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The distinction between safety and liveness properties is afundamental classification with immediate
implications on the feasibility and complexity of various monitoring, model checking, and synthesis
problems. In this paper, we revisit the notion of safety for reactive systems, i.e., for systems whose
behavior is characterized by the interplay of uncontrolledenvironment inputs and controlled system
outputs. We show that reactive safety is a strictly larger class of properties than standard safety.
We provide algorithms for checking if a property, given as a temporal formula or as a word or tree
automaton, is a reactive safety property and for translating such properties into safety automata.
Based on this construction, the standard verification and synthesis algorithms for safety properties
immediately extend to the larger class of reactive safety.

1 Introduction

The question whether a certain specified property, given forexample as a formula of a temporal logic,
belongs to the class ofsafety properties, is of universal interest in verification, synthesis, and monitoring.
Typically, it is much easier to reason about safety properties than about general temporal properties.
In deductive verification, safety properties are typicallyproven by induction on the transition relation,
while liveness properties require a ranking function that maps the states into a well-founded domain.
In model checking, checking a safety property corresponds to simple reachability, liveness to the more
complicated nested reachability. In synthesis, deriving asystem that satisfies a safety property involves
solving safety/reachability games, which is simpler and typically more scalable than solving games with
more general winning conditions such as Muller or parity. Perhaps most significantly, in runtime analysis,
safety properties can be checked with a runtime monitor, while one can never conclusively determine that
a liveness property has been violated after observing only afinite trace.

We will refer to the standard definition of safety [10, 1] aslinear-time safety, because it is based
on the linear-time semantics, where the system and the specification each define a set of infinite words
over an alphabet of observations. A language of infinite words is a linear-time safety property iff for
every wordw that violatesP (i.e., w 6∈ P), there exists afinite prefix w′ of w such thatw′ also violates
P, i.e., for all infinite extensionsw′′ of w′ it holds thatw′′ 6∈ P. In this paper, we show that the class of
safety properties can be significantly extended if, rather than considering words over a single alphabet of
observations, one explicitly distinguishes between the inputs and the outputs of a reactive system.

We introduce our new notion ofreactive safetyby way of an example. Let us use linear-time tem-
poral logic (LTL) to specify a simple coffee machine with twoinput bits c (the coffee button) ande
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(emergency shutdown), and two outputsb (brewing coffee) andf (emitting a failure signal). We spec-
ify that whenever the user presses the coffee button, brewing must eventually start or a failure must be
signaled immediately. As an LTL formula, this property can be expressed as follows:1

ψ1 = G(c→ X( f ∨Fb)). (1)

Additionally, we require that whenever the emergency shutdown button is pressed, brewing stops imme-
diately (i.e., when the system gives the next output) and permanently:

ψ2 = G(e→ XG(¬b)). (2)

Clearly, ψ2 is a linear-time safety property andψ1 ∧ψ2 is not, because there is no bound on the
number of steps until the brewing starts after the coffee button was pressed. However,ψ1 ∧ ψ2 is a
reactive safety property: we can transformψ1 ∧ψ2 into a linear-time safety propertyψ ′

1 ∧ψ2 that is
equivalent in the sense that any system with input 2{c,e} and output 2{b, f} satisfiesψ1∧ψ2 if and only
if it satisfiesψ ′

1 ∧ψ2. For ψ ′
1, the safety formulaG(c → X f ) can be used. To see this, observe that

ψ1 specifies that whenever the coffee machine does not immediately respond to a coffee request with
a failure message, it must eventually brew coffee regardless of the further circumstances. However, if
the user presses the emergency shutdown button, the system cannot fulfill this task anymore without
violating ψ2. Thus, the only possibility for the system to satisfyψ1∧ψ2 is to answer every request with
an immediate failure message.

A natural semantic setting for reactive safety is that of branching time, where we view the compu-
tation of the system as a tree that branches according to the environment actions and where each node
is labeled with the system’s response to a particular sequence of environment actions. Reactive safety
should, however, not be confused with existing notions of safety for tree properties, which extend safety
from linear time to branching time by referring to prefix trees rather than prefix words: Manolios and
Trefler [12, 13] define auniversal safetyproperty as a setP of infinite trees such that for every treet that
violatesP, there exists a finite prefix treet ′ of t such thatt ′ also violatesP, i.e., for all infinite extensions
t ′′ of t ′ it holds thatt ′′ 6∈ P. The price for referring to prefix trees is that the algorithmic advantages
of linear-time safety are lost. For example, the branching-time propertyθ that states that the system’s
reaction to environment action 0 is different to its reaction to environment action 1 (formally, the set
of binary trees where the label on the 0-child of the root is different from the label on the 1-child) is
universally safe. However, it is impossible to construct a runtime monitor for this property, because the
monitor cannot follow two branches at the same time.

The notion of reactive safety applies uniformly to words andtrees. Stated in terms of a tree language,
a set of infinite trees is a reactive safety property iff for every treet that violatesP, there exists a finite
pathw in t such that any treet ′ that contains walso violatesP, i.e., it holds thatt ′ 6∈ P. We call the node
that is reached byw theviolation starting nodeof P. Stated in terms of a word language, a set of infinite
wordsP is a reactive safety property iff the set of trees whose pathsare contained inP (we call this set
thespreadof P) is a reactive safety property.

