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Abstract
Interpolation based automatic abstraction is a powerful and robust
technique for the automated analysis of hardware and software sys-
tems. Its use has however been limited to control-dominated appli-
cations because of lack of algorithms for computing interpolants
for data structures used in software programs. This paper presents
a general algorithm to construct interpolants for any recursively
enumerable theory. In particular, efficient procedures to construct
interpolants for the theories of arrays, sets, and multisets are dis-
cussed using the reduction approach for obtaining decision proce-
dures for complex data structures. The approach taken is that of re-
ducing the theories of such data structures to the theories of equal-
ity and linear arithmetic for which efficient interpolating decision
procedures exist. This enables interpolation based techniques to be
applied to programs that manipulate these data structures. These
interpolating decision procedure are applied to the verification of
C programs manipulating data structures using the software model
checker Blast. Using the new procedures, Blast can check safety
properties of C programs that manipulate data structures.

1. Introduction
Abstraction based model checking and automatic refinement of ab-
stractions has received a lot of attention as a precise but scalable
technique for verifying system properties [28, 3, 18, ?, 20]. The
key insight is to start with a crude abstraction on system states
considered strong enough to prove a safety property of the sys-
tem. If in an attempt to do a proof, a counter-example is discov-
ered, it is checked whether the counter-example is indeed realized
in the system, or it might have be spurious because of the abstrac-
tion being too crude. In the later case, the abstraction is refined
using the notion of an interpolant of theories. This approach has
come to be known as counterexample-guided abstraction refine-
ment (CEGRA), where interpolants have been used for predicate
discovery [17]: given an infeasible trace produced by the abstract
model checker, an interpolant at a point in the trace determines an
over-approximation of the set of reachable states that can execute
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the prefix of the trace in terms of the live variables that is enough
to determine the infeasibility of executing the suffix.

Interpolants provide a robust abstraction technique in model
checking. In hardware verification, interpolants have also been
used [28] as a substitute for the expensive post-image computa-
tion to construct invariants: one finds an interpolant between the
set of states reachable in k-steps (constructed using bounded model
checking) and the set of error states. The interpolant is tried as
an invariant. By providing a property-guided abstraction, the inter-
polant precludes the need to compute the strongest inductive invari-
ant for the system. In infinite-state verification, a similar algorithm
is used, but the logic is no longer propositional, but first order, usu-
ally with the theories of equality and arithmetic.

Most applications of interpolants have so far been restricted to
propositional logic, and the theories of equality with uninterpreted
functions together with linear arithmetic [28, 27, 17, 20, 21]. This
severely restricts the kind of programs and properties that have been
studied in the software model checking literature, which have so
far been restricted to niche control-dominated applications such
as device drivers [3, 18] and low level state machine properties
such as correct usage of locks [12, 18]. As shown in this paper,
providing interpolating theorem provers for data structure theories
will significantly extend the applicability of software verification
by providing robust approximation tools so far available only for
equality and arithmetic.

One such application is that of using software model checkers to
programs that use data structures and properties that depend on cor-
rect use of data structures. Until recently, the model checking of im-
perative programs manipulating data structures have mainly been
limited to fundamental correctness properties of the implementa-
tion of data structures [36, 2, 29]: for example, to check that a list
reverse routine does reverse an acyclic list. While an important area
of research, this captures only half the problem. The other half, au-
tomatically checking properties of applications that use these data
structures, given a correct implementation of the data structure has
received less attention. In practice though, programmers use well-
tested (and reasonably bug-free) library implementations of com-
mon data structures such as lists, sets, or bags (e.g., from C++ STL
or Java system classes), and many bugs can be unearthed in the use
of these data structures in client programs.

Using such module-level abstractions is a fundamental soft-
ware engineering principle to handle complexity [34], and we de-
compose our correctness proofs accordingly at module boundaries.
This is not a new idea: Hoare [19] suggests a modular proof de-
composition for data structures into checking the implementation
w.r.t. an abstract specification, and checking separately the use of
the implementation assuming the abstract specification. It is shown
in this paper how modular-verification and counterexample-guided
abstraction refinement can be combined using interpolants for the-
ories of data structures. Our contribution is to provide powerful
abstraction capabilities provided by interpolants in order to make
much of this reasoning automatic.



We also present results about two novel aspects of interpola-
tion in first order theories in this paper. The first is foundational:
we study under what conditions we can guarantee and effectively
compute a (quantifier-free) interpolant. We give a simple algorithm
to compute (not necessarily quantifier-free) interpolants from the
proof of unsatisfiability of any recursively enumerable theory and
show that quantifier elimination in the theory is a necessary and
sufficient condition for the existence of quantifier-free interpolants.
Using this simple characterization, we provide interpolating deci-
sion procedures for the theories of (real and Presburger) arithmetic,
arrays, lists, sets, and bags. Additionally, we show the existence
of quantifier free interpolants for the theories of linear arithmetic,
lists, and sets with cardinality constraints, and show that quantifier
free interpolants do not exist for theories of arrays and bags.

The second aspect is pragmatic: we provide a reduction tech-
nique to find interpolants in many theories of practical interest that
can use existing interpolating theorem provers as black boxes. In
particular, we show a compilation of different theories to the com-
bination theory of equality with uninterpreted functions and the
theory of linear arithmetic (and free constructors) such that from
an interpolant in the latter theory, one can construct an interpolant
in the original theory.

This is particularly attractive since very efficient implementa-
tions of these combined theories exist [8, 37] and are already in-
terpolant producing [27]. In our experience, developing efficient
implementation and integration of new theories into decision pro-
cedures (including carefully tuned heuristics) is an expensive ef-
fort. Our compilation algorithm sidesteps this by providing an easy
access to already developed tools through a simple and syntactic
compilation step. Thus, our techniques provide the first practical
interpolating decision procedures for the theories of arrays, sets,
and bags.

We have implemented interpolating decision procedures for the
quantifier-free theories of arrays, lists, sets with cardinality con-
straints, and bags on top of the Foci interpolating decision proce-
dure for linear arithmetic with uninterpreted functions [27]. This
was used in the software model checker Blast [18]. By using more
general reasoning about data structures, Blast was able to prove in-
teresting properties of programs that manipulate data structures.

The rest of the paper is organized as follows. In Section 2,
we provide an overview of CEGAR based approach for verifying
safety properties. The role of interpolants for refining abstractions
guided by counter-examples is reviewed. In Section ??, we prove
prove the existence of interpolants for any recursively enumerable
theory. It is also shown that quantifier-elimination in a theory is a
necessary and sufficient condition for the existence of quantifier-
free interpolants. In Subection 3.4, we formalize the notion of
reductions of a (more complex) theory to another simpler theory.
These reductions are applied in Section 4 to obtain interpolants for
several theories of parctical interest. A brief review of a preliminary
implementation of these reductions in Foci is given.

Other Related Work. Our work follows recent work on interpo-
lation as a powerful abstraction technique [28, 27, 17, 20, 21, 43].
We build up on reduction based decision procedures of [22].

There has been a lot of work on modular construction and ver-
ification of software since the early papers [34] and [19], and the
fundamental studies in abstract data types [25, 16]. Recent attempts
for automatic modular verification of software using verification
condition generation, explicit pre- and post-conditions, and deci-
sion procedures include [11, 24]. Our work is similar in spirit to
these efforts. It uses for example, quantifier elimination procedures
developed as part of the Hob infrastructure. However, instead of
building the most precise verification condition up front, we use
counterexample-guided refinement to incrementally build up in-

Example() {
01 x := emptyset();
02 while (*) {
03 t := *;
04 if(t->tag==0)
05 x := add(x,t);
06 }
07 q := choose(x);
08 if (q6=0 && q->tag != 0)
09 error();

}

type element
type set
emptyset : void → set
add : set× element → set
choose : set → element

Figure 1. (A) Simple client using sets (B) set signature

variants to the required precision [6, 3, 18, ?]. The paper [4] per-
forms modular verification, but does not handle data structures.

Orthogonal work in separation logic also attempts system verifi-
cation in the presence of heap data structures [31, 33], however, the
notion of automatic abstractions has so far been less central. Work
on shape analysis and related techniques [36, 2, 29] complements
our work by proving the implementation of data structures correct
w.r.t. abstract specifications.

2. Abstract Data Types and Model Checking
The motivation for our work is the automatic verification of pro-
grams that manipulate data structures through a set of interface
functions. We now demonstrate how interpolants for data structures
enable automatic predicate discovery in software model checking
based on counterexample-guided abstraction refinement (CEGAR)
through a simple program that manipulates sets.

