeps track of all possible sets of automaton
nodes that are consistent with the prefix of the trace seen so far. The
disadvantage of this algorithm is that it may generate an exponential
number of sets of nodes at each position in the trace, making this
algorithm unattractive for larger formulas.

The third algorithm is in general the most efficient: by traversing the
trace backward it avoids the search for a satisfying mapping between
trace states and automaton nodes. Instead, starting from the last state
in the trace it simply evaluates satisfaction of each state for all automa-
ton nodes, using the known values of the successor states. With both
time and space complexity linear in the size of the specification and
the trace, this algorithm is to be preferred when the trace is available
off-line.

These algorithms all check whether the trace satisfies the specifica-
tion. However in many cases a more detailed analysis of the relationship
between trace and specification is desirable. For example, the satisfac-
tion of a liveness property over a finite trace is not very meaningful.
Instead we may want to know at what rate eventualities are fulfilled in
the trace. We show how the trace-checking algorithms can be extended
to collect this kind of statistics during their trace traversal, and explain
their use with two applications.

The algorithms described so far apply to future temporal formu-
las only. Extending them for past formulas is straightforward for the
depth-first and reverse-traversal algorithms. Extending the breadth-
first algorithm is more challenging. We show how, for a restricted class
of formulas containing both future and past temporal operators, the
breadth-first and reverse-traversal strategies can be combined into one
algorithm in a natural way such that the trace is traversed only once,
as for the future case.

We implemented the three trace-checking algorithms and report
some preliminary experimental results that demonstrate the different
runtime behaviors for different formulas and varying trace lengths.
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Related Work

Runtime verification has received a growing attention recently. A se-
ries of workshops on this topic was initiated (Havelund and Rosu,
2001; Havelund and Rosu, 2002a) as satellite workshops of the In-
ternational Conference on Computer Aided Verification. Recent work
includes the MaC architecture (Lee et al., 1999), which provides both
program instrumentation and runtime checking, given a temporal spec-
ification. A prototype implementation, Java-Mac (Kim et al., 2001),
demonstrates the architecture for Java programs. Commercial runtime
verification systems include the Temporal Rover (Drusinsky, 2000), a
tool that allows LTL specifications to be embedded in C, C++, Java,
Verilog and VHDL programs. Runtime analysis algorithms have also
been applied in guiding the Java model checker Java PathFinder de-
veloped at NASA (Havelund, 2000). The work presented in this paper
was inspired by (Havelund and Rosu, 2001; Rogu and Havelund, 2001).

Outline

The remainder of the paper is organized as follows. In Section 2 we
present our specification language of linear time temporal logic (LTL),
alternating automata as an alternative representation of sets of se-
quences, and a linear translation of future LTL formulas into alternating
automata. Section 3 describes the three algorithms for checking traces
for correctness, and in Section 4 these algorithms are extended to collect
statistics from traces related to the desired temporal property. Section 5
extends the trace-checking algorithm to be applicable to formulas with
both future and past temporal operators. The implementation of the
trace-checking algorithms and the results of some experimental runs
are presented in Section 6.

2. Preliminaries

2.1. SPECIFICATION LANGUAGE: LINEAR-TIME TEMPORAL LOGIC

The specification language we use in this paper is linear-time temporal
logic. A temporal formula is constructed out of state formulas, which
can be either propositional or first-order formulas, to which we apply
the boolean connectives and the temporal operators shown below.

Traditionally, temporal formulas are interpreted over a model, which
is an infinite sequence of states o : sg, s1,.... Given a model o, a state
formula p and temporal formulas ¢ and v, we present an inductive
definition for the notion of a formula ¢ holding at a position j > 0 in
o, denoted by (o, j) E ¢ (Manna and Pnueli, 1995).
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For a state formula:
o,7) Ep iff  s; Ep, that is, p holds on state s;.
J J J

For the boolean connectives:

(0. )) EeAy iff (0,7) Egand (0,j) EY
(0,)) EeVey it (0,5) Egpor (0,7) E
(0,7) E—p iff  (0,7) Fo .

For the future temporal operators:

(0,)) EOQ¢ il (0j+1)Fe

(0.j) EO¢ iff  (o,i)Eq@foralli>j
(0, J) EO e ifft  (o0,i) E ¢ for some i > j
(0,7) EUy i (o,k) E for some k > j,

and (0,7) E ¢ for every i, j <i <k
(0.7) EeWo iff (0,j) EpUP or (0,5) EOe .

For the past temporal operators:

(O-a])':QSD iff ]>Oa‘nd(07]_1)l=80

o )EQ¢ ff j=0or(0,j—1)Fg

) ER e ifft (o,i)Epforall0<i<j

j i (0,i) E ¢ for some 0 < i < j
VEeSy iff  (0,k) Et for some k < 7,

and (o,1) E ¢ for every i, k <i < j
(0,) FpBE i (0,)) FpSvor (0,)) FE |

An infinite sequence of states o satisfies a temporal formula ¢, written
o Ep, if (0,0) E p. The set of all sequences that satisfy a formula ¢ is
denoted by L(p), the language of ¢.

We say that a formula is a future (past) formula if it contains
only state formulas, boolean connectives and future (past) temporal
operators.