The class of reactive safety properties lies strictly between linear-time and branching-time safety:
every linear-time safety property is also a reactive safetyproperty, because the violating prefix identifies
a violation starting node; likewise, every reactive safetyproperty is also a universal safety property,
because the path to the violation starting node is also a finite subtree. As our examples show, the inclusion
is strict: the coffee machine specificationψ1∧ψ2 is a reactive safety property but not a linear-time safety
property; the branching-time propertyθ is a universal safety property but not a reactive safety property.

1For this example, we assume that in every clock cycle, the system first generates the output and then reads its input.
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In fact, one can view reactive safety as the natural connection point between linear-time and
branching-time safety. As we show later in the paper, reactive safety characterizes precisely the class
of tree properties whose satisfaction can be checked by testing if all paths satisfy some linear-time safety
property. Hence, reactive safety captures as much of the generality of branching-time safety as one can
afford if one wishes to retain the algorithmic advantages oflinear-time safety: All standard constructions
for the verification and synthesis of linear-time safety properties can still be applied for reactive safety
properties.

In the remainder of the paper, we present algorithms for checking if a property, given as a temporal
formula or as a word or tree automaton, is a reactive safety property and for automatically translating such
properties into linear-time safety properties, expressedas safety automata. An immediate application of
the algorithms isspecification debugging, where the developer is warned if a property is a reactive safety
property but not a linear-time safety property. There can beseveral reasons for such a situation. On
the one hand, the specification might be erroneous, which should be detected as early as possible in the
development process. On the other hand, an implicit equivalence, such as the one betweenψ1∧ψ2 and
ψ ′

1 ∧ψ2, may be an intended consequence of the specification. For thedeveloper, this case is also of
interest as it may be possible to reformulate the specification in a more direct and more concise way;
understanding the consequences of the specification is alsohelpful for the subsequent design decisions.

A second major application of our algorithms is toextendverification, synthesis and monitoring
methods for linear-time safety to reactive safety. If a specification is a reactive safety property but not
a linear-time safety property, we automatically constructa safety automaton, which represents a linear-
time safety property that is equivalent in the sense that it has the same meaning on all systems with the
same interface (i.e., the same inputs and outputs). The safety automaton can thus replace the original
property for any verification, synthesis or monitoring purpose.

Related work. The advantages of safety properties in verification (cf. [11]), synthesis (cf. [21]) and
runtime monitoring (cf. [5]) are discussed in numerous papers and textbooks. However, determining
whether a given property is a safety property is also useful independently of these applications. For
instance, inspecification debugging, unintended properties of manually written specificationsare to be
found. Two well-known techniques in this context arevacuity checking[2], which searches for inconsis-
tencies and tautologies in the specification, and testing for semantical safety in the linear-time paradigm
[9], where LTL formulas that express linear-time safety properties but possibly contain operators like
until or eventuallyare identified. Our example specificationψ1∧ψ2 is neither vacuous nor semantical
safe in the linear-time paradigm, but still deserves a warning, because it can be stated equivalently as
the linear-time safety propertyψ ′

1 ∧ψ2. Thus, identifying reactive safety properties can be seen as a
refinement of these two techniques.

The game-like view onto the interactions between inputs andoutputs, which distinguishes reactive
safety from the standard linear-time safety, has been used previously in related works. For instance,
linear-time properties and their respective reactive safety properties in our framework are connected
by the concept of open implication that was introduced by Greimel, Bloem, Jobstmann and Vardi [6].
A linear-time property has an equivalent reactive safety property if and only if both properties openly
imply each other. Pnueli, Zaks and Zuck [20] furthermore applied the game-based viewpoint in the field
of runtime verificationand solved theinterface monitoring problemof universal liveness properties.
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2 Preliminaries

We consider non-terminating systems that interact with their environment over an infinite run. The
interface between the system and the environment is specified by asignature(I ,O), whereI andO are
two disjoint sets of input and output signals, respectively. Each sequence of inputs results in a sequence
of outputs. We therefore formalize system runs as infinite words overO× I , and complete system
behaviors as infiniteO-labeled trees that branch according toI . In this section, we give a quick summary
of the standard terminology for infinite words and trees. We also describe linear-time temporal logic
as an example logic for the specification of reactive systems, and automata on infinite words and trees,
which provide the basic machinery for the constructions of the paper. For a more detailed background
on word and tree automata in the context of reactive systems,the reader is referred to [22].

Words. Given some finite alphabetΣ, we denote withΣ∗ andΣω the sets of finite and infinite words over
Σ, respectively. For a reactive system with signature(I ,O), we use infinite words in(O× I)ω to represent
runs, and finite words in(O× I)∗ to reason about the prefixes of such runs. A wordw=(y0, t0),(y1, t1) . . .,
with yi ∈ O andti ∈ I for every i ∈ N, describes a run of a reactive system in whichy0 is put out in the
first computation cycle, thent0 is read andy1 is put out, and so forth. This definition corresponds to the
notion ofMoore automata[16].

A subset ofΣω is called aword languageor aword property. We say that a wordw satisfiesa word
propertyP iff w ∈ P. Given some wordw = w0w1 . . ., we denote bywi = wiwi+1 . . . the suffix of w
starting in positioni.

Linear-time temporal logic. Linear-time temporal logic (LTL)[18] is a commonly used logic to
express properties over runs of a system. Formulas in LTL aredefined with respect to a set of atomic
propositionsAP. For a reactive system with signature(I ,O), we assume that there exists a corresponding
pair of sets of atomic propositions(API ,APO) such thatI = 2API andO= 2APO. We setAP= API ∪APO.
The syntax of LTL is defined inductively as follows:

• For all atomic propositionsx∈ AP, x is an LTL formula.