2.1 Programs and Data Types

We describe our technique on programs in a simple imperative
programming language with typed variables and with the following
basic operations: (1) assignments x := e, that set the value of the
expression e to the variable x, (2) assume predicates assume[p],
that represent a boolean condition p that must be true for the
operation to be executed, and (3) function calls y := f(x) that
call a function f with the actual arguments x and writes the return
value into y. We assume that control flow is represented explicitly,
e.g., through a control flow graph, and return values are passed back
using a special ret variable.

A library Lib = (Σ, C) consists of (1) a set Σ of typed functions
that represents the externally callable function names, and (2) a
map C from functions f ∈ Σ to their implementations. We write
ΣLib for the signature of a library Lib. We assume that for a function
f of type σ1 × . . . × σn → σ, the implementation has n input
variables of the appropriate types, and the return value is of type σ.
A client for a library Lib is a program that calls only the functions
in the set ΣLib. We assume all function calls in the client are type
correct in that the types of called functions are respected. A closed
program (Lib,Client) consists of a library Lib and a client Client of
the library Lib. While we have assumed that the client only interacts
with one library and only calls functions in the library Lib, these
are for ease of exposition, and our techniques work even when
the client has other function calls, or when the client uses several
libraries.

Example 1. Instead of giving a formal definition, we introduce
clients and libraries through an example. Figure 1(A) shows a
client program Example that uses a library implementing a set data
structure whose signature is shown in Figure 1(B). The program is
motivated from the scheduler code in an OS kernel, where the set
corresponds to tasks that are runnable: tasks are added to the run
queue, and later, when they are removed, the kernel checks that any
task from the run queue is runnable.



The client starts with an empty set (line 01), and in a while loop,
adds elements to the set provided the tag field of the element is 0
(lines 02 to 06). Then it chooses an element q from the set (line 07),
and checks that the both q is non-null and the tag field of q is not 0
(line 08). If the check succeeds, it means that an element whose tag
is not zero has been returned from the set, and an error occurs (line
09). The library set provides the interface functions emptyset()
to produce an empty set, add() to add an element to a set, and a
function choose() that returns an arbitrary element from a set if
the set is not empty and 0 otherwise. We omit the implementation
of these interface functions. The client Example, together with the
set library, forms a closed program. 2

Safety Verification Problem. Let V be the set of variables of a
program. A data state is a type-preserving mapping of variables in
V to values in their domain. A state (`, s) of the program consists
of a program location ` and a data state s. A region is a set of
states. We shall use first-order formulas over the program location
and program variables to represent regions. The operations of the
program define a binary transition relation on states which specifies
the new state of the program that results when an operation op is
performed from the current state. The transition relation is lifted to
regions in the natural way.

Let (Lib,Client) be a closed program. A state (`, s) of the pro-
gram is reachable if there is some sequence of program operations
(allowed by the control flow of the program) that takes the program
from some initial state to (`, s). A program location ` is reachable
if some state (`, s) is reachable. For a closed program (Lib,Client)
and a location ` of Client, the safety verification problem asks if
` is reachable in the program (Lib,Client). We say (Lib,Client)
satisfies the safety property `, written Lib||Client |= `, if ` is not
reachable in (Lib,Client). It is known that any safety property can
be reduced to checking (un)reachability of some location `.

Example 2. In the example of Figure 1, we want to check that the
condition q → tag 6= 0 at line 08 never holds, so that line 09 is
unreachable. Informally, the program satisfies this safety property,
since the set x starts of empty, and any element y in the set x added
in the while loop in lines 02 to 06 satisfies y → tag = 0, so that an
arbitrary element q chosen from the set satisfies q → tag = 0. 2

For a closed program (Lib,Client) and a program location `,
one way to solve the safety verification problem is to compute an
over-approximation of the set of all reachable states of the program
and check if some state (`, s) is in this set. If not, then ` is not
reachable. However, if ` is reachable in this over-approximation,
it may or may not be reachable in the original program. In this
case, counterexample-guided abstraction refinement techniques [6,
3, 18] automatically find either (a) a concrete program execution
to ` or (b) a new and more precise over-approximation of the
set of reachable states and repeats until either the location ` is
proved to be unreachable, or a concrete counterexample trace to
` is obtained. However, there are two pragmatic issues that arise in
safety verification problem.

First, when both the client and the library are large programs,
the construction of the reachable set is expensive and most tech-
niques do not scale. Second, most automatic and scalable pro-
gram analysis tools do not precisely reason about complex data and
pointer manipulation. Hence, if the actual implementation of the li-
brary involves manipulation of heap data structures, these tools re-
sult in false alarms. Indeed, we were unable to verify the example
in Figure 1 using the software model checker Blast [18] when we
analyzed the client together with the implementation of the set li-
brary. This was because Blast was unable to reason precisely about
the pointer manipulations in the set implementation. Therefore, we
turn to modular verification.

2.2 Modular Verification

Instead of checking the full implementation of (Lib,Client), we
decompose the proof obligation in the following way. First, we
construct an abstraction A of Lib (i.e., a program with at least as
many behaviors as Lib), and separately check that (1) the closed
program (A,Client) satisfies the safety property ` and (2) A is
indeed an abstraction of Lib. We use abstract datatype definitions
(ADTs) as abstractions of a library Lib.

An ADT A = (T, µ) for a library Lib with signature ΣLib,
written Lib � A, consists of a first order theory T (i.e., a set of first
order logic sentences closed under deductions) whose signature
contains ΣLib as well as a map µ associating with each function
f ∈ ΣLib of type σt × . . . σn → σ a formula µ(f)(x1, . . . , xn, y

′)
with free variables x1, . . ., xn, and y′ of sorts σ1, . . ., σn, σ
respectively.

The formula µ(f) is intended to replace the actual imple-
mentation of the function f in the library with a declarative
specification of its transition relation. That is, for every val-
ues ci ∈ σi (for i = 1, . . . , n) and d ∈ σ, we have d =
f(c1, . . . , cn) iff µ(f)(c1, . . . , cn, d), and if the theory T entails
µ(f)(x1, . . . , xn, y) ⇒ ψ(x1, . . . , xn, y), then ψ(c1, . . . , cn, d)
as well. Formally, we use the modular proof rule [19]

Client||A |= ` Lib � A

Client||Lib |= `
ADT

(1)

The rule breaks the verification effort into two parts: first, the
implementation of the library is verified in isolation against an
abstract logical specification, and second, the client code is verified
using the abstract logical specification of the library. In this paper,
we focus on the verification problem

C||A |= ` (2)

There are other, orthogonal, approaches to prove the second obli-
gation Lib � A [36, 11].

Example 3. An ADT for the set library in Figure 1(B) consists
of the theory of sets together with the following mapping from
functions in the library to formulas in first order logic over the
signature of sets:

y := emptyset() y = ∅
y := add(x, t) y = x ∪ {t}
y := choose(x) (y = 0 ∧ x = ∅) ∨ (y 6= 0 ∧ y ∈ x)

These formulas declaratively specify the intent of each function in
the interface. In our application of modular verification, we shall
verify that the assertions in the client are satisfied assuming the
library conforms to this ADT. The closed program (Lib,Client) is
correct if in addition, we prove Lib indeed conforms to this ADT.1

2

2.3 CEGAR

We now show how a counterexample-guided abstraction refine-
ment algorithm using interpolant based predicate discovery [17]
can solve the safety verification problem. We (1) briefly describe
the main steps of the CEGAR loop, illustrating the steps on the
Example code, and (2) point out the role of interpolation and re-
duction in the different phases.

Algorithm 1 shows the overall algorithm to check whether a set
of states is reachable. The algorithm takes as input a client program
Client using a library Lib, an ADT A such that Lib � A, a set of

1 One issue is that in a language like C, even when an object is placed
in a list, the programmer can still update the state of the object outside
the list (e.g., through a pointer to the object). This generates a third proof
obligation that we ignore for simplicity of exposition. This proof obligation
can be discharged using an alias analysis that rules out updates to memory
locations that are stored in a set.



Algorithm 1 Safety Verification
Input: client program Client using ADT A
Input: initial abstraction Π0, program label L
Output: “reachable” if label L is reachable,
Output: “safe” otherwise

1: Π := Π0

2: Step 1: G := Reach(Client, A,Π)
3: Step 2:
4: if L is unreachable in G then
5: return “safe”
6: else
7: pick an abstract trace t from G that reaches L
8: if t can be concretely simulated then
9: return “reachable”

10: else
11: Step 3: Π := Π ∪ Refine(t); goto Step 1:
12: end if
13: end if

predicates Π0 over the program state, and a location ` of the pro-
gram. It returns “reachable” if some execution reaches the location
`, and “safe” otherwise. At all points, the algorithm maintains a
current abstraction, which is a set of first order predicates over the
program state. The algorithm has three main steps.

