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Synthesizing finite-state systems from full linear-time temporal logic (LTL) is an ambitious way
to tackle the challenge of constructing correct-by-construction systems. One particularly promising
approach in this context is bounded synthesis, originally proposed by Schewe and Finkbeiner, which
in turn builds upon Safraless synthesis, as described by Kupferman and Vardi. Previous implementa-
tions of these approaches performed the computation either in an explicit way or used symbolic data
structures other than binary decision diagrams (BDDs). In this paper, we reconsider BDDs as state
space representation and use it as data structure for bounded synthesis. The key to this construction is
the application of two novel optimisation techniques that decrease the number of state bits in such a
representation significantly. The first technique uses signalling bits to connect sub-games representing
the safety- and non-safety parts of the specification. The second technique is based on a closer analy-
sis of the step of building a safety game from a universal automaton and uses a sufficient condition to
remove some so-called counters from the state space of the game.

We evaluate our approach on several benchmark suites and show that the new approach leads to a
computation time improvement of several orders of magnitude.

1 Introduction

Ensuring the correctness of a system is a difficult task. Bugs in manually constructed hard- or software are often
missed during testing. To remedy this problem, two lines of research have emerged. The first one deals with the
verification of systems that have already been built and spans topics such as process calculi and model checking.
The second line concerns the automatic derivation of systems that are correct by construction, also called synthesis.
In both cases, the specification of the system needs to be given, but we can save the work of constructing the actual
system in the case of synthesis.

Unfortunately, the complexity of synthesis has been proven to be rather high. For example, when given a
specification in form of a property in linear-time temporal logic (LTL), the synthesis task has a complexity that is
doubly-exponential in the size of the specification [31]. Recently, it has been argued that this is however not a big
problem [32] as realisable specifications typically have implementations that are small, which can be exploited.
This observation is used in the context of bounded synthesis [32, 14], which builds upon the Safraless synthesis
principle [26]. Here, the LTL specification is converted to a universal co-Büchi word or tree automaton, which
is then, together with a bound b ∈ N, used for building a safety game such that winning strategies in the game
correspond to implementations that satisfy the specification. The bound in this setting describes the maximally
allowed number of visits to rejecting states in the co-Büchi automaton along some run of the automaton that
corresponds to the input/output observed along the prefix play in the game so far. If there exists an implementation
satisfying a given specification, then there exists some bound such that the resulting game is winning.

∗This is an extended version of the paper “Symbolic Bounded Synthesis”, presented at the 22nd International Conference on Computer
Aided Verification (CAV 2011). This work was supported by the German Research Foundation (DFG) within the program “Performance
Guarantees for Computer Systems” and the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS).
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In practice, the bound value required is usually rather small [32, 16, 14, 15], often much smaller than the number
of states in the smallest implementation. This leads to improved running times of implementations following this
approach. Consequently, all modern tools for full LTL synthesis publicly available nowadays build upon Safraless
synthesis. The first of these, named Lily [21], performs the realisability check in an explicit way. Recently, a
symbolic algorithm based on antichains has been presented [14], showing a better performance on larger speci-
fications. Surprisingly, the usage of binary decision diagrams (BDDs), a technique that has skyrocketed the size
of the systems that can be handled by model checking tools [27, 12] seems to be unconsidered in this context so
far. A possible explanation for this is that the safety games constructed in the bounded synthesis context contain
a lot of counters with dependencies between them in the transition relation. It has been observed that this can
tremendously blow-up the size of BDDs [40, 33, 7]. Thus, for success using this technique, it is a central require-
ment that efficient techniques for reducing the number of counters are being used. In this paper we investigate this
problem and present such techniques. By taking them together, we can improve upon the performance of previous
approaches to full LTL synthesis by several orders of magnitude.

In particular, we show how the safety and non-safety parts of a specification can be handled separately in the
synthesis game. As for safety properties, no counters are necessary, this reduces the computation time significantly
and allows for utilising a major strength of BDDs: efficient dealing with automata that run in parallel. Since it has
been argued that typical specifications found in practice are mostly of the form

∧
a∈A a →

∧
g∈G g for some sets

of assumptions A and guarantees G [5, 35, 4, 6, 18], both containing LTL formulas, we design our technique to
be adapted to this case. As a second contribution, we present a technique that allows for a further reduction of the
number of counters in the non-safety part of the synthesis games.

Obviously, the optimisations described in this paper cannot circumvent the 2EXPTIME-completeness of the LTL
synthesis problem, but are rather targeted towards improving the applicability of LTL synthesis from specifications
that are deemed to be typical for the practice. As representatives for such specifications, we use the benchmarks
from [21, 14] to evaluate our approach. We also consider a new load balancing benchmark that mimics the
specification design phases of a scalable system.

This paper consists of four parts. In the first part, we recapitulate the basics of the bounded synthesis approach.
Then, we discuss the main contributions of this work. The third part provides information on additional minor
techniques needed for an efficient BDD-based implementation of the contributions presented. The fourth part then
consists of experimental results and a conclusion.

To be more precise, in the next section, we briefly state the preliminaries. Then, we discuss the solution process
of obligation games, which forms the basis of the bounded synthesis approach, which is in turn described in Section
4.

With respect to the second part, we first explain the new specification splitting and signalling technique for
bounded synthesis in Section 5, and then discuss in Section 6 how some counters that are introduced in the bounded
synthesis process can be stripped away for increased efficiency of the overall approach.

In the third part, we start by discussing how the game that is solved in the bounded synthesis process can
efficiently be encoded into binary decision diagrams in Section 7. In Section 8, we then show how the techniques
presented in this paper can also be used for detecting unrealisable specifications, and for those that are realisable,
we discuss the fully symbolic extraction of prototype implementations satisfying the specification in Section 9.

Section 10 contains the experimental results of running a tool that implements the techniques introduced in this
paper on the benchmarks from [21] and [14] as well as on a novel load-balancing system case study. We conclude
with a summary.

2 Preliminaries

2.1 Basics

We denote by N the natural numbers, including 0, and B = {false, true} are the Boolean values. Given some
alphabet Σ, we denote by Σω and Σ∗ the sets of infinite and finite words over Σ, respectively. Subsets of Σω are
also called ω-languages. For a word w = w0w1 . . ., we denote the set of elements occurring infinitely often in w
by inf(w) and for some i ∈ N, denote by wi = wiwi+1wi+2 . . . the suffix of w from the ith element. By (A→ B)
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we denote the set of all functions with domain A and co-domain B. For elements (a, b) of some set A × B, we
denote its projections by (a, b)|A = a and (a, b)|B = b.

2.2 Word Automata

An automaton is a tuple A = (Q,Σ, δ, Qinit ,F) where Q is a finite set of states, Σ is a finite alphabet, δ :
Q×Σ→ 2Q is a transition function, Qinit ⊆ Q is the set of initial states and F : Q→ N is a so-called colouring
function. For the scope of this paper, we need four types of automata: universal co-Büchi word automata (UCW),
deterministic parity automata, deterministic safety automata and deterministic co-safety automata. Deterministic
safety and co-safety automata and universal co-Büchi automata are parity automata with domain {0, 1} for the
colouring function. The set of states with colour 1 in a safety automaton is absorbing, and for a co-safety automaton
the set of states with colour 0 is absorbing, i.e., all transitions from any state in such a set leads back into the set.
For deterministic automata, we require that for all (q, x) ∈ Q×Σ, we have |δ(q, x)| = 1, and that the set of initial
states contains only one state. We call a subset of states in A a strongly connected component (SCC) if every state
in the subset is reachable by some sequence of transitions from any other state in the subset. An SCC S ⊆ Q is
furthermore called a maximal strongly connected component if there is no SCC that is a strict superset of S. By
definition, we assume that every state is reachable from itself, so we can partition the state space of an automaton
into its set of maximal SCCs D(A).

Given an infinite word w = w0w1 . . . ∈ Σω, we say that some infinite sequence π = π0π1 . . . ∈ Qω is a
run of A over w if π0 ∈ Qinit and for all i ∈ N, πi+1 ∈ δ(πi, wi). We say that π is an accepting run for w if
max(inf(F(π0)F(π1) . . .)) is even. A word w is accepted by A if all runs for w are accepting. The set of all
words accepted by A is called its language, denoted by L(A).

2.3 Finite-state Machines (FSMs)

Formally, we distinguish two types of FSMs: Mealy and Moore machines. A Mealy machine is a tuple M =
(S, I,O, δ, sinit), while a Moore machine is described by a tupleM = (S, I,O, δ, sinit , L). In both cases, S is a
set of states, I is a set of inputs symbols, O is a set of output symbols and sinit ∈ S is an initial state. For Mealy
machines, δ : Q × I → Q × O is the transition function, while for Moore machines, this function is defined as
δ : Q× I → Q and L : Q→ O is the labelling function.

We say that some word w = w0w1w2 . . . ∈ (I × O)ω is in the language of a Mealy machine M, written
as L(M), if there exists some run π = π0π1 . . . ∈ Sω of the machine with π0 = sinit and for all i ∈ N,
(πi+1, wi|O) = δ(πi, wi|I). Likewise, w is in the language of a Moore machine if there exists some run π =
π0π1 . . . ∈ Sω of the machine with π0 = sinit and for all i ∈ N, δ(πi, wi|I) = πi+1 and wi|O = L(πi). Such a
word is also called a trace ofM.

We say that an FSMM over the input set I and the output set O realizes a word automaton over the alphabet
I ×O if the language ofM is contained in the language of the automaton.

2.4 Linear-time Temporal Logic (LTL)

Before a system that is correct with respect to its specification can be synthesized, the specification has to be
formally stated. For such a task, linear-time temporal logic [30] (LTL) is a commonly used logic. Syntactically,
LTL formulas are defined inductively as follows (over some set of atomic propositions AP):

• For all atomic propositions x ∈ AP, x is an LTL formula.

• Let φ1 and φ2 be LTL formulas. Then, ¬φ1, (φ1 ∨ φ2), (φ1 ∧ φ2), Xφ1, Fφ1, Gφ1, and (φ1Uφ2) are also
LTL formulas.