• Let φ1 andφ2 be LTL formulas. Then¬φ1, (φ1∨ φ2), (φ1∧ φ2), Xφ1, Fφ1, Gφ1, and(φ1Uφ2) are
also valid LTL formula.

The validity of an LTL formulaφ over AP is defined inductively with respect to an infinite word
w= w0w1 . . . ∈ (2AP)ω . Let φ1 andφ2 be LTL formulas. We set:

• w |= p if and only if (iff) p∈ w0 for p∈ AP

• w |= ¬ψ iff not w |= ψ

• w |= (φ1∨φ2) iff w |= φ1 or w |= φ2

• w |= (φ1∧φ2) iff w |= φ1 andw |= φ2

• w |= Xφ1 iff w1 |= φ1

• w |= Gφ1 iff for all i ∈ N, wi |= φ1

• w |= Fφ1 iff there exists somei ∈N such thatwi |= φ1

• w |= (φ1Uφ2) iff there exists somei ∈N such that for all 0≤ j < i, w j |= φ1 andwi |= φ2
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Given an LTL formulaψ overAP, the set of words satisfying the formula is a word language over
2AP, denoted asL (ψ).

Word automata. Like LTL formulas, word automata represent word languages.Formally, a (universal
or nondeterministic)parity word automatonis a tupleA = (Q,Σ,δ ,q0,α), whereQ is a finite set of
states,Σ the alphabet ofA , δ : Q×Σ → 2Q the transition function ofA , q0 ∈ Q the initial state and
α : Q → N is the coloring function ofA . If α maps all states to 0 or 1, thenA is called aBüchi
automaton. If α maps all states to 0, thenA is called asafety automaton. In this case, we omitα from
the tuple.

To determine if a given wordw=w0w1 . . .∈ Σω is in the language of the word automatonA (we also
sayw is acceptedby A ) we consider the runs ofA on w. A run on w is a sequenceπ = π0π1 . . . ∈ Qω

such thatπ0 = q0 and for alli ∈ N, πi+1 ∈ δ (πi ,wi). We say thatπ is anaccepting runif max(inf(π)) is
even, where inf is the function that maps the sequenceπ to the elements occurring infinitely often in it.

If A is anondeterministic automaton, thenA accepts the words for which there exists an accepting
run. On the other hand, ifA is auniversalautomaton, thenA accepts those words for which all infinite
runs for the word are accepting. We call a nondeterministic automaton where, for allq∈ Q, x∈ Σ, we
have|δ (q,x)| ≤ 1, deterministic.

The connection between LTL and word automata is well-established in the literature. An LTL
formula can be converted to an equivalent Büchi automaton of size exponential in the length of the LTL
formula [25], where we define the size of an automaton to be|Σ| · |Q|.

Trees. We use words to describe runs of a reactive system and trees todescribe the overall behavior of
a reactive system, i.e., its output for all possible sequences of inputs. Given finite setsI andO, we define
the set ofO-labeled I-trees OωI as all pairs〈T,τ〉 such thatT ⊆ I∗ is a prefix-closed set andτ : T → O
is a function that labels each node of the tree with an elementof O. We call I the set ofdirectionsof
the tree andO its set of labels. Whenever clear from the context, we omitI andO and just call〈T,τ〉 a
tree. We call a tree〈T,τ〉 for which T = I∗ holds, afull tree. A tree propertyor tree languageψ over
I/O-trees is a subset ofOω

I . A tree〈I∗,τ〉 with τ : I∗ → O is a representation for a reactive system with
signature(I ,O). The runs of the reactive system correspond to the paths through the tree, i.e., each run
is a wordπ = s0t0s1t1 . . . ∈ (O× I)ω such that for everyn∈ N0, t0t1 . . . tn−1 ∈ T andτ(t0 . . . tn−1) = sn.
We say thatπ is maximalif π is infinite or forπ = s0t0s1t1 . . .sntn, for nox∈ I , we havet0 . . . tnx∈ T.

Tree automata. We use tree automata to define properties of the overall behavior of a reactive system.
A (nondeterministic or universal)parity tree automatonis a tupleA = (Q, I ,O,δ ,q0,α) with a finite set
of statesQ, a finite set of directionsI , a finite set of labelsO, a transition relationδ ⊆ Q×O× (I → Q),
and a coloring functionα : Q→ N. We say that a tree automatonA is deterministic if for eachq∈ Q
andy∈ O, there exists at most one element of the form(q,y, f ) for somef ∈ (I → Q) in δ . As for word
automata, we callA asafety automatonif α maps all states to 0 and aBüchi automatonif α : Q→{0,1}.

