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The distinction between safety and liveness propertieflin@amental classification with immediate

implications on the feasibility and complexity of variousnitoring, model checking, and synthesis
problems. In this paper, we revisit the notion of safety faative systems, i.e., for systems whose
behavior is characterized by the interplay of uncontroiedironment inputs and controlled system
outputs. We show that reactive safety is a strictly largaslof properties than standard safety.
We provide algorithms for checking if a property, given agmporal formula or as a word or tree

automaton, is a reactive safety property and for trangagiimch properties into safety automata.
Based on this construction, the standard verification amthggis algorithms for safety properties
immediately extend to the larger class of reactive safety.

1 Introduction

The question whether a certain specified property, giverftample as a formula of a temporal logic,
belongs to the class shfety propertiesis of universal interest in verification, synthesis, anchitaying.
Typically, it is much easier to reason about safety progerthan about general temporal properties.
In deductive verification, safety properties are typicglhpven by induction on the transition relation,
while liveness properties require a ranking function thaipsthe states into a well-founded domain.
In model checking, checking a safety property correspoadsniple reachability, liveness to the more
complicated nested reachability. In synthesis, derivisgsiem that satisfies a safety property involves
solving safety/reachability games, which is simpler amqidgily more scalable than solving games with
more general winning conditions such as Muller or parityh@ps most significantly, in runtime analysis,
safety properties can be checked with a runtime monitodendrie can never conclusively determine that
a liveness property has been violated after observing ofihjta trace.

We will refer to the standard definition of safety [10, 1] lawar-time safetybecause it is based
on the linear-time semantics, where the system and thefigadicin each define a set of infinite words
over an alphabet of observations. A language of infinite wasda linear-time safety property iff for
every wordw that violatesP (i.e., w ¢ P), there exists dinite prefix W of w such thatw' also violates
P, i.e., for all infinite extensions/’ of W it holds thatw” ¢ P. In this paper, we show that the class of
safety properties can be significantly extended if, rathentconsidering words over a single alphabet of
observations, one explicitly distinguishes between tpetsn and the outputs of a reactive system.

We introduce our new notion géactive safetypy way of an example. Let us use linear-time tem-
poral logic (LTL) to specify a simple coffee machine with twyput bits ¢ (the coffee button) ane
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(emergency shutdown), and two outpbtgbrewing coffee) and (emitting a failure signal). We spec-
ify that whenever the user presses the coffee button, bgemimst eventually start or a failure must be
signaled immediately. As an LTL formula, this property candxpressed as follovs:

Yr = G(c— X(f VFb)). (1)

Additionally, we require that whenever the emergency shwitdbutton is pressed, brewing stops imme-
diately (i.e., when the system gives the next output) anchpaently:

Y2 = G(e— XG(-b)). (2)

Clearly, y» is a linear-time safety property anfi, A y» is not, because there is no bound on the
number of steps until the brewing starts after the coffe¢obutvas pressed. Howevapy A () is a
reactive safety property: we can transfor A ¢, into a linear-time safety property; A @, that is
equivalent in the sense that any system with inpG€2and output 2} satisfiesys A ¢ if and only
if it satisfiesy A @o. For ¢, the safety formulaG(c — Xf) can be used. To see this, observe that
yn specifies that whenever the coffee machine does not imneddisgspond to a coffee request with
a failure message, it must eventually brew coffee regasddéshe further circumstances. However, if
the user presses the emergency shutdown button, the syatamtdulfill this task anymore without
violating y». Thus, the only possibility for the system to satigfy A () is to answer every request with
an immediate failure message.

A natural semantic setting for reactive safety is that ohbhéng time, where we view the compu-
tation of the system as a tree that branches according tantheement actions and where each node
is labeled with the system’s response to a particular sexguehenvironment actions. Reactive safety
should, however, not be confused with existing notions tdtgdor tree properties, which extend safety
from linear time to branching time by referring to prefix semther than prefix words: Manolios and
Trefler [12] 13] define aniversal safetyproperty as a sa&® of infinite trees such that for every treéhat
violatesP, there exists a finite prefix treeof t such that’ also violatesP, i.e., for all infinite extensions
t” of t’ it holds thatt” ¢ P. The price for referring to prefix trees is that the algoriibradvantages
of linear-time safety are lost. For example, the branchimg property8 that states that the system’s
reaction to environment action 0 is different to its reactio environment action 1 (formally, the set
of binary trees where the label on the 0-child of the root feedént from the label on the 1-child) is
universally safe. However, it is impossible to constructiatime monitor for this property, because the
monitor cannot follow two branches at the same time.

The notion of reactive safety applies uniformly to words fnees. Stated in terms of a tree language,
a set of infinite trees is a reactive safety property iff foemvireet that violatesP, there exists a finite
pathw in t such that any treg that contains walso violatesP, i.e., it holds that’ ¢ P. We call the node
that is reached bw theviolation starting nodef P. Stated in terms of a word language, a set of infinite
wordsP is a reactive safety property iff the set of trees whose patbsontained i? (we call this set
the spreadof P) is a reactive safety property.