The first (Step 1) is a forward search phase that constructs
an over-approximation of the reachable states using the current
abstraction. This phase constructs a tree representing an unfolding
of the control flow automaton. Each edge of the tree is labeled
with a program operation, and each node is labeled with a program
location l as well as a formula ϕ over the predicates in the current
abstraction. The formula ϕ represents a superset of the set of states
that can reach the program location l by executing the program
operations along the path from the root of the tree to the node. Since
we only restrict attention to the predicates in the current abstraction,
the tree represents, in general, an over-approximation of the actual
reachable states.

The second (Step 2) checks if the location ` is reachable in the
forward search tree. If not, the algorithm returns “safe”. This is
sound since the forward search tree is an over-approximation of the
set of reachable states. However, if ` is reachable in the tree, the
path to ` may (a) either represent a real bug, (b) or be a spurious
counterexample in that ` is abstractly reachable because we have
lost too much information by restricting to the current abstraction.
This step performs a symbolic execution over a (possibly spurious)
path to ` in the tree. If the symbolic constraints generated are
satisfiable, then the path represents a real bug and the algorithm
returns “reachable.” Otherwise, we proceed to Step 3.

In case Step 2 finds the current path to be spurious (i.e., obtained
because the current abstraction is too coarse), a refinement proce-
dure (Step 3) is used to refines the current abstraction by adding
new predicates derived from analyzing t.

The following is standard [6, 3, 18].

Theorem 4. If Algorithm 1 returns “safe” for a client program
Client, an ADT A, a set of initial predicates Π0, and a location
`, then Client||A |= `. If it returns “reachable” then ` is reachable
in Client||A. 2

We now describe each part of the algorithm in more detail.

2.4 Forward Search and Reduction

We now describe the first phase: forward search. We start with some
preliminary definitions.
Abstract Postconditions. The basic step in the forward reach is
the abstract post computation, that takes a formula ϕ over the

current abstraction and a program operation op, and produces a
new formula that represents a superset of the set of states that can
be reached from the states in ϕ by executing op.

Let Client be a client program, and let Lib be a library that
conforms to the ADTA = (T, µ). Let V be the set of variables in a
program and let V ′ be the set of variables where each variable in V
is primed (i.e., variable x is renamed x′). Intuitively, s denotes the
valuation at the “current state” and s′ denotes the valuation at the
“next state.” For any operation op, we define the transition relation
T (op, V, V ′) as follows:

T (x := e, V, V ′) =
V

y′:y′ 6=x′
y′ = y ∧ x′ = e

T (assume(p), V, V ′) = p ∧
V

y′∈V ′ y
′ = y

T (x := f(z̄), V, V ′) =
V

y′:y′ 6=x′
y′ = y ∧ µ(f)(z̄, x′)

The transition relation T (op, V, V ′) relates the values of the current
(unprimed) variables with the next (primed) variables when the
operation op is executed. Notice that we do not expand the function
calls to the library, but instead we translate the effect of the function
to its logical specification given by the ADT.

Let Π be a set of predicates over the program variables V . We
write Π′ to denote the set where each predicate in Π is primed.
For any op, the predicate abstraction of the transition relation
T (op, V, V ′), written TΠ(op, V, V ′), is the smallest predicate
(in the inclusion order) over the predicates Π ∪ Π′ that contains
T (op, V, V ′). The computation of TΠ makes calls to a decision
procedure for the theory over which the predicates in Π are inter-
preted [14].

Example 5. Let Π = {q ∈ x}. Then TΠ(x = ∅, V, V ′) is the ab-
stract transition relation (q ∈ x)′ which states that after the opera-
tion, q ∈ x becomes true. Similarly, TΠ(y := choose(x), V, V ′)
is the relation (q ∈ x) ⇒ (q ∈ x)′ that says q ∈ x is true afterward
only if it was true before. 2

Reduction. Abstract postcondition computation involves checking
satisfiability of formulas constructed syntactically from the current
set of predicates and the program operation. This requires a deci-
sion procedure for the theory over which the formula is interpreted.
For the theory of equality with uninterpreted functions and the the-
ory of arithmetic, there are fast implementations [8, 37] that are
used by software model checkers such as SLAM, Blast, or Magic
to discharge the satisfiability checks.

When checking programs using an ADT (T, µ), one has to
additionally implement a decision procedure for the theory T .
Engineering a fast and scalable decision procedure is a difficult
task. Instead, we use a technique called reduction, which compiles
a query made in the theory T to an equi-satisfiable query made
in the theory of equality or arithmetic, for which we already have
fast decision procedures. This enables us to re-use existing efficient
implementations by writing the (much simpler) compilation code
for the new theory. For example, for the query q ∈ x ∧ x = ∅ ⇒
q 6∈ x made during predicate abstraction, we reduce the query to

q ∈ x ∧ (∀e.e 6∈ x) ⇒ q 6∈ x

which is unsatisfiable in the theory of equality with uninterpreted
functions and so by the correctness of the reduction, the original
formula is unsatisfiable in the theory of sets. In Section 4, we
provide compilation algorithms for the theory of arrays, sets, and
multi-sets, which are commonly used data structures.

The predicates used in predicate abstraction need not be quantifier-
free. However, for many theories, the quantifier-free fragment has a
decision procedure to answer the satisfiability queries while the full
theory may be undecidable. Thus, quantifier-free predicates are of
particular interest. Unfortunately, as we show later, our predicate
discovery technique may produce predicates with quantifiers. In



practice, theorem provers like Simplify [8] have excellent heuris-
tics to instantiate quantifiers, and despite their incompleteness, one
can still perform predicate abstraction soundly, losing information
where the theorem prover is unable to decide a particular query.

Abstract Reachability. Given the abstract post computation, the
forward search algorithm starts with the initial location of the pro-
gram and the formula true and computes the forward search tree
by expanding each outgoing operation of every reached location by
applying the abstract transition relation for the operation [18]. The
algorithm uses a worklist to maintain the set of reached nodes (la-
beled with a location and a region) that have yet to be explored,
and in each step, picks a node from the worklist and expands it by
applying the abstract transition relation for every outgoing opera-
tion from the location in the CFA. If the abstract successor is not
already in the tree, it is added to the worklist to be processed later.
Formally, we compute the least fixpoint of the abstract transition
relation starting with the initial location. The approximation of the
reachable state space consists of the set of node labelings of the for-
ward search tree. The structure of the tree is used to construct coun-
terexample traces. For example, the approximation of the reachable
states for the predicates Π = {x = ∅, q = 0} is given by the set

{〈01, true〉,
〈02, x = ∅〉, 〈02, x 6= ∅〉,
〈03, x = ∅〉, 〈03, x 6= ∅〉,
〈04, x = ∅〉, 〈04, x 6= ∅〉,
〈05, x = ∅〉, 〈05, x 6= ∅〉,
〈06, x = ∅〉, 〈06, x 6= ∅〉,
〈07, x = ∅〉, 〈07, x 6= ∅〉,
〈08, x = ∅ ∧ q = 0〉, 〈08, x 6= ∅ ∧ q 6= 0〉,
〈09, x 6= ∅ ∧ q 6= 0〉}

Since there is a reachable state will label 09, the location 09 is
abstractly reachable in this tree. This is expected, since we are not
tracking the state q → tag of the elements in the set.

2.5 Refinement and Interpolation

If the forward search tree contains a path t from the root node
to a node with label `, the refinement phase performs a symbolic
execution to determine whether (a) t is feasible in the concrete
system (and hence a bug), or (b) t is spurious, and in this case,
refine the current abstraction to rule out this trace.

The refinement procedure constructs a trace formula from the
trace [17]. The trace formula is a conjunction of constraints, one
per instruction in the trace. Each constraint is the application of
the transition relation to the current operation, where we give new
names to each variable on each assignment. The original trace is
feasible iff the trace formula is satisfiable [17]. We use reduction
followed by a decision procedure call to check if the trace formula
is satisfiable. If so, the current trace is a valid counterexample. If
not, we go to the refinement step.