Given anO-labeledI -tree〈T,τ〉, we say that someQ-labeledI -tree〈Tr ,τr〉 is a run treeof A and
〈T,τ〉 if τr(ε) = q0 and for allt ∈ Tr , there exists somef ∈ (I → Q) with (τr(t),τ(t), f ) ∈ δ such that for
all x with f (x) = q for someq∈ Q, we haveτr(tx) = q. We say that〈Tr ,τr〉 is anacceptingrun tree if
Tr = T and for all infinite pathsπ = q0t0q1t1 . . . in 〈Tr ,τr〉, the highest number occurring infinitely often
in the sequenceα(q0)α(q1) . . . is even. For a nondeterministic parity tree automatonA , we say that
〈T,τ〉 satisfiesA (and, equivalently, that〈T,τ〉 is accepted byA ) if there exists an accepting run tree
for 〈T,τ〉 andA . A universal parity tree automatonA accepts a tree〈T,τ〉 if all full run trees for〈T,τ〉
are accepting. The language ofA , writtenL (A ), consists of all accepted trees.
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For a stateq ∈ Q of a tree automatonA = (Q, I ,O,δ ,q0,α), we define thelanguage of q∈ Q as
the language of the automatonA ′ = (Q, I ,O,δ ,q,α). Likewise, the language of a stateq∈ Q in a word
automatonA = (Q,Σ,δ ,q0,α) is defined as the language of the automatonA ′ = (Q,Σ,δ ,q,α).

An automaton is calledprunedif it has no states with empty language. We define thesizeof a tree
automatonA as |A | = |Q|+ |δ |. We say that a tree or word property is aregular propertyif it is the
language of a parity tree or word automaton, respectively. We say thatq1q2 . . .qn ∈ Qn for somen∈ N

is a cycle in a tree automatonA if q1 = qn and for everyi ∈ {1, . . . ,n−1} there existy∈ O andx∈ I
such thatf (x) = qi+1 for somef with (qi ,y, f ) ∈ δ .

From word to tree properties. We often use word properties to describe the overall behavior of
a reactive system by requiring that every path of the tree satisfies the word property: for example, a
reactive system satisfies a specification given as an LTL formula iff the LTL formula is satisfied for
all possible input sequences. To formalize the translationfrom word to tree properties, we introduce a
special spreading function. ThespreadingSI/O(ψ) of a word languageψ ⊆ (O× I)ω for a signature
(I ,O) is defined as follows:

SI/O(ψ) = {〈I∗,τ〉 | ∀t = t0t1 . . . ∈ Iω : (τ(ε), t0)(τ(t0), t1)(τ(t0t1), t2) . . . ∈ ψ}

It is straightforward to implement the spreading function as a construction that builds a tree automaton
from a given deterministic parity word automata, such that the language of the tree automaton is the
spreading of the the regular language represented by the word automaton.

Definition 1. Given a deterministic parity word automatonA = (Q,Σ,δ ,q0,α) with Σ = O× I, we
defineTI/O(A ) = A ′ for the deterministic tree automatonA ′ = (Q, I ,O,δ ′,q0,α) for which for all
q∈ Q, x∈ O and f∈ (I → Q) we have(q,x, f ) ∈ δ ′ if and only if for all y∈ I, f (y) = q′ for some q′ ∈ Q
if and only if(q,(y,x),q′) ∈ δ .

Linear-time and branching-time safety. Given a word languageψ over some alphabetΣ, we say that
ψ is alinear-time safetyproperty if for everyw= w0w1 . . . ∈ Σω such thatw /∈ ψ , there exists somei ∈N

such that for all wordsw′ ∈ Σ, w0w1 . . .wiw′ /∈ ψ [1]. The prefixw0w1 . . .wi is also called abad prefix
word. If ψ is a regular property and also a safety property, thenψ can also be represented as a safety
word automaton.

Given some tree〈T,τ〉, we say that some tree〈T ′,τ ′〉 is a finite prefix tree of〈T,τ〉 if T ′ ⊆ T, T ′

is finite, and for allt ∈ T ′, we haveτ ′(t) = τ(t). A tree propertyψ over I /O-trees is auniversal safety
property[12] if all trees, for which all finite prefix trees are the prefix of some tree inψ , are also inψ .

3 Reactive Safety

This section gives a formal definition of reactive safety. Westart by considering general word and tree
languages and will only later, in Section 4, focus on the special case of regular properties, as defined by
automata or temporal logic formulas. We show that the class of reactive safety properties lies strictly
between linear-time safety and universal safety. We also prove that reactive safety captures the largest
class of properties whose satisfaction by a reactive systemcan be checked by testing whether all runs of
the system satisfy some linear-time safety property.

Unlike standard linear-time safety, reactive safety distinguishes between inputs and outputs. We
therefore parameterize reactive safety with the signatureof the reactive system and refer to reactive
safety with respect to signature(I ,O) asI /O-safety.
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Definition 2. Let I be a finite set of inputs, O be a finite set of outputs, and let ψ be a set of full
O-labeled I-trees. We say thatψ is a reactive safety property with respect to inputI and outputO,
or short an I/O-safety property, if, for every O-labeled I-tree〈T,τ〉 that is not contained inψ , there
exists some node t= t0 . . . tk ∈ T (theviolation starting node) such that all I/O-trees〈T ′,τ ′〉 for which
τ(t0 . . . ti) = τ ′(t0 . . . ti) holds for all0≤ i < k, we have that〈T ′,τ ′〉 /∈ ψ .

Informally, reactive safety thus means that whenever a treedoes not satisfy the property, there exists
some prefix path through the tree such that at the end of the path, it is clear that there exists no tree
containing this prefix path such that the overall tree satisfies the property. The notion of reactive safety
extends to word properties: A word propertyψ over the alphabetO× I is anI /O-safety property iff the
spreadingSI/O(ψ) is anI /O-safety property. In the following, we omitI andO whenever clear from the
context, and simply refer to reactive safety.