The validity of an LTL formula φ over AP is defined inductively with respect to an infinite tracew = w0w1 . . . ∈
(2AP)ω. Let φ1 and φ2 be LTL formulas. We set:

• w |= p if and only if (iff) p ∈ w0 for p ∈ AP

• w |= ¬ψ iff not w |= ψ
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• w |= (φ1 ∨ φ2) iff w |= φ1 or w |= φ2

• w |= (φ1 ∧ φ2) iff w |= φ1 and w |= φ2

• w |= Xφ1 iff w1 |= φ1

• w |= Gφ1 iff for all i ∈ N, wi |= φ1

• w |= Fφ1 iff there exists some i ∈ N such that wi |= φ1

• w |= (φ1Uφ2) iff there exists some i ∈ N such that for all 0 ≤ j < i, wj |= φ1 and wi |= φ2

We use the usual precedence rules for LTL formulas (unary temporal operators bind stronger than binary tem-
poral operators) in order to be able to omit unnecessary braces and also allow the abbreviations typically used for
Boolean logic, e.g., that a→ b is equivalent to ¬a ∨ b for all formulas a, b.

Given an LTL formula ψ over AP, we can convert ψ to an equivalent universal co-Büchi word automaton A
over the alphabet 2AP such that precisely the words over 2AP that satisfy φ are also in the language of A [26, 39].
The size of the UCW is at most exponential in the length of ψ.

The LTL synthesis problem is to determine, for a given LTL formula ψ over some set of atomic propositions
AP = API ]APO, whether there exists a Mealy or Moore machine with input symbol set 2API and output symbol
set 2APO whose language is a subset of the words that satisfy ψ, and to compute such a machine whenever existing.
Whenever such a machine exists, we call the specification realisable, otherwise it is unrealisable. We will mostly
be concerned with Mealy machine synthesis in this paper.

We call an LTL formula over some set of atomic proposition AP a safety property [34] if for every word w =
w0w1 . . . ∈ (2AP)ω that does not satisfy the formula, there exists some i ∈ N such that every other infinite word
starting with w0w1 . . . wi does also not satisfy the formula.

2.5 Obligation Games

In this paper, we reduce the synthesis problem to determining the winner (and obtaining a winning strategy) in so-
called obligation games [37], which contain reachability and safety games as special cases. They are sometimes
also called weak Muller games in the literature.

Intuitively, when solving the synthesis problem by reducing it to determining the winner in an obligation game,
the two players (player 0 and 1) in the game represent the input and output of a finite-state machine. Player 0
provides the input to the system, while player 1 produces the output. The game needs to be designed in a way
such that whenever player 1 has a winning strategy in the game, the strategy represents a finite-state machine that
satisfies the original specification.

Formally, a game is a tuple G = (V,Σ0,Σ1, E, vinit ,F), where V is a finite set of positions (also called the
vertices of the game), Σ0 and Σ1 are the finite sets of actions for the two players, E : V × Σ0 × Σ1 → V is an
edge function, vinit ∈ V denotes the initial position and F is a winning condition in form of a Boolean formula
in which subsets of V are used as atomic propositions.1 For a winning condition F , we denote by S(F) the set
of all subsets of V that occur in the formula F . We also call the sub-tuple (V,Σ0,Σ1, E, vinit) of G the transition
structure of G.

A decision sequence ρ = ρ0
0ρ

1
0ρ

0
1ρ

1
1ρ

0
2ρ

1
2 . . . is an infinite sequence such that for every i ∈ N, ρ0

i ∈ Σ0 and
ρ1
i ∈ Σ1. We say that ρ induces a play π = π0π1 . . . if π0 = vinit and for every i ∈ N, πi+1 = E(πi, (ρ

0
i , ρ

1
i )).

We categorize plays in G by whether they are winning for player 0 or 1. Given an infinite play π = π0
0π

1
0 . . .,

we define π as being winning for player 1 if {s ∈ S(F) | s ∩ Occ(π) 6= ∅} |= F , where Occ(π) denotes the set
of positions occurring along π, i.e., Occ(π) = {v ∈ V | ∃i ∈ N : πi = v}.2 Whenever a play is not winning for

1While this representation of the winning condition is rather uncommon in the literature, it will allow us later to discuss the composition
of games in a simplified way.

2In other words, whether a play is winning for player 1 can be determined by evaluating which of the sets of S(F) contain a position that
is visited along the play, and then substituting all sets in F for which some position is visited along the play by true and the other ones
by false. If the resulting Boolean formula evaluates to true, the play is winning for player 1. While this definition of the acceptance
condition is uncommon for obligation games in the literature, we use it here as it is very helpful to describe the game compositions in
the following chapters in a simple and intuitive way.
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v0 v1 v2

a

ab

a ab

b

true

Figure 1: Graphical representation of an obligation game G = (V,Σ0,Σ1, E, vinit ,F) with Σ0 = 2{a}, Σ1 = 2{b},
vinit = v0 and F = ¬{v2} ∧ {v1}. The edge labels represent the constraints on the transitions, e.g., the
label ab on the edge from v1 to v0 describes that E(v1, ∅, {b}) = v0 and the self-loop of v2 describes
that E(v2, A,B) = v2 for every A ⊆ {a} and B ⊆ {b}.

player 1, we define the play to be winning for player 0. The Occ function is defined likewise for finite plays. We
also say that some decision sequence is winning for some player if the induced play is winning.

It is well-known that in obligation games, there exists a winning strategy for precisely one of the players, i.e.,
for some player j ∈ {0, 1}, there exists a function f : (Σ0 ] Σ1)∗ → Σj such that all decision sequences that
are in correspondence to f are winning for player j. A decision sequence ρ = ρ0

0ρ
1
0ρ

0
1ρ

1
1ρ

0
2ρ

1
2 . . . is said to be in

correspondence to f if and only if for all i ∈ N, ρji = f(ρ0
0ρ

1
0 . . . ρ

1−j
i−1+j).

Given a game G over the action sets Σ0 and Σ1, we say that some Moore machineM = (S,Σ0,Σ1, δ, sinit , L)
induces a strategy f for player 0 in G with f(ε) = L(sinit) and f(ρ0

0ρ
1
0 . . . ρ

1
k) = L(δ(δ(. . . δ(sinit , ρ

1
0), ρ1

1), . . . ,
bρ1

k)) for every prefix decision sequence ρ0
0ρ

1
0 . . . ρ

1
k. Likewise, a Mealy machineM = (S,Σ0,Σ1, δ, s0) induces

a strategy f for player 1 by choosing f(ρ0
0ρ

1
0 . . . ρ

0
k) = δ(δ(. . . δ(sinit , ρ

0
0)|S , ρ0

1)|S , . . . , ρ0
k)|O for every prefix

decision sequence ρ0
0ρ

1
0 . . . ρ

0
k. For obligation games, it is assured that whenever there exists a winning strategy for

player 0/1, there also exists a Moore/Mealy automaton inducing a winning strategy, respectively.
In this paper, we mostly take the view of player 1. Thus, we simply call a decision sequence or play winning if

it is winning for player 1. We say that a position is winning for a player p ∈ {0, 1} if changing vinit to the position
makes player p having a winning strategy in the game. We say that a game is winning for a player if the player has
a winning strategy.

Henceforth, we use the names of the game tuple components to extract these from a game. For example, for
some game G̃ = (Ṽ , Σ̃0, Σ̃1, Ẽ, ṽinit , F̃), we define vinit(G̃) = ṽinit . For automata tuples, we apply the same
notational concept.

2.6 Example for Obligation Games

To clarify the connection between the synthesis problem and obligation games, we give an example here. Figure 1
shows an obligation game G = (V,Σ0,Σ1, E, vinit ,F) for which every decision sequence that induces a winning
play represents a word that satisfies the LTL specification ψ = Fa ∧ G(¬a ∨ Xb). The winning condition F =
¬{v2} ∧ {v1} of G is satisfied by the plays that never visit v2 but eventually visit v1. The game in the example
also has the property that precisely the decision sequences that induce a winning play for player 1 in G are the ones
that satisfy ψ. In general, LTL specifications do not always permit to build obligation games with this property.
We will however see in Section 4 that they are still a suitable computation model for synthesis when applying the
bounded synthesis approach.

2.7 Important Special Cases of Winning Conditions in Obligation Games

Let G = (V,Σ0,Σ1, E, vinit ,F) be a game. In this paper, we consider two prominent special cases of winning
conditions:

• If F = ¬V ′ for some V ′ ⊆ V , we call G a safety game.

• If F = V ′ for some V ′ ⊆ V , we call G a co-safety or reachability game.

Thus, the reachability winning condition is the dual case of the safety winning condition. Note that if a winning
condition F consists of a conjunction of safety winning objectives or a disjunction of reachability objectives, we
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can use the following simplification rules:∧
V ′∈{V ′1 ,...,V ′n}

¬V ′ ≡ ¬(V ′1 ∪ . . . ∪ V ′n) (1)

∨
V ′∈{V ′1 ,...,V ′n}

V ′ ≡ (V ′1 ∪ . . . ∪ V ′n) (2)

2.8 Safety Automata and Safety/co-safety Games

Given a deterministic safety automaton A over the alphabet Σ = ΣI × ΣO, we can easily build a safety game
ToGame1(A,ΣI ,ΣO) that is winning for player 1 if and only if there exists a Mealy machine reading ΣI and
writing to ΣO that realizes A. Likewise, we can build a co-safety game ToGame0(A,ΣO,ΣI) that is winning for
player 0 if and only if there exists a Moore machine reading ΣI and writing to ΣO that realizes A.

Definition 1. Given a deterministic safety automaton A = (Q,Σ, δ, {qinit}, F ) with Σ = Σa × Σb, we define the
game ToGamep(A,Σa,Σb) = (V,Σa,Σb, E, vinit ,F) for p ∈ {0, 1} as follows:

• V = Q

• For all v ∈ V , x ∈ Σa, y ∈ Σb: E(v, x, y) = δ(v, (x, y))

• vinit = qinit

• F = ¬{v ∈ V | F (v) = 1} if p = 1 and F = {v ∈ V | F (v) = 1} otherwise.