Given an unsatisfiable trace formula, the refinement procedure
finds out predicates at each point of the trace such that if the abstract
transition relation tracks these predicates at these points, the current
spurious trace is ruled out. To see the connection to interpolants, let
ϕ1 ∧ . . . ϕi . . . ∧ ϕn be an infeasible trace formula, and consider
finding predicates for the point i. Partition the trace formula into
ϕ− = ϕ1 ∧ . . . ϕi and ϕ+ = ϕi+1 ∧ . . . ∧ ϕn into the portion of
the trace before (respectively after) the point i. Now, an interpolant
ψi between ϕ− and ϕ+ has the property that (1) ϕ− implies ψi,
that is, the predicate ψi holds after the prefix of the trace up to i is
executed, (2) ψi ∧ ϕ+ is unsatisfiable, that is, the predicate ψi at
location i is enough to show infeasibility of the suffix of the trace,
and (3) ψi is over the common variables between ϕ− and ϕ+, that
is, over the live variables. If at each point i, we then track the pred-
icate ψi (where we rename variables back to their original names),

x := emptyset() x0 = ∅ x = ∅
assume(true) true x = ∅
q := choose(x) (q0 = 0 ∧ x0 = ∅)

∨(q0 6= 0 ∧ q0 ∈ x0) q = 0
assume(q! = 0&&q → tag! = 0) q0 6= 0 ∧ q0 → tag 6= 0 false

Figure 2. Trace, trace formula, and interpolants

then we have enough information to rule out the trace.2 In this way,
refinement reduces to interpolant computation. So far, there are im-
plementations of interpolating decision procedures for the theory
of equality with uninterpreted functions and arithmetic [27]. How
can we use these to construct interpolants for our formulas, which
also talk about the theory of sets (and other data structures)? Again,
we use the reduction technique. Our interpolation construction first
reduces the formula to that of equality with uninterpreted functions
and arithmetic, uses existing interpolating decision procedures to
construct an interpolant for the reduced formula, and then maps
this interpolant back to the original theories (see Figure 4 for an
outline). In the process, we may introduce quantifiers. If the theory
admits quantifier elimination, we can get rid of these quantifiers
and get quantifier-free interpolants. More often, though, the inter-
polants will have quantifiers.

Example 6. Suppose in Figure 1, we started with no predicates. In
that case, the forward search returns the trace in Figure 2 reaches
line 09. This corresponds to the program execution where the
while block is not executed, and the then branch is taken. The
middle column shows the constraints in the trace formula. Our
reduction algorithm replaces each occurrence of x0 = ∅ in the
trace formula with ∀e.e 6∈ x0. Our interpolation procedure now
constructs the interpolants shown (after simplification) in the right
column at each program point. Notice, for example, that the first
two constraints in the trace imply x0 = ∅, and this predicate is
enough to show unsatisfiability of the rest of the trace. Finally, the
only variable x0 is live at this point (it is used in the future). These
predicates are enough to show that this trace is infeasible. 2

2.6 Putting It All Together

We now illustrate the whole working of the algorithm on the Exam-
ple from Figure 1. We start with an empty initial set of predicates.
The forward search returns the trace shown in Figure 2, and the
refinement process adds the predicates x = ∅ and q = 0.

We add this predicate, and perform the forward search again.
This time, the previous counterexample is ruled out, since after
executing the operations x = emptyset() and true , we have that
x = ∅ ∧ q = 0, and the branch is not taken. However, there is
a second counterexample, shown in Figure 3. The middle column
again shows the reduced trace formula, and the third column shows
the interpolants at each program point. When these predicates are
added to the current abstraction, the forward search can prove that
the location 09 is not reachable.

In practice, there are several optimizations to the basic algo-
rithm above. First, the search for errors is performed interleaved
with the forward search. Second, refinements are local, and the
forward search only re-constructs parts of the state space that is
affected by the reduction. Third, instead of computing the most
precise but expensive predicate abstraction, an imprecise Cartesian
abstraction is constructed [3, 18], and this is strengthened itera-
tively using the interpolants derived from the counterexample anal-
ysis [20] (in fact, as noted in [20], Cartesian abstraction is too weak
for programs that manipulate data structures).

2 One technical point: the interpolants must be generated from the same
proof of unsatisfiability, see [17] for details.



x := emptyset(); ∀e.e 6∈ x0 x = ∅
true; true x = ∅
t := ∗; t0 = ∗ x = ∅
assume(t → tag = 0); t0 → tag = 0 x = ∅ ∧ t → tag = 0
x := add(x, t); ∀e.e ∈ x1 ⇔ (e ∈ x0 ∨ e = t) x 6= ∅ ∧ ∀e.(e ∈ x ⇒ e→ tag = 0)
q := choose(x); (q0 = 0 ∧ ∀e.e 6∈ x1) ∨ (q0 6= 0 ∧ q0 ∈ x1) q 6= 0 ∧ q → tag 6= 0
assume(q! = 0&&q → tag 6= 0) q0 6= 0 ∧ q0 → tag 6= 0 false

Figure 3. (a) Counterexample, (b) reduced trace formula, (c) interpolants

We have implemented support for reduction based interpolation
for the theories of arrays, sets, and multisets in the Blast software
model checker. In our preliminary experience, Blast, together with
this added interpolation support, is able to prove many properties of
programs using data structures when the data structures are repre-
sented as ADTs. For the same programs, the reachability returns a
false positive if the actual implementation of the data structures are
included. This is because the simple pointer analysis used by Blast
to distinguish memory cells usually cannot distinguish between the
different cells within the data structure implementation.

3. Interpolation and Reduction
We now introduce the formal definitions of interpolation and reduc-
tion, and provide characterizations for the existence of interpolants.
We prove two main results in this section. The first (Theorem 8)
shows that every recursively enumerable theory admits interpola-
tion, although the interpolant may not be quantifier-free. The inter-
polant is quantifier-free if and only if in addition, the theory admits
quantifier elimination. The second result (Theorem 11) provides a
compilation technique that reduces the problem of computing in-
terpolants for quantifier-free formulas in a theory T to computing
interpolants in a different theory R through a compilation process.
This enables us to use already implemented techniques for com-
puting interpolants in R to compute interpolants in T . Again, the
interpolants may not be quantifier-free. On the positive side, we
give conditions under which we do get quantifier free interpolants,
and show e.g., that the theory of sets with cardinality constraints
satisfy these conditions. On the negative side, we show that for the
theories of arrays and multisets, these conditions are not satisfied,
and we cannot expect to get quantifier-free interpolants. We start
with standard definitions of many-sorted logics, theories, and inter-
polation.

3.1 Many Sorted Logics

Syntax. A signature Σ = (S, F, P ) consists of a set S of sorts, a
set F of function symbols, and a set P of predicate symbols, where
the arities of the symbols in F and P are constructed using the
sorts in S (i.e., we consider the arity of a function or a predicate
to be built-in the function or predicate symbol). For a signature Σ,
we write ΣS (respectively, ΣF , ΣP ) for S (respectively F , P ). For
signatures Σ1 and Σ2, we write Σ1 ⊆ Σ2 if ΣS1 ⊆ ΣS2 , ΣF1 ⊆ ΣF2 ,
and ΣP1 ⊆ ΣP2 . The union and intersection of signatures is defined
as the pointwise union and intersection of their component sets. For
each sort σ we fix a set Xσ of free constant symbols of sort σ which
are disjoint from the function symbols ΣF . We also fix a set Xbool

of free propositional symbols.
For a signature Σ, the set of Σ-terms is the smallest set such that

(1) each free constant symbol u ∈ Xσ is a Σ-term of sort σ for all
σ ∈ ΣS , (2) each constant symbol u ∈ ΣF of sort σ is a Σ-term of
sort σ, and (3) f(t1, . . . , tn) is a Σ-term of sort σ, given f ∈ ΣF

is a function symbol of arity σ1 × . . .×σn → σ and ti is a Σ-term
of sort σi for i = 1, . . . , n.

The set of Σ-atoms is the smallest set such that (1) each proposi-
tional symbol u ∈ Xbool is a Σ-atom, (2) s ≈ t is a Σ-atom if s and

t are Σ-terms of the same sort, and (3) p(t1, . . . , tn) is a Σ-atom
given that p ∈ ΣP is a predicate symbol of arity σ1 × . . .×σn and
ti is a Σ-term of sort σi for i = 1, . . . , n.

The set of quantifier-free Σ-formulas is the smallest set such
that (1) each Σ-atom is a Σ-formula, (2) if ϕ, ψ, χ are Σ-formulas,
so are ¬ϕ, ϕ ∧ ψ. The set of Σ-formulas is the smallest set such
that (1) every quantifier-free Σ-formula is a Σ-formula, and (2) if ϕ
is a Σ-formula and x ∈ Xσ a free constant symbol, then ∀x : Xσ.ϕ
and ∃x : Xσ.ϕ are Σ-formulas. We shall use the usual derived
formulas ϕ ∨ ψ, ϕ→ ψ, ϕ ↔ ψ. We also use the shorthand s 6≈ t
for ¬(s ≈ t). We write vars(ϕ) for the free constant symbols in ϕ.
We omit the prefix Σ- when it is clear from the context.