The difference between the definitions of linear-time and reactive safety is subtle: In the case of
linear-time safety, a word is accepted iff it does not have a bad prefix; hence, on a tree, every violating
path must have a bad prefix. In the case of reactive safety, a tree is accepted iff it does not have a violation
starting node: the difference thus is that for reactive safety, a single path to the violation starting node
suffices for the entire tree, whereas for linear-time safety, every violating path needs to have a bad prefix.

We now compare reactive safety to linear-time and universalsafety. The following theorem shows
that linear-time safety is a stronger requirement than reactive safety.

Theorem 3. Let ψ be a linear-time safety word property over some alphabet O× I. ThenSI/O(ψ) is a
reactive safety property.

Proof. Let 〈I∗,τ〉 be a tree that is not contained inSI/O(ψ). This means that there exists some path
t = t0t1 . . . ∈ Iω in the tree such thatw= (τ(ε), t0)(τ(t0), t1)(τ(t0t1), t2) . . . is not contained in the safety
word propertyψ . The definition of linear-time safety assures that then, there is also some prefix of length
k for somek∈N andt such that no word starting with(τ(ε), t0)(τ(t0), t1)(τ(t0t1), t2) . . . (τ(t0 . . . tk−1), tk)
is in ψ . In this case, we know thatt0 . . . tk is a violation starting node in〈I∗,τ〉. Thus, all trees rejected
by SI/O(ψ) have a violation starting node, which makesSI/O(ψ) a reactive safety property.

The coffee machine example from the introduction shows thata reactive safety property is not nec-
essarily also a linear-time property. Comparing reactive and universal safety, we immediately see that
reactive safety is stronger than universal safety, becausethe path to the violation starting node is also a
finite subtree.

Corollary 4. Every reactive safety property is also a universal safety property.

The converse is not true. Formalizing the example propertyθ from the introduction, consider
I = {0,1}, O = {0,1} and the tree propertyθ = {〈T,τ〉 | T = I∗,τ(0) 6= τ(1)}. This property is cer-
tainly universally safe, but not a reactive safety property, because it relates the labels along two paths; a
violation can therefore not be blamed on a single violation starting node.

Reactive safety thus lies strictly between linear-time anduniversal safety. As discussed in the in-
troduction, one can in fact view reactive safety as the natural connection point between linear-time and
branching-time safety, because it represents the largest class of properties whose satisfaction by a reac-
tive system can be checked by testing whether all runs of the system are contained in some linear-time
safety property. This characterization of reactive safetyis proven in the following theorem.

Theorem 5. A tree propertyψ ⊆ Oω
I is an I/O-safety property iff there exists a word propertyψ ′ ⊆

(O× I)ω such that precisely the trees inψ satisfyψ ′ along all of its paths.
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Proof. The “if” direction is implied by Theorem 3. For the “only if” direction, we defineψ ′ to contain
all paths in trees inψ that do not contain a violation starting node. Then,ψ ′ accepts the words needed
for the claim. Surely,ψ ′ is also a safety property as for every path not inψ ′, the path must contain a
violation starting node, and every other path with the same prefix up to this node is also not inψ ′.

We conclude this section by returning to the coffee machine example from the introduction. We
specified the coffee machine with the two LTL formulas

ψ1 = G(c→ X( f ∨Fb)) and ψ2 = G(e→ XG(¬b)).

The conjunctionψ1∧ψ2 is anI/O-safety property for the signature(I = 2{c,e}, O= 2{b, f}). To see this,
consider a tree〈T,τ〉 that does not fulfillψ1∧ψ2 along all of its paths. Violation starting nodes are:

1. the nodes that witness thatψ2 has been violated along the path to the node, and

2. the nodest = t0 . . . tk for which c ∈ tk−1, but f /∈ τ(t0 . . . tk−1) ande∈ tk, as any such prefix path
(τ(ε), t0)(τ(t0), t1) . . . (τ(t0 . . . tk−1), tk) cannot be extended to an infinite path that satisfiesψ1∧ψ2

(as explained in the introduction).

It is not obvious to see that the set of trees satisfyingψ1 ∧ψ2 is precisely the set of trees that do not
have a violation starting node corresponding to one of the two node types above. In the next sections we
will develop the necessary automata-theoretic machinery to answer this question. We will return to the
example in Section 5.3.

4 Regular Reactive Safety Properties

We now give an automata-theoretic characterization of the regularI /O-safety tree properties. Letψ be
anI /O-safety property. In analogy to the definition of tight automata for linear-time safety languages [9],
we call a deterministic word automatonA tight for ψ if TI/O(A ) accepts precisely the treesψ . In the
following, we establish the fact that all regular reactive safety properties have regular tight languages,
which immediately implies that the class of deterministic safety tree automata represents precisely the
reactive safety languages.

The key step is to define a functionW , which converts a tree automaton to a word automaton.
Intuitively, W is the inverse operation to spreading a word automaton. TheW function is the missing
link in the characterization of the regular reactive safetyproperties – we show that a property, represented
as a (pruned) tree automatonA is I /O-safe if and only if we haveL (A ) = L (TI/O(W (A ))).

We begin with a lemma about rejecting run trees for reactive safety properties.

Lemma 6. For a pruned nondeterministic parity tree automatonA , representing an I/O-safe property,
and a full tree〈T,τ〉 not in the language ofA , no run tree〈Tr ,τr〉 for 〈T,τ〉 has t∈ Tr for the violation
starting node t= t0 . . . tn ∈ T.