The class of reactive safety properties lies strictly betwknear-time and branching-time safety:
every linear-time safety property is also a reactive sgietperty, because the violating prefix identifies
a violation starting node; likewise, every reactive safetgperty is also a universal safety property,
because the path to the violation starting node is also a aivtree. As our examples show, the inclusion
is strict: the coffee machine specificatiga A Y, is a reactive safety property but not a linear-time safety
property; the branching-time properfyis a universal safety property but not a reactive safety gntgp

1For this example, we assume that in every clock cycle, thesyfirst generates the output and then reads its input.
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In fact, one can view reactive safety as the natural conmegioint between linear-time and
branching-time safety. As we show later in the paper, readafety characterizes precisely the class
of tree properties whose satisfaction can be checked bigddagall paths satisfy some linear-time safety
property. Hence, reactive safety captures as much of thergly of branching-time safety as one can
afford if one wishes to retain the algorithmic advantagdimefr-time safety: All standard constructions
for the verification and synthesis of linear-time safetygendies can still be applied for reactive safety
properties.

In the remainder of the paper, we present algorithms forléhgdf a property, given as a temporal
formula or as a word or tree automaton, is a reactive safefygrty and for automatically translating such
properties into linear-time safety properties, expressegafety automata. An immediate application of
the algorithms ispecification debuggingvhere the developer is warned if a property is a reactivetpaf
property but not a linear-time safety property. There carsdgeral reasons for such a situation. On
the one hand, the specification might be erroneous, whichldhie detected as early as possible in the
development process. On the other hand, an implicit eqeriea, such as the one betwagn\ ¢, and
Y, A Y, may be an intended consequence of the specification. Fafetredoper, this case is also of
interest as it may be possible to reformulate the specificati a more direct and more concise way;
understanding the consequences of the specification ihialptul for the subsequent design decisions.

A second major application of our algorithms is @égtendverification, synthesis and monitoring
methods for linear-time safety to reactive safety. If a #ation is a reactive safety property but not
a linear-time safety property, we automatically constausafety automaton, which represents a linear-
time safety property that is equivalent in the sense thastthe same meaning on all systems with the
same interface (i.e., the same inputs and outputs). Thé&ysafitomaton can thus replace the original
property for any verification, synthesis or monitoring mse.

Related work. The advantages of safety properties in verification (cf])[1dynthesis (cf.[[2[1]) and
runtime monitoring (cf. [[5]) are discussed in numerous psy@ed textbooks. However, determining
whether a given property is a safety property is also usefépendently of these applications. For
instance, irspecification debugginginintended properties of manually written specificatiarnsto be
found. Two well-known techniques in this context &eeuity checking2], which searches for inconsis-
tencies and tautologies in the specification, and testingdmantical safety in the linear-time paradigm
[9], where LTL formulas that express linear-time safetygmies but possibly contain operators like
until or eventuallyare identified. Our example specificatign A () is neither vacuous nor semantical
safe in the linear-time paradigm, but still deserves a waynbecause it can be stated equivalently as
the linear-time safety property; A ¢,. Thus, identifying reactive safety properties can be seea a
refinement of these two techniques.

The game-like view onto the interactions between inputsauriguts, which distinguishes reactive
safety from the standard linear-time safety, has been usedopsly in related works. For instance,
linear-time properties and their respective reactive tggbeoperties in our framework are connected
by the concept of open implication that was introduced byilGeg Bloem, Jobstmann and Vardi [6].
A linear-time property has an equivalent reactive safetperty if and only if both properties openly
imply each other. Pnueli, Zaks and Zuck[20] furthermoreliapgpthe game-based viewpoint in the field
of runtime verificationand solved thénterface monitoring problerof universal liveness properties.
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2 Preliminaries

We consider non-terminating systems that interact withr thevironment over an infinite run. The
interface between the system and the environment is spbgi@signature(l,O), wherel andO are

two disjoint sets of input and output signals, respectivBlgch sequence of inputs results in a sequence
of outputs. We therefore formalize system runs as infinitedeaverO x |, and complete system
behaviors as infinit®-labeled trees that branch according tdn this section, we give a quick summary
of the standard terminology for infinite words and trees. \ge aescribe linear-time temporal logic
as an example logic for the specification of reactive systemg automata on infinite words and trees,
which provide the basic machinery for the constructionshefpaper. For a more detailed background
on word and tree automata in the context of reactive systdmaseader is referred to [22].

Words. Given some finite alphab&t we denote witlE* andZ® the sets of finite and infinite words over
>, respectively. For a reactive system with signailir®), we use infinite words O x | ) to represent
runs, and finite words ifO x | )* to reason about the prefixes of such runs. A weed (yo,to), (Y1,t1) ...,
with y; € O andt; € | for everyi € N, describes a run of a reactive system in whyghs put out in the
first computation cycle, thefg is read and/; is put out, and so forth. This definition corresponds to the
notion ofMoore automatd16].

