
Submitted to:
GandALF 2018

c© J. Hecking-Harbusch and L. Tentrup
This work is licensed under the
Creative Commons Attribution License.

Solving QBF by Abstraction∗

Jesko Hecking-Harbusch
Reactive Systems Group

Saarland University

Leander Tentrup
Reactive Systems Group

Saarland University

Many verification and synthesis approaches rely on solving techniques for quantified Boolean for-
mulas (QBF). Consequently, solution witnesses, in the form of Boolean functions, become more
and more important as they represent implementations or counterexamples. We present a recursive
counterexample guided abstraction and refinement algorithm (CEGAR) for solving and certifying
QBFs that exploits structural reasoning on the formula level. The algorithm decomposes the given
QBF into one propositional formula for every block of quantifiers that abstracts from assignments of
variables not bound by this quantifier block. Further, we show how to derive an efficient certification
extraction method on top of the algorithm. We report on experimental evaluation of this algorithm
in the solver QUABS (Quantified Abstraction Solver) which won the most recent QBF competition
(QBFEVAL’18). Further, we show the effectiveness of the certification approach using synthesis
benchmarks and a case study for synthesizing winning strategies in Petri Games.

1 Introduction

Synthesis is the task to produce correct-by-design implementations from formal specifications. This
allows the developer to focus on what to achieve in form of the specification instead of focussing on
how to implement requirements. The synthesis task is usually formulated as a two-player game between
the system player whose objective is to satisfy the specification and the environment player who tries
to falsify the specification. There are many variants of such games in literature, suitable for different
types of systems, such as synchronous, asynchronous, and distributed ones, and for different kinds of
objectives, such as safety objectives, ω-regular winning conditions, and beyond. Determining the winner
of a synthesis game, which is equivalent to the answer whether the underlying specification is realizable,
gives us the knowledge of whether or not an implementation exists that satisfies the specification. In the
best case, we can directly construct an implementation from a winning strategy of the synthesis game.

In this paper, we consider the satisfiability problem of quantified Boolean formulas (QBF), which
can be formulated as a game between the existential and universal player, controlling the existential and
universal quantifiers, respectively. QBF has been used to encode the realizability problem for many of
the specifications and games mentioned before, such as symbolically represented safety games [3], the
LTL realizability problem [5], distributed and fault-tolerant synthesis [11,12], and asynchronous systems
using Petri games [7]. As a side-effect of those encodings, a certification of the QBF solving result in
many cases directly corresponds to winning strategies and implementations. QBF certification is the task
to extract Skolem functions for the existential quantifiers of true QBFs and Herbrand functions for the
universal quantifiers of false QBFs.

Despite its benefits, QBF certification is a weak spot of current solving algorithms. There are a
number of works in the literature [1, 16, 27, 32] for certifying QBFs given in conjunctive normal form
(CNF), but in practice it involves performance penalties due to non-applicable solving optimizations and

∗Supported by the German Research Foundation (DFG) Grant Petri Games (No. 392735815) and by the European Research
Council (ERC) Grant OSARES (No. 683300).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Solving QBF by Abstraction

limited preprocessing1. We believe that certification must be treated as a first-class citizen of QBF solving
and show that it is possible to have competitive performance and solution extraction at the same time.
A crucial approach to this goal is that we consider formulas in negation normal form (NNF) instead of
CNF. Using (the less restrictive) NNF, the QBF solving problem becomes dual with respect to negation,
removing the inherent imbalance of CNF solving algorithms [24].

We present a counterexample guided abstraction and refinement (CEGAR) algorithm for solving
quantified Boolean formulas that exploits the propositional formula’s structure. The algorithm decom-
poses the given QBF into one propositional formula for every maximal block of consecutive quantifiers
of the same type. We call this formula an abstraction, because it abstracts from assignments of variables
that are not bound by this block of quantifiers of the same type. We use special interface variables to
communicate assumptions (outer-to-inner quantifier) and learned information (inner-to-outer quantifier)
during solving. Further, we use a SAT solver as an oracle to generate new abstraction entries and to
provide us with witnesses for unsatisfiable queries. Given a QBF, the algorithm proceeds by generating
a candidate solution using a SAT solver and the abstraction. Then, this candidate is verified (or refuted)
recursively and, depending on the result, the abstraction is refined. We introduce a new element to QBF
refinement algorithms by maintaining, for every quantifier block, a dual abstraction and make twofold
use of it: It provides a method for optimizing abstraction entries and it is used to translate counterexam-
ples from one quantifier block to another.

To sum up, this paper makes the following contributions:

• We provide a counterexample guided abstraction and refinement (CEGAR) algorithm for solving
QBFs in negation normal form.

• We describe an efficient certification approach and evaluate it on synthesis benchmarks where
implementations can be obtained from certificates.

• As a case study, we show how to make use of the certification feature to build strategies represent-
ing implementations and counterexamples for Petri games.

2 Quantified Boolean Formulas

A quantified Boolean formula (QBF) is a propositional formula over a finite set of variables X extended
with quantification. The syntax is given by the grammar

ϕ := x | ¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | ∃x.ϕ | ∀x.ϕ ,

where x ∈X . For readability, we lift the quantification over variables to the quantification over sets of
variables and denote a maximal consecutive block of quantifiers of the same type ∀x1.∀x2. · · ·∀xn.ϕ by
∀X .ϕ and ∃x1.∃x2. · · ·∃xn.ϕ by ∃X .ϕ , accordingly, where X = {x1, . . . ,xn}.

Given a subset of variables X ⊆X , an assignment of X is a function α : X → B that maps each
variable x ∈ X to either true (1) or false (0). When the domain of α is not clear from context, we write
αX . A partial assignment β : X→ B∪{⊥}may additionally set variables x ∈ X to an undefined value⊥.
We say that β is compatible with α , written β v α , if they have the same domains (dom(α) = dom(β))
and α(x) = β (x) for all x ∈ dom(α) where β (x) 6= ⊥. For two assignments α and α ′ with domains
X = dom(α) and X ′ = dom(α ′), we define the combination α tα ′ : X ∪X ′→ B as α tα ′(x) = α ′(x) if

1In QBFEVAL’16, the best certifying QBF solver has solved less than half of the number of instances solved by the best
non-certifying solver [31]. In the following two iterations of QBFEVAL up to this paper, certification has not been evaluated.