Semantics. For a signature Σ = (S, F, P ) and a set X of free
symbols over sorts in S, a Σ-structure A over X is a map which
interprets

1. each sort σ ∈ S as a non-empty domain Aσ ,
2. each free constant symbol u ∈ Xσ as an element uA ∈ Aσ,
3. each free propositional symbol u ∈ Xbool as a truth value in

{true , false},
4. each function symbol f ∈ F of arity σ1 × . . . × σn → σ as a

function fA : Aσ1
× . . . ×Aσn

→ Aσ,
5. each predicate symbol p ∈ P of arity σ1×. . .×σn as a relation
pA ⊆ Aσ1

× . . .×Aσn
.

For a Σ-formula ϕ with free variables X0 ⊆ X , we denote by
ϕA the evaluation of ϕ under A (defined in the usual way). For
a formula ϕ, we write A |= ϕ if ϕA = true . A formula ϕ is
satisfiable if A |= ϕ for some structure A over vars(ϕ).

3.2 Theories

A Σ-theory is a set of Σ-sentences closed under logical deduction.3

A theory is recursively enumerable if the set of sentences in the
theory is a recursively enumerable set. Two formulas ϕ and ψ are
T -equivalent for a theory T if ϕ ↔ ψ is in T . If Σ is a signature,
TΣ
≈ denotes the theory of equality over Σ, that is, TΣ

≈ is the set of
all valid Σ-sentences.

Given a Σ-theory T , a T -model is a Σ-interpretation that sat-
isfies all sentences in T . A Σ-formula ϕ over a set V of variables
is T -valid if it is satisfied by all T -models over V , is T -satisfiable
if it is satisfied by some T -model over V , and is T -unsatisfiable
if it is not T -satisfiable. The satisfiability problem of a Σ-theory
T is the problem of deciding, for every Σ-formula ϕ, whether or
not ϕ is T -satisfiable. The quantifier-free satisfiability problem of
a Σ-theory T is the problem of deciding, for every quantifier-free
Σ-formula ϕ, whether or not ϕ is T -satisfiable.

For every signature Σ, the satisfiability problem of TΣ
≈ is

undecidable [5, 41] (indeed, semi-decidable [13]), whereas the
quantifier-free satisfiability problem of TΣ

≈ is decidable [1].

3 A set T of Σ-sentences is closed under logical deduction if ψ ∈ T
whenever ϕ ∈ T and ϕ → ψ is valid.



A Σ-theory T eliminates quantifiers if for every Σ-formula ϕ
it is possible to effectively compute a quantifier-free Σ-formula ψ
such that ϕ and ψ are T -equivalent and vars(ψ) ⊆ vars(ϕ).

Examples of theories that eliminate quantifiers include the the-
ory Tint of linear integer arithmetic [35], the theory Trat of linear
rational arithmetic [42], the theory Treal of real arithmetic [40], the
theory Tdata of recursively defined data structures [32], and the the-
ory Tset of sets [23].

For every signature Σ, the theory of equality TΣ
≈ over Σ does not

eliminate quantifiers. To see this, assume by contradiction that TΣ
≈

eliminates quantifiers, and let ϕ be a Σ-formula. Then it is possible
to effectively compute a quantifier free Σ-formula ψ such that ϕ
and ψ are equivalent. It follows that ϕ and ψ are equisatisfiable.
Since the quantifier-free satisfiability problem of TΣ

≈ is decidable,
we can effectively decide whether ϕ is satisfiable. But this implies
that the satisfiability problem of TΣ

≈ is decidable, a contradiction.
Using similar arguments, we will prove that theories that do not
eliminate quantifiers also include the theory Tarray of arrays and the
theory Tbag of multisets.

3.3 Interpolation

Let T be a Σ-theory, and let ϕ and ψ be Σ-formulas such that ϕ∧ψ
is T -unsatisfiable. We say that a Σ-formula α is a T -interpolant of
(ϕ, ψ) if the following three conditions hold:

1. ϕ→ α is T -valid.
2. α ∧ ψ is T -unsatisfiable.
3. vars(α) ⊆ vars(ϕ) ∩ vars(ψ).

A Σ-theory T is interpolating if, for all Σ-formulas ϕ, ψ such
that ϕ∧ψ is T -unsatisfiable, it is possible to effectively compute a
T -interpolant α of (ϕ, ψ). A Σ-theory T is quantifier-free interpo-
lating if, for all Σ-formulas ϕ, ψ such that ϕ∧ψ is T -unsatisfiable,
it is possible to effectively compute a quantifier-free T -interpolant
α of (ϕ, ψ).

For every signature Σ, the theory of equality TΣ
≈ over Σ is in-

terpolating [7]. In particular, if ϕ and ψ are Σ-formulas such that
ϕ∧ψ is unsatisfiable, then a TΣ

≈ -interpolant α of (ϕ, ψ) can be ex-
tracted from any first-order proof Π of the unsatisfiability of ϕ∧ ψ
in time linear in the size of the proof Π. Methods for extracting
TΣ
≈ -interpolants from first-order proofs exist for Gentzen-like cal-

culi [39], resolution, and tableaux [10]. We now extend these results
to any recursively enumerable theory T .

We start with a simple normalization that simplifies the syntax
of formulas in the following. A quantifier-free formula is flat if all
atoms occuring in it are of the form x ≈ y, x ≈ f(x1, . . . , xn),
or p(x1, . . . , xn), where x, y, x1, . . . , xn are variables. It is easy
to see that every formula ϕ can be converted to an equivalent
flat formula ϕ′ (by introducing new variables). This flat formula
ϕ′ is called the flat form of ϕ. Further, since the conjunction or
disjunction of flat formulas is also flat, we shall write, e.g., ϕ′ ∧ψ′

to denote the flat form of ϕ ∧ ψ where ϕ′ is the flat form of ϕ and
ψ′ the flat form of ψ.

Proposition 7. Let ϕ ∧ ψ be a quantifier-free T -unsatisfiable Σ-
formula. Then, in order to compute a T -interpolant of (ϕ, ψ), one
can just do the computation for a flat form ϕ′ ∧ ψ′ of ϕ ∧ ψ. 2

We now characterize (quantifier-free) T -interpolating theories.
Our main theorem shows that every recursively enumerable theory
T is T -interpolating, and additionally T is quantifier-free interpo-
lating iff additionally T eliminates quantifiers.

Theorem 8. 1. Every recursively enumerable theory is interpolat-
ing.

2. Every recursively enumerable theory that eliminates quantifiers
is quantifier-free interpolating.

3. Every quantifier-free interpolating theory eliminates quanti-
fiers. 2

PROOF. Let T be a recursively enumerable Σ-theory, and let ϕ and
ψ be Σ-formulas such that ϕ ∧ ψ is T -unsatisfiable. We want to
effectively compute a T -interpolant α of (ϕ, ψ).

By compactness, and since T is recursively enumerable, one can
effectively construct a finite subset T0 ⊆ T such that ϕ ∧ ψ is T0-
unsatisfiable. Moreover, one can also construct a first-order proof
Π of the T0-unsatisfiability of ϕ ∧ ψ. From Π, one can effectively
extract a TΣ

≈ -interpolant α of (
V

T0∧ϕ,
V

T0∧ψ). (We write
V

T0

for the conjunction of the finitely many formulas in T0.) Clearly, α
is also a T -interpolant of (ϕ, ψ).

For part (2), let T be a recursively enumerable Σ-theory, and
let ϕ and ψ be Σ-formulas such that ϕ ∧ ψ is T -unsatisfiable. By
Part (1), one can effectively construct a T -interpolant α of (ϕ, ψ).
Since T eliminates quantifiers, one can effectively compute a
quantifier-free Σ-formula β such that α and β are T -equivalent and
vars(β) ⊆ vars(α). Clearly, β is a quantifier-free T -interpolant
of (ϕ, ψ).

For part (3), let T be a quantifier-free interpolating Σ-theory,
let ϕ be a Σ-formula, and let α be a quantifier-free interpolant
of (ϕ,¬ϕ). Clearly, ϕ and α are T -equivalent and vars(α) ⊆
vars(ϕ). �

From Theorem 8, it follows that examples of theories that are
interpolating include the theory Tint of integer linear arithmetic,
the theory Trat of rational linear arithmetic, the theory Treal of real
arithmetic, the theory Tdata of recursively defined data structures,
the theory Tarray of arrays, the theory Tset of sets, and the theory
Tbag of multisets.