A subset ofz? is called aword languageor aword property We say that a word satisfiesa word
property P iff w e P. Given some wordv = Wow; ..., we denote byw' = wiwi. 1 ... the suffix of w
starting in positiori.

Linear-time temporal logic.  Linear-time temporal logic (LTLJ18] is a commonly used logic to
express properties over runs of a system. Formulas in LTidafi@ed with respect to a set of atomic
propositionsAP. For a reactive system with signatyteO), we assume that there exists a corresponding
pair of sets of atomic propositior{éP;, APo) such thal = 24P andO = 227, We setAP = AP, UAP.

The syntax of LTL is defined inductively as follows:

e For all atomic propositiong € AP, x is an LTL formula.

e Let @ and@ be LTL formulas. Then@, (@ V @), (A @), X@1, Fa, Go, and(@gUg) are
also valid LTL formula.

The validity of an LTL formula¢ over AP is defined inductively with respect to an infinite word
W=Wow; ... € (2"P)®, Let ¢y and¢, be LTL formulas. We set:

e W= pifand only if (iff) p € wp for pe AP

e WE—yiffnotwE g

e W= (V@) iff wi= @ orwi= @

e W= (@A @) iff W= @ andw = @

o W Xq iff W= @

e WE=Gg iffforallic N,w =@

e W= Fq iff there exists somec N such that/ = ¢

e W (@Ug) iff there exists someée N such that for all < j < i, w! = @ andw' = @
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Given an LTL formulay over AP, the set of words satisfying the formula is a word languager ov
24P denoted asZ ().

Word automata. Like LTL formulas, word automata represent word languagesmally, a (universal
or nondeterministicparity word automatonis a tuple«Z = (Q, %, d,do, ), whereQ is a finite set of
states,> the alphabet of7, & : Q x = — 29 the transition function o7, gy € Q the initial state and
a . Q — N is the coloring function ofeZ. If o maps all states to 0 or 1, thew is called aBiichi
automaton If a maps all states to 0, the# is called asafety automatanin this case, we omitr from
the tuple.

To determine if a given wordr = wow; . .. € 2 is in the language of the word automateh(we also
sayw is acceptedby <) we consider the runs of/ onw. A runonw is a sequenc&r = m7g ... € Q¥
such thatp = qo and for alli € N, 15,1 € 8(7%,w;). We say thattis anaccepting runf max(inf(m)) is
even, where inf is the function that maps the sequenttethe elements occurring infinitely often in it.

If o/ is anondeterministic automatothen.es accepts the words for which there exists an accepting
run. On the other hand, i is auniversalautomaton, themy accepts those words for which all infinite
runs for the word are accepting. We call a nondeterminigiioraaton where, for alfj € Q, x € %, we
have|d(q,x)| < 1, deterministic

The connection between LTL and word automata is well-eistaddi in the literature. An LTL
formula can be converted to an equivalent Biichi automataize exponential in the length of the LTL
formula [25], where we define the size of an automaton tbeQ)|.

Trees. We use words to describe runs of a reactive system and trelestoibe the overall behavior of
a reactive system, i.e., its output for all possible segegié inputs. Given finite setsandO, we define
the set ofO-labeled I-trees @ as all pairs(T, T) such thafl C |*is a prefix-closed set and: T — O

is a function that labels each node of the tree with an eleroe@t We calll the set ofdirectionsof
the tree and its set of labels Whenever clear from the context, we orh&ndO and just cal(T, 1) a
tree. We call a tre€T, 1) for which T = I* holds, afull tree. A tree propertyor tree languagey over

| /O-trees is a subset @{°. A tree (I*, 1) with 7: I* — O is a representation for a reactive system with
signature(l,0). The runs of the reactive system correspond to the pathaghrthe tree, i.e., each run
is a word1r = SotoSits ... € (O x 1)® such that for everyn € Ny, tot;...th-1 € T andt(tp...th_1) = .
We say thatrris maximalif rtis infinite or for m = sptpSits . . . Sitn, for nox € I, we havetg...t.x € T.

Tree automata. We use tree automata to define properties of the overall haiva reactive system.
A (nondeterministic or universaparity tree automatotis a tuple«” = (Q, 1,0, , do, o) with a finite set
of statesQ, a finite set of directions, a finite set of label®, a transition relatio® C Q x O x (I — Q),
and a coloring functiorr : Q — N. We say that a tree automate#i is deterministic if for eacly € Q
andy € O, there exists at most one element of the fdayy, f) for somef € (I — Q) in 4. As for word
automata, we call7 asafety automatoif a maps all states to 0 andBéichi automatorif a : Q — {0, 1}.