Proof. We show the claim by assuming the converse and deriving a contradiction. In particular, we build
a second full tree〈T ′,τ ′〉 for which the path from the root tot is the same as in〈T,τ〉, but that is accepted
by A and thus contradicts the fact thatt is a violation starting node forA . Without loss of generality,
we assume thatt is a violation starting node that does not have a prefix which is also a violation starting
node.

We assume thatA = (Q, I ,O,δ ,q0,F ) for Q= {q0, . . . ,qm}. If A is pruned, then for every stateqi ,
there exists some full tree〈T i ,τ i〉 that is in the language ofqi , with the corresponding run tree〈T i

r ,τ i
r〉.



186 Reactive Safety

In 〈T ′,τ ′〉, we replicate the path to the violation starting node of〈T,τ〉. We setτ ′(ε) = τ(ε) and
τ ′(t0 . . . ti) = τ(t0 . . . ti) for all i ∈ {0, . . . ,n− 1}. The corresponding accepting run tree〈T ′

r ,τ ′
r〉 is also

copied along this path, i.e.,τ ′
r(t0 . . . tix) = τ(t0 . . . tix) for all i ∈ {0, . . . ,n−1} andx∈ I , and furthermore

τ ′
r(ε) = τr(ε). This makes sure that〈T ′

r ,τ ′
r〉 is a valid (and complete) prefix run tree for the parts of〈T,τ〉

defined so far. Note that the nodes of〈Tr ,τr〉 referred to here are actually all well-defined as otherwiset
would have a prefix that is also a violation starting node.

For the rest of〈T,τ〉, we copy the trees of the set{〈T0,τ0〉, . . . ,〈Tm,τm〉} declared above as sub-trees
into 〈T,τ〉 and setτ ′(t0 . . . tixt′)= τk(t ′) for k∈{0, . . . ,m} such thatqk = τr(t0 . . . tix) and alli ∈{0, . . . ,n},
x∈ I andt ′ ∈ I∗. For the corresponding run tree〈T ′

r ,τ ′
r〉, we do the same and setτ ′

r(t0 . . . tixt′) = τk
r (t

′)
for k ∈ {0, . . . ,n} such thatqk = τr(t0 . . . tid) for all i ∈ {0, . . . ,n}, x ∈ I andt ′ ∈ I∗. The resulting run
tree is full and also accepting as all run trees in{〈T0

r ,τ0
r 〉, . . . 〈T

m
r ,τm

r 〉}, which form the suffix run trees
in 〈T ′

r ,τ ′
r〉, are accepting.

Definition 7. Given a nondeterministic parity tree automatonA =(Q, I ,O,δ ,q0,α), we defineW (A )=
A ′ for the deterministic safety word automatonA ′ = (Q′,Σ,δ ′,{q0}) for whichΣ = O× I, Q′ = 2Q and
for all (x,y) ∈ Σ and q,q′ ∈Q′, we have(q,(y,x),q′)∈ δ ′ if and only if q′ = {q̃′ ∈Q | ∃q̃∈Q, f ∈ δ (q̃,y) :
q̃∈ q, f (x) = q̃′}.

Theorem 8. The language of a pruned nondeterministic parity tree automatonA is I/O-safe if and only
if L (TI/O(W (A ))) = L (A ). Furthermore, ifL (A ) is I/O-safe, thenW (A ) is tight forL (A ).

Proof. ⇒: Assume that some tree〈T,τ〉 is not accepted byA . SinceA represents anI /O-safety pro-
perty, there must exist a violation starting nodet ∈ T. As A is pruned, all run trees〈TR,τr〉 thus need
to have thatt /∈ Tr (Lemma 6). Since all rejected trees have this property, to check whether a tree is
rejected, we thus only need to test whether any path in the tree necessarily leads to a corresponding finite
maximal path in the run tree. By Definition 7,W (A ) rejects precisely these paths (due to the power-set
construction involved) and is thus tight forL (A ). By Definition 1,TI/O(W (A )) rejects precisely the
trees having such a path. Thus, the languages ofTI/O(W (A )) andA are identical.

⇐: As theTI/O function converts a safety word automaton into a deterministic safety tree automa-
ton that accepts a tree if and only if all paths in the tree are accepted by the safety word automaton,
any outcome of applying theTI/O function is necessarily anI /O-safety property. As we assume that
L (TI/O(W (A ))) = L (A ), this means thatA is also anI /O-safety property.

We conclude the characterization of the regular reactive safety properties with the following theorem:

Theorem 9. The set of regular I/O-safe properties coincides with the set of properties representable as
deterministic safety tree automata with directions I and labels O.

Proof. ⇒: Assume that we have some regularI /O-safety propertyψ given. Sinceψ is regular, we can
construct a nondeterministic parity tree automatonA from it, and by Theorem 8, a deterministic safety
tree automaton with directionsI and labelsO.

⇐: As a deterministic safety tree automaton accepts anO-labeledI -tree if its run tree is complete
with respect toI , all trees that are not accepted by some deterministic safety tree automatonA have
some finite maximal path in the run tree. Due to the determinism of A , when taking the corresponding
path in the rejected tree, copying this path into a differenttree causes the new tree to be rejected byA

as well.
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5 Detecting Reactive Safety

The goal of this section is to check if a given property, represented as an automaton or an LTL formula,
is a reactive safety property. We give separate constructions for tree and word properties. The algorithms
of the first subsection analyze the languages of nondeterministic and deterministic parity tree automata.
The algorithms of the second subsection analyze word languages that are either given as LTL formulas
or as nondeterministic Büchi automata.