2.9 Parallel Composition of Games

Given two games G = (V,Σ0,Σ1, E, vinit ,F) and G′ = (V ′,Σ0,Σ1, E
′, v′init ,F ′), for some � ∈ {∧,∨}, we de-

fine the parallel composition G||�G′ of the two games as the (synchronized product) game Gp = (V p,Σ0,Σ1, E
p,

vpinit ,Fp) with:

• V p = V × V ′

• vpinit = (vinit , v
′
init)

• For all v ∈ V , v′ ∈ V ′, x ∈ Σ0 and y ∈ Σ1, Ep((v, v′), x, y) = (E(v, x, y), E′(v′, x, y)).

• Fp = F1 �F2, where:

1. F1 is obtained by taking the Boolean formulaF and replacing every occurrence of some atomic propo-
sition s ∈ S(F) in the formula by s×Q′, and

2. F2 is obtained by taking F ′ and replacing every occurrence of some atomic proposition s ∈ S(F ′) by
Q× s.

The conjunctive parallel composition G||∧G′ has the property that precisely the decision sequences ρ ∈ (Σ0Σ1)ω

that are winning for player 1 in G and G′ are also winning for player 1 in Gp. Likewise, the disjunctive parallel
composition G||∨G′ has the property that precisely the decision sequences ρ ∈ (Σ0Σ1)ω that are winning for player
1 in G or G′ are also winning for player 1 in Gp.

Note that when taking the conjunctive parallel composition of two safety games, the resulting game is still a
safety game, using the simplification given in Equation 1.
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2.10 Binary Decision Diagrams

For representing sets of vertices and the transition relation in safety games symbolically, we use reduced ordered
binary decision diagrams (BDDs) [8, 9], which represent characteristic functions f : 2V → B for some finite
set of variables V . We start by treating them on an abstract level and state the operations on them that we use.
For a comprehensive overview, see [9]. Given two BDDs f and f ′, we define their conjunction and disjunction
as (f ∧ f ′)(x) = f(x) ∧ f ′(x) and (f ∨ f ′)(x) = f(x) ∨ f ′(x) for all x ⊆ V . The negation of a BDD is
defined similarly. Given some set of variables V ′ ⊆ V and a BDD f , we define ∃V ′.f as a function that maps
all x ⊆ V to true for which there exists some x′ ⊆ V ′ such that f(x′ ∪ (x \ V ′)) = true. Dually, we define
∀V ′.f ≡ ¬(∃V ′.¬f). Given two ordered lists of variables L = l1, . . . , ln and L′ = l′1, . . . , l

′
n of the same

length, we furthermore denote by f [L/L′] the BDD for which some x ⊆ V is mapped to true if and only if
f(x \ {l′1, . . . , l′n} ∪ {li | ∃1 ≤ i ≤ n : l′i ∈ x}) = true. By abuse of notation, we say that f = false or f = true
if f(x) = false or f(x) = true for all x ⊆ V , respectively.

In the sequel, we will also be concerned with operations on BDDs over different variable sets. We assume the
standard semantics for such cases, e.g., for a BDD f over V and a BDD f ′ over V ′, we define (f ∧ f ′)(x) =
f(x ∩ V) ∧ f ′(x ∩ V ′) for all x ⊆ V ∪ V ′.

We also define least and greatest fixed points of monotone functions over BDDs. Given two BDDs f and g
over the set of variables V , we write f ≥ g if for all a ⊆ V , we have that f(a) = true implies f(b) = true.
Let g : (2V → B) → (2V → B) be a monotone function that maps a BDD over some set of variables V onto
another BDD over the same set of variables. We call g monotone if for all BDDs f and f ′, if f ≥ f ′, then
g(f) ≥ g(f ′). We define µ0.g = false, µi+1.g = g(µi.g) for all i ∈ N and for j being the least element of N
such that µj+1.g = µj .g, the least fixed point is defined as µ.g = µj .g. The greatest fixed point ν.g of a monotone
function g is computed likewise, i.e., we define ν0.g = true, νi+1.g = g(νi.g) for all i ∈ N and for j being the
least element of N such that νj+1.g = νj .g, we define ν.g = νj .g. In both cases, we call µi.g and νi.g prefixed
points of g. Checking whether a computed prefixed point is already the fixed point is simple in practice by using
the fact that equivalence checks on BDDs can be performed in constant time in modern BDD libraries [12].

For most parts of this paper, it is only of importance what BDDs are good for and not how they actually represent
Boolean functions. In Section 9, however, we will need this information.

Intuitively, a BDD is an acyclic graph with a root node and two sink nodes, labelled true and false. Every
node in the graph, except for the sink nodes, is labelled by a variable and has two successor nodes, connected by
so-called then and else edges. Given a set of variables V and Boolean function f : 2V → B, we say that some
set v ⊆ V (which we also call a variable valuation in this context) induces f(v) = true if and only if there
exists a path in the BDD from the root node to true where in every node, we take the then-successor whenever
the variable the node is labelled with is contained in v, and take the else-successor otherwise. We consider only
ordered BDDs here, for which there exists a total order on the variables, and along every path of a BDD, every
variable can only occur at most once and in the given order.

3 Solving Obligation Games

In this section, we discuss the solution process for obligation games, i.e., how the winner of a game can be ob-
tained.3 Obligation games are determined, i.e., there exists a winning strategy for exactly one of the players. In gen-
eral, the winning player needs to take the history of the play into account when making the next decision in order to
win a play. However, as we will see below, this does not make solving obligation games hard, as it in fact suffices
for the winning player to keep track of which vertices have already been visited along a prefix play. Even more,
as vertices that occur only in combination in the vertex sets of the winning condition need not be distinguished,
the amount of information that needs to be stored is even smaller. Formally, let G = (V,Σ0,Σ1, E, vinit ,F) be
an obligation game. Given a set of vertices V ′ ⊆ V , we denote by C(V ′,F) the set of atomic propositions of F
that denote position sets that intersect with V ′, i.e., C(V ′,F) = {V ′′ ∈ S(F) | V ′′ ∩ V ′ 6= ∅}. We use Z(G) to

3The solution process described here is related to solving so-called games with a weak winning condition (see [13] for a definition and
details) and a reformulation of a procedure for solving games with a weak transition structure (with uniform treatment of all game
positions in a strongly connected component, see [19] for a definition and details).
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represent the set of subsets of S(F) that need to be distinguished when tracking which vertices have been visited
so far in a prefix game, i.e.,

Z(G) = {S ⊆ S(F) | ∃V ′ ⊆ V : S = {V ′′ ∈ S(F) | V ′′ ∩ V ′ 6= ∅}}

For a finite game G, the setZ(G) is finite. Together with set inclusion, Z(G) forms a lattice, where ∅ is the minimal
and S(F) is the maximal element. The following definition and the subsequent lemma formalize this intuition that
Z(G) is useful as lattice of information about the past to remember in obligation games.

Definition 2. Let ρ = ρ0
0ρ

1
0 . . . be a decision sequence in an obligation game G = (V,Σ0, Σ1, E, vinit ,F) and

π = π0π1 . . . be the corresponding play. We define η = η0η1 . . . to be the corresponding path through Z(G), i.e.,
for all i ∈ N, we have ηi = C(Occ(π0 . . . πi),F). If for some j ∈ N, we have ηj = ηj+1 = . . ., we define the
limit value η∞ as η∞ = ηj .

Lemma 3. Let ρ = ρ0
0ρ

1
0 . . . be a decision sequence in an obligation game G = (V,Σ0, Σ1, E, vinit ,F), π =

π0π1 . . . be the corresponding play and η = η0η1 . . . be the corresponding path through Z(G). For all i ∈ N, we
have ηi ⊆ ηi+1. Furthermore, η has a limit value η∞ and ρ is winning if and only if η∞ |= F .

As an example, consider the obligation game G in Figure 1. Here, the winning condition is F = ¬{v2} ∧ {v1}.
Obviously, for this game, we have Z(G) = {{∅}, {{v1}}, {{v2}}, {{v1}, {v2}}}. For a play π = v0v1v0v1v2 . . .,
the corresponding path η = η0η1η2η3η4 . . . has η0 = ∅, η1 = η2 = η3 = {{v1}}, and ηi = {{v1}, {v2}} for
all i ≥ 4, i.e., it is continuously updated which elements of S(F) are state sets that have are already been visited
along the play.

The main idea of keeping track of the path in Z(G) along a play is that while staying in some element of Z(G),
the winning player has a memoryless strategy (which only depends on the current vertex in a play of the game
and not on the history) in G; only when a new vertex is visited and thus the play moves to a different element in
Z(G), the strategy might have to change. Since we know that Z(G) is finite, this allows us to solve the game in a
bottom-up fashion, where we start from the maximal elements in Z(G) and iteratively compute the states that are
winning for successively shrinking sets of states visited so far, up to the set of state sets of S(F) that contain the
initial vertex.

We use some standard notation for this task, starting with the enforceable predecessor operator. Given a game
G = (V,Σ0,Σ1, E, vinit ,F), we define the EnfPre : 2V → 2V operator as follows:

EnfPre(V ′) = {v ∈ V | ∀x ∈ Σ0∃y ∈ Σ1 : E(v, x, y) ∈ V ′}

When solving an obligation game and working upwards in the Z(G) lattice, we might have already identified
some vertices as losing (as visiting them causes a transition in the Z(G) lattice) and some as winning. Let us
assume that we have two (distinct) sets of positions W0,W1 ⊆ V given and player 1 wins whenever some position
in W1 is reached before any position in W0 is reached, and furthermore player 1 wins if no position in W0 ∪W1

is ever visited. The set of winning positions for this player and winning condition can easily be obtained by
computing a greatest fixed point:

Win1(W0,W1) = νX.X ∩ (EnfPre(X \W0) ∪W1)

Likewise, we can compute the set of states from which player 1 can enforce that no position inW0 is visited before
(possibly) some position in W1 is reached, assuming that player 1 loses whenever no position in W0 ∪W1 is ever
visited:

Win0(W0,W1) = µX.X ∪W1 ∪ EnfPre(X \W0)

Using these prerequisites, we can finally devise a game solving algorithm for obligation games. For all S ∈
Z(G), we define T (S) = Winb(W0,W1), where:

• b = 1 if and only if S |= F

• W0 =
⋃

S′∈Z(G),S 6=S′{v′ /∈ T (S′) | S′ = S ∪ C({v′},F)}
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• W1 =
⋃

S′∈Z(G),S 6=S′{v′ ∈ T (S′) | S′ = S ∪ C({v′},F)}

Theorem 4 (see, e.g., [38]). Let G = (V,Σ0,Σ1, E, vinit ,F) be an obligation game. For every prefix play
π = π0π1 . . . πn in G, we have πn ∈ T (C(Occ(π),F)) if and only if player 1 has a winning suffix strategy after
the prefix play π.