2.1.1. Finite Models

In runtime verification temporal formulas must generally be interpreted
over finite sequences of states. For a finite sequence of states, o :
80,81, --.,8,—1 we adapt the definitions of the semantics of the future
temporal operators as follows:

(0,))FO¢ i j<n—Tland (o, j+1)F¢p

(0,§) EO¢ it (oyi)E@foralli,j<i<mn
(0, ) EO @ iff  (0,i) By forsome i, j <i<mn
(0,4) EUY ifft  (0,k) B for some j < k < n,

and (0,i) E @ for every i, j <i <k
(0,j) EWe it (0,7) EeUipor (0,) EO .
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It follows from the definition that O ¢ is always false at the last state
of the trace, and < ¢ and ¥ U ¢ are true at the last state of a sequence
only if ¢ is true at that state.

The definitions of the past temporal operators remain unchanged
for finite sequences of states.

2.2. ALTERNATING AUTOMATA

Automata on infinite words, also known as w-automata (Thomas, 1990),
are a convenient way to represent temporal formulas. For every linear
temporal formula there exists an automaton on infinite words such that
a sequence of states satisfies the temporal formula if and only if it is
accepted by the corresponding automaton. Thus to check whether a
trace satisfies a particular temporal formula, we can check whether it
is accepted by the corresponding automaton.

Alternating automata (Vardi, 1996) are a generalization of nonde-
terministic automata and V-automata (Manna and Pnueli, 1987). Non-
deterministic automata have an existential flavor: a word is accepted
if it is accepted by some path through the automaton. V-automata,
on the other hand have a universal flavor: a word is accepted if it is
accepted by all paths through the automaton. Alternating automata
combine the two flavors by allowing choices along a path to be marked
as either existential or universal.

The advantage of using alternating automata to represent the lan-
guage accepted by a temporal formula is that the alternating automa-
ton that accepts the same language as the formula is linear in the size
of the formula, while it is worst-case exponential for nondeterministic
or V-automata.

We describe a translation from temporal formulas to alternating
automata on finite words, applying the interpretation of temporal for-
mulas over finite sequences defined in Section 2.1.1. The corresponding
translation for the traditional interpretation over infinite sequences can
be found in (Manna and Sipma, 2000).

Definition 1 (Alternating Automaton) An alternating automaton
A is defined as follows:

A = ey empty automaton
| (WA f) single node
| AANA conjunction of two automata
| AVA disjunction of two automata

where v is a state formula and f is a boolean indicating whether the
node it is part of is accepting, indicated by acc, or rejecting, indicated
by rej. We require that the automaton be finite.
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In this data structure a node n : (v, d, f), can be viewed as an automa-
ton state, with labeling v(n), next-state relation §(n) and indication of
inclusion in the acceptance set f(n).

The set of nodes of an alternating automaton A, denoted by N (A)
is defined as:

N(eq) =0

N({v.0,f)) = {(nd f)} UN(S)
N(AIANA) = N(A) UN(A2)
N(ALV Ay) = N(A)UN(A2)

A path through a nondeterministic automaton is a sequence of nodes.
A “path” through an alternating w-automaton is, in general, a tree.

Definition 2 A tree is defined recursively as follows:

T == er empty tree
| T-T composition
| (v, 6, ), T) single node with child tree

Definition 3 (Run) Given a finite sequence of states o : sg, ..., Sn—1
and an automaton A, a tree T is called a run of ¢ in A if one of the
following holds:

A=¢€y and T =ce¢r

A= (v, f) and n>1,T={v0f),T), so Evand
T’ is arun of s1,...,8,_1 in 0, or
n=1 T= (1,9, f),er) and s¢ E v

A=A N Ay and T="1T -T5,

Ty is a run of ¢ in Ay and
Ty is a run of o in Ay

A=A,V As and Ti is a run of ¢ in A; or
Ty is a run of ¢ in Ay

Definition 4 (Accepting run) A runis accepting if every path through
the tree ends in an accepting node.

Definition 5 (Model) A finite sequence of states o is a model of an
alternating automaton A if there exists an accepting run of ¢ in A.

The set of models of an automaton A, also called the language of
A, is denoted by L(A).
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Figure 1. Alternating automata for the temporal operators [], <, U, W

2.3. LINEAR-TIME TEMPORAL LOGIC: FUTURE FORMULAS

It has been shown that for every LTL formula ¢ there exists an alternat-
ing automaton A such that £(y) = L(.A) and the size of A is linear in
the size of ¢ (Vardi, 1997). The construction of the automaton follows
the structure of the formula, where we assume that all negations have
been pushed in to the state level (a full set of rewrite rules to accomplish
this is given in (Manna and Pnueli, 1995)), that is, no temporal operator
is in the scope of a negation. Given an LTL formula ¢, an alternating
automaton A(p) is constructed as follows:

For a state formula p:

A(p) = (p,ea, acc) .
For temporal formulas ¢ and 1:
Alpny) = Alp) NAY)
AlpVvy) = Alp) V. AY)
A(Op) = (true, A(p), rej)
AQe) = (true, A(Oy), acc) A A(p)
A(O ) = (true, A(O p), rej) V A(p)
AlpUrp) = A(Y)V ({true, A(pU1p), rej) A A(p))
AleW) = AW) V ((true, A(pW), acc) A A(p))
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Figure 2. Alternating automaton for []J(—a — —b U c)
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Figure 8. Run in the automaton for [J(—a — —b U ¢)

The constructions are illustrated in Figure 1, where accepting nodes
are marked by an asterisk.

Example

Figure 2 shows the automaton for the formula [J(—a — —b U ¢), which
states that from every position at which a is false, b should be false until
¢ becomes true. A model for this formula, for example, is the trace

{a,b,—c), (—a, b, —c), (a,—b, —c), (—a, b, ), (a, —b, —c)
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where the tuples show the truth assignments for the three propositional
variables a, b, and ¢ at successive positions in the trace. An accepting
run for this trace is shown in Figure 3.