J. Hecking-Harbusch and L. Tentrup 3

x ∈ X ′ and α(x) otherwise. Note that α ′ overrides α for x ∈ X ∩X ′. We define the complement α to be
α(x) = ¬α(x) for all x ∈ dom(α). The complement of a partial assignment is defined analogously with
¬⊥=⊥. We denote by α \X the assignment without the assignments for every x∈ X , i.e., dom(α \X) =
dom(α) \X . The set of assignments and of partial assignments of X is denoted by A (X) and A⊥(X),
respectively.
Example 1. Consider the assignments α = {x 7→ 0,y 7→ 1} and α ′ = {x 7→ 0,y 7→ 0} with dom(α) =
dom(α ′) = {x,y}. For the partial assignment β = {x 7→ ⊥,y 7→ 1} it holds that β v α and β 6v α ′. Let
α∗ = α \{y}= {x 7→ 0}, then α tα

∗ = {x 7→ 1,y 7→ 1}.
A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in the scope ϕ . Variables that are not bound by

a quantifier are called free. The set of free variables of formula ϕ is defined as free(ϕ). The semantics
of the satisfaction relation α � ϕ is given as

α � x if α(x) = 1,
α � ¬ϕ if α 2 ϕ,
α � ϕ ∨ψ if α � ϕ or α � ψ,
α � ϕ ∧ψ if α � ϕ and α � ψ,
α � ∃x.ϕ if some α ′ : {x}→ B satisfies α tα ′ � ϕ, and
α � ∀x.ϕ if all α ′ : {x}→ B satisfy α tα ′ � ϕ.

QBF satisfiability is the problem to determine, for a given QBF ϕ , the existence of an assignment α for
the free variables of ϕ , such that the relation � holds.

An existentially quantified variable x depends on all universally quantified variables that are bound
prior to x. A universally quantified variable x depends on all existentially quantified variables bound
prior to x and additionally on the free variables. A free variable x depends on no variables. The set of
dependencies of x is denoted by dep(x). A Boolean function f : A (X)→B maps assignments of X to true
or false. An assignment α over variables X can be identified by the conjunctive formula

∧
x∈X |α(x)=1 x∧∧

x∈X |α(x)=0¬x. Similarly, Boolean functions can be represented by propositional formulas over the
variables in their domain. Let ϕ[fx1 , . . . , fxn] be the propositional formula where occurrences of xi are
replaced by the propositional representation of fxi . It is defined as

x[fx1 , . . . , fxn] =

{
fxi if x = xi for some i
x otherwise

(¬ϕ)[fx1 , . . . , fxn] = ¬(ϕ[fx1 , . . . , fxn])

(ϕ ∨ψ)[fx1 , . . . , fxn] = (ϕ[fx1 , . . . , fxn])∨ (ψ[fx1 , . . . , fxn])

(ϕ ∧ψ)[fx1 , . . . , fxn] = (ϕ[fx1 , . . . , fxn])∧ (ψ[fx1 , . . . , fxn])

(∃x.ϕ)[fx1 , . . . , fxn] = ϕ[fx1 , . . . , fxn]

(∀x.ϕ)[fx1 , . . . , fxn] = ϕ[fx1 , . . . , fxn]

For example, let ϕ = ∀x.∃y.(x∨¬y)∧ (¬x∨ y) and let fy(x) = x, then ϕ[fy] = (x∨¬x)∧ (¬x∨ x).
A witness for a satisfiable QBF is a Skolem function fx : A (dep(x))→ B for every variable x that is
free or existentially quantified, such that ¬ϕ[fx1 , . . . , fxn] is unsatisfiable. For unsatisfiable QBFs, the
witnesses are defined dually and called Herbrand functions. We use the notation ϕ[α] to replace variables
x ∈ dom(α) by their assignments α(x).

A closed QBF is a formula without free variables. Closed QBFs are either true or false. A formula is
in prenex form, if the formula consists of a quantifier prefix followed by a propositional formula. Every

4 Solving QBF by Abstraction

QBF can be transformed into a closed QBF and into prenex form while maintaining satisfiability. A
literal l is either a variable x ∈ X , or its negation ¬x. Given a set of literals {l1, . . . , ln}, the disjunctive
combination (l1 ∨ . . .∨ ln) is called a clause and the conjunctive combination (l1 ∧ . . .∧ ln) is called a
cube. We denote by var(l) the operation that returns the variable corresponding to l. A QBF is in
negation normal form (NNF) if negation is only applied to variables. Every QBF can be transformed into
NNF by at most doubling the size of the formula and without introducing new variables. For formulas in
NNF, we treat literals as atoms.

3 Abstraction-based Algorithm

For QBFs given in CNF, there are recursive refinement algorithms where the refinement is based on
clauses [23,32,35]. The underlying insight is that multiple variable assignments may lead to the satisfac-
tion of the same clauses, hence, instead of communicating assignments, the information whether a clause
is satisfied or not is communicated between quantifier blocks. Instead of excluding assignments one at a
time, those algorithms may exclude multiple assignments with a single refinement step. In the following,
we propose a generalization to formulas in negation normal form, i.e., we base the communication on
the satisfaction of individual subformulas. For this section, we assume an arbitrary (closed, prenex) QBF
Φ = QX1 . . .QXn.ϕ with quantifier prefix QX1 . . .QXn and propositional body ϕ in NNF.

SAT solver. We use a generic solving function SAT(θ ,α) for propositional formula θ and assignment α ,
that returns whether θ ∧α is satisfiable. In the positive case, written SAT(θ ,α)⇒ SAT(α ′), it returns
a satisfying assignment α ′. We write SAT(θ ,α)⇒ SAT(αV) if we are only interested in a subset V of
the variables in θ . In the negative case, written SAT(θ ,α)⇒ UNSAT(β), it returns a partial assignment
β v α such that θ ∧β is unsatisfiable.
Example 2. We show a few examples of the usage of the SAT function using θ = (x∨ (x∧ y)) and
θ = (x∧ (x∨ y)).