5.1 Reactive Safety for Tree Languages

Our algorithm for nondeterministic parity tree automata isbased on the observation that the language
equality requirement in Theorem 8 can be weakened to language containment by the fact, shown in
the following lemma, that the language of the tree automatonA is always contained in the language of
TI/O(W (A )). We will show that this condition can be checked in single-exponential time. Using Muller
and Schupp’s complementation-by-dualization [14], we first obtain an automaton for the complement of
L (A ). This language is then intersected with the language ofTI/O(W (A )), and the emptiness of the
resulting automaton is checked with a parity game.

Lemma 10. For a nondeterministic parity tree automatonA , it holds thatL (A )⊆L (TI/O(W (A ))).

Proof. By the construction ofTI/O(W (A )), we have thatL (A )⊆ L (TI/O(W (A ))), because theW
function performs a power-set construction overA , so all missing paths in a run tree forTI/O(W (A ))
imply a missing path in a run tree forA .

Combining Theorem 8 and Lemma 10, we obtain that reactive safety can be characterized as language
containment betweenTI/O(W (A )) andA .

Corollary 11. The language of a nondeterministic parity tree automatonA is I/O-safe if and only if
L (TI/O(W (A )))⊆ L (A ).

Using Corollary 11, we now devise an automata-theoretic algorithm for checking for reactive safety.

Lemma 12. [14] Given a nondeterministic parity tree automatonA = (Q, I ,O,δ ,q0,α) that runs on
O-labeled I-trees, the universal parity tree automatonU = (Q, I ,O,δ ,q0,α +1) accepts a tree〈I∗,τ〉 iff
〈I∗,τ〉 is not accepted byA .

Lemma 13. [4, 15] Given a universal parity tree automatonA with n states and c colors, we can
construct an equivalent nondeterministic parity tree automatonN with nO(c·n) states and O(c·n) colors.

Theorem 14. Given a nondeterministic parity tree automatonA = (Q, I ,O,δ ,q0,α), checking whether
L (A ) is I/O-safe (and obtaining a tight automaton forL (A ) in case of a positive result) can be done
in EXPTIME.

Proof. As a first step, we identify and remove all states ofA with an empty language. The emptiness
check (by reduction to solving parity games) can be done in timenO(c) [7]. Let the resulting automaton
be calledA ′. By Corollary 11,A ′ is I /O-safe iff the language ofTI/O(W (A ′)) is contained in the

language ofA ′. We check whetherL (TI/O(W (A ′)))∩L (A ′) = /0. Applying Lemma 12, we translate
A ′ into the universal automatonU that recognizes the complement language.U has the same size as
A ′. Applying Lemma 13, we obtain an equivalent nondeterministic automatonN with nO(c·n) states and
O(c ·n) colors. Computing the language intersection with the deterministic automatonTI/O(W (A ′)),
which has 2O(n) states and a single color, we obtain the nondeterministic product automatonP with
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nO(c·n) states andO(c ·n) colors. The emptiness test of a nondeterministic parity tree automaton with
m states andd colors can be done inmO(d) time [7]. The overall time complexity is thusnO(c2·n2). By
Theorem 8,W (A ′) is tight forL (A ′) and thus also tight forL (A ).

If the tree language is given as a deterministic automaton, we can check whether the language is a
reactive safety property with a simpler construction, where we first prune states with empty languages
from the automaton and then search for a rejecting cycle in the remaining state graph. This construction
is analyzed in the following theorem and will be used for the analysis of word languages in the next
subsection.

Theorem 15. Given a deterministic parity tree automatonA over I/O with n states and c colours,
checking whetherL (A ) is I/O-safe (and obtaining a tight automaton forL (A ) in case of a positive
result) can be done in time nO(c).

Proof. Again, as a first step, we identify and remove all states ofA with an empty language. Let the
resulting automaton be calledA ′. As a second step, we check ifA ′ contains a rejecting cycle, which
can be done in polynomial time [3].A ′ contains a rejecting cycle iff there exists an input tree that is
rejected and has a (unique) full run tree – which is the case exactly if L (A ′), and henceL (A ), is not
safe.

To obtain the tight word automaton, we simply computeW (A ′). For deterministic tree automata, the
subset construction employed in Definition 7 does not increase the number of states in the automaton. If
A ′ does not contain any rejecting loops, thenL (TI/O(W (A ′)) = L (A ′), and, hence,W (A ′) is tight
for L (A ).

5.2 Reactive Safety for Word Languages

We reduce the analysis of word languages, given as LTL formulas or as word automata, to the case
of deterministic parity tree automata solved in Theorem 15.For this purpose, we translate the given
formula or automaton into a deterministic parity automaton, which causes a doubly-exponential or single-
exponential blow-up, respectively, in the number of states.

Theorem 16. Given a formulaψ in linear-time temporal logic over the atomic propositionsAP=
API ∪APO, for I = 2API and O= 2APO, the problem of determining whether the set of O-labeled I-trees
satisfyingψ along all paths is I/O-safe (and obtaining a tight automatonin case of a positive result) is
2EXPTIME-complete.