3. Checking Traces

We present three algorithms to check whether a finite sequence of
states, also referred to as a trace, satisfies a temporal formula, using
the finite semantics of temporal formulas introduced in the previous
section. All are based on alternating automata, but make different
optimizations and are favored in different situations.

Given a trace o and a specification ¢, the first algorithm attempts
to construct an accepting run, starting from the root of the tree, of
o in A(yp), by recursively traversing the automaton in a depth-first
manner. The second algorithm attempts to construct an accepting run
of o in A(p), by traversing the automaton in a breadth-first manner: for
each position in the trace it creates all possible combinations of nodes
that can be part of a run for that trace at that position. The third
algorithm traverses the trace backwards while attempting to construct
an accepting run starting from the leaves of the tree. In this case no
search has to be performed: the value of each node in the tree can be
computed by simply looking up the values of its child nodes.

In the three algorithms we assume that a trace consists of a finite
sequence of states and that we have some way of checking whether a
state satisfies a propositional or first-order formula.

3.1. DEPTH-FIRST TRAVERSAL

The depth-first traversal algorithm is the easiest to implement. To check
whether a trace o satisfies a temporal formula ¢, we first generate the
alternating automaton A(y) for ¢ and then recursively check for the
existence of an accepting run, following the structure of the automaton.

To prepare for the depth-first algorithm we restate Definition 5 as
a recursive function. Given an automaton A, a trace ¢ and a position
n, the value of ¢T(A,o,n) is true iff there is a run of o in A, starting
with position n.

For n < |o| — 1:

cT(A1 A Ag,o,n) = cT(Ay,0,n) ACT(Ag,0,n)
cT(A1 V Ag,o,n) = CT(A1,0,n)V CT(Ag,0,n)
cr((v, 0, f),o,n) = on]Ev ACT(d,0,n+1)
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DEPTH-FIRST(A, o,n)

1: if A =¢4 then

2:  return frue

3: else if A = A; A Ay then

4:  return DEPTH-FIRST(A1,0,n) A DEPTH-FIRST (A2, 0, n)
5: else if A = AV A then

6: return DEPTH-FIRST(Aj,0,n)V DEPTH-FIRST (A2, 0, 1)
7: else if A= (1,0, f) then

8: if o[n] Ev then

9: if n=|o| — 1 then

10: return (f = acc)

11: else

12: return DEPTH-FIRST(J,0,n + 1)

13: end if

14:  else

15: return false

16:  end if

17: end if

Figure 4. Depth-first traversal algorithm.

For the last position of the trace, n = |o| — 1, we apply Definition 4:

cr((v,0, acc),o,n) = oln] Ev
ct((v, 8, rej),o,n) = false

Figure 4 shows the resulting depth-first algorithm that recursively com-
putes the value of ¢T(A, o,n). The function call DEPTH-FIRST(A, 0, 0)
returns true iff o is a model of A.

Clearly this algorithm is potentially inefficient in that it may tra-
verse parts of the trace multiple times due to the recursive calls for
conjunction and disjunction. As an example, consider the specification

O e

Suppose ¢ is satisfied only at the last element of the trace. At each
position the algorithm will traverse the remainder of the trace to look
for . In the worst case, there is a recursive call for every node in the
automaton. Therefore this algorithm becomes prohibitively slow for
long traces.
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3.2. BREADTH-FIRST TRAVERSAL

An alternative approach is to search for an accepting run in a breadth-
first manner. We construct the run tree 7 as a sequence of slices C; C V/,
where the slice C; contains a node n iff there is a path of length ¢ from
the root of the tree to n. The breadth-first algorithm traverses the trace
only once, by keeping track of the set of slices that are consistent with
the trace prefix seen so far!.

Figure 5 shows the breadth-first traversal algorithm. The function
call BREADTH-FIRST(A, o) returns true iff o is a model of A. The vari-
able S stores the set of slices that are consistent with the trace prefix
seen so far. Initially, this set is computed with the function initial(.A).
This function computes the set of all possible slices that can appear
as slice C of some run in A. (Note that function initial(A) does not
depend on the trace.)

€a) = {0}

(6. F) = ({0 /1

A1 N Ag) = initial(Ay) ® initial(Asg)
A1V Ay) = initial (A1) U initial(Asg)

mitial
mitial
mitial
mitial

NN N N

where ® denotes the crossproduct:

{Sl,...,Sn}®{T1,...,Tm} = {SZUTj]z:ln,jzlm}

Ezample
We apply the function initial to the automaton for [J(—a — —b U ¢),
shown in Figure 2:

initial(A(O(—a — -bUc))) = {{no,n1},{no,n2},{no,n3,na}}

a

In the body of the main loop (lines 3-10) the set of slices S is updated
as follows: First, function state-satisfied(C, s) checks, for a given slice
C from the set, and a trace state s, if C' is satisfied in s:

state-satisfied(C, s) = for all nodes (1,4, f) € C': s E 1.

1 Note that this construction will necessarily produce identical subtrees whenever
the same automaton node is reached on different paths of the same length. This
can be done without loss of generality, since, given an accepting run in which the
subtrees are different, we can always construct another accepting run in which they
are identical, simply by replacing one of the subtrees with the other.
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BREADTH-FIRST(A, o)
1: S « initial(A)
2: forn=0to |o| —2 do

3: S — 10

4. for each C € S do

5: if state-satisfied(C, o[n]) then
6: S’ — S’ U successors(C)

T end if

8: end for

9: S — 9

10: end for

11: " 10

12: for each C' € S do

13:  if state-satisfied(C, o[|o| — 1]) and accepting(C') then
14: S'—S'ucC

15:  end if

16: end for

17: return (S # 0)

Figure 5. Breadth-first traversal algorithm.