SAT(θ ,{})⇒ SAT(α{x}) where α{x} = {x 7→ 0}
SAT(θ ,α{x})⇒ SAT(α{y}) where α{y} = {y 7→ 1}
SAT(θ ,α{x}tα{y})⇒ UNSAT({x 7→ 0,y 7→ 1})

Notation. To facilitate working with arbitrary Boolean formulas, we start with introducing additional
notation. Let B be the set of Boolean formulas and let sf (ψ) ⊂B (dsf (ψ) ⊂B) be the set of (direct)
subformulas of ψ (note that ψ ∈ sf (ψ) but ψ /∈ dsf (ψ)). For a propositional formula ψ , type(ψ) ∈
{lit,∨,∧} returns the Boolean connector if ψ is not a literal. For example, given ψ = (x1 ∨ (x1 ∧ x2)),
sf (ψ) = {(x1∨ (x1∧ x2)),x1,(x1∧ x2),x1,x2}, dsf (ψ) = {x1,(x1∧ x2)}, and type(ψ) = ∨.

Interface Variables. To communicate the value of subformulas, we introduce two special types of
variables which we call interface variables. The value of those variables represents whether the value
of a subformula is determined and in the positive case, the value itself. We only consider existential
quantifiers as the definition for the universal quantifiers is dual with respect to negation. For a quantifier
∃X , we say that a subformula ψ is positive if ψ is conjunctive (type(ψ) = ∧) and not falsified or ψ is
disjunctive (type(ψ) = ∨) and satisfied. A subformula is negative if it is not positive. At quantifier ∃X ,
variable assignments determine whether a subformula ψ is positive or negative. The interface variables tψ
and bψ represent whether ψ is positive, with the difference that tψ combines assignments from variables
bound by outer quantifiers whereas bψ combines assignments from variables bound by outer quantifiers

J. Hecking-Harbusch and L. Tentrup 5

and from variables X . We denote the set of variables tψ by T and call them T variables and analogously
the set of variables bψ by B and call them B variables. For solving QX in the abstraction algorithm, we
replace the communication of variable assignments by communicating assignments to T and B variables.

Abstractions. An abstraction for quantifier QX is a propositional formula θX over variables X , T , and
B. The sets TX and BX contain those T and B variables that are used for communication at this quantifier
level. Unlike previous approaches that utilize SAT solvers [22, 23, 32, 36], we keep for every quantifier
level a dual abstraction θ X that is used for optimization of abstraction entries and translating interface
variables. When translating a B variable to a T variable, we use the same index, e.g., in line 19 of Alg. 1,
the B variables bψ are translated to T variables tψ of the inner quantifier. Before going into algorithmic
details, we describe an execution of Algorithm 1 on Φex.

Example 3. Consider the example Φex = ∀x.∃y.
ψ1︷ ︸︸ ︷

(x∨ (x∧ y)︸ ︷︷ ︸
ψ2

) and its negation ¬Φex = ∃x.∀y.
¬ψ1︷ ︸︸ ︷

(x∧ (x∨ y)︸ ︷︷ ︸
¬ψ2

).

Assume that θx = b1∧ (b1→ x)∧ (b2→ x) is the abstraction for quantifier ∀x and that θy = (t1∨ b2)∧
(b2→ t2)∧ (b2→ y) is the abstraction for quantifier ∃y (the definition of abstraction is given later).

The algorithm starts with the top level quantifier ∀x. The universal player has to set x to false to
satisfy θx, leading to the unique assignment αB = {b1 7→ 1,b2 7→ 0} of B variables. This means that ¬ψ1
is positive and ¬ψ2 is negative in ¬Φex. Due to duality, ψ1 is negative and ψ2 is positive in Φex. Thus, the
assignment αB is translated into assignment αT of T variables in θy by negation (αT = {t1 7→ 0, t2 7→ 1},
line 19). At the existential quantifier ∃y, the abstraction θy is solved under the assumption αT , resulting in
a satisfiable query with variable assignment {y 7→ 1}. We then use the dual abstraction θ y = b1∧ (b1→
t1)∧ (b1→ b2)∧ (b2→ t2∨y) to translate αT to a partial assignment βT (line 4). The partial assignment
{t2 7→ 0,y 7→ 1} is enough to falsify the dual abstraction θ y, thus, the assumption αT (t2) = 1 is needed
to satisfy θy and the partial assignment βT with β (t2) = 1 is returned (line 4). The following refinement
forces that b2 must be set to true in the next iteration, i.e., θx = θx ∧ b2. This depletes all possible
assignments of the universal quantifier, thus, proving that the instance is true.

Algorithm. The main procedure of Algorithm 1 is ABSTRACTION-QBF-REC, that recurses on the quan-
tifier prefix. In line 2, a candidate solution is generated (represented by an assignment αBX) with respect
to an assignment αTX given by the outer quantifier. In the following, the candidate solution is verified
recursively (line 6) and in the negative case the abstraction θX is refined by a blocking clause (line 10)
that eliminates (at least) this candidate.

To verify a candidate αBX recursively, it is translated into an assignment αTY of the inner quantifier
QY (line 19). This is done by negation since a subformula ψ is positive for QX iff it is negative for
QY . The refinement operation generates, given a counterexample represented as a partial assignment
βTY , a clause consisting of B variables that excludes this counterexample: For every T variable tψ that is
contained in the counterexample and is positive for the inner quantifier, the refinement adds a B variable
bψ meaning that one of those subformulas must be positive for QX in the next iteration.

The dual abstraction θ X is defined as the abstraction for QX and is used in two ways. First, it
optimizes that candidate αBX in the propositional case (line 4), i.e., it generates potentially smaller wit-
nesses. Second, it translates an assignment of TY variables βTY to an assignment of TX variables βTX that
is returned to the outer quantifier (line 9).