Further, it follows that examples of theories that are quantifier-
free interpolating include the theory Tint of linear integer arith-
metic, the theory Trat of rational linear arithmetic, the theory Treal

of real arithmetic, the theory Tdata of recursively defined data struc-
tures, and the theory Tset of sets. In constrast, we will see that
the theory Tarray of arrays and the theory Tbag of multisets are not
quantifier-free interpolating.

Example 9. Arithmetic. The theory Tint of integer linear arith-
metic is the theory of the structure of integer numbers 〈Z, 0, 1,+,≤
,≡n〉. The theory Tint is recursively enumerable and eliminates
quantifiers [35]. Consequently, by Theorem 8, Tint is quantifier-free
interpolating. In addition, Tint has a decidable quantifier-free satis-
fiability problem (this is essentially integer linear programming),
and is implemented in decision procedures such as Simplify and
CVC [8, 37].

The theory Trat of rational linear arithmetic is the theory of
the structure of rational numbers 〈Q, 0, 1,+,≤〉. The theory Trat

is recursively enumerable, and eliminates quantifiers [42]. Conse-
quently, by Theorem 8, Trat is quantifier-free interpolating. In addi-
tion, Trat has a decidable quantifier-free satisfiability problem (this
is essentially linear programming).

The theory Treal of real arithmetic is the theory of the structure
of real numbers 〈R, 0, 1,+,×,≤〉. The theory Treal is recursively
enumerable, and eliminates quantifiers [40]. Consequently, by The-
orem 8, Treal is quantifier-free interpolating. In addition, Treal has
a decidable quantifier-free satisfiability problem (through Fourier-
Motzkin elimination). 2

Example 10. Recursively defined data structures. The theory
Tdata of recursively defined data structures has a signature Σdata

containing one sort data, the binary function symbols cons, and the
unary function symbols car and cdr. The theory Tdata is axiomated



by

cons(car(x), cdr(x)) = x ,

car(cons(x, y)) = x ,

cdr(cons(x, y)) = y ,

x 6≈ t(x) ,

where t is a term built up form x by using finitely many applic-
taions of the unary funcation symbols car and cdr. The theory Tdata

is recursively enumerable, and eliminates quantifiers [26]. Conse-
quently, by Theorem 8, Tdata is quantifier-free interpolating. Tdata

has a decidable quantifier-free satisfiability problem [30, 32]. 2

3.4 Reduction

Theorem 8 provides a characterization of first order theories that
admit (quantifier-free) interpolation. In practice, however, produc-
ing efficient implementations of interpolating decision procedures
for every individual theory is a daunting engineering task. Further,
the construction of the interpolant in the proof of Theorem 8 used
compactness to construct a finite subset T0 of T , which may be
algorithmically inefficient. Instead, we use a compilation or re-
duction approach [22], where the satisfiability and interpolation-
construction for a theory is proved by reducing to a different, often
simpler, theory for which efficient satisfiability and interpolation
procedures have already been implemented. In particular, the tar-
get for our reduction functions is the combination of the theory
of equality with uninterpreted functions and linear arithmetic, for
which interpolating decision procedures are available [27].

Let T be a Σ-theory, and letR be an Ω-theory such that Ω ⊆ Σ,
ΩS = ΣS, and R ⊆ T . We say that T reduces to R if there is a
computable map from flat Σ-atoms to Ω-formulae such that, if we
apply this map to a quantifier-free flat Σ-formula ϕ, obtaining an
Ω-formula ϕ∗, then

1. ϕ and ϕ∗ are T -equivalent.
2. If ϕ∗ is R-satisfiable then ϕ is T -satisfiable.

Theorem 11. Let T be a Σ-theory, and let R be an Ω-theory such
that Ω ⊆ Σ and ΩS = ΣS, and R ⊆ T . Assume that

(i) T reduces to R,
(ii) It is possible to compute an R-interpolant of (ϕ, ψ) whenever

ϕ ∧ ψ is an R-unsatisfiable Ω-formula.

Then it is possible to compute a T -interpolant of (ϕ, ψ) whenever
ϕ ∧ ψ is a T -unsatisfiable quantifier-free Σ-formula. 2

PROOF. Without loss of generality, let ϕ ∧ ψ be a T -unsatisfiable
flat quantifier-free Σ-formula, and let us construct (ϕ∗, ψ∗). Note
that ϕ∗ ∧ ψ∗ is R-unsatisfiable. Thus, we can compute an R-
interpolant α of (ϕ∗, ψ∗). We claim that α is also a T -interpolant
of (ϕ, ψ).

Since vars(α) ⊆ vars(ϕ∗)∩vars(ψ∗), vars(ϕ) ⊆ vars(ϕ∗),
and vars(ψ∗) ⊆ vars(ψ), it follows that vars(α) ⊆ vars(ϕ) ∩
vars(ψ).

Next, let A |=T ϕ. Then A |=T ϕ∗, which implies that
AΩ,vars(ϕ∗) |=R ϕ∗, which implies AΩ,vars(ϕ∗) |=R α, which
implies A |=T α. Summing up, ϕ→ α is T -valid.

Finally, assume by contradiction that α ∧ ψ is T -satisfiable.
Then there exists a Σ-interpretation A such that A |=T α ∧ ψ. It
follows that A |=T α∧ψ

∗, which implies AΩ,vars(ψ∗) |=R α∧ψ
∗.

But then, α ∧ ψ∗ is R-satisfiable, a contradiction. �

Note that if in Theorem 11 either one of the theories T or R
eliminates quantifiers, then T is quantifier-free interpolating and
we can compute a quantifier-free T -interpolant β of (ϕ, ψ). This
process is depicted in Figure 4.

ϕ ∧ ψ

ϕ∗ ∧ ψ∗

α

β

reduction of T to R

computation of an R-interpolant

quantifier elimination

Figure 4. Computing quantifier-free T -interpolants when the Σ-
theory T reduces to the Ω-theory R, and either T or R eliminates
quantifiers. ϕ∧ψ is a T -unsatisfiable flat quantifier-free Σ-formula.
ϕ∗ ∧ ψ∗ is an Ω-formula obtained from ϕ ∧ ψ by a reduction
function. α is anR-interpolant of (ϕ, ψ), as well as a T -interpolant
of (ϕ, ψ). β is obtained by eliminating quantifiers from α in either
the theory T or the theory R. Finally, β is a quantifier-free T -
interpolant of (ϕ, ψ).

4. Interpolation Algorithms for Data Structures
We now apply Theorem 11 to obtain interpolants for the theories of
arrays, sets, and multisets.

4.1 Arrays

The theory Tarray of arrays as a signature Σarray containing a sort
elem for elements, are sort index for indices, and a sort array of
arrays, plus the function symbols read of arity array × index →
elem, and write of arity array× index× elem → array. The theory
Tarray is axiomatized by

read(write(a, i, e), i) ≈ e ,

i 6≈ j → read(write(a, i, e), j) ≈ read(a, j) ,

(∀index i)(read(a, i) ≈ read(b, i)) → a ≈ b .

The theory Tarray is recursively enumerable. Consequently, by
Theorem 8, Tarray is interpolating. In this section, we show that:
(a) the satisfiability problem of Tarray is undecidable, (b) the theory
Tarray does not eliminate quantifiers, and consequently, (c) the the-
ory Tarray is not quantifier-free interpolating. Notice that Tarray does
have a decidable quantifier-free satisfiability problem [38].

Moreover, we prove that Tarray reduces to TΩ
≈ , where ΩS =

{elem, index, array}, ΩF = {read}, and ΩP = ∅. Consequently,
by Theorem 11, and provided that ϕ ∧ ψ is quantifier-free, we can
reduce the problem of computing Tarray-interpolants4 of (ϕ, ψ) to
the problem of computing TΩ

≈ -interpolants.

Theorem 12. 1. The satisfiability problem of the theory Tarray of
arrays is undecidable.

2. The theory Tarray of arrays does not eliminate quantifiers. 2

PROOF (Sketch). Consider the theory T 2
array which is the same as

Tarray, but the sort elem and index are identified. Clearly, the satis-
fiability problem of T 2

array is undecidable (Gurevich [15]).
We want to reduce the satisfiability problem of Tarray to the

satisfiability problem of T 2
array. This can be done as follows. Specify

4 Since Tarray is not quantifier-free interpolating, these interpolants are, in
general, not quantifier-free.



that a function h : index → elem is bijective with the formulas

(∀index i, j)(read(h, i) ≈ read(h, j) → i ≈ j) ,

(∀elem e)(∃index i)(read(h, i) ≈ e) .