For those slices that are state-satisfied, function successors(C') com-
putes the set of candidate successor slices:

successors(C) = ) initial(5(n)).
neC

When the traversal reaches the last position of the trace (lines 12-17),
function accepting(C') is used to check if a slice contains only accepting
nodes: the trace is accepted if some slice in S is state-satisfied in the
last position and contains only accepting nodes.

accepting(C) = for all nodes (v, 6, f) € C': f = acc.

Example
We illustrate the algorithm on the automaton for [J(—a — —b U ¢) and
the trace

{a,b,—c), (—a, b, =c), (a,=b, —c), (—a, b, ), (a, =b, —c)
presented before in Section 2.3. Starting with the set of slices

{{no,n1},{no,n2}, {no, n3, na}}
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as computed by function initial, we detect that only the slice {ng,n}
is state-satisfied for the first state of the trace, (a,b, -c). Computing
the successors of {ng,n;} we again obtain

{{no,n1}, {no,n2},{no,n3, na}}

as candidate slices for the second slice. For the second state in the trace,
(—a, b, —c), only the slice {ng, n3, n4} is state-satisfied. To compute the
successors of this slice, we take the crossproduct of the successors of
no,ns, and ng, that is

{{n(]v nl} ) {nO’ nQ} ) {n07 ns, n4}} ® {@} ® {{nQ} ) {n?w TL4}}

resulting in

{{no,n1,n2} ,{no,n1,n3,na},{no,n2}, {no, n2,n3,na}, {no,n3, na}}

of which both the slices {ng,ni,n3,n4} and {ng,ns,ns} are state-
satisfied for the third state, (a,—b, ~c). Again we get the same set of
successors, but for the fourth state, (—a, b, c), only the slice {ng,na} is
state-satisfied. Finally, for the fifth slice we compute candidates

{{n(), nl} ’ {n07 77’2} ) {nUv ns, n4}}

where {ng, n} is the only slice that is both accepting and state-satisfied.
Having found, upon completion of the traversal, a nonempty set of
slices, the algorithm returns true, as expected.

The two runs observed during the execution of the algorithm are
thus

{no,n1} {no,n1}
{ng,n3,n4} {ng,n3,n4}
{no,n1,n3,n4} {ng,n3,na}
{no,na} {no,na2}
{no,n1} {no,n1}
the first of which is the same as the run shown in Figure 3. O

The breadth-first algorithm clearly traverses the trace only once.
However, it may generate an exponential number of sets of nodes at
each position in the trace. We have found that for typical formulas
the number of sets is relatively small, however for larger formulas this
may be a problem as is illustrated by one of the examples presented in
Section 6.
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3.3. REVERSE TRAVERSAL

The blow-up in the number of sets in the breadth-first traversal is
caused by nondeterminism in the formula. This can be avoided, as was
pointed out by Rosu and Havelund, by traversing the trace backwards
(Rosu and Havelund, 2001; Havelund and Rosu, 2002b).

Like the depth-first algorithm, the reverse traversal algorithm com-
putes the value of the function cT(A,o,n) at position n = 0 of the
trace. The difference with the depth-first algorithm is that we now
refer to previously computed values rather than making a recursive call.
Figure 6 shows the reverse traversal algorithm. We use an array result
to store the previously computed values. The function REVERSE(A, o)
initializes result at the last position of the trace (where only accepting
nodes are considered) and then successively updates the array for earlier
positions, using the auxiliary function eval to compute the result for
disjunctions, conjunctions, and the empty automaton, as follows:

eval(e4, result) = true

eval((v, 9, f), result) = result[(v,d, f)]

eval(Ay N Ag, result) = eval( Ay, result) A eval(Asg, result)
eval(Ay V Ag, result) = eval( Ay, result) V eval(Asg, result)

Ezxample

Consider again the trace and automaton presented in Section 2.3. The
successive values computed for result are, starting from the last state
in the trace:

o ni n2 n3 nq
4:{a,~b,—~c): true true false true false
3:(—a,b,c): true  false true false false
2:{(a,mb,—c): true true false true true
1:(=a,—b,—c): true false false true  true
0:{a,b,—c): true  true false false false

After having computed the values in result for the first position in the
trace, the algorithm computes

eval (result, A(—q——b 1))
which evaluates to
result[no] A (result[ni] V result[ns] V (result[ns] A result[ng]))

and thus, with the above values, evaluates to true, indicating that a
run exists. O
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REVERSE(A, o)

1: for each (1,6, f) € N(A) do

2: if (f = acc) then

3 result[(v, 6, f)] < (co[lo] — 1] E V)
4: else

5: result[(v, 6, )] < false

6: end if

7: end for

8: for n =|o| —1 downto 0 do

9: for each (1,6, f) e N(A) do

10: if o[n] E v then

11: result'[(v, 8, f)] < eval(result,d)
12: else

13: result’[(v, 8, f)] < false

14: end if

15:  end for

16:  result «— result’

17: end for

18: return eval(result, A)

Figure 6. Reverse traversal algorithm.

4. Collecting Statistics over Traces

The trace checking algorithms considered so far have been concerned
with the correctness of a system behavior: does the trace satisfy the
specification? Since a trace is only a finite prefix of the infinite system
behavior, this question is not always meaningful. The liveness property
0< p (“infinitely often p”), for example, is satisfied in any trace in
which p is true in the last state — even if this is the only state in which
p is true. On the other hand, [J > p is not satisfied on a trace in which
p is false in the last state, even if p is true in all other states.