We now focus on the abstraction θX . In Example 3, we have already seen an instance of the ab-
straction that we formally introduce in the following. The abstraction is a modification of the Plaisted-
Greenbaum encoding [30]: for subformula ψ , the b-literal bψ corresponds to the defining literal of the
Plaisted-Greenbaum encoding (see definition of enc in Fig. 1). encψ(ψ

′) is responsible for abstracting

6 Solving QBF by Abstraction

Algorithm 1 Abstraction Based Algorithm
1: procedure ABSTRACTION-QBF-REC(QX .ϕ,αTX)
2: while SAT(θX ,αTX)⇒ SAT(αX tαBX) do . generate candidate αBX

3: if ϕ is propositional then
4: return 〈SATQ,DUAL-OPT(αX ,αTX)〉
5: αTY ← TRANSLATE(X ,ϕ,αBX)
6: 〈result,βTY 〉 ← ABSTRACTION-QBF-REC(ϕ,αTY) . verify αTY recursively
7: if result = SATQ then
8: θ X ← θ X ∧ REFINEX(βTY) . refine dual abstraction
9: return 〈SATQ,DUAL-OPT(αX ,αTX)〉

10: θX ← θX ∧ REFINEX(βTY) . refine abstraction
11: let βTX be the failed assumptions (SAT(θX ,αTX)⇒ UNSAT(βTX))
12: return 〈UNSATQ,βTX 〉 . βTX v αTX

13: procedure REFINEX (βTY)
14: return

∨
b∈B b where B = {bψ ∈ BX | βTY (tψ) = 1}

15: procedure DUAL-OPT(αX , αTX)
16: SAT(θ X ,αX tαTX)⇒ UNSAT(βTX)
17: return β TX

. β TX
v αTX

18: procedure TRANSLATE(X , Q Y.ϕ , αBX)
19: return αTY s.t. αTY (tψ) = αBX (bψ) for all tψ ∈ TY . translate αBX → αTY

20: procedure ABSTRACTION-QBF(QX1 . . .QXn.ϕ)
21: for all QXi, initialize θXi and θ Xi

22: return ABSTRACTION-QBF-REC(QX1 . . .QXn.ϕ,{})

from actual assignments: literals bound at the quantifier are returned unchanged, literals bound at an
outer quantifier are abstracted as a T variable, and we use the defining literal bψ ′ of a subformula ψ ′ if
the valuation of the subformula is guaranteed to be fixed, i.e., there is no inner influence.

Given a propositional formula ϕ in NNF and a quantifier ∃X , we build the following propositional
formula in CNF representing the abstraction θX = outϕ(ϕ)∧

∧
ψ∈sf (ϕ)∧type(ψ)6=lit enc(ψ) for this quan-

tifier, where out encodes that ϕ must hold and enc defines a CNF formula that encodes the truth of
subformula ψ with respect to the valuations of the current, inner, and outer quantifier represented by B
and T variables, respectively. The definitions are given in Fig. 1. The abstraction of a quantifier ∀X is
defined as the existential abstraction for ¬ϕ . Note that not every B literal that is used in the abstraction
may be exposed as an interface literal. For the given abstraction, we define the set of interface variables
for quantifier QXi as

BXi = {bψ | ψ ∈ sf (ϕ)∧ψ contains a variable bound≤ i}, and

TXi = {tψ | ψ ∈ sf (ϕ)∧ψ contains a variable bound < i}.

Theorem 1. ABSTRACTION-QBF is sound and complete.

The proof is given in Section 5 and relies on techniques developed for certification in the next section.

J. Hecking-Harbusch and L. Tentrup 7

enc(ψ) =



∧
ψ ′∈dsf (ψ)

encψ (ψ
′)6=⊥

(
bψ → encψ(ψ

′)
)

if type(ψ) = ∧

bψ →
∨

ψ ′∈dsf (ψ)
encψ (ψ

′)6=⊥

encψ(ψ
′) if type(ψ) = ∨

encψ(ψ
′) =


ψ ′ if type(ψ ′) = lit∧ var(ψ ′) ∈ X
tψ if type(ψ ′) = lit∧ literal is bound by outer quantifier
bψ ′ if type(ψ ′) 6= lit∧ψ ′ has no inner influence
⊥ otherwise

outψ(ψ
′) =



bψ ′ if type(ψ ′) = ∧∨
ψ∗∈dsf (ψ ′) outψ ′(ψ

∗) if type(ψ ′) = ∨
ψ ′ if type(ψ ′) = lit∧ var(ψ ′) ∈ X
tψ if type(ψ ′) = lit∧ literal is bound by outer quantifier
¬bψ if type(ψ ′) = lit∧ literal is bound by inner quantifier

Figure 1: Definition of the abstraction for quantifier block ∃X .

4 Certification

Certification is an essential component of QBF solving. Certification amounts to extracting witnessing
functions from a QBF, either Skolem functions for true QBFs or Herbrand functions for false QBFs. Not
only does it allow to verify the solver result, but the resulting functions can also be used in the context
of the application. The main result of this section is a proof format for our abstraction algorithm and an
efficient algorithm to transform proof traces into Boolean functions.

Proof Format. To extract a witness from a run of ABSTRACTION-QBF, we need to remember situations
and reactions, represented by assignments to T and X , that were satisfiable for the respective quantifier.
Hence, the proof P consists of a sequence of pairs 〈βT ,αX〉 ∈ (A⊥(T)×A (X)) and these pairs can
be obtained from the algorithm by the result βTX of the query to the dual abstraction θ X in line 16. As
an immediate consequence, the number of pairs in the proof trace is linear in the number of iterations
of the algorithm. We define a function CX : A⊥(T)→B(V) which, for a given quantifier QX , maps
an assignment βT to a Boolean formula over variables V bound by outer quantifiers (with respect to X).
Intuitively, CX(βT) describes those assignments that lead to βT in the abstraction of quantifier QX .

Function Extraction. Prior to the function extraction, we filter out those pairs from the proof P
that correspond to the variables that are dependencies and do not describe a function, i.e., universal
variables for true QBFs and existential variables for false QBFs. The remaining proof consists of pairs
〈βT ,αX〉 where CX(βT) is a formula that represents the situation where the response αX is correct. Let
〈β 1

T ,α
1
X〉 . . .〈β n

T ,α
n
X〉 be the pairs corresponding to quantifier QX and let x ∈ X be some variable, the

8 Solving QBF by Abstraction

function fx : A (dep(x))→ B is defined as

fx ≡
n∨

i=1

(
(α i

X(x) = 1)∧CX(β
i
T)∧

∧
j<i

¬CX(β
j

T)

)
(1)

This construction is similar to previous extraction algorithms, including [2, 32]. The definition of CX

allows that fx may depend on variables in outer quantifiers corresponding to functions instead of depen-
dencies. By replacing those variables with their extracted functions, one can make sure that fx depends
only on dep(x). The size of fx, measured in terms of distinct subformulas, is linear in the number of pairs
and, hence, linear in the size of the proof.