Then, whenever we want to express that e1 = f(e2), it suffices to
say that read(h, i) ≈ e2 ∧ read(f, i) ≈ e1.

For part (2), assume by contradiction that Tarray eliminates quan-
tifiers, and let ϕ be a Σarray-formula. Then it is possible to ef-
fectively compute a quantifier free Σarray-formula ψ such that ϕ
and ψ are Tarray-equivalent. It follows that ϕ and ψ are Tarray-
equisatisfiable. Since the quantifier-free satisfiability problem of
Tarray is decidable, we can effectively decide whether ϕ is Tarray-
satisfiable. But this implies that the satisfiability problem of Tarray

is decidable, a contradiction. �

By Theorem 8 and Theorem 12, we get the following.

Corollary 13. The theory Tarray of arrays is not quantifier-free in-
terpolating. 2

In fact, even if ϕ and ψ are quantifier-free, their interpolant
may require quantification. Consider h′ ≈ write(h, i, e) and (a 6=
b) ∧ (read(h, a) 6≈ read(h′, a)) ∧ (read(h, b) 6≈ read(h′, b))
whose conjunction is unsatisfiable, but there is no quantifier-free
interpolant over the common variables h and h′.

Proposition 14. The theory Tarray of arrays reduces to the theory
of equality TΩ

≈ , where ΩS = {elem, index, array}, ΩF = {read},
and ΩP = ∅. 2

PROOF. The following map from flat Σarray-literals to Ω-formulas
will do the job (literals not mentioned are left unchanged). Every
literal a ≈array b is mapped to (∀index i)(read(a, i) ≈ read(b, i)),
and every atom a ≈ write(b, i, e) is mapped to read(a, i) ≈
e ∧ (∀index j)(j 6≈ i → read(a, j) ≈ read(b, j)). Thus, by
Theorem 11, it follows that Tarray reduces to TΩ

≈ . �

4.2 Sets

The theory Tset of sets with finite cardinality constraints has a
signature Σset containing one sort elem for elements and one sort
set for sets of elements, plus the following symbols:

• the constant symbols ∅ (empty set) and 11 (full set), both of sort
set.

• the binary function symbols ∪ (union), ∩ (intersection), and \
(difference), of arity set × set → set.

• the unary function symbol {·} (singleton), of arity elem → set.
• the binary predicate symbol ∈, of arity elem × set.
• for each natural number k, the unary predicate symbols | · | ≥ k

and | · | ≈ k, both of arity set.

A standard set-structure is a Σset-structure satisfying the fol-
lowing properties:

1. Aelem is finite.
2. Aset = P(Aelem).
3. The symbols ∅, 11, ∪, ∩, \, {·}, and ∈ are interpreted according

to their standard meaning over sets; in particular, we have 11A =
Aelem.

4. [|x| ≥ k]A = true if and only if card(xA) ≥ k, for all sets
x ∈ Aset and k ∈ N, where the cardinality card(x) of a set x is
the number of elements in x.

5. [|x| ≈ k]A = true if and only if card(xA) = k, for all sets
x ∈ Aset and k ∈ N.

The theory Tset is the set of all Σset-sentences that are true in all
standard set-structures.

The theory Tset is recursively enumerable, and eliminates quan-
tifiers [23, Fact 1, page 7]. Consequently, by Theorem 8, Tset is
quantifier-free interpolating. Further, it has a decidable satisfiabil-
ity problem [23].

In this section we prove that Tset reduces to TΩ
≈ , where ΩS =

{elem, set}, ΩF = ∅, and ΩP = {∈}. Consequently, by Theo-
rem 11, and provided that ϕ∧ψ is quantifier-free, we can reduce the
problem of computing quantifier-free Tset-interpolants of (ϕ, ψ) to
the problem of computing TΩ

≈ -interpolants.

Proposition 15. The theory Tset of sets with finite cardinality
constraints reduces to the theory of equality TΩ

≈ , where ΩS =
{elem, set}, ΩF = ∅, and ΩP = {∈}. 2

PROOF. Figure 5 shows the reduction function from flat Σset-
literals to Ω-formulas (literals not mentioned are left unchanged).
Thus, by Theorem 11, it follows that Tset reduces to TΩ

≈ . �

Example 16. Let

ϕ : x ≈ {a} ,

ψ : x ≈ {b, c} ∧ b 6≈ c .

After performing the reduction, we get

ϕ∗ : a ∈ x ∧ (∀elem e)(e ∈ x→ e ≈ a) ,

ψ∗ : b ∈ x ∧ c ∈ x ∧ (∀elem e)(e ∈ x→ (e ≈ b ∨ e ≈ c))

∧ b 6≈ c .

A Gentzen-style proof yields the interpolant

(∀elem e1, e2)(e1 /∈ x ∨ e2 /∈ x ∨ e1 ≈ e2) ,

which is Tset-equivalent to the quantifier-free formula

|x| ≈ 0 ∨ |x| ≈ 1 . 2

Unfortunately, the requirement in Theorem 11 that the original
T -formula is quantifier-free cannot be relaxed. Take ϕ to be a Tset-
unsatisfiable formula that says that there are exactly 3 sets:

(∃setx, y, z)(x 6≈ y∧y 6≈ z∧x 6≈ z∧(∀setw)(w ≈ x∨w ≈ y∨w ≈ z))

When reduced to the theory of equality, the resulting formula is
satisfiable, because the theory of equality does not know that the
number of sets is 2n where n is the number of elements.

4.3 Multisets

The theory Tbag of multisets has a signature Σbag extending Σint

with a sort elem for elements, and a sort bag for multisets, plus the
following symbols:

• the constant symbol [[ ]], of sort bag;
• the function symbols:

[[·]](·) , of sort elem × int → bag;
t, ], and u, of sort bag × bag → bag;
count, of sort elem × bag → int.

A standard bag-structure A is a Σbag-structure satisfying the fol-
lowing conditions:

• AΣint is the standard int-structure;
• Abag = NAelem ;
• the symbols [[ ]], [[·]](·) , t, ], and u are interpreted according

to their standard interpretation over multisets, i.e., [[ ]]A is the
empty multiset, [[x]](n)A constructs a multiset with n copies
of element x if n ≥ 0 and the empty multiset if n < 0, and
x tA y (resp. x ]A y, x uA y) is a multiset that maps e to
max(x(e), y(e)) (resp. x(e) + y(e), min(x(e), y(e))).



x ≈set y =⇒ (∀elem e)((e ∈ x ∧ e ∈ y) ∨ (e /∈ x ∧ e /∈ y))

x ≈ ∅ =⇒ (∀elem e)(e /∈ x)

x ≈ 11 =⇒ (∀elem e)(e ∈ x)

x ≈ y ∪ z =⇒ (∀elem e)(e ∈ x↔ (e ∈ y ∨ e ∈ z))

x ≈ y ∩ z =⇒ (∀elem e)(e ∈ x↔ (e ∈ y ∧ e ∈ z))

x ≈ y \ z =⇒ (∀elem e)(e ∈ x↔ (e ∈ y ∧ e /∈ z))

x ≈ {e0} =⇒ e0 ∈ x ∧ (∀elem e)(e ∈ x→ e ≈ e0)

|x| ≥ k =⇒ (∃elem e1, . . . , ek)

2
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Figure 5. Reduction function for sets

• countA(e, x) = x(e), for each e ∈ Aelem and x ∈ Abag.

The theory Tbag is the set of all Σbag-sentences that are true in all
standard bag-structures.

The theory Tbag is recursively enumerable. Consequently, by
Theorem 8, Tbag is interpolating. In this section, we show that:
(a) the satisfiability problem of Tbag is undecidable, (b) the theory
Tbag does not eliminate quantifiers, and (c) the theory Tbag is not
quantifier-free interpolating. Notice that Tbag does have a decidable
quantifier-free satisfiability problem [44].

Moreover, we prove that Tbag reduces to Tint∪T
Ω
≈ , where ΩS =

{elem, int, bag}, ΩF = {count}, and ΩP = ∅. Consequently, by
Theorem 11, and provided that ϕ ∧ ψ is quantifier-free, we can
reduce the problem of computing Tbag-interpolants5 of (ϕ, ψ) to
the problem of computing Tint ∪ T

Ω
≈ -interpolants.