Collecting statistics over traces is a way to get a better impression to
what extent eventualities are fulfilled. For example, we can count how
often a run visits rejecting nodes, and report the minimum number over
all accepting runs. A low number indicates that the eventualities have
been fulfilled quickly.

Another interesting statistic is specification coverage: which nodes
are visited by all accepting runs? If large parts of the automaton are
avoided, this may indicate a problem: perhaps parts of the specification
are vacuously true, or the trace is too short to exhibit all aspects of the
specified behavior.
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In this section we extend the trace checking algorithms to collect
statistics during their traversal of the automaton. We assume here that
the statistic of interest can be defined directly in terms of the automa-
ton. A further extension of this approach is to work with a temporal
logic that combines the temporal specification with the collection of
statistical data. We have started to explore this approach in a separate
paper (Finkbeiner et al., 2002).

4.1. REPRESENTING STATISTICS

Trace checking computes a boolean value: true if the trace has an
accepting run, false otherwise. We now generalize the analysis to return
statistical data. We restrict ourselves to data that can be represented
as a lattice § with a meet operation A, a join operation V, a bottom
element 1, and a top element T. Under this assumption, the collection
of statistics becomes a straightforward extension of trace checking,
where conjunctions in the alternating automaton cause meets on the
statistical data, and disjunctions in the automaton cause joins on the
statistical data?. In addition to the lattice operations, we assume there
is a special operation update(s, n) that returns, for given statistical data
s and an automaton node n, the new statistical data after the node n
has been traversed. Trace checking is a special case, with A = A,V =V,
1 = false, T = true and update(S,n) = S.

Ezxample

To illustrate the mechanism for collecting statistics, we present a simple
example in which we count the number of visits to rejecting nodes and
report the minimum number of all accepting runs. 1. means that there
are no accepting runs; T means that there is an accepting run without
visits to rejecting nodes, i.e., T = 0. A conjunction corresponds to
a branching of the run tree, we therefore implement A as addition;
Disjunctions allow for multiple runs, we therefore implement V as min-
imum. When visiting a rejecting node, the update function adds 1; when

2 Qur approach is inspired by Bruns and Godefroid’s extended alternating au-
tomata, introduced for the purpose of temporal logic query checking (Bruns and
Godefroid, 2001).
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visiting an accepting node the value is left unchanged.

S = Nu{l}

T =0

s A s :{L if s1=1Lorsy=_1;

L ee2 S1 + so otherwise.

S1 if SS9 — J_;

S1 V 82 = S9 if s1 = L;
min{sy, sa} otherwise.
S if f=acc

update(s, (1,6, f)) = < L ifs=_1

s+ 1 otherwise.

Suppose we evaluate the automaton for —a — —b U ¢, shown as a
subautomaton of the automaton presented in Figure 2, over the trace

<CL, _'ba _'C>a <a7 _'bv C>

There are two accepting runs: One that only visits nq, and a second
run that first visits nodes nz and ny4 and then ny. The first run does
not visit any rejecting nodes. Hence, the result is 0. The trace

(—a,—b,—c), (—a,—b, c)

on the other hand, allows only the second run. The result for this trace
is therefore 1. O

Ezxample

As a second example, we evaluate the same automaton and the same
traces as in the first example, but compute a different statistic: we
determine which nodes are visited by all accepting runs. 1 again means
that there are no accepting runs; T means that no nodes are visited, i.e.,
T = 0; a non-empty subset of N'(A) means that the indicated nodes
are visited by all accepting runs. A conjunction combines two subtrees;
correspondingly, we implement A as set union. Since we are interested
in the nodes that are visited by all accepting runs, V is implemented as
set intersection. The update function simply adds the presently visited
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node to the set.

S = 2Ny ({1}
T =10
o A s :{J_ if s1=_1or s =1;
Lee2 s1 U sy otherwise.
S1 if 50 = 1;
s1V s :{52 if s1 = L;
s$1 N sy otherwise.
1L if s =13
update(s,n) = { sU{n} otherwise.

Consider again the automaton for —a — —bU ¢, shown in Figure 2,
and the trace

(a,=b,=c), (a, b, c)

The two accepting runs visit disjoint sets of nodes (node ny, and nodes
ng, ng, ng, respectively). The result, therefore, is the empty set. The
trace

(—a, —b, —c), (—a, b, c)

on the other hand, forces a visit to ns, n3 and ng. O

4.2. DEPTH-FIRST AND REVERSE TRAVERSAL

In a depth-first or reverse traversal, statistics can be collected by eval-
uating the following function STAT instead of the function CT used for
trace checking. For positions n < |o| — 1:

STAT(€4, 0, 1) =T

STAT(A; A Ag,0,n) = STAT(Ay,0,n) A

STAT(Ay V Ag,0,n) = STAT(Ay,0,n) V. STAT(A2,0,n)
0,

STAT((1, 6, f),0,n) = if o[n] Ev
€ otherwise.
At the end of the trace, that is, at position n = |o| — 1, only accepting
nodes can have a value different from 1:

STAT((v, §, acc),o,n) =

update(T, (v, 0, acc)) if o[n] Ev
L otherwise.

STAT((v, 6, rej), o, n) 1
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Example

We apply the depth-first algorithm to compute the statistic from the
first example (the minimum number of visits to rejecting nodes). Con-
sider again the automaton for —a — —b U ¢ (Figure 2) and the trace

o : (a,—b,—c), (a, b, c).