Corollary 5. Let G = (V,Σ0,Σ1, E, vinit ,F) be an obligation game. Player 1 has a winning strategy in G if and
only if vinit ∈ T (C({vinit},F)).

As the values of {T (S)}S∈Z(G) can be computed using a topological order on Z(G), the overall computation
can be done in time linear in |Σ0| · |Σ1| · |V | · |Z(G)| (cf. [19, 2, 11]).

3.1 Binary Decision Diagrams for Solving Games

Binary decision diagrams are a suitable data structure for the symbolic solution of obligation games (see, e.g.,
[1]). In order to apply them, we need to encode the set of positions in the game and the sets of actions for the two
players into Boolean variables. Then, the edge function can be represented in form of a binary decision diagram
(BDD).

Formally, we need four sets of variables Vpre , V0, V1, and Vpost in order to do so. The sets Vpre and Vpost are
used to represent predecessor and successor positions for the edges in games, while V0 and V1 are used for the
action sets of player 0 and 1, respectively. A combined variable valuation for all of these sets is consequently
capable of representing a single edge, and as a BDD maps variable valuations to true and false, a BDD over
Vpre ] Vpost ] V0 ] V1 can represent the whole edge function (by mapping variable valuations that represent
existing edges to true and the others to false).

We assume that Vpre and Vpost are totally ordered and use these sets and the lists induced by the sets and the
ordering interchangeably. Encoding the set of positions V of a game G = (V,Σ0,Σ1, E, vinit ,F) into Vpre and
Vpost is done using the encoding operators (·) : 2V → (2Vpre → B) and (·)′ : 2V → (2Vpost → B). For the
techniques presented in this paper, any such operators can be used, provided that they fulfil some side-constraints:

1. For all v, v′ ∈ V : if v 6= v′, then ({v}) ∧ ({v′}) = false.

2. For all V ′, V ′′ ⊆ V : (V ′) ∨ (V ′′) = (V ′ ∪ V ′′).

3. (V ) = true and (∅) = false.

4. For all v ∈ V , ({v})′ = ({v})[Vpost/Vpre ].

Similarly, we encode Σ0 and Σ1 into V0 and V1, and overload the operator (·) for this purpose as this does not
introduce ambiguities. The first three of the properties above are also assumed to hold in this case. We defer a
description of the encodings actually used in this work to the later sections. The edge function can now be encoded
into a BDD BE by taking:

BE =
∨

v∈V,x∈Σ0,y∈Σ1

(
({v}) ∧ ({x}) ∧ ({y}) ∧ ({E(v, x, y)})′

)
Obviously, BE is a BDD over the set of variables V = Vpre ]Vpost ]V0]V1. This encoding has the advantage that
it is transparent with respect to taking the parallel composition of two games G1 = (V 1,Σ0,Σ1, E

1, vinit ,F1) and
G2 = (V 2,Σ0,Σ1, E

2, vinit ,F2). If we define ({(v, v′)}) = ({v})∧ ({v′}) for all positions (v, v′) in G1||�G2 for
some � ∈ {∧,∨}, then we compute the BDD for the edge function of G1||�G2 by taking BE1 ∧BE2 .

Given a BDD BE encoding an edge function E and a BDD BV ′ encoding a set of positions (over the variables
Vpre ), we can compute the EnfPre operator as follows:

EnfPre(BV ′) = ∀V0.∃V1.∃Vpost .(BV ′ [Vpost/Vpre ] ∧BE)

This equation is a reformulation of the EnfPre function defined earlier in this section, with the modification that it
uses BDDs. The replacement of every Vpre variable by the corresponding variable in Vpost is necessary to make
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BV ′ represent the successor positions when taking the conjunction with BE (and thus applying the edge function).
The existential abstraction of the variables in Vpost lets the BDD forget information about successor positions.
The subsequent universal and existential abstractions of V0 and V1 finally quantify over the possible moves of the
players and at the same time only let information about the predecessor vertices in the game remain in the result
of taking EnfPre(BV ′). The rest of the computation process for solving obligation games can be performed as
described at the beginning of this section.

4 Bounded Synthesis

The bounded synthesis approach [32, 14] is a conceptually simple technique to check the realizability of a given
specification, given in form of a universal co-Büchi word automaton (UCW) for the scope of this paper (which are
expressive enough to encode any LTL formula), and to compute a Mealy or Moore machine realizing it in case of
a positive answer. We briefly recapitulate the basics of that approach here.

The main observation used in the bounded synthesis approach is that whenever a specification is realizable, there
also exists one with a certain maximal number of states, which is exponential in the size of the specification UCW.
Furthermore, if some Mealy or Moore FSM realizes a specification, there also exists a bound b ∈ N on the number
of visits to rejecting states in the UCW along every of its runs for some word in the language of the FSM. By
taking both facts together, one can derive a worst-case value of b that needs to be considered when searching for
an implementation. For the scope of this section, for a UCW A, we let |F(A)| represent the number of rejecting
states in the UCW, i.e, the ones with colour 1.

Theorem 6 ([28]). Given a universal co-Büchi automaton with n states, we can construct an equivalent determin-
istic parity automaton P with 2nnn! states and 2n colours.

Theorem 7 ([32]). Let M be a Mealy or Moore machine with n states and A be a universal co-Büchi word
automaton. The language ofM is a subset of the language of A if and only if the maximum number of visits to
rejecting states in A for some run and some word in the language ofM is less than or equal to |F(A)| · n.

Corollary 8 ([32]). Given a universal co-Büchi word automatonA over the alphabet ΣI×ΣO with n states, there
exists a Mealy or Moore machine over ΣI /ΣO realizing A if and only if there exists one for which the maximum
number of visits to rejecting states inA for some run and some word in the language ofM is less than or equal to
|F(A)| · 2nnn!.

This observation gives rise to the following idea: from a UCW, we build a safety automaton that checks if all
runs of the UCW for some given word do not exceed some bound value b ∈ N. Provided that the bound value is
chosen high enough, the unrealisability of the resulting safety automaton implies the unrealisability of the original
specification.

Definition 9. LetA = (Q,Σ, δ, Qinit , F ) be a UCW. We define the deterministic safety automaton Bound(A, b) =
(Q′,Σ, δ′, {q′init}, F ′) for some b ∈ N by:

• Q′ = (Q→ {−∞, 0, . . . , b}) ∪ {⊥}

• For all f ∈ (Q→ {−∞, 0, . . . , b}), x ∈ Σ, we have δ′(f, x) ∈ (Q→ {−∞, 0, . . . , b}) and

δ′(f, x)(q) = max{f(q′) | q′ ∈ Q, q ∈ δ(q′, x)}+

{
1 if q ∈ F
0 otherwise

if for all q ∈ Q, we have

b ≥ max{f(q′) | q′ ∈ Q, q ∈ δ(q′, x)}+

{
1 if q ∈ F
0 otherwise

,

and δ′(f, x) = ⊥ otherwise. In both equations, we assume that max(∅) = −∞ and that −∞+ 1 = −∞.
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• For all x ∈ Σ, δ′(⊥, x) = {⊥}

• q′init = {Qinit 7→ 0, Q \Qinit 7→ −∞}

• F ′ = {Q′ \ {⊥} 7→ 0, {⊥} 7→ 1}

Theorem 10 ([32, 14]). Let A = (Q,Σ, δ, Qinit , F ) be a UCW with n states and ΣI and ΣO be sets such
that Σ = ΣI × ΣO. There exists a Mealy machine over ΣI and ΣO realizing A if and only if the game
ToGame1(Bound(A, b),ΣI ,ΣO) is winning for player 1 with b = |F(A)| · 2nnn!. Furthermore, there exists
a Moore machine over ΣI and ΣO realizingA if and only if the game ToGame0(Bound(A, b),ΣO,ΣI) is winning
for player 0 and b = |F(A)| · 2nnn!. Winning strategies for the respectively players represent FSMs realizing A.

In order to speed up bounded synthesis in practice, we can apply a simple strategy: we start with a bound of
b = 1 and successively increase b while checking whether the resulting game ToGame0(Bound(A, b),ΣO,ΣI) is
winning for player 0 in the Moore setting or whether the game ToGame1(Bound(A, b),ΣI ,ΣO) is winning for
player 1 in the Mealy setting. Typically, in practice, realizable specifications only require a small bound value in
order to be identified as such [32, 16, 14, 15]. In order to also detect unrealisable specifications quickly, a proce-
dure described in [21, 14] can be applied: using a universal co-Büchi automaton A representing the complement
language of A (i.e., both automata have the same alphabet Σ and we have L(A) = Σω \ L(A)), we execute
two copies of the bounded synthesis process. In the first process, we successively increase a bound value b until
the game ToGame0(Bound(A, b),ΣI ,ΣO) is winning for player 0. In the second copy, we successively increase
a bound value of b′ until ToGame1(Bound(A, b′),ΣI ,ΣO) is winning for player 1. Once one of the two pro-
cesses terminates, we know whether A is realizable over ΣI /ΣO (in the Mealy setting) or not. The corresponding
procedure for the Moore setting is analogous to the Mealy case.

4.1 Compositional Bounded Synthesis

When performing synthesis, it is sometimes desirable to search for implementations that satisfy several specifica-
tions. For the scope of this paper, we only consider a special case of this situation: we search for a Mealy machine
for which each word in its language is either accepted by:

• a UCW A, and
• a deterministic safety automaton As,

or by

• a deterministic co-safety automaton Ac.

Details on the compositional bounded synthesis approach for more general cases can be found in [15].