Given anO-labeledl-tree (T, 1), we say that som&-labeledl-tree (T;, 7;) is arun treeof </ and
(T, 1) if 1,(¢) = qo and for allt € T, there exists somé e (I — Q) with (7, (t), 7(t), f) € J such that for
all xwith f(x) = q for someq € Q, we haver, (tx) = q. We say thatT,, 1;) is anacceptingrun tree if
T, =T and for all infinite pathgt = qotoqsts ... in (Ty, T;), the highest number occurring infinitely often
in the sequence(qo)a(ai)... is even. For a nondeterministic parity tree automatdnwe say that
(T, 1) satisfiese (and, equivalently, thafT, T) is accepted by) if there exists an accepting run tree
for (T, 1) and.«”. A universal parity tree automatas’ accepts a tre€r, 1) if all full run trees for(T, 1)
are accepting. The language.@f, written Z(.<7), consists of all accepted trees.



R. Ehlers & B. Finkbeiner 183

For a stategy € Q of a tree automatory = (Q,1,0,9,qo,a), we define thdanguage of ¢ Q as
the language of the automatert’ = (Q,1,0,d,q,a). Likewise, the language of a stajec Q in a word
automatone’ = (Q, X, d,qp, a) is defined as the language of the automaiéh= (Q,Z,d,q,a).

An automaton is callegrunedif it has no states with empty language. We definedizeof a tree
automatoneZ as|</| = |Q| + |8|. We say that a tree or word property isegular propertyif it is the
language of a parity tree or word automaton, respectivelg.s@y thaty; ..., € Q" for somen € N
is a cycle in a tree automatow if g1 = g, and for everyi € {1,...,n—1} there existy € O andx € |
such thatf (x) = g1 for somef with (q;,y, f) € 0.

From word to tree properties. We often use word properties to describe the overall behafio
a reactive system by requiring that every path of the treisfiet the word property: for example, a
reactive system satisfies a specification given as an LTL dtariff the LTL formula is satisfied for
all possible input sequences. To formalize the transldtiom word to tree properties, we introduce a
special spreading function. Tispreading.”} o(y) of a word languagep C (O x 1)® for a signature
(1,0) is defined as follows:

%/O(I,U) = {<|*,T> |\V/t =1ot1... € [ (T(E),to)(T(to),tl)('[(totl),tz) L€ l.IJ}

It is straightforward to implement the spreading functiernaaconstruction that builds a tree automaton
from a given deterministic parity word automata, such thatlanguage of the tree automaton is the
spreading of the the regular language represented by theeaubomaton.

Definition 1. Given a deterministic parity word automatosf = (Q,Z,9,qp,a) with ¥ = O x |, we
define 7 ,o(e7) = </’ for the deterministic tree automatos’ = (Q,1,0,9’,qo, a) for which for all
geQ,xe0Oand fe (I — Q) we have(q,x, f) € 8’ ifand only if for all ye I, f(y) = ¢ for some g€ Q
if and only if(q, (y,x),q) € .

Linear-time and branching-time safety. Given a word languagg over some alphabét, we say that
Y is alinear-time safetyroperty if for everyw = wow; ... € Z such thatv ¢ g, there exists somiec N
such that for all wordsV € Z, wowy ...ww ¢ ¢ [1]. The prefixwow; ...w; is also called dad prefix
word. If ¢ is a regular property and also a safety property, tiyeran also be represented as a safety
word automaton.

Given some tredT, 1), we say that some tre@’, ') is a finite prefix tree of T,7) if T'C T, T’
is finite, and for allt € T/, we haver’(t) = 7(t). A tree propertyy overl/O-trees is ainiversal safety
property[12] if all trees, for which all finite prefix trees are the prefif some tree iny, are also iny.

3 Reactive Safety

This section gives a formal definition of reactive safety. $iet by considering general word and tree
languages and will only later, in Sectibh 4, focus on the isppease of regular properties, as defined by
automata or temporal logic formulas. We show that the classaxtive safety properties lies strictly
between linear-time safety and universal safety. We alswepthat reactive safety captures the largest
class of properties whose satisfaction by a reactive systemnbe checked by testing whether all runs of
the system satisfy some linear-time safety property.

Unlike standard linear-time safety, reactive safety dgtishes between inputs and outputs. We
therefore parameterize reactive safety with the signatfirhe reactive system and refer to reactive
safety with respect to signatu(g O) asl/O-safety.
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Definition 2. Let | be a finite set of inputs, O be a finite set of outputs, andilde a set of full
O-labeled I-trees. We say thdl is a reactive safety property with respect to inpuand outputO,
or short an VO-safety propertyif, for every O-labeled I-tredT, 1) that is not contained iny, there
exists some node=t ty...tx € T (theviolation starting nodesuch that all 1/0O-treegT’, ') for which
T(to...t)) = T'(tp...t;) holds for all0 < i < k, we have tha{T’, 7’) ¢ (.

Informally, reactive safety thus means that whenever adoes not satisfy the property, there exists
some prefix path through the tree such that at the end of the pas clear that there exists no tree
containing this prefix path such that the overall tree satidhe property. The notion of reactive safety
extends to word properties: A word properyover the alphabeD x | is anl/O-safety property iff the
spreading¥] ,o(Y) is anl/O-safety property. In the following, we onlitandO whenever clear from the
context, and simply refer to reactive safety.