Using the depth-first algorithm, we evaluate

STAT(n1,0,0) V. STAT(n2,0,0)

<

STAT(A—'OLH—J) Uc O, 0) = <
STAT(n3,0,0) A STAT(n4,0,0)

Nodes n1,n2 and ng have no successors. Furthermore, the state at the
first position, (a, —b, —c), satisfies the labels of n; and n3, but not the
label of no. For nodes nq,ny and ng, the recursive evaluation therefore
terminates with

STAT(n1,0,0) = update(T,ny) =0,
STAT(ng,0,0) = L1,
STAT(n3,0,0) = update(T,nz) = 0.

Node n4 has the successor automaton A_yp, 74, thus
STAT(ng4,0,0) = update(STAT(A-p 1/¢,0,1),n4).
At position 1 we obtain

STAT(n2,0,1)
STAT(.A_.b Ue) 0, 1) = A ,
STAT(ns3,0,1) A STAT(n4,0,1)

where

STAT(n2,0,1) = update(T,ng) =0
STAT(ng,o,1) = update(T,n3) =0,
STAT(ng4,0,1) = L.

Hence,

STAT(Aﬁb Uc,) 0, 1) = 0,
STAT(ny4, 0,0) = update(0,ny) = 1.

From this we conclude at position 0:

STAT(.A_.a_mb Uey T, 1) = min{o, 1} =0.
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4.3. BREADTH-FIRST TRAVERSAL

The gathering of statistical information in a depth-first or reverse traver-
sal can be seen as an annotation of each node in a run with a statistical
summary of the possible subtrees starting in that node. When statistics
are collected in a breadth-first traversal, we annotate each slice with
statistical information that summarizes the run up to the current slice.

The breadth-first trace checking algorithm was presented in Sec-
tion 3.2. We now describe changes to the algorithm that replace each
slice C' with an annotated slice (C,s) where s is the statistical infor-
mation.

Function initial (which computes the set of slices that appear as
slice C of some run) is extended as follows:

initial (€.4) = {(0, 1)}

initial(v,6, £)) = {(L{,0, 1)}, update(T, (v, 5, f))
initial (A1 A Az) = initial(A;) ® mztzal(Az)
initial (A1 V Ag) = initial(Ay) U initial(Asz)

where ® denotes the crossproduct:

{Crs1)s - (Crssn)} @ {{CT,81)s -+ (Chs si) b =
{(CZ-UC;,siAs;)]izl...n,j—l...m

As described in Section 3.2, the breadth-first algorithm maintains a
set of slices, that is initially computed by function initial. For each po-
sition in the trace, the successors function determines the successors of
the state-satisfied slices in that set. The successors function is extended

as follows:
successors ((C,s)) = ® k(d(n), s)

where

( = {{0,5)}

(:6.£),5) = {{{v,6. 1)}, update(s, (1.5, f)))}
k(AL AN Az, s) = k(A1,s) @ k(Ag,s)
(ALY A, s) = r(ALs) U r(As, s)

At the last position, slices that are either not state-satisfied or that
contain rejecting nodes are eliminated. The algorithm then returns the
join of all remaining annotations.
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Example
Again we compute the minimum number of visits to rejecting nodes),
using the automaton for —a — —b U ¢ (Figure 2) and the trace

o : {a,—b,—c),{a,b,c)
Initially, we generate the following set of annotated slices:

initial(A-g——p ye) = {({721},0), ({n2} ,0), ({713,”4} ) 1)}

In position 0 of the trace only

({nl} ) 0) and ({n?n n4} ) 1)

are state-satisfied. The successors are

{((Z)a 0)7 ({n3a n4} > 2)7 ({nQ} ) 1)} )

of which (0,0) and ({n2},1) remain after ({ns,n4},2) is eliminated
because of the rejecting node n4. Both slices are state-satisfied. The
result is again

0V 1=min{0,1} = 0.

5. Past Temporal Operators

The algorithms presented in the previous sections are applicable to LTL
formulas with future temporal operators only. It is relatively straight-
forward to generalize the algorithms to include past temporal operators
as well. In this section we give an outline of the necessary extensions.

5.1. ALTERNATING AUTOMATA WITH PAST NODES

To define an alternating automaton for LTL formulas including past
operators, we add a component g to the definition of a node, such that
a node is defined as

(v,0,f,9)

where g indicates whether the node is a past node (indicated by “«~7),
a future node (indicated by “—”), or a state node (indicated by “|”).
The definition of a run of such an alternating automaton reflects the
presence of past nodes as follows:
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Definition 6 (Run) Given a finite sequence of states o : sq, s1, ..., Sn,
an automaton A, and a position j > 0, a tree T is called a run of ¢ in
A at position j if one of the following holds:

A=¢ey and T=er

A= (v,0,f1]) and T ={(v,9,f 1) er) and s; Ev;

A= (v,0,f,—) and T = ((v,0, f,—),T") and s; F v and
T isarunof o in § at j + 1;

A= {(v,0,f,«) and T = {({v,d, f,<—),T') and s; kv and

(a) 0<j<n-—1and7T isarun
of o in § at position j — 1, or
(b) j=0and T’ =ep, or
(¢) j=n—1and T’ = ep;
¢4 =:¢41 A\f42 and T = JH '15,
Ty is a run of Ay at position j and
T5 is a run of As at position j;
A=AV Ay and Ty is a run of Ay at position j or
Ty is a run of Ay at position j

The definitions for accepting run and model are the same as before.

Definition 7 (Accepting run) A runis acceptingif every path through
the tree ends in an accepting node.