Proof. For the upper bound, we translate the LTL formula of sizen into a deterministic parity word
automatonA with at most 22

n logn states and 3(n+1)2n colors [24]. We then consider the tree automaton
TI/O(A ), which has the same number of states and colors. Applying Theorem 15, we can thus check

whetherL (A ) is a reactive safety property and obtain the tight automatonin time 22O(n)
.

For the lower bound, we reduce the realizability problem of LTL, which is 2EXPTIME-complete
[19], onto I /O-safety checking. Letψ be a specification overAP= API ∪APO that is to be checked for
realizability. We takeψ ′ = ψ ∧GFa for somea /∈ AP. Then,ψ ′ is realizable over 2API /2APO if and only
if ψ is not 2API /2APO∪{a}-safe:

• If ψ is realizable over 2API /2APO, then theGFa conjunct inψ ′ ensures thatψ ′ is not 2API /2APO∪{a}-
safe.

• On the other hand, ifψ is not realizable over 2API /2APO, so isψ ′ over 2API /2APO∪{a}. As the empty
tree property over 2API /2APO∪{a} has the property violation nodeε , ψ is 2API /2APO∪{a}-safe.
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Figure 1: Deterministic parity word automatonA for the specificationG(c → X( f ∨ Fb))∧G(e→
XG(¬b)). The statesq2 andq5 have color 1, the remaining states have color 2. We use overlined atomic
propositions to denote negated input or output bits. For example, the expressionf c refers to all elements
x∈ 2API∪APO with f ∈ x andc /∈ x.

Theorem 17. Given a nondeterministic B̈uchi word automatonA over the alphabetΣ = O× I, the
problem of determining whetherA is I/O-safe is EXPTIME-complete.

Proof. For the upper bound, we translate the given nondeterministic Büchi word automatonA into
an equivalent deterministic parity word automaton. If the Büchi automaton hasn states, the resulting
deterministic parity word automatonA ′ has at most 2O(nlogn) states and 2n+ 1 colors [17, 24]. With-
out changing the size of the automaton, we transformA ′ into the deterministic parity tree automaton
TI/O(A

′) and apply Theorem 15: The check whetherL (A ) is safe, and, in case of a positive result, the

construction of the tight automaton, thus takes at most 2O(n2 logn) time.
We obtain a matching lower bound from LTL realizability witha similar reduction as in Theorem 16.

Since the exponential-time hierarchy is strict, the translation from LTL formulas to nondeterministic
Büchi automata can be done with only an exponential blow-up[25], and the LTL realizability problem
is 2EXPTIME-complete, the realizability problem from nondeterministic Büchi automata is EXPTIME-
hard. We build an automaton for the LTL formulaGFa. As taking the conjunction of two Büchi automata
results in only polynomial blow-up [23], the rest of the construction is analogous to the proof of Theo-
rem 16.

5.3 The Coffee Machine Example

We finish this section with the coffee machine example from the introduction. The specification is
a conjunctionψ1 ∧ψ2 of two LTL formulas, ψ1 = G(c → X( f ∨Fb)) (whenever the user presses the
coffee button, brewing must eventually start or a failure must be signaled immediately) andψ2 = G(e→
XG(¬b)) (whenever the emergency shutdown button is pressed, brewing stops permanently), wherec
andeare inputs andb and f are outputs.
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The specification can be translated into the deterministic parity word automatonA over the alphabet
2c,e,b, f shown in Figure 1. The statesq0, q1 andq2 correspond to the case that the emergency button
(input e) has not been pressed yet. When the button is pressed, the runof the automaton moves to the
statesq3, q4 andq5, which mirror the behavior ofq0, q1 andq2, but take into account that the emergency
button has been pressed in the past and theb signal is therefore no longer allowed.

To check whether the language ofA is a reactive safety property, we spreadA to a tree automaton
A ′ = (Q, I ,O,δ ,q′0,F ) with the same set of states, and prune all states with empty language. InA ′,
stateq5 has the empty language and is therefore removed. Note that this also removes all transitions
(q,y, f ) ∈ δ for which for somex ∈ I , f (i) = q5. As a result, there are no transitions of the form
(q1,{b}, f ) or (q1, /0, f ) anymore. Hence, stateq2 has become unreachable.

Since all remaining reachable states have color 2, there areno infinite paths in the automaton on
which the highest color occurring infinitely often is odd. Hence, the automataA andA ′ represent a
reactive safety property.

6 Conclusion

In this paper, we have extended the classic notion of linear-time safety from closed systems, where all
actions are under the system’s control to open reactive systems, where the behavior is characterized by
the interplay of uncontrolled environment inputs and controlled system outputs. Reactive safety is a
larger class of properties than standard linear-time safety; at the same time, the algorithmic advantages
are retained, because it is still possible to translate any (regular) reactive safety property into a safety
word automaton, which can be used, for example, as a runtime monitor. In fact, reactive safety is the
maximal set of properties whose satisfaction can be checkedby testing all computation paths against a
linear-time safety property. It is conceivable, however, to further extend the class of safety properties
if other systems aspects, beyond the inputs and outputs, aretaken into consideration. A promising
candidate is incomplete information: specifications are sometimes concerned with atomic propositions
that can neither be read nor written to by the system. Such an extension would classify an even larger
set of properties as safety. Extending the algorithms of this paper to this case is straightforward using
standard automata-theoretic techniques for synthesis under incomplete information [8].
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