Theorem 2. Given a QBF Φ and proof trace P , the runtime of the function extraction algorithm is in
O(|P|). The size of the resulting functions is linear in the size of P .

Certification. A certificate is a representation of all functions that, combined, witness the result of the
QBF. A certificate is correct, if two conditions are satisfied: the certificate is (1) functionally correct
and (2) well-formed. Functional correctness can be checked by a propositional SAT query to ¬ϕ (re-
spectively ϕ for false QBFs) where every occurrence of a function variable y is replaced by the function
fy. The unsatisfiability of this query witnesses functional correctness. The well-formedness criterion
concerns the representation of the certificate, usually as a circuit, and requires that the representation of a
function depends only on its dependencies. One can further differentiate syntactical and semantical well-
formedness. A certificate is syntactically ill-formed if a non-dependency is reachable from the output
of a function. A certificate is semantically ill-formed if a valuation change of a set of non-dependencies
changes the valuation of a function. Our function extraction guarantees syntactical well-formedness and
therefore any further circuit simplification guarantees at least semantical well-formedness.

Example 4. Consider again our example Φex = ∀x.∃y.
ψ1︷ ︸︸ ︷

(x∨ (x∧ y)︸ ︷︷ ︸
ψ2

). It holds that C{y}({t1 7→ 1}) = x

and C{y}({t2 7→ 1}) = x, because setting x to true satisfies ψ1 and setting it to false does not falsify ψ2.
The proof trace for Φex is 〈{t2 7→ 1},{y 7→ 1}〉 (see Example 3) and the resulting Skolem function is
fy(x)≡ C{y}({t2 7→ 1})≡ x. To verify fy, we check ¬Φex[fy] = ∃x.(x∧ (x∨ x)) for unsatisfiability.

5 Correctness

In the following, we formalize properties of the abstraction and prove the algorithm correct. To relate
variable assignments and assignments of T variables, we use the function CX which is defined in the
previous section. CX(βT) is a propositional formula over the outer variables V (with respect to X)
that describes the assignments leading to βT in the abstraction of quantifier QX . An assignment αV

is compatible with a partial assignment βTX , if it satisfies CX(βTX). Then, we write αV ≺ βTX for short.
The proof of Theorem 1 is done by induction on the structure of the quantifier prefix. To prove

the base case of the induction, Lemma 1.2 states that a satisfiable result in the innermost quantifier
corresponds to satisfaction and falsification of the propositional formula for the existential and universal
player, respectively (see line 4 of Algorithm 1). Further, Lemma 1.3 states the correctness of early
termination, i.e., if the initial abstraction returns unsatisfiable, the propositional formula is unsatisfiable
under the current assignment (dual for universal player).

Lemma 1. The abstraction has the following properties:

J. Hecking-Harbusch and L. Tentrup 9

1. For a quantifier alternation QX .QY , the set of outer B literals BX matches the set of inner T
literals TY , i.e., {ψ | bψ ∈ BX}= {ψ | tψ ∈ TY}.

2. If θX is satisfiable under assumptions αTX where X is the innermost quantifier, then for all assign-
ments α with α ≺ αTX , there is an assignment α∗ with α v α∗ such that Φ[α∗] is true (Q = ∃),
respectively false (Q = ∀).

3. If θX is unsatisfiable under assumptions βTX , then for all assignments α with α ≺ βTX it holds that
Φ[α] is false if Q = ∃, respectively true if Q = ∀ (dual for θ X).

Proof. 1. Holds by definition of TX and BX (Section 3).

2. The B variables at the innermost level correspond to the auxiliary variables in the encoding due to
Plaisted and Greenbaum [30]. Further, all outer quantified variables are replaced by T variables.
Both properties together show that the claim holds.

3. For the innermost abstraction, this claim holds by the same argument as in (2). For the other ab-
stractions, note that the formula θX is weaker than the Plaisted-Greenbaum encoding: the encoding
encψ(ψ

′) of a subformula ψ only takes other subformulas (type(ψ ′) 6= lit) into account if ψ ′ is not
influenced by a variable bound by an inner quantifier.

We now have all tools available to prove Theorem 1. The first two invariants state that Lemma 1.3
holds during the execution of the algorithm, that is, also after the refinement steps. The last two invariants
connect variable assignments to the result of the recursive call of ABSTRACTION-QBF-REC.

Proof of Theorem 1. ABSTRACTION-QBF-REC maintains the following invariants that witness the cor-
rectness of ABSTRACTION-QBF.

1. If θX is unsatisfiable under assumptions βTX , then for all assignments α with α ≺ βTX it holds that
Φ[α] is false if Q = ∃, respectively true if Q = ∀.

2. If θ X is unsatisfiable under assumptions βTX , then for all assignments α with α ≺ βTX it holds that
Φ[α] is true if Q = ∃, respectively false if Q = ∀.

3. If ABSTRACTION-QBF-REC returns 〈SAT,βTX 〉, then for all α with α ≺ βTX it holds that Φ[α] is
true.

4. If ABSTRACTION-QBF-REC returns 〈UNSAT,βTX 〉, then for all α with α ≺ βTX it holds that Φ[α]
is false.

Claim (1) and (2) hold initially by Lemma 1.3.
Base case. ABSTRACTION-QBF-REC(∃X .ϕ,αTX) where ϕ is propositional (case ∀ is dual). Assume

SAT(θX ,αTX) is unsatisfiable (line 2) with failed assumptions βTX . Then by (1) for all assignments α with
α ≺ βTX , Φ[α] is false, proving (4). Assume SAT(θX ,αTX) is satisfiable (line 2), then by Lemma 1.2 for
all α∗ ≺ αTX , there is an assignment α with α v α∗ such that Φ[α] is true. Together with Lemma 2 this
proves (3).