Note that the end of a path in the tree may now be a past or state
node evaluated at the first position in the trace.

Definition 8 (Model) A finite sequence of states o is a model of an
alternating automaton A if there exists an accepting run of ¢ in A.

5.2. LINEAR TEMPORAL LOGIC

Given an LTL formula ¢, an alternating automaton A(¢p) is constructed
as before, with

A(p) = (p, ea, acc, |)

for a state formula, and constructions for the future operators identical
to those presented in Section 2.3 except for the addition of the — com-
ponent to each node. For temporal formulas ¢ and 1 the constructions
for the past formulas are as follows:

A® @) = (true, A(p), acc, —)

A©p) = (true, A(p), rej, <)

A(E @) = (true, A(E ¢), acc, <) N A(p)

AQ ) = (true, A(S @), rej, ) V A(p)

AlpS) = A@)V ((true, A(p S ¥), rej, <) N Alp))
AlpBy) = A@W)V ({true, A(p Bv), ace, —) AN A(p))
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Figure 7. Alternating automaton for [(J(p — &)

nl/.\no

o 1: (—p,—r)
m/ \nlo ......... 2: (=p,7)
n|2/ \nlo ......... 3: (p,—r)
2: <—\p7 r> ......... n|3 TL|2/ \nl() ......... 4 <p7 —\r>
3:(p,r) - n|2 n3/ \no .......... 5: (p,r)
|
2 <_'p,7'> ......... n|3

Figure 8. Run in the automaton for ¢ : [J(p — &)

Ezxample

Figure 7 shows the automaton for the formula ¢ : O(p — & r) with p
and r state formulas. This formula states that every occurrence of p is
preceded by an occurrence of r, and hence is called a causality formula
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(Manna and Pnueli, 1995). As before, accepting nodes are marked by
an asterisk.
Figure 8 shows a run for the trace

o <_‘pa _'T>a <_'p7 T>7 <pa —|7“>, <p7 —\’I”>, <p7 7“>

in the the automaton for . Notice that slices of the tree may now
contain nodes evaluated over different positions in the trace.

a

5.3. DEPTH-FIRST ALGORITHM

The depth-first algorithm presented in Section 3.1 can be extended to
include past operators by adding the following cases:

CT<V(5f,)Un) = on]Fv

cr((v, 9, f,<—),o,n) = on]Ev ACT(d,0,n—1) n>0
ct((v,0, ace,«),0,0) = o[0] Ev
cr((v, 0, rej, «),0,0) = false

The other cases remain unchanged.

5.4. BREADTH-FIRST ALGORITHM

Adapting the breadth-first algorithm to be applicable to formulas con-
taining past operators is more complex. In the presence of past oper-
ators, nodes in a slice of a run may refer to different positions of the
trace, and therefore extra bookkeeping is required.

To simplify the algorithm we restrict ourselves here to formulas in
which no future operator occurs in the scope of a past operator. That is,
the direction of time is reversed at most once in a run. This restriction
allows us to apply the reverse-traversal algorithm of section 3.3 to that
part of the run in which the direction of time is towards the past,
and use the result to prune the successors of each slice in the forward
direction.

To prepare for the algorithm, we first identify the nodes in the
automaton that can participate in the reverse-traversal algorithm, that
is, all nodes whose evaluation does not depend on the evaluation of
future nodes. We call these nodes the backward looking nodes of an
automaton, denoted by Np(A). It is easy to see that in the automaton
for a formula with the above restriction, all nodes reachable from a past
node are either past nodes or state nodes. For example, in Figure 7 only
nodes ny and ng are reachable from past node nsy. Therefore all past
nodes and their successors are backward looking nodes. More formally,
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given an automaton A we denote with Ng(A) C N (A) the backward
looking nodes of A, defined as

Np(ea) =0

NB(<V’67f’l>) = 0

NB(<V’6vf’_)>) = NB(5)
NB(<V767f7<_>) = {<V)57f7<_>}UN(5)
NB(.Al/\Az) = NB(Al)UNB(Ag)
Np(A; V As) = Np(A1) UNB(A2)

Note that in the fourth line we conjoin the past node with all nodes of
the next-state automaton.

We now describe the algorithm BREADTH-FIRST-PAST, shown in
Figure 5.4, which checks for the existence of an accepting run of a trace
o in an automaton A in a breadth-first fashion. Lines 1-7 initialize the
values for the backward looking nodes in the array past, similar to the
first part of algorithm REVERSE in Section 3.3. In line 8 we initialize the
first set of candidate slices for the first position of the run, similar to the
first line of algorithm BREADTH-FIRST in Section 3.2. However, here we
use the values of the backward looking nodes to eliminate slices that
are known to be unsatisfiable. To achieve this, we redefine the function
initial as follows

initial (€ 4, past) = {0}
initial((v, 6, f, ), past) = {{{v,6, f, )}}

(
(
initial((v, 0, f,—), past) = {{{(v,0,f,—)}}
—)| =
initial ((v, 0, f, <), past) = { ? 5;???[&”;?’ ﬁ"cheilvisefalse
initial (A1 A Ag, past) = initial( Ay, past) ® initial( Az, past)
initial (A1 V Ag, past) = initial( Ay, past) U initial(Asz, past)

where, as in Section 3.2, ® denotes the crossproduct:
{S1,.... 8} &{T1,....,Tn} = {SiUTj|i=1...n,j=1...m}