The difference between the definitions of linear-time arattige safety is subtle: In the case of
linear-time safety, a word is accepted iff it does not hava frefix; hence, on a tree, every violating
path must have a bad prefix. In the case of reactive safegeastaccepted iff it does not have a violation
starting node: the difference thus is that for reactivetgatesingle path to the violation starting node
suffices for the entire tree, whereas for linear-time safatgry violating path needs to have a bad prefix.

We now compare reactive safety to linear-time and univesafdty. The following theorem shows
that linear-time safety is a stronger requirement thantreasafety.

Theorem 3. Let ¢ be a linear-time safety word property over some alphabetlOThen.| o(Y) is a
reactive safety property.

Proof. Let (I*,7) be a tree that is not contained i ,o(y). This means that there exists some path
t =tot1... € 1“in the tree such that = (7(¢),t)(T(to),t1)(T(tot1),t2) ... is not contained in the safety
word propertyy. The definition of linear-time safety assures that thengtigalso some prefix of length

k for somek € N andt such that no word starting wittt (€),to) (7 (to),t1)(T(tot1),t2) ... (T(to. .. tk—1),t)

is in ¢. In this case, we know tha§.. .ty is a violation starting node ifl*, 7). Thus, all trees rejected
by /1 ,0(¢) have a violation starting node, which make$ () a reactive safety property. O

The coffee machine example from the introduction showsdhatctive safety property is not nec-
essarily also a linear-time property. Comparing reactiveé aniversal safety, we immediately see that
reactive safety is stronger than universal safety, bectdgspath to the violation starting node is also a
finite subtree.

Corollary 4. Every reactive safety property is also a universal safetpprty.

The converse is not true. Formalizing the example propértyom the introduction, consider
| ={0,1}, O={0,1} and the tree propert§ = {(T,7) | T =1*,7(0) # 1(1)}. This property is cer-
tainly universally safe, but not a reactive safety propdygcause it relates the labels along two paths; a
violation can therefore not be blamed on a single violati@ntsig node.

Reactive safety thus lies strictly between linear-time antversal safety. As discussed in the in-
troduction, one can in fact view reactive safety as the aattonnection point between linear-time and
branching-time safety, because it represents the lartgesst of properties whose satisfaction by a reac-
tive system can be checked by testing whether all runs ofytsieis are contained in some linear-time
safety property. This characterization of reactive safefyroven in the following theorem.

Theorem 5. A tree propertyyy C O is an |/O-safety property iff there exists a word propegty C
(O x 1)® such that precisely the trees i satisfyy/ along all of its paths.
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Proof. The “if” direction is implied by Theorerh]3. For the “only if"icection, we defingl’ to contain
all paths in trees iy that do not contain a violation starting node. Thenaccepts the words needed
for the claim. Surelyy/ is also a safety property as for every path not/i) the path must contain a
violation starting node, and every other path with the sareépup to this node is also not if’. [

We conclude this section by returning to the coffee machismple from the introduction. We
specified the coffee machine with the two LTL formulas

Yr=G(c—X(fVFb) and  gr = G(e— XG(=b)).

The conjunctionyy A g is anl /O-safety property for the signatute = 2{%¢, 0 = 21>} To see this,
consider a tre€T, 1) that does not fulfillys A gr along all of its paths. Violation starting nodes are:

1. the nodes that witness th# has been violated along the path to the node, and

2. the nodes =ty...t for whichc € ty_1, but f ¢ T(tp...tx_1) ande € t, as any such prefix path
(1(€),t0)(T(to),t1)...(T(to...tk—1),t) cannot be extended to an infinite path that satisfies y»
(as explained in the introduction).

It is not obvious to see that the set of trees satisfyng\ Y is precisely the set of trees that do not
have a violation starting node corresponding to one of tleertede types above. In the next sections we
will develop the necessary automata-theoretic machiregnswer this question. We will return to the

example in Sectioh 5.3.

4 Regular Reactive Safety Properties

We now give an automata-theoretic characterization of ¢gelarl/O-safety tree properties. Lgi be
anl/O-safety property. In analogy to the definition of tight autdenfor linear-time safety languagés [9],
we call a deterministic word automato# tight for ¢ if 77 o(.<7) accepts precisely the tregs In the
following, we establish the fact that all regular reactiadesy properties have regular tight languages,
which immediately implies that the class of deterministifety tree automata represents precisely the
reactive safety languages.

The key step is to define a functio#’, which converts a tree automaton to a word automaton.
Intuitively, # is the inverse operation to spreading a word automaton. /A Henction is the missing
link in the characterization of the regular reactive safetyperties —we show that a property, represented
as a (pruned) tree automatenis I/O-safe if and only if we have? (/') = Z (5 0(# (7 ))).

We begin with a lemma about rejecting run trees for reactafetg properties.