Induction step. ABSTRACTION-QBF-REC(∃X .∀Y . . .QXn.ϕ,αTX) (case ∀ is dual). Assume that
SAT(θX ,αTX) is unsatisfiable (line 2) with failed assumptions βTX . Then by (1) for all assignments α∗

with α∗ ≺ βTX , Φ[α∗] is false, proving (4). Assume SAT(θX ,αTX) is satisfiable (line 2). The candidate
αBX is translated into an assignment αTY (Lemma 1.1). The following recursive call (line 6) returns either
SAT or UNSAT. If the result is 〈SAT,βTY 〉, then by IH and claim (3), for all α∗ with α∗ ≺ βTY it holds
that Φ[α∗] is true. Excluding βTY from θ X (line 8) thus preserves invariant (2). Using invariant (2) and
Lemma 2, this proves (3) when returning from line 9. If the result is 〈UNSAT,βTY 〉, then by IH and

10 Solving QBF by Abstraction

Table 1: This table shows the number of solved instances within 10 minutes.
(a) QBFEVAL’18

Solver Total Sat Unsat Unique

QUABS 181 82 99 1
CQESTO 160 75 85 1
GHOSTQ 157 69 88 0
QFUN 139 74 65 5
QUTE 116 42 74 0

(b) Petri Game Benchmarks

Solver Total Sat Unsat Unique

QUABS 195 123 72 14
CQESTO 189 127 62 11
QFUN 141 90 51 0
GHOSTQ 139 85 54 0
QUTE 100 64 36 0

claim (4), for all α∗ with α∗ ≺ βTY it holds that Φ[α] is false. Excluding βTY from θX (line 10) preserves
invariant (1). Completeness (the while loop cannot execute infinitely often) follows from the fact that
there are only finitely many different blocking clauses.

Lemma 2. Let θX and let αTX be given. If αX is a satisfying assignment of θX [αTX], then SAT(θ X ,αX t
αTX) returns UNSAT(βTX) and for all α∗ with β TX

v α∗, θX [α
∗tαX] is true.

Proof. Note that by definition of θX and θ X , an assignment αTX in θX corresponds to an assignment αTX

in the dual abstraction θ X , i.e, αTX and αTX represent the same variable assignments (outer variables
w.r.t. QX) in θX and θ X , respectively. As αX is a satisfying assignment for θX [αTX], θ X [αTX tαX] is
unsatisfiable. By definition of failed assumptions, βTX v αTX and SAT(θ X ,βTX) returns UNSAT, i.e.,
there is no α with βTX v α that satisfies θ X , hence, all α∗ with β TX

v α∗ satisfy θX [αX].

6 Evaluation

We implemented Algorithm 1 and its optimizations in a solver called QUABS2 (Quantified Abstraction
Solver) that takes QBFs in the standard format QCIR. As the underlying SAT solver, we use Crypto-
MiniSat [33]. We compare QUABS against the publicly available QBF solvers that support the QCIR
format, namely GHOSTQ [25], QFUN [21], CQESTO [20], and QUTE [28]. For our experiments, we
used a machine with a 3.6GHz quad-core Intel Xeon processor and 32GB of memory. The timeout and
memout were set to 10 minutes and 8GB, respectively.

QUABS has been independently evaluated in the annual QBF competition, called QBFEVAL and the
results of the latest evaluation are given in Table 1(a). Notably, QUABS solved most instances, 21 more
than the second best solver. The certification capabilities of QUABS are used in the reactive synthesis
tool BoSy [6], which won the synthesis track in the reactive synthesis competition (SYNTCOMP) 2016
and 2017 [17, 19].

Certification. We implemented the certification approach described in Section 4, but instead of gen-
erating proof traces, we build the certificates (represented by And-Inverter Graphs) within the solving
loop. This enables building Skolem and Herbrand functions in parallel during solving and minimizes the
certification overhead. In the verification step, we use CryptoMiniSat to solve the functional correctness
query. The size of a certificate is measured as the number of AND gates.

We evaluate the certification capabilities of QuAbS on synthesis benchmark sets that are designed to
take advantage of the structural problem definition. The petri-games benchmark set uses the bounded

2Source code available at https://github.com/ltentrup/quabs

https://github.com/ltentrup/quabs

J. Hecking-Harbusch and L. Tentrup 11

Table 2: Result of the certification run with timeout of 10 minutes for solving and verification, respec-
tively. The average size of the certificate and the accumulated time spend on solving and verification are
restricted to verified instances.

Benchmark set #solved #verified avg. size solving [sec.] verification [sec.]

petri-games 136 120 90,699 5389 3508
safety-synt 160 144 41,125 153 2569
bounded-synthesis 339 339 11,390 4552 1457
tree-models 186 179 49,456 4032 9528

synthesis approach for Petri games [8, 10]. The safety-synt benchmark set was created from the safety
benchmarks of SYNTCOMP 2014 [18]. The bounded-synthesis benchmark set was created from the
tool BoSy [6] using the QBF encoding of the reactive synthesis problem using LTL specifications [5].
The tree-models benchmark set was created from LTL benchmarks of SYNTCOMP 2016 [19]. All those
benchmarks have in common that it is possible to directly build implementations from satisfiable queries.

The overall effect of the certification approach on the runtimes is negligible (less than 1% increase)
which we consider as achieving our goal that the combination of solving and certification can be imple-
mented efficiently. Table 2 shows the results of the certification run. The number of verified instances
is lower than the number of solved ones because the verifier exceeded the time- and memory-limit on
some instances that could be solved within the limits. To further reduce the size of certificates, one can
employ circuit minimization techniques. Especially compared to CNF certification, these results are very
promising and could boost the use of QBF in synthesis applications.

6.1 Case Study: Petri Games

In this case study, we outline how the certification capabilities of QUABS can be used for the analysis
of unrealizable Petri games and for the construction of implementations from winning strategies. Petri
games [9,10] represent the synthesis problem for distributed, asynchronous systems with causal memory.
The QBF encoding [7,8] of those games is particularly challenging for CNF solvers: hardly any instance
can be solved, even with enabled preprocessing and independent of the used solver, ruling out existing
CNF certification approaches. In contrast, non-CNF solvers scale much better as shown in Table 1(b),
with QUABS performing best overall.