Lemma 11. Given a universal co-Büchi automaton A with n states, a deterministic safety automaton As with
ns states, and a deterministic co-safety automaton Ac with nc states, we can construct a deterministic parity
automaton P with ns · nc · 2nnn! states and 2n colours whose language is (L(A) ∩ L(As)) ∪ L(Ac), and a
deterministic parity automaton P ′ of equal size whose language is (L(A) ∪ L(As)) ∩ L(Ac).

Proof. We first convert A to a deterministic parity automaton (Theorem 6) and then use a standard product con-
struction. If the language of P should be (L(A) ∩ L(As)) ∪ L(Ac), as the states with colour 1 in a safety
automaton and the states with colour 0 in a co-safety automaton need to be absorbing, it suffices to assign a
state (q, q′, q′′) in P with q ∈ Q(As), q′ ∈ Q(Ac) and q′′ ∈ Q(A) the colour 0 if F(Ac)(q

′) = 0, colour 1 if
F(As)(q) = F(Ac)(q

′) = 1, and colour F(A)(q′′) otherwise.
The other case in which P ′ should have the language (L(A) ∪ L(As)) ∩ L(Ac) is analogous.

Corollary 12. Let A = (Q,Σ, δ, Qinit , F ) be a UCW with n states, As be a safety automaton with ns states,
Ac be a co-safety automaton with nc states and ΣI and ΣO be sets such that Σ = ΣI × ΣO. There exists
a Moore machine over ΣI and ΣO whose induced words are all in (L(A) ∩ L(As)) ∪ L(Ac) if and only if
the game (ToGame0(Bound(A, b),ΣO,ΣI)||∨ToGame0(As,ΣO,ΣI))||∧ToGame0(Ac,ΣO,ΣI) is winning for
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player 0 and b = |F(A)| · ns · nc · 2nnn!. Furthermore, there exists a Mealy machine whose induced words are
all in (L(A) ∩ L(As)) ∪ L(Ac) if and only if the game

(ToGame1(Bound(A, b),ΣI ,ΣO)||∧ToGame1(As,ΣI ,ΣO))||∨ToGame0(Ac,ΣI ,ΣO)

is winning for player 1 and b = |F(A)| · ns · nc · 2nnn!.

Proof. Adapt Corollary 8 to the compositional case using Lemma 11.

5 Safety and Non-safety: Splitting the Specification

We now turn towards explaining the main novelties of this work. In the previous sections, we have seen how
bounded synthesis works in general: we construct a UCW from a specification and build a family of safety au-
tomata for a successively increasing bound value. These safety automata are converted to realisability safety games
and solved. Once the game is found to be winning for the system player (player 1 if our aim is to synthesize an
implementation in form of a Mealy automaton or player 0 for a Moore automaton), the process terminates. To
simplify the presentation, for the rest of this paper, we assume that we search for a Mealy-type implementation.
The techniques presented here are however of course also applicable for the Moore-type.

We have also seen how to encode the process of safety game solving (as a special case of obligation game
solving) in a way that allows using binary decision diagrams (BDDs) as data structure for this task. When doing
so, we however face one main problem: when building the safety automata from the UCW and a given bound
value, we introduce a lot of counters into the structure of the word automaton. Recall that in Definition 9, the
state space is defined as (Q → {−∞, 0, . . . , b}) ∪ {⊥}, where Q is the set of states of the UCW. Thus, for every
state in the original UCW, we introduce a counter ranging from 0 to b with −∞ as an additional value. Also, the
definition of the transition function for the safety automata makes use of these counter values. It has been noticed
that encoding such number comparisons into BDDs, which is necessary for the solution of the bounded synthesis
problem using BDDs in the context of this paper, often leads to huge BDDs in practice [40, 33, 7]. To solve this
problem, we introduce two techniques in this paper, of which the first one is described in this section.

In particular, we explain how to decompose an LTL specification being subject to synthesis in a way such that
non-safety and safety properties can be treated in parallel. Recall from the introduction of this paper that we assume
that the specification is written in the form ψ =

∧
a∈A a →

∧
g∈G g for some set of assumptions A and some set

of guarantees G, each consisting of safety and non-safety LTL properties. In the classical bounded synthesis
approach, ψ is transformed to a UCW which in turn is converted to its induced safety game for some given bound.
Here, we propose a slightly different approach. Instead of building one single game from the specification, we
split the latter into parts, build individual games for each of the parts and then take their parallel composition to
obtain a composite game (see Section 2). This has several advantages:

1. It has been observed [14] that the time to compute a UCW from an LTL formula is a significant part of the
overall realisability checking time. By splitting the specification beforehand, building a monolithic UCW is
avoided, resulting in a lower total computation time.

2. Taking the parallel composition of multiple game structures can be done in a relatively efficient way when
using BDDs for solving the composite game.

3. The state spaces of games corresponding to safety properties do not need the counters that are employed in
the bounded synthesis approach. Thus, by decomposing the specification into safety and non-safety parts,
we can save counters, which in turn reduces the computation time further.

In order to obtain a valid decomposition scheme, the resulting game must be winning for player 1 (the system
player) in the same cases as before, i.e., if and only if either a safety or non-safety assumption is violated or all
guarantees are fulfilled. Additionally, winning strategies for the composite game must also be valid solutions to
the synthesis problem.

The technique presented in the following does not preserve the smallest bound b such that the specification is
fulfillable (as the bound depends on the syntactic structure of the UCW). However, the method proposed is still
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API = {a, b},APO = {c, d, safeg}

(Ga ∧ GFb) → (Gc ∧ GFd)

Safety aut.

Safety game
G1

Safety aut.

Safety game G2,
won if safeg always

represents whether the
I/O so far is still

accepted by the Safety
automaton

(GFb)→ (Gsafeg ∧ GFd)

Automaton Bound b

Safety game
G3
b

G1 ||∨ (G2 ||∧ G3
b )

Figure 2: Graphical representation of the specification splitting approach proposed in Section 5 on an example
specification consisting of non-safety and safety assumptions and guarantees.

sound and complete, i.e., if and only if there exists a bound b such that the safety game induced by the UCW
for the overall specification and b is winning for player 1, there exists some bound for the non-safety part of
the specification and the technique presented in this section such that the resulting game is winning for player 1.
Essentially, Corollary 12 establishes this fact.

In [35], the authors propose a method to solve a generalized parity game for a specification of the form∧
a∈A a →

∧
g∈G g as stated above successively. They first build games for the safety assumptions and guar-

antees (i.e., the assumptions and guarantees that happen to be safety properties), strip the non-winning parts (for
the system player) from them and compose them with games for the remaining parts of the specification. For the
completeness of this methodology, the non-safety assumptions however must not have any effect on the fulfillabil-
ity of the safety guarantees.4 In general, we cannot assume this; we thus propose a different method here that is
based on introducing a signalling bit into the game that links the safety guarantees and the non-safety part of the
specification.

We start by splitting the specification ψ =
∧

a∈A a →
∧

g∈G g over the input atomic proposition API and the
output atomic propositions APO into four sets of LTL formulas: the safety assumptions As, the safety guarantees
Gs, the non-safety assumptions An, and the non-safety guarantees Gn. Then, we build a reachability game G1

for the safety assumptions that is won by player 1 if some assumption in As is violated. For the next step, we
add one bit to the output atomic proposition set of the system to be synthesized; let its name be safeg. We build
a safety game G2 from the safety guarantees Gs that is won by player 1 if safeg always represents whether one
of the safety guarantees has already been violated. For the non-safety part, we take the modified specification
ψ′ = (

∧
a∈An

a)→ (
∧

g∈Gn
g ∧G(safeg)) and convert it to a UCWA. Given a bound b ∈ N and having prepared

G1, G2 and A, we can now build the composite game G by defining G3
b = ToGame1(Bound(A, b), 2API , 2APO)

and:
G = G1||∨(G2||∧G3

b )

Figure 2 visualizes the construction of the composite game. We obtain the following result:

Theorem 13. For every LTL specification ψ =
∧

a∈A a →
∧

g∈G g, there exists some bound b ∈ N such that the
composite game G built from ψ and b as defined above is won by the system player 1 if and only if there exist some
bound b′ ∈ N such that the (classical) safety synthesis game built from the UCW corresponding to ψ and b′ built
using the constructions from Definition 1 and Definition 9 is winning for player 1.

4The same problem also occurs in the context of generalized reactivity(1) synthesis [29, 22], an approach that trades the full expressivity
of LTL against the possibility to use a simpler and more efficient algorithm solving the synthesis problem.
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Proof. Assume that ψ is realisable over API /APO. Then, there exists a Mealy automaton/strategy for player 1
realizing it with k states for some k ∈ N. Thus, the construction of the game makes Corollary 12 applicable.

On the other hand, it there exists no winning strategy, then by the construction of the game, player 0 can prevent
player 1 from playing a winning strategy in G for every value of b.

Since G is the outcome of taking the parallel composition between the games as defined above, its winning
condition is of the form F(G) = V ′ ∨ (¬V ′′ ∧ ¬V ′′′) with V ′ = V1 × V (G2) × V (G3

b ) for F(G1) = V1,
V ′′ = V (G1)× V2 × V (G3

b ) for F(G2) = ¬V2, and V ′′′ = V (G1)× V (G2)× V3 for F(G3
b ) = ¬V3.

Solving the composite game G is simple using the procedure presented in Section 3. We first simplify the
winning condition of the game to F(G) = V ′ ∨ (¬(V ′′ ∪ V ′′′)), and then compute T ({V ′, V ′′ ∪ V ′′′}), T ({V ′}),
T ({V ′′ ∪V ′′′}) and T (∅). If the last of these sets contains vinit(G), then the game is winning for player 1 and thus
the original specification is realisable.