Lemma 6. For a pruned nondeterministic parity tree automatefy representing an 1/O-safe property,
and a full tree(T, 1) not in the language o7, no run tree(T;, 1;) for (T, 1) has te T, for the violation
starting node t=tp...th e T.

Proof. We show the claim by assuming the converse and deriving aagbation. In particular, we build
a second full treéT’, ') for which the path from the root tiois the same as i, 1), but that is accepted
by & and thus contradicts the fact thait a violation starting node fa#Z. Without loss of generality,
we assume thadtis a violation starting node that does not have a prefix whi@go a violation starting
node.

We assume that’ = (Q,1,0,9,qo,-%) for Q={qo,...,qm}. If &7 is pruned, then for every statg
there exists some full tre@', t') that is in the language @f, with the corresponding run tre@, , 7).
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In (T’,7'), we replicate the path to the violation starting nodgbft). We sett’(¢) = 7(¢) and
T (to...ti)) = 1(tp...t;) for all i € {0,...,n—1}. The corresponding accepting run tré¢,1/) is also
copied along this path, i.et, (to...tix) = T(to...tix) foralli € {0,...,n—1} andx € |, and furthermore
1/(€) = 1, (&). This makes sure thdl/, 1/) is a valid (and complete) prefix run tree for the part$Tfr)
defined so far. Note that the nodes(®f, 1;) referred to here are actually all well-defined as otherwise
would have a prefix that is also a violation starting node.

For the rest of T, T), we copy the trees of the sgtT®, 1°),...,(T™, ™)} declared above as sub-trees
into (T, ) and setr’(to...tixt") = T(t') fork € {0, ..., m} such thaty = 7; (tp.. .t;x) and alli € {0,...,n},
x € | andt’ € I*. For the corresponding run tré&’, 7/), we do the same and sEfty...tixt") = 1X(t')
for k € {0,...,n} such thatox = 7, (tp...tid) for all i € {0,...,n}, x € | andt’ € I*. The resulting run
tree is full and also accepting as all run treeg {@°, t°),... (T™ ™}, which form the suffix run trees
in (T/,1/), are accepting. O

Definition 7. Given a nondeterministic parity tree automatef= (Q,1,0,d,qo, o ), we define? (/) =
/' for the deterministic safety word automatafi = (Q/,Z, &, {qo}) for whichz =0 x1,Q' = 2% and
forall (x,y) € Zand qq € Q, we havgq, (y,x),d') € &' ifand only ifd ={§f € Q| 3G Q, f € 6(G,y) :
Gea, f(x) =4}

Theorem 8. The language of a pruned nondeterministic parity tree aatom.e7 is 1/0O-safe if and only
if Z(A10(W () =2L(). Furthermore, itZ (/) is I/O-safe, therw/ (/) is tight for £ (7).

Proof. =: Assume that some tred@, 1) is not accepted by7. Since«” represents ah/O-safety pro-
perty, there must exist a violation starting ndde T. As </ is pruned, all run tree§lg, 7;) thus need
to have that ¢ T, (Lemmal6). Since all rejected trees have this property, gxichwhether a tree is
rejected, we thus only need to test whether any path in teengeessarily leads to a corresponding finite
maximal path in the run tree. By Definitidh 7, (<7 ) rejects precisely these paths (due to the power-set
construction involved) and is thus tight f&f' (<7). By Definition[1, 7 ,o(# (</)) rejects precisely the
trees having such a path. Thus, the language @f(# (<)) and.< are identical.

<! As the 7 o function converts a safety word automaton into a determingafety tree automa-
ton that accepts a tree if and only if all paths in the tree amepted by the safety word automaton,
any outcome of applying the/ o function is necessarily anO-safety property. As we assume that
ZL( R0V (A))) =L (), this means that/ is also arl/O-safety property. O

We conclude the characterization of the regular reactifetysproperties with the following theorem:

Theorem 9. The set of regular 1/0O-safe properties coincides with thteo$@roperties representable as
deterministic safety tree automata with directions | angklis O.

Proof. =: Assume that we have some regul&Dd-safety property) given. Sincey is regular, we can
construct a nondeterministic parity tree automatérirom it, and by Theorerhl8, a deterministic safety
tree automaton with directiorisand label<O.

<: As a deterministic safety tree automaton accept®dabeled!-tree if its run tree is complete
with respect td, all trees that are not accepted by some deterministicysafd automatony’ have
some finite maximal path in the run tree. Due to the determira§.<7, when taking the corresponding
path in the rejected tree, copying this path into a diffetez® causes the new tree to be rejectedsby
as well. O
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5 Detecting Reactive Safety

The goal of this section is to check if a given property, repreéed as an automaton or an LTL formula,
is a reactive safety property. We give separate constngfiar tree and word properties. The algorithms
of the first subsection analyze the languages of nondetesticiland deterministic parity tree automata.
The algorithms of the second subsection analyze word layagutnat are either given as LTL formulas
or as nondeterministic Blichi automata.