Distributed Synthesis of Asynchronous Systems. The manual implementation of programs is a tedious
and error-prone task. The automatic synthesis of a correct implementation for a given specification
can help the developer to focus on what requirements to fulfill instead of how to fulfill them. The
intricate communication of asynchronous processes in distributed systems would greatly benefit from
the automatic synthesis of correct implementations for each process. Petri games define the synthesis
problem of asynchronous, distributed systems with causal memory. The system is distributed in the
sense that its consists of local processes with individual strategies without global controller. The system
is asynchronous in the sense that local processes advance at individual pace and no global clock exists
at which processes produce outputs. Local strategies at a process can utilize causal memory which only
allows processes to exchange information upon synchronization. Petri games are based on an underlying
Petri net which makes it possible to utilize the unfolding as representation of causal memory. The
simplest winning condition for Petri games are bad places which the system has to avoid while the
environment tries to reach such places.

12 Solving QBF by Abstraction

e

el er
s

sl sr

bad

tel ter

tsl tsr

tbad1 tbad2

(a) A Petri game where the system
should not mimic the environment’s
behavior but no communication takes
place prior to the system’s decisions.

e

el er
s

sl sr

bad

tel ter

tsl tsr

tbad1 tbad2

(b) The environment forwards its de-
cision to the system and afterwards the
system should not mimic this decision.

e

sl sr′

el er
s s′

bad

tel ter

tsl t ′sr

tbad1 t ′bad2

(c) A winning strategy where the sys-
tem does not mimic the environment
such that transitions to the bad place
(dashed in blue) become unreachable.

Figure 2: An example workflow of designing a Petri game is outlined. QUABS produces counterex-
amples to any strategy in the left Petri game. From there, it becomes clear that there is no information
exchange between the system and the environment. Therefore, the design of the Petri game is changed
to the one in the middle where the environment leaks its decision to the system. For this game, we can
extract the winning strategy on the right using QUABS which avoids the bad place as the system answers
with opposite decisions to the decisions of the environment.

Consider the example Petri game from Fig. 2(a) where the system and the environment can both
decide between left and right transitions and the bad place can only be avoided by opposite decisions.
Petri games are an extension of Petri nets where the places are distributed to either belong to the system
(gray places) or to the environment (white places). The tokens flowing through the underlying net now
represent players depending on the type of place they are residing in: strategies of system players can
restrict which outgoing transitions are allowed to fire whereas environment players decide the flow of
tokens in the net. In the game of Fig. 2(a), the choice of system and environment are independent,
i.e., the system player has no strategy to avoid the bad place: choosing either the left (tsl) or right (tsr)
transition, the environment will do the same, leading the game to the bad place.

Strategy Construction and Strategy Refutation. As the Petri game in Fig. 2(a) has no winning strat-
egy, the QBF encoding [7] is unsatisfiable and QUABS returns a certificate for the universal player. This
certificate represents a flow of tokens leading to the bad state for every system strategy. When the system
only decides to enable tsl and to not enable tsr then one counterexample moves the environment token
from e to el, the system token from s to sl, and afterwards fires the transition to reach the bad place. An
analog counterexample is returned when the system enables tsr and does not enable tsl. When the system
enables neither transition then the counterexample moves the environment token from e to el and then
reaches a deadlock without termination. This situation is forbidden for strategies as otherwise the win-

J. Hecking-Harbusch and L. Tentrup 13

ning condition of avoiding bad places would be a trivial. When the system activates both transitions then
already the initial marking constitutes a counterexample as the system’s decision is non-deterministic.

From these counterexamples, we can derive that we have to introduce communication between the
system and the environment. The easiest way to do so is given in Fig. 2(b) where the system player is
created with the decision of the environment and then can only afterwards react to it. The different causal
memory of the system player in s depending on whether tel or ter was fired results in the unfolding of s
(indicated by ′), as depicted in Fig. 2(c). Then, a winning strategy exists where the system player makes
a different decision to the previous environment decision. The satisfying assignment of QUABS in the
QBF encoding of this problem allows to directly remove not activated transitions (tsr and t ′sl) and their
resulting unreachable parts of the game, making all transitions to the bad place unreachable (indicated as
dashed blue lines in Fig. 2(c)).

7 Related Work

Other QBF solving techniques that use structural information are conceptually very different, such as
DPLL like [4, 14, 25, 28] and expansion [21, 22, 26, 29]. We extend work on QBF solving techniques
that communicate the satisfaction of clauses through a recursive refinement algorithm [23, 32, 35] that
were limited to conjunctive normal form. Further, the maintenance of a dual abstraction for optimiza-
tion is new in this context and the certification approach is different and, as shown in the evaluation,
much more efficient than the one presented for CAQE [32]. The structure of independent quantifiers
in non-prenex formulas can be used for parallelization during solving for this kind of algorithms [34].
CQESTO [20] is a recently introduced circuit solver based on a similar algorithm as presented in this
paper. The algorithm, however, differs in the way abstractions are built: we produce a “static” abstraction
upfront and learn subformula valuations during solving, while CQESTO evaluates the circuit under the
current variable assignments and re-encodes the resulting partial circuit using the Tseitin transformation
in each refinement step. To our knowledge, CQESTO cannot produce certificates. Certification has been
considered in the context of CNF solving techniques [1,16,27,32] but we are not aware of another work
considering certification in the more general setting. The duality of circuit based QBF solving has been
used to enhance search based CNF solvers [13, 15] but this is different to our use of a dual abstraction
during solving.

8 Conclusion

We presented a QBF solving algorithm that exploits the structure in the propositional formula. Fur-
ther, we defined a certification format suitable for this algorithm and described an efficient algorithm to
extract solution witnesses from true, respectively false, QBFs. We have implemented the solving and cer-
tification techniques in a tool called QUABS which won the QBF competition QBFEVAL’18. We have
achieved our goal of the certification approach having nearly no overhead over pure solving approaches.
For the case study of Petri games, we outlined how the certification techniques of QUABS allow the
analysis of unrealizable Petri games and the construction of implementations for realizable Petri games.