In the context of bounded synthesis, there is however a way to simplify the computation. Let BF
1 = (V ′),

BF
2 = (V ′′) and BF

3 = (V ′′′), and EnfPre be the enforceable predecessor operator that uses the edge function of
the composite game. We can obtain the set of winning positions of player 1 in G by computing the following BDD:

W = νX.X ∧ (BF
1 ∨ (EnfPre(X ∧ (¬BF

2 ) ∧ (¬BF
3 )))

This equation represents operations on BDDs whose application results in a BDD that encodes Win1(V ′′ ∪
V ′′′, V ′). We have vinit(G) ∈ Win1(V ′′ ∪ V ′′′, V ′) if player 1 has a strategy to either eventually reach one of the
vertices in V ′, or to stay away from V ′′ ∪ V ′′′ forever. Clearly, Win1(V ′′ ∪ V ′′′, V ′) is an under-approximation
of the set of vertices in G from which player 1 can win. However, Win1(V ′′ ∪ V ′′′, V ′) does not classify those
vertices as winning from which player 1 cannot avoid visiting V ′′∪V ′′′, but can ensure that eventually V ′ is visited
afterwards (in this case player 1 can also win the game). Since G is a finite game, there exists an upper bound u on
the number of moves that player 1 may require to do so. At the same time, the only way to visit V ′′ is that player
1 does not choose the right valuation for the safeg output bit (which can always be avoided), and the only way to
visit V ′′′ is to have some counter in G3

b exceeding the bound.
Thus, whenever we have vinit(G) /∈ Win1(V ′′ ∪ V ′′′, V ′), but vinit is winning for player 1 in G, by increasing

the bound value b used to construct the game G3
b by u, we ensure that in the game G that we then obtain, player

1 can reach V ′ before any vertex in V ′′ ∪ V ′′′ is reached from the positions in the game with the smaller bound
that Win1(V ′′ ∪ V ′′′, V ′) misclassified as losing for player 1, and thus we have vinit ∈ Win1(V ′′ ∪ V ′′′, V ′) for
the increased bound value. So it suffices to use the equation above to compute a set of winning states in G that
eventually contains vinit(G) when successively increasing the bound value. Since we do so anyway in the bounded
synthesis process, we use this simplification for our implementation to be described in Section 10 as it facilitates
the extraction of winning strategies from the game. For the scope of that section, we will refer to W is the set of
winning positions.

6 Observations on the Bounded Synthesis Approach

In this section, we describe the second optimisation technique proposed in this paper for performing bounded
synthesis efficiently using binary decision diagrams (BDDs).

Consider a UCW as depicted in Figure 3. For a bound of b = 2, the corresponding safety automaton Bound(A, b)
has 54 + 1 states (including the ones that are not reachable from the initial state). While the LTL formula corre-
sponding to the UCW can be decomposed, we describe here a technique that even works without this decomposi-
tion, and can be used orthogonally.

In the bounded synthesis approach, any other procedure Bound′ to convert a UCW and a bound value b to a
safety automaton can be used that makes sure that for every universal co-Büchi word automaton A and bound
value b ∈ N, we have L(Bound(A, b)) ⊆ L(Bound′(A, b)) ⊆ L(A). In such a case, the soundness and com-
pleteness arguments given in the previous sections still hold. We make use of this fact by deriving such a modified
procedure from the following observation: when decomposing the UCW into maximal strongly connected compo-
nents (SCCs), any run through the UCW can visit every maximal strongly connected component at most once (by
the definition of SCCs) and thus, it is possible to interpret the bound value in a modified way: instead of bounding
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q0start q1 q2 q3a b
¬a

a

a ¬a true b

Figure 3: Example UCW for the LTL formula FGa∧G((¬a∧Xa)→ XXGF¬b) over the set of atomic propositions
{a, b}. Rejecting states are doubly-circled. The part of the automaton consisting of q0 and q1 checks that
eventually a stops occurring in the input word. Whenever a letter is read that does not contain a, but the
subsequent letter contains a, the automaton branches universally from q1 into q0 and q2 at the same time.
A suffix run starting from state q2 then checks if we have GF¬b for the following suffix word.

the number of allowed visits to rejecting states along a run, we bound this number for every maximal SCC sepa-
rately, i.e., we reset the counter whenever a maximal SCC is left. As every maximal SCC can be visited at most
once, we do not need to keep track of the counters for SCCs already left in a run. At the same time, whenever a
maximal SCC does not have rejecting states, the counter values for the current SCC can only be 0 or−∞ with this
modification. We formally define:

Definition 14. Let A = (Q,Σ, δ, Qinit , F ) be a UCW. We define D to be the equivalence relation over Q such
that for every q, q′ ∈ Q, (q, q′) ∈ D if and only if q and q′ are in the same maximal SCC. We furthermore define
K ⊆ Q to be the set of states that are not in the same maximal SCC as a rejecting state.

The deterministic safety automaton Bound′(A, b) = (Q′,Σ, δ′, {q′init}, F ′) for some b ∈ N is defined by:

• Q′ =
(
((Q \K)→ {−∞, 0, . . . , b})× (K → {−∞, 0})

)
∪ {⊥}

• For all f ∈
(
((Q \K)→ {−∞, 0, . . . , b})× (K → {−∞, 0})

)
, x ∈ Σ, we have δ′(f, x) ∈

(
((Q \K)→

{−∞, 0, . . . , b})× (K → {−∞, 0})
)

and

δ′(f, x)(q) = max
(
{f(q′) | q′ ∈ Q, (q, q′) ∈ D, q ∈ δ(q′, x)}

∪ {0 | ∃q′ ∈ Q, (q, q′) /∈ D, q ∈ δ(q′, x)}
)

+

{
1 if q ∈ F
0 otherwise

if for all q ∈ Q, we have

b ≥ max
(
{f(q′) | q′ ∈ Q, (q, q′) ∈ D, q ∈ δ(q′, x)}

∪ {0 | ∃q′ ∈ Q, (q, q′) /∈ D, q ∈ δ(q′, x)}
)

+

{
1 if q ∈ F
0 otherwise

and δ′(f, x) = ⊥ otherwise. In both equations, we assume that max(∅) = −∞ and that −∞+ 1 = −∞.

• For all x ∈ Σ, δ′(⊥, x) = {⊥}

• q′init = {Qinit 7→ 0, Q \Qinit 7→ −∞}

• F ′ = {Q′ \ {⊥} 7→ 0, {⊥} 7→ 1}

7 Encoding Bounded Synthesis in BDDs

After the discussion of the main ideas presented in this paper, we turn towards filling the remaining blanks in the
BDD-based approach to synthesis. In particular, it needs to be discussed how to efficiently symbolically encode
the counters in the game ToGame1(Bound(A, b), 2API , 2APO) and how to deal with G1 and G2.

The efficiency of solving games using BDDs heavily depends on a smart encoding of the state space into the
BDD bits. As already stated, for a symbolic solution of a game, four groups of BDD variables are needed: two
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groups for the predecessor and successor game positions in its edge function (Vpre and Vpost ), one for the input to
the system (V0) and one for the output (V1). As we defined the input as I = 2API and the output as O = 2APO for
the scope of this paper, a straight-forward Boolean encoding of I and O for usage in the BDDs exists: we allocate
one BDD bit for each element of API and APO. It remains to find a suitable encoding for the state space of the
game.

Since our overall game G is the product of some smaller state spaces, we parallelise the problem and search for
state space encodings of G1, G2 and G3

b = ToGame1(Bound(A, b), 2API , 2APO) separately.

7.1 The Non-safety Part

Recall that in the context of bounded synthesis, the safety game induced by a UCW for a given bound b has a
certain property: the state space consists of all functions mapping the states of the UCW onto {−∞, 0, 1, . . . , b}
(or {−∞, 0} for some states when using the optimisation technique from the previous section) for b being the
chosen bound. For each state, we can encode the value the function maps to individually. For the scope of this
paper, we define the following encoding for this counter set {−∞, 0, 1, . . . , b}: we use plog2(b + 1)q + 1 bits.
One bit is used for representing whether the value equals −∞, the remaining bits represent the standard binary
encoding of the numeral (if given). Taking an extra bit for the −∞ value has the advantage of obtaining smaller
BDDs in most cases as this value appears very often in the definition of the transition function. Encoding the range
{−∞, 0} on the other hand is trivial as we only need one bit for doing so.

We also propose and use one additional trick. The games defined in the previous section are built in a way
such that they permit one type of non-determinism: we can allow the system player to choose a successor state
from a set of possible ones. If the system player can do this in a greedy way, i.e., the non-determinism can be
resolved after each input/output cycle while ensuring that the decision sequence for the play is still winning in the
unmodified game, the game semantics remain unchanged. For bounded synthesis, we can thus relax the transition
relation (encoded by the BDD BE) slightly: we allow the system player to increase her counters in addition to the
counter increases imposed by visits to rejecting states. We also allow her to set some counters from −∞ to some
arbitrary other value. This non-minimality [3] of the transition relation typically decreases the size of its symbolic
encoding.5

7.2 The Safety Part

For the encoding of the game components that correspond to safety assumptions and safety guarantees, we state
two different, straight-forward methods, which we explain in the following. The first method only works for locally
checkable properties and is usually more efficient than the second one in this case, whereas the latter method is
capable of handling arbitrary safety properties.

7.2.1 Smart Encoding of Locally Checkable Properties

If an LTL property is of the form ψ = G(φ) with a formula φ in which the only temporal operator occurring is
X, then ψ is a locally checkable property [24]. Let k be the deepest nesting of the X operator in φ. For checking
the satisfaction of such a property when observing a trace, in every round, it suffices to store whether the property
has already been violated, the last k inputs/outputs (also called history) and the current round number (with the
domain {0, 1, . . . , k − 1,≥ k}). Then, in every round with a number ≥ k, we update whether the specification
is already falsified with the input and output in the last k rounds and the current round. For encoding the round
number in a symbolic way, we use a binary representation.

Encoding such a property in this way has some advantages: First of all, the encoding proposed is canonical.
Furthermore, multiple properties can share the information stored in the game state space this way, so we can
recycle the stored information for all such locally checkable safety properties. Note that it is possible to reduce the
number of bits necessary for storage by leaving out the history bits not needed for checking the given properties.

5A similar idea was also pursued by Henzinger et al. [20] for simplifying the process of automaton determinisation.
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7.2.2 The General Method

Safety properties have equivalent syntactically safe UCW, i.e., in the UCW, all rejecting states are absorbing. In
this case, the UCW can be determinised by the power set construction. Thus, we can assign to each state in the
universal automaton a state bit which is set to 1 whenever there is a run from the initial state to the respective state
encoded by the bit for the input/output given by the players during the game so far.