Theorem 17. 1. The satisfiability problem of the theory Tbag of
bags is undecidable.

2. The theory Tbag of multisets does not eliminate quantifiers. 2

PROOF (Sketch). Consider the theory T 2
bag which is the same as

Tbag , but the sort elem and int are identified. Clearly, the satisfia-
bility problem of T 2

bag is undecidable [9].
We want to reduce the satisfiability problem of Tbag to the

satisfiability problem of T 2
bag . This can be done as follows. Specify

that a function h : elem → int is bijective with the formulas

(∀elem a, b)(count(h, a) ≈ count(h, b) → a ≈ b) ,

(∀int u)(∃elem a)(count(h, a) ≈ u) .

Then, whenever we want to express that u = f(v), it suffices to
say that count(h, a) ≈ v ∧ count(f, a) ≈ u.

For part (2), assume by contradiction that Tbag eliminates quan-
tifiers, and let ϕ be a Σbag-formula. Then it is possible to effec-
tively compute a quantifier free Σbag-formula ψ such that ϕ and ψ
are Tbag-equivalent. It follows that ϕ and ψ are Tbag-equisatisfiable.
Since the quantifier-free satisfiability problem of Tbag is decidable,
we can effectively decide whether ϕ is Tbag-satisfiable. But this
implies that the satisfiability problem of Tbag is decidable, a con-
tradiction. �

Corollary 18. The theory Tbag of multisets is not quantifier-free
interpolating. 2

5 Since Tbag is not quantifier-free interpolating, these interpolants are, in
general, not quantifier-free.

In fact, even if ϕ and ψ are quantifier-free, their interpolant
may require quantification. Consider h ≈ [[e]](1) and (a 6= b) ∧
(count(a, h) 6≈ 0 ∧ (count(b, h) 6≈ 0 whose conjunction is
unsatisfiable, but there is no quantifier-free interpolant over the
common variables h and h′.

Proposition 19. The theory Tbag of multisets reduces to the theory
Tint ∪ TΩ

≈ , where ΩS = {elem, int, bag}, ΩF = {count}, and
ΩP = ∅. 2

PROOF. Figure 6 shows the reduction function from flat Σarray-
literals to (Σint ∪ Ω)-formulas (literals not mentioned are left un-
changed). Thus, by Theorem 11, it follows that Tbag reduces to
TΩ
≈ . �

4.4 Implementation using Foci

Foci [27] is an implementation of an interpolating decision proce-
dure for the quantifier-free theory of equality and arithmetic. Our
reduction introduces quantifiers, we now sketch how we can never-
theless use Foci to implement our procedure.

Let ϕ∗ ∧ ψ∗ be an R-formula obtained by the reduction algo-
rithms presented above of a T -formula φ∧ψ where T is the theory
of arrays, sets, or multisets, and R is the theory of equality, or the
theory of equality and arithmetic. Assume ϕ∗∧ψ∗ is a flat formula
in negation normal form (i.e., negations are only applied to atomic
formulas). Even though ϕ∗ ∧ ψ∗ is not quantifier-free, we can ob-
tain an R-interpolant for ϕ∗ ∧ ψ∗ using a decision procedure for
the quantifier-free fragment of these theories as follows.

First, we replace each existentially quantified variable using a
fresh Skolem constant and remove the existential quantifiers. No-
tice that in all three reductions above, the existential quantifiers are
not in the scope of any universals, therefore Skolem constants suf-
fice. In the resulting formula (that may contain universal formu-
las), we instantiate each universally quantified variable with a con-
stant that already appears in the formula. It can be shown that this
is complete to show R-unsatisfiability for the theory T of arrays,
sets, or multisets. The resulting formula (after these instantiations)
is quantifier-free, and we can use an Foci to compute a (quantifier-
free) interpolant. However, because of the quantifier instantiations
above, this interpolant will have Skolem constants introduced for
the existential quantifiers. The interpolant for the theory T will
have quantifiers that can be added back to the output from Foci
using, e.g., the tableau based interpolant computation method in
[10].



x ≈bag y =⇒ (∀elem e)(count(x, e) ≈ count(y, e))

x ≈ [[ ]] =⇒ (∀elem e)(count(x, e) ≈ 0)

x ≈ y t z =⇒ (∀elem e)(count(e, x) ≈ max(count(e, y), count(e, z)))

x ≈ y u z =⇒ (∀elem e)(count(e, x) ≈ min(count(e, y), count(e, z)))

x ≈ y ] z =⇒ (∀elem e)(count(e, x) ≈ count(e, y) + count(e, z))

x ≈ [[e0]]
(u) =⇒ count(e0, x) = max(0, u) ∧ (∀elem e)(e 6≈ e0 → count(e, x) ≈ 0)

Figure 6. Reduction from Tbag

5. Conclusion
Interpolation based abstraction is a powerful technique for approx-
imate reachability (and safety) checking for systems. We have ex-
tended the potential of the technique by demonstrating how to com-
pute interpolants for several theories of interest in program veri-
fication. Further, the reduction approach allows quick implemen-
tations by allowing hooking into already-existing efficient imple-
mentations. There are several directions of future work. One main
limitation of the approach is that suitable predicates may not be
derivable by considering individual counterexamples. For example,
consider the program

for(i=0; i< n; i++) { a[i] := 0; }
for(i=0; i< n; i++) { assert(a[i] = 0); }

While correctness depends on the invariant ∀0 ≤ i < n.a[i] = 0
after the first loop, the interpolant based technique can come up
with infinitely many predicates of the form a[0] = 0, a[1] = 0, . . ..
We leave the problem of generalizing from particular counterexam-
ples as an interesting open problem. On the practical front, we are
currently applying Blast together with these more powerful pred-
icate generation capabilities to prove larger programs of practical
interest.
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University of Vienna, 1929.

[14] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In CAV 97: Computer-aided Verification, LNCS 1254, pages 72–83.
Springer, 1997.

[15] Yuri Gurevich. The decision problem for standar classes. Journal of
Symbolic Logic, 41(2), 1976.

[16] J. Guttag. The specification and applicatons to programming of
abstract data types. PhD thesis, University of Toronto, 1975.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan.
Abstractions from proofs. In POPL 04: Principles of Programming
Languages, pages 232–244. ACM, 2004.

[18] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL 02: Principles of Programming Languages,
pages 58–70. ACM, 2002.

[19] C.A.R. Hoare. Proof of correctness of data representations. Acta Inf.,
1:271–281, 1972.

[20] R. Jhala and K.L. McMillan. Interpolant-based transition relation
approximation. In CAV 05: Computer-Aided Verification, LNCS
3576, pages 39–51. Springer, 2005.

[21] R. Jhala and K.L. McMillan. A practical and complete approach to
predicate abstraction. In TACAS 06. Springer, 2006.

[22] Deepak Kapur and Calogero G. Zarba. A reduction approach to
decision procedures. http://cs.unm.edu/~kapur/, 2005.

[23] Viktor Kuncak and Martin C. Rinard. The first-order theory of sets
with cardinality constraints is decidable. Technical Report CSAIL
958, MIT, 2004.

[24] P. Lam, V. Kuncak, and M.C. Rinard. Hob: A tool for verifying data
structure consistency. In CC 05, pages 237–241, 2005.

[25] B. Liskov and S. Zilles. Programming with abstract data types. In
Symposium on very high level programming languages. 1974.

[26] A. Mal’cev. Axiomatizable classes of locally free algebras of certain
types. Sibirsk. Mat. Zh., 3:729–743, 1962.

[27] Kenneth L. McMillan. An interpolating theorem prover. Theoretical
Computer Science, 345:101–121, 2005.

[28] K.L. McMillan. Interpolation and SAT-based model checking. In
CAV 03: Computer-Aided Verification, LNCS 2725, pages 1–13.
Springer, 2003.

[29] S. McPeak and G.C. Necula. Data structure specifications via local
equality axioms. In CAV 05: Computer-Aided Verification, LNCS
3576, pages 476–490. Springer, 2005.

[30] G. Nelson. Techniques for program verification. Technical Report
CSL81-10, Xerox Palo Alto Research Center, 1981.

[31] P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and
information hiding. In POPL 04. ACM, 2004.

[32] Derek C. Oppen. Reasoning about recursively defined data structures.



Journal of the ACM, 27(3):403–411, 1980.
[33] M. Parkinson and G. Bierman. Separation logic and abstraction. In

POPL 05. ACM, 2005.
[34] D.L. Parnas. The secret history of information hiding. In Software

pioneers: contributions to software engineering. Springer, 2002.
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