5.1 Reactive Safety for Tree Languages

Our algorithm for nondeterministic parity tree automatdased on the observation that the language
equality requirement in Theorel 8 can be weakened to lamgoagtainment by the fact, shown in
the following lemma, that the language of the tree automaiois always contained in the language of
A 10(W ()). We will show that this condition can be checked in singlpamential time. Using Muller
and Schupp’s complementation-by-dualizationl [14], we Gigain an automaton for the complement of
Z(</). This language is then intersected with the languagéaf(# (<)), and the emptiness of the
resulting automaton is checked with a parity game.

Lemma 10. For a nondeterministic parity tree automate#, it holds that? (=) C .2 (.7 o (¥ ())).

Proof. By the construction o} ,o(# (7)), we have that? (/) C .2 (% ,0o(# (/))), because thg”
function performs a power-set construction ov£r so all missing paths in a run tree fof ;o (% (7))
imply a missing path in a run tree fay'. O

Combining Theorernl8 and Lemimal 10, we obtain that reactietysafin be characterized as language
containment betweert] ,o(# (<)) and.«/.

Corollary 11. The language of a nondeterministic parity tree automatdns I/O-safe if and only if
L(F oW () € ZL(A).

Using Corollany 11, we now devise an automata-theoretioréhyn for checking for reactive safety.

Lemma 12. [14] Given a nondeterministic parity tree automate#s = (Q,1,0,d,0o, a) that runs on
O-labeled I-trees, the universal parity tree automaten= (Q,1,0, d,0o, 0 + 1) accepts a treél*, 1) iff
(I*,T) is not accepted byy.

Lemma 13. [4] [15] Given a universal parity tree automatow with n states and c colors, we can
construct an equivalent nondeterministic parity tree adton.#* with n°(¢" states and Qc- n) colors.

Theorem 14. Given a nondeterministic parity tree automaten= (Q,l,0, d,do, o), checking whether
Z (<) is |/0-safe (and obtaining a tight automaton f&f (/) in case of a positive result) can be done
in EXPTIME.

Proof. As a first step, we identify and remove all statesa6fwith an empty language. The emptiness
check (by reduction to solving parity games) can be donemie ti°© [7]. Let the resulting automaton
be callede”’. By Corollary[11,” is I/O-safe iff the language offj ,o(# (/")) is contained in the

language of7’. We check whethe (7 ,o(# (/')))N£ (/") = 0. Applying Lemma 1P, we translate
/" into the universal automato# that recognizes the complement langua@é has the same size as
<7'. Applying Lemmad_ 1B, we obtain an equivalent nondeternmimatitomaton/” with n°(¢™" states and
O(c-n) colors. Computing the language intersection with the deitéistic automaton7; ;o(# (")),

which has 2™ states and a single color, we obtain the nondeterministdymt automaton?” with
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nOn states andD(c- n) colors. The emptiness test of a nondeterministic parity fetomaton with
m states andl colors can be done im°@ time [7]. The overall time complexity is thugP(© ), By
Theoreni B (') is tight for #(«7’) and thus also tight fatZ (). O

If the tree language is given as a deterministic automat@ncan check whether the language is a
reactive safety property with a simpler construction, vehee first prune states with empty languages
from the automaton and then search for a rejecting cycleamemaining state graph. This construction
is analyzed in the following theorem and will be used for thalgsis of word languages in the next
subsection.

Theorem 15. Given a deterministic parity tree automatoe#® over 1/O with n states and c colours,
checking whether?(«7) is I/O-safe (and obtaining a tight automaton f&f (<) in case of a positive
result) can be done in time™ff).

Proof. Again, as a first step, we identify and remove all states/ofvith an empty language. Let the
resulting automaton be called’. As a second step, we checkdf’ contains a rejecting cycle, which
can be done in polynomial time][3]e7’ contains a rejecting cycle iff there exists an input tred tha
rejected and has a (unique) full run tree — which is the caaetlyxif £ (.<7’), and hence? (), is not
safe.

To obtain the tight word automaton, we simply comp#té</’). For deterministic tree automata, the
subset construction employed in Definitidn 7 does not irsgre¢he number of states in the automaton. If
27" does not contain any rejecting loops, thef(.7 ,o(# (/")) = £ (</"), and, hencey/ (</’) is tight
for £ (). O

5.2 Reactive Safety for Word Languages

We reduce the analysis of word languages, given as LTL famol as word automata, to the case
of deterministic parity tree automata solved in Theofem EBr this purpose, we translate the given
formula or automaton into a deterministic parity automatehich causes a doubly-exponential or single-
exponential blow-up, respectively, in the number of states

Theorem 16. Given a formulay in linear-time temporal logic over the atomic propositioA® =
AP, UAP, for | = 2247 and O= 227, the problem of determining whether the set of O-labelegds
satisfyingy along all paths is 1/0O-safe (and obtaining a tight automaiorcase of a positive result) is
2EXPTIME-complete.