This method is applicable to all safety properties but requires the computation of a universal co-Büchi automaton
having the property stated above. While it has been observed that checking if a property is safety is not harder
than building an equivalent universal co-Büchi automaton [25], it is not guaranteed that typical procedures for
constructing UCW from LTL properties yield automata that have this property. We use a simplified approach in
our actual implementation. If the procedure employed for converting an LTL formula into a UCW yields a UCW
for which all rejecting states are absorbing or transient, we declare the property as being safety and otherwise treat
it as a non-safety property. While we may miss safety properties this way, the soundness of the overall approach is
preserved.

8 Checking Unrealisability

So far, we have only dealt with the case that we want to prove the realisability of a specification. If a specification
is unrealisable, then for no bound b ∈ N, the game G = G1||∨(G2||∧G3

b ) for G3
b = ToGame1(Bound(A, b), 2API ,

2APO) is won by the system player. Thus, an implementation of the approach presented in this paper, which would
typically increase the bound successively until the induced game is winning for the system player, would have to
increase the bound all the way up to the worst case bound established in Corollary 12. In [14, 21], it is described
how the bounded synthesis approach can be used for detecting unrealisability quickly anyway: we simply run
the synthesis procedure both on the original specification as well as on the negated specification with swapped
input and output in parallel. Then, while in the original realizability question, we search for a Mealy automaton
satisfying the specification, we search for a Moore automaton for the environment that witnesses the unrealisability
of the specification. One of these runs is guaranteed to terminate. Whenever this happens, we can abort the other
run. This results in an decision procedure for the overall problem.

When applying the optimisations from this paper, this idea is not directly usable, as when negating the spec-
ification, the result is not again of the form

∧
a∈A a →

∧
g∈G g for some sets of assumptions A and guarantees

G. Instead, checking if the environment player wins can be done by swapping input and output, negating only
the modified specification, and making the final states of G1 losing for player 1 instead of winning. Then, player
1 (which is now the environment player) wins only if the safety assumptions are fulfilled, the safeg bit always
represents if a safety guarantee has already been violated, and the negated modified specification is fulfilled (with
respect to the given bound). Note that this makes the resulting game a safety game, as in this case, we build the
composite game by taking G′ = G1||∧G2||∧G3

b . We can thus easily solve G′ symbolically using the procedure from
Section 3.

9 Extracting an Implementation in Case of Realizability

Before we discuss the experimental results in the next section, it remains to be described how implementations
that realize a given specification can be extracted in case the game G is found to be winning for the system player
during realizability checking.

From a theoretical point of view, extracting a winning strategy from a simple obligation game is not difficult.
Recall that at the end of Section 5, we have seen that the set of winning positions in G can be obtained by evaluating
a simple fixed point equation. We can extract a winning strategy by using the position set of the game as state set of
the Mealy automaton and choose one successor for every position/input combination that does not lead to leaving
the set of winning positions. For positions what witness the violation of a safety assumption or any non-winning
position, we can use any successor. From a technical point of view, doing so in a fully symbolic manner, i.e.,
without enumerating all reachable positions explicitly, is however difficult.
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In the former part of this paper, the concrete definition of BDDs was not of relevance, i.e., it sufficed to view
them as a data structure for Boolean functions. For the task of extracting an implementation, we need to deviate
from this. Assume that V ′ is the set of winning positions in the game G and BE is a BDD representing the edge
function of G. Then, a BDD representation of the set of transitions that the Mealy automaton may perform can
be obtained by computing B′E = (V ′) ∧ BE ∧ (V ′)′ (recall that (·) encodes a set of vertices into Vpre and that
(·)′ encodes a set of vertices into Vpost ). If in the order of the BDD, the variables in Vpre and V0 occur first, then
the BDD can be thought of as a decision tree with collapsed branches. Such a tree can easily be converted to a
switching circuit, using one gate per node in the tree, and one flip-flop per state bit.

However, in practice, the variables can be ordered arbitrarily, as a large share of the power of modern BDD
libraries is rooted in the fact that they can perform dynamic variable reordering to keep the sizes of the BDDs
small. As a remedy, the algorithm proposed by Kukula and Shiple [23] can be used instead. It is directly applicable
to the BDD B′E , and it generates a circuit whose size is linear in the number of nodes in the BDD. Intuitively, the
algorithm works as follows: for every node in the BDD, some switching logic unit is synthesized. These units are
connected by the same edges as the BDD nodes. Whenever a new input bit valuation is fed into the Mealy machine,
the switching logic starts to propagate which node in the BDD is reachable from the root node for some output.
After the true node has been reached, along such a path, a token is back-propagated in the BDD to the root node,
while every switching logic part corresponding to an output variable feeds the chosen value to the output bits and
every switching logic part corresponding to a Vpost bit feeds the output to a set of flip-flops that preserve the state
for the next computation cycle.

In the actual implementation of the approach in this paper, whenever there are multiple output or post-state bit
valuations possible in the back-propagation phase, the bit is set to false.

10 Experimental Results

We implemented the symbolic bounded synthesis approach presented in this paper in C++ with the BDD library
CUDD v.2.4.2 [36], using dynamic variable reordering. The resulting tool UNBEAST (v.0.6) assumes that the
individual guarantees and assumptions are given separately. The first step in the computation is to split non-
safety properties from safety ones. For this, the tool calls the LTL-to-Büchi converter LTL2BA v.1.1 [17] on the
negations of the properties to obtain equivalent universal co-Büchi word automata. As described in Section 7.2.2,
we then check if the automata obtained are syntactically safe. Locally checkable properties are converted to games
using the procedure specialised in this case, all other safety properties are treated by the general procedure given.
The UCW corresponding to the modified non-safety part of the specification (as described in Section 5) is again
computed by calling LTL2BA on it. The last step for realisability checking is to solve the composite games built
for a successively increasing number of counter bits per state in the UCW until the game is winning for the system
player. We always start with two bits.

We check for realisability and unrealisabilty of the given specification simultaneously, as described in Section
8. In case of realisability, we extract an implementation that fulfils the specification. We do this in a fully symbolic
way, as described in the previous section. The remaining game graph is, together with the specification, converted
to a NUSMV [10] model. This allows running NUSMV to verify the correctness of the implementations produced.

All computation times given in the following are obtained on a Sun XFire computer with 2.6 Ghz AMD Opteron
processors running an x64-version of Linux. All tools considered are single-threaded. We restricted the memory
usage to 2 GB and set a timeout of 3600 seconds. The running times for our tool always include the computation
times of LTL2BA.

10.1 Performance Comparison on the Examples from [21, 14]

We compare UNBEAST with the only other currently publicly available tools for full LTL synthesis, namely Lily
v.1.0.2 [21] and ACACIA 2010 [14, 15]. In the following, for ACACIA as well as UNBEAST, we only give running
times for the non-realisability check if the property is not realisable and the realisability check and model synthesis
if the property is realisable.

The 23 mutex variations used as examples in [21, 14] are a natural starting point for our investigation. For usage
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with our tool, we adapted these examples to the Mealy-type computation model used in this work by prefixing
all references to input variables with a next-time operator. For these 23 examples, Lily needed 54.35 seconds of
computation time (of which 44.25 seconds were devoted to computing the automata from the given specifications).
Acacia in turn finished the task in 52.43 seconds (including 40.79 seconds for building the automata). The version
of UNBEAST with the features described in this paper had a total running time of about 41.24 seconds. As com-
puting the automata from the specification parts is not a pure preprocessing step in UNBEAST, we do not split up
the total running time here.

Interestingly, UNBEAST spends 39.5 out of the 41.24 seconds of overall computation time on showing the
unrealisability of a single specification, namely specification no. 4 from [21]. Lily spent only 1.95 seconds here,
whereas Acacia needs 2.11 seconds.

In addition to what has been described in this paper, UNBEAST v.0.6 uses one special trick that is common in
BDD-based model checking: by grouping the variables in Vpre together with their respective copies in Vpost , the
search space for suitable variable orderings can easily be pruned in a reasonable way. For the fourth specifica-
tion from [21], however, this optimisation is very malicious: it increases the computation time of UNBEAST to
198.76 seconds, and the computation time for all specifications together to 204.6 seconds. We currently have no
explanation for this huge difference, but use this variable grouping feature for the benchmarks given in the next
sub-section anyway, as this optimisation is typically non-malicious.

As a summary, the implementation of the approach presented in this paper is typically much faster on the
benchmarks from this suite, with the exception of specification number 4, for which the BDD-based approach is
not competitive.

10.2 A Load Balancing System

For evaluating the techniques presented in this paper in a more practical context, we present an example concerning
a load balancing unit that distributes requests to a fixed number of servers. Such a unit typically occurs as a
component of a bigger system which in turn utilises it for scheduling internal requests. We demonstrate how a
synthesis procedure can be used in the early development process of the bigger system in order to systematically
engineer the requirements of the load balancer. Using a synthesis tool in this context makes it possible detect errors
in the specification that result in unrealisability as early as possible. We start by stating the fundamental properties
of the load balancing system and finally tune it towards serving requests to the first server in a prioritised way. After
each added specification/assumption, we run our example implementation in order to check if the specification is
still realisable.

The following list contains the parts of the specification. Table 1 gives the running times of our tool and ACACIA

for the respective sets of assumptions and guarantees and some numbers of clients n ∈ {2, . . . , 9}. We did not use
the compositional techniques introduced in the 2010 version of ACACIA as they are targeted towards specifications
that consist of a conjunction of guarantees (and at the same time have no assumptions, or only assumptions that
are to be interpreted locally to some guarantees).

The system to be synthesized uses the input bits r0, . . . , rn−1 for receiving the information whether some server
is sufficiently under-utilised to accommodate another task and the output bits g0, . . . , gn−1 for the task assignments.
An additional input job reports on an incoming job to be assigned. For usage with ACACIA, all occurrences of
output variables in the specification have been prefixed with a next-time operator to take into account the different
underlying computation model.