Acknowledgments

We thank Mikolás Janota for reporting a problem with an earlier formulation of the abstraction and the
anonymous reviewers for their helpful comments.

14 Solving QBF by Abstraction

References

[1] Valeriy Balabanov & Jie-Hong R. Jiang (2012): Unified QBF certification and its applications. Formal
Methods in System Design 41(1), pp. 45–65, doi:10.1007/s10703-012-0152-6.

[2] Olaf Beyersdorff, Ilario Bonacina & Leroy Chew (2016): Lower Bounds: From Circuits to QBF Proof
Systems. In: Proceedings of ITCS, ACM, pp. 249–260, doi:10.1145/2840728.2840740.

[3] Roderick Bloem, Robert Könighofer & Martina Seidl (2014): SAT-Based Synthesis Methods for Safety Specs.
In: Proceedings of VMCAI, LNCS 8318, Springer, pp. 1–20, doi:10.1007/978-3-642-54013-4 1.

[4] Uwe Egly, Martina Seidl & Stefan Woltran (2009): A solver for QBFs in negation normal form. Constraints
14(1), pp. 38–79, doi:10.1007/s10601-008-9055-y.

[5] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe & Leander Tentrup (2017): Encodings of Bounded
Synthesis. In: Proceedings of TACAS, LNCS 10205, pp. 354–370, doi:10.1007/978-3-662-54577-5 20.

[6] Peter Faymonville, Bernd Finkbeiner & Leander Tentrup (2017): BoSy: An Experimentation Framework for
Bounded Synthesis. In: Proceedings of CAV, LNCS 10427, Springer, pp. 325–332, doi:10.1007/978-3-319-
63390-9 17.

[7] Bernd Finkbeiner (2015): Bounded Synthesis for Petri Games. In: Proceedings of Correct System Design,
LNCS 9360, Springer, pp. 223–237, doi:10.1007/978-3-319-23506-6 15.

[8] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch & Ernst-Rüdiger Olderog (2017): Sym-
bolic vs. Bounded Synthesis for Petri Games. In: Proceedings of SYNT@CAV, EPTCS 260, pp. 23–43,
doi:10.4204/EPTCS.260.5.

[9] Bernd Finkbeiner, Manuel Gieseking & Ernst-Rüdiger Olderog (2015): Adam: Causality-Based Synthesis of
Distributed Systems. In: Proceedings of CAV, LNCS 9206, Springer, pp. 433–439, doi:10.1007/978-3-319-
21690-4 25.

[10] Bernd Finkbeiner & Ernst-Rüdiger Olderog (2017): Petri games: Synthesis of distributed systems with causal
memory. Inf. Comput. 253, pp. 181–203, doi:10.1016/j.ic.2016.07.006.

[11] Bernd Finkbeiner & Leander Tentrup (2014): Detecting Unrealizable Specifications of Distributed Systems.
In: Proceedings of TACAS, LNCS 8413, Springer, pp. 78–92, doi:10.1007/978-3-642-54862-8 6.

[12] Bernd Finkbeiner & Leander Tentrup (2015): Detecting Unrealizability of Distributed Fault-tolerant Systems.
Logical Methods in Computer Science 11(3), doi:10.2168/LMCS-11(3:12)2015.

[13] Alexandra Goultiaeva & Fahiem Bacchus (2010): Exploiting QBF Duality on a Circuit Representation. In:
Proceedings of AAAI, AAAI Press.

[14] Alexandra Goultiaeva, Vicki Iverson & Fahiem Bacchus (2009): Beyond CNF: A Circuit-Based QBF Solver.
In: Proceedings of SAT, LNCS 5584, Springer, pp. 412–426, doi:10.1007/978-3-642-02777-2 38.

[15] Alexandra Goultiaeva, Martina Seidl & Armin Biere (2013): Bridging the gap between dual propagation and
CNF-based QBF solving. In: Proceedings of DATE, IEEE, pp. 811–814, doi:10.7873/DATE.2013.172.

[16] Marijn Heule, Martina Seidl & Armin Biere (2014): Efficient extraction of Skolem functions from QRAT
proofs. In: Proceedings of FMCAD, IEEE, pp. 107–114, doi:10.1109/FMCAD.2014.6987602.

[17] Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Maximilien Colange, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Thibaud Michaud, Guillermo A. Pérez, Jean-François
Raskin, Ocan Sankur & Leander Tentrup (2017): The 4th Reactive Synthesis Competition (SYNTCOMP
2017): Benchmarks, Participants & Results. In: Proceedings of SYNT@CAV, EPTCS 260, pp. 116–143,
doi:10.4204/EPTCS.260.10.

[18] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell, Robert Könighofer,
Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup
& Adam Walker (2017): The first reactive synthesis competition (SYNTCOMP 2014). STTT 19(3), pp.
367–390, doi:10.1007/s10009-016-0416-3.

http://dx.doi.org/10.1007/s10703-012-0152-6
http://dx.doi.org/10.1145/2840728.2840740
http://dx.doi.org/10.1007/978-3-642-54013-4_1
http://dx.doi.org/10.1007/s10601-008-9055-y
http://dx.doi.org/10.1007/978-3-662-54577-5_20
http://dx.doi.org/10.1007/978-3-319-63390-9_17
http://dx.doi.org/10.1007/978-3-319-63390-9_17
http://dx.doi.org/10.1007/978-3-319-23506-6_15
http://dx.doi.org/10.4204/EPTCS.260.5
http://dx.doi.org/10.1007/978-3-319-21690-4_25
http://dx.doi.org/10.1007/978-3-319-21690-4_25
http://dx.doi.org/10.1016/j.ic.2016.07.006
http://dx.doi.org/10.1007/978-3-642-54862-8_6
http://dx.doi.org/10.2168/LMCS-11(3:12)2015
http://dx.doi.org/10.1007/978-3-642-02777-2_38
http://dx.doi.org/10.7873/DATE.2013.172
http://dx.doi.org/10.1109/FMCAD.2014