Proof. For the upper bound, we translate the LTL formula of sizeto a deterministic parity word
automatong7 with at most 2'1°9" states and @1+ 1)2" colors [24]. We then consider the tree automaton
T /0(), which has the same number of states and colors. Applyingren&15, we can thus check

whether.Z (<) is a reactive safety property and obtain the tight autometdime 200,

For the lower bound, we reduce the realizability problem ©E Lwhich is 2EXPTIME-complete
[19], ontol/O-safety checking. Lety be a specification ovekP = AP, U AP that is to be checked for
realizability. We takal’ = ¢ A GFa for somea ¢ AP. Then, /' is realizable over Z"/2A%0 if and only
if Y is not 2P /2APoU{al_safe:

o If  is realizable over®/2APo, then theGFa conjunct iny’ ensures tha’ is not 2\P1/2APou{a}.

safe.

e On the other hand, ij is not realizable over”¥ /24P, so isy’ over 2P /2APoU{a} | As the empty
tree property over /2APoU{a} has the property violation node y is 24P /2APoUial_safe.
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Figure 1: Deterministic parity word automatas for the specificationG(c — X(f v Fb)) A G(e —
XG(—b)). The statesp andgs have color 1, the remaining states have color 2. We use neerktomic
propositions to denote negated input or output bits. Fomgsa, the expressiofic refers to all elements
x € 2ARUARo with f € xandc ¢ x.

O

Theorem 17. Given a nondeterministic ighi word automatonz’ over the alphabek = O x I, the
problem of determining whether is I/O-safe is EXPTIME-complete.

Proof. For the upper bound, we translate the given nondeterminiiichi word automatonZ into

an equivalent deterministic parity word automaton. If tHecBi automaton has states, the resulting
deterministic parity word automato”’ has at most 219" states and 2+ 1 colors [17/24]. With-
out changing the size of the automaton, we transfertninto the deterministic parity tree automaton
T 0(«/") and apply Theorem 15: The check wheth#(.«7) is safe, and, in case of a positive result, the

construction of the tight automaton, thus takes at m8&€'29" time.

We obtain a matching lower bound from LTL realizability watsimilar reduction as in Theordm]16.
Since the exponential-time hierarchy is strict, the tratish from LTL formulas to nondeterministic
Biichi automata can be done with only an exponential blovi2sh, and the LTL realizability problem
is 2EXPTIME-complete, the realizability problem from natelrministic Biichi automata is EXPTIME-
hard. We build an automaton for the LTL formul&a. As taking the conjunction of two Blichi automata
results in only polynomial blow-up [23], the rest of the ctastion is analogous to the proof of Theo-
rem[16. O

5.3 The Coffee Machine Example

We finish this section with the coffee machine example fromm ititroduction. The specification is
a conjunctionyi A Y, of two LTL formulas, yn = G(c — X(f V Fb)) (whenever the user presses the
coffee button, brewing must eventually start or a failurestrhe signaled immediately) ang = G(e —
XG(—b)) (whenever the emergency shutdown button is pressed, lgestips permanently), where
ande are inputs and and f are outputs.
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The specification can be translated into the determinigtittypword automatorz over the alphabet
2¢eb.1 shown in Figurd1l. The statep, ou andg, correspond to the case that the emergency button
(input €) has not been pressed yet. When the button is pressed, ttod thim automaton moves to the
statesys, g4 andgs, which mirror the behavior ajp, g1 andgp, but take into account that the emergency
button has been pressed in the past andtsignal is therefore no longer allowed.

To check whether the language .f is a reactive safety property, we spreadto a tree automaton
' =(Q,1,0,0,q,, %) with the same set of states, and prune all states with empguéme. Ine’,
stategs has the empty language and is therefore removed. Note tisaal#o removes all transitions
(a,y, f) € & for which for somex € I, f(i) = gs. As a result, there are no transitions of the form
(ou,{b}, f) or (q1,0, f) anymore. Hence, statp has become unreachable.

Since all remaining reachable states have color 2, there@igfinite paths in the automaton on
which the highest color occurring infinitely often is odd. ride, the automatas and.<?’ represent a
reactive safety property.

6 Conclusion

In this paper, we have extended the classic notion of litieaa-safety from closed systems, where all
actions are under the system’s control to open reactivemsstwhere the behavior is characterized by
the interplay of uncontrolled environment inputs and colled system outputs. Reactive safety is a
larger class of properties than standard linear-time wa#ttthe same time, the algorithmic advantages
are retained, because it is still possible to translate ssyular) reactive safety property into a safety
word automaton, which can be used, for example, as a runtioreton. In fact, reactive safety is the
maximal set of properties whose satisfaction can be chelokadsting all computation paths against a
linear-time safety property. It is conceivable, howeverfurther extend the class of safety properties
if other systems aspects, beyond the inputs and outputsdakesa into consideration. A promising
candidate is incomplete information: specifications ammetimes concerned with atomic propositions
that can neither be read nor written to by the system. Sucktamson would classify an even larger
set of properties as safety. Extending the algorithms &f pliper to this case is straightforward using
standard automata-theoretic techniques for synthesisruncomplete informatiori [8].
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