1. Guarantee: Non-ready servers are never bothered:
∧

0≤i<n G(gi → ri)

2. Guarantee: A task is only assigned to one server:
∧

0≤i<n G(gi → (
∧

j∈{1,...,n}\{i} ¬gj))

3. Guarantee: Every server is used infinitely often:
∧

0≤i<n GF(gi)

Note that the guarantees 1, 2 and 3 cannot be fulfilled at the same time as some server might not report when it is
ready. Therefore, we replace the third part of the specification and continue:

4. Guarantee: Liveness of the system:
∧

0≤i<n GF(ri)→ GF(gi)
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Table 1: Running times of ACACIA (“A”) and UNBEAST (“U”) for the sub-problems defined in Section 10.2 for
n ∈ {2, . . . , 9}. For each combination of assumptions and guarantees, it is reported whether the specifi-
cation was realisable (+/-), how many counter bits per state in the UCW were involved at the end of the
computation (only for UNBEAST) and how long the computation took (in seconds). For realisable specifi-
cations and UNBEAST, we consider the case that an implementation is to be extracted (“+S”) and the case
that implementation extraction is turned off “-S”). It can easily be seen that implementation extraction
appears to be very costly in this approach. We left out the Lily tool as it is not competitive on the load
balancing example.
Tool Setting / # Clients 2 3 4 5 6 7 8 9

A
1

+ 0.3 + 0.4 + 0.5 + 0.9 + 1.5 + 2.7 + 5.0 + 12.4
U+S + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1 + 2 0.1
U−S + 2 0.1 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1

A
1 ∧ 2

+ 0.3 + 0.3 + 0.4 + 0.4 + 0.6 + 0.9 + 1.6 + 3.1
U+S + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1
U−S + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0

A
1 ∧ 2 ∧ 3

- 21.9 - 565.6 timeout timeout timeout memout memout timeout
U - 2 0.1 - 2 0.1 - 2 0.1 - 2 0.1 - 2 0.3 - 2 0.9 - 2 6.7 - 2 74.5
A

1 ∧ 2 ∧ 4
+ 0.6 + 1.3 + 9.2 + 274.0 memout memout memout timeout

U+S + 2 0.1 + 3 0.3 + 3 1.1 + 4 39.0 + 4 187.7 timeout timeout timeout
U−S + 2 0.1 + 3 0.2 + 3 0.3 + 4 2.1 + 4 2.9 + 4 10.7 + 4 42.9 + 5 387.9

A
1 ∧ 2 ∧ 4 ∧ 5

- 164.9 timeout timeout timeout memout memout memout timeout
U - 2 0.1 - 2 0.6 - 2 886.1 timeout timeout timeout timeout timeout
A

6→ 1 ∧ 2 ∧ 4 ∧ 5
- 176.4 timeout timeout timeout memout memout memout timeout

U - 2 0.1 - 2 0.7 - 2 782.4 timeout timeout timeout timeout timeout
A

6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5
- 198.6 memout memout timeout timeout timeout timeout timeout

U - 2 0.1 - 2 1.6 - 2 780.9 timeout timeout timeout timeout timeout
A

6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8
+ 7.4 + 46.0 memout memout timeout timeout timeout timeout

U+S + 2 0.1 + 3 0.3 + 3 1.2 + 4 56.7 + 4 1213.3 timeout timeout timeout
U−S + 2 0.1 + 3 0.3 + 3 0.4 + 4 3.8 + 4 4.2 + 4 16.7 + 4 77.6 + 5 961.8

A
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

- 45.4 - 1087.1 timeout memout timeout timeout timeout timeout
U - 2 0.1 - 2 0.1 - 2 0.2 - 2 0.9 - 2 15.8 - 2 428.8 timeout timeout
A

6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9
+ 23.2 + 212.1 memout timeout timeout timeout timeout timeout

U+S + 2 0.2 + 2 1.9 + 3 26.6 + 3 971.3 timeout timeout timeout timeout
U−S + 2 0.2 + 2 0.7 + 3 10.9 + 3 17.2 + 4 1313.2 timeout timeout timeout

5. Guarantee: Only jobs that actually exist are assigned:
G((
∨

0≤i<n gi)→ job).

Again, the guarantees 1, 2, 4 and 5 are unrealisable in conjunction as the job signal might never be given. We add
the assumption that this is not the case:

6. Assumption: There are always incoming jobs: GFjob

At this point, the system designer gets to know that this added requirement does not fix the unrealisability problem,
either. The reason is that the clock cycles in which job is set and the cycles in which some server is ready might
occur in an interleaved way. We therefore add:

7. Assumption: The job signal stays set until the job has been assigned: G(job ∧ (
∧

0≤i<n ¬gi)→ X(job))

Note that the specification is still not realisable. The reason is that the ready signal of one server i might always
be given after a job assignment to another server j has been given (for some i 6= j). If server i then always
immediately withdraws its ready signal, the controller can never schedule a job to server i, contradicting guarantee
4 if both servers i and j are ready infinitely often. We therefore modify guarantee 4 to not consider these cases:

8. Guarantee: Every ready signal is either withdrawn or eventually handled:
∧

0≤i<n ¬(FG(ri ∧ ¬gi))

We continue by adding a priority to the first server. Note that this breaks realisability again, as server 0 can block
the others. As an example, we solve this problem by adding the assumption that server 0 works sufficiently long
after it obtains a new job before signalling ready again.
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Table 2: Benchmark results for UNBEAST and the load balancing benchmark with specification splitting turned off
and non-safety counter reduction switched on

Setting / # Clients 2 3 4 5 6 7 8 9
1 + 2 0.0 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.2 + 2 0.5 + 2 2.3 + 2 9.6
1 ∧ 2 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1 + 2 0.1
1 ∧ 2 ∧ 3 - 2 0.0 - 2 0.0 - 2 0.1 - 2 3.7 timeout timeout timeout timeout
1 ∧ 2 ∧ 4 + 2 0.1 + 3 0.3 + 3 1.1 + 4 12.8 + 4 476.2 timeout timeout timeout
1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.3 - 2 9.6 - 2 1371.2 timeout timeout timeout timeout
6→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.8 - 2 39.1 timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.7 - 2 29.9 timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.3 + 3 17.8 timeout timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.1 - 2 0.1 - 2 2.8 timeout timeout timeout timeout timeout
6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 0.4 + 2 63.2 timeout timeout timeout timeout timeout timeout

Table 3: Benchmark results for UNBEAST and the load balancing benchmark with specification splitting turned on
and non-safety counter reduction switched off

Setting / # Clients 2 3 4 5 6 7 8 9
1 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1 + 2 0.1
1 ∧ 2 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1
1 ∧ 2 ∧ 3 - 2 0.1 - 2 0.1 - 2 0.1 - 2 0.2 - 2 0.2 - 2 0.9 - 2 6.8 - 2 71.9
1 ∧ 2 ∧ 4 + 2 0.1 + 3 3.1 + 3 36.2 timeout timeout timeout timeout timeout
1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 6.2 timeout timeout timeout timeout timeout timeout
6→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.2 - 2 110.5 timeout timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.4 - 2 556.7 timeout timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.1 + 3 0.9 + 3 2.1 + 4 345.7 timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.1 - 2 0.1 - 2 0.2 - 2 1.1 - 2 16.1 - 2 432.8 timeout timeout
6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 0.4 + 2 1.9 timeout timeout timeout timeout timeout timeout

9. Guarantee: Server 0 gets a job whenever a job is given and it is ready: G((
∨

1≤i<n gi)→ ¬r0)

10. Assertion: Server 0 does not report being ready when it gets a task until after an incoming job has been
reported on for the next time: G(g0 → ((¬job ∧ ¬r0) U (job ∧ ¬r0))).

10.3 The Effect of the Two Main Techniques Proposed in this Paper

To show the effect of the specification splitting technique and the counter reduction technique proposed in this
paper (Section 5 and 6, respectively), we also give benchmark results for UNBEAST and the load balancing bench-
mark with these optimisations switched off. Table 2 contains the results with specification splitting turned off,
but non-safety counter reduction switched on. Table 3 contains the results of switching the non-safety counter
reduction off, but keeping the specification splitting turned on. Finally, for Table 4, both features are switched off.
In all cases, the computation times for realisable specifications include the implementation extraction time. It can
be seen that the optimisation techniques proposed are most effective in conjunction.

Table 4: Benchmark results for UNBEAST and the load balancing benchmark with specification splitting turned off
and non-safety counter reduction switched off

Setting / # Clients 2 3 4 5 6 7 8 9
1 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1 + 2 0.2 + 2 0.5 + 2 2.2 + 2 8.5
1 ∧ 2 + 2 0.0 + 2 0.0 + 2 0.0 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1
1 ∧ 2 ∧ 3 - 2 0.0 - 2 0.0 - 2 0.1 - 2 3.2 timeout timeout timeout timeout
1 ∧ 2 ∧ 4 + 2 0.1 + 3 3.3 + 3 37.5 timeout timeout timeout timeout timeout
1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.9 - 2 181.1 timeout timeout timeout timeout timeout
6→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.4 - 2 1614.4 timeout timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 1.1 - 2 1377.3 timeout timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.3 + 3 409.5 timeout timeout timeout timeout timeout timeout
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.1 - 2 0.1 - 2 2.7 timeout timeout timeout timeout timeout
6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 2.2 + 2 24.4 timeout timeout timeout timeout timeout timeout
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11 Conclusion & Outlook

In this paper, we described the steps necessary to make the bounded synthesis approach work well with symbolic
data structures such as BDDs. The key requirement was to reduce the number of counters in the safety games that
occur in this approach as much as possible. We performed this task by splitting the specification into safety and
non-safety parts and presented a counter number reduction technique for the game component corresponding to
the non-safety specification conjuncts. We also discussed efficient encodings of the safety part of the specification
into games. The experimental results show a huge speed-up compared to previous works.

We only briefly discussed the problem of extracting small implementations for the case that the specification
is realisable. Similarly to the observations made in the context of generalised reactivity(1) synthesis, where the
expressivity of full LTL is traded against the possibility to use more efficient algorithms for performing the synthe-
sis process, the models produced are often non-optimal [5], i.e., unnecessarily large. Thus, further work will deal
with the more effective extraction of winning strategies. While the techniques presented here are already suitable
for requirements engineering and prototype extraction, the problem of how to obtain small implementations which
can directly be converted to suitable hardware circuits is still open.
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