Lines 9-25 proceed to traverse the trace as in BREADTH-FIRST with
the difference that at the start of the computation of each new set of
candidate slices, we first compute the values of the backward looking
nodes for the next position, based on their values in the current position
(lines 10-17) as in the REVERSE algorithm, where the function eval is
defined similarly as in Section 3.3:

eval (€4, past) = true

eval((v,0, f, g), past) = past[(v,6, f,g)]
eval(Ay A Az, past) = eval(Ay, past) A eval( Az, past)
eval(Ay V Az, past) = eval(Ay, past) A eval( Az, past)
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BREADTH-FIRST-PAST(A, 0)
1: for each (1,4, f,g) € Np(A) do

2:  if (f = acc) then

5 pastl{.d,f.g)] — (o[0] £ )

4: else

5: past[(v, 9, f, g)] — false

6: end if

7: end for

8: S « initial (A, past)

9: for n=0to |o| —2 do

10:  for each (v,d, f,g) € Np(A) do
11: if o[n+ 1] Ev then

12: past'[(v, 0, f, g)] < eval(past, )
13: else

14: past'[{v,0, f, )| «— false

15: end if

16:  end for
17:  past < past’

18 S 10

19:  for each C € S do

20: if state-satisfied(C,o[n]) then
21: S" — S U successors(C, past)
22: end if

23:  end for

24: S 9

25: end for

26: S — 0

27: for each C' € S do

28:  if state-satisfied(C,o[|o| — 1]) and accepting(C') then
29: S'—SucC

30:  end if

31: end for

32: return (S’ # ()

Figure 9. Breadth-first algorithm for automata with past nodes.

Lines 19-23 then compute the set of candidate slices, again using the
values of the backward looking nodes to eliminate slices whose past
nodes are not satisfied. The function successors is redefined as

successors(C, past) = ® initial(6(n), past)
neC
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Finally, lines 27-31 evaluate the set of slices at the last position and
keep only those slices that are state-satisfied and accepting. The algo-
rithm returns t¢rue if the remaining set of slices is nonempty.

Example
To illustrate the algorithm we apply it to the automaton A for the
formula ((p — & ), shown in Figure 7, and the trace

o: <_‘p; _‘T>; <_‘p77a>7 <p> —\7“>, <p7 —\7’>, <p,7”>

for which a run was shown in Figure 8.
First, the array past is initialized on the first state of the trace.
past[na] = false because ng is rejecting, pastns] = false as (—p, —r) ¥r.
Using these values for past, S is initialized with the set of candidate
slices for the first position:

S = {fno}} @ ({{m}} UOUD) = {{no,m}}

For the second slice new values are computed for past. Now past[na] =
false because past[nz] V past|ng] = false. Slice {{ng,n1}} is found to
be state-satisfied and thus its successors are computed using the new
values of past, resulting in

S ={{no}}t @ ({{n}} UOU {{ns}}) = {{no,m1}, {no, na}}

of which only {ng,ns} is state-satisfied. In the two subsequent passes
through the loop S is set to

{{n07 nl} > {n(]v nZ}}

as now past[ng| is true and will remain true. For n = 2 and n = 3 both
sets are state-satisfied. For the last position past[ns] = true and thus
the candidate set is

{{no,n1}, {no, na}, {no, n3}}
of which all are state-satisfied. The slices {ng,n1} and {ng,ns} are
accepting, and therefore the algorithm returns true. O
6. Implementation and Experiments
The algorithms were implemented in Java, making use of existing soft-

ware modules for expression parsing, propositional simplification and
generation of alternating automata available in the STeP (Stanford
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Temporal Prover) system (Bjgrner et al., 2000). The size of the pro-
grams implementing the three trace checking algorithms are 75, 190,
and 80 lines of code respectively. No attempts were made to optimize
the code except for caching of successor sets in the breadth-first algo-
rithm (which resulted in a speed-up of a factor 5) and caching of results
in the reverse traversal algorithms.
The three algorithms were applied to the following three temporal

formulas:

p1: OOz

p2: OOa

w3: OB — —ald (alU (mal a)))
For all formulas traces were generated randomly containing states in
the following proportions:

{a,=b,—~c,—z) : 10%
(=a,b,—c,—z) : 40%
(=a,=b,c,—z) : 25%
(=a,—b,—c,—z) : 25%

For ¢ a single state (—a, —b, —¢, z) was added to the end of the trace
and for ¢y and @3 a (a, =b, ¢, —z)-state was added to the end to ensure
satisfaction for easier comparison. The running times are presented in
Figure 10. The program was run on a 1.7GHz PC, running Redhat
Linux v7.0 and Sun JDK1.3.1.

The results confirm our expectations. Indeed the depth-first algo-
rithm performs poorly on the formula [J< 2, while the two other
algorithms can deal with this case easily. When eventualities are fulfilled
reasonably quickly, as is the case with [J<>a (as roughly in every
tenth trace element a is true), the performance of the depth-first al-
gorithm is comparable with the other two. For large formulas, such as
OB — —al (aU (-a U a))), the breadth-first algorithm performs
considerably worse than the other two, due to the large number of
sets to maintain at each position in the trace. Again here eventualities
are fulfilled relatively quickly and therefore the performance of the
depth-first algorithm is comparable to that of the reverse traversal.

Based on these preliminary results, it is clear that all three al-
gorithms have their utility. Reverse traversal is always the preferred
choice if it is possible. However, in many situations, especially online
monitoring, this is not an option. In that case depth-first checking is
feasible if waiting times are not too long (and there are no disjunctions
in eventualities), especially if one wants to gather statistics on these
waiting times. For long waiting times or in the presence of disjunc-
tions on eventualities, and relatively small formulas breadth-first is
preferred.
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Figure 10. Running times for trace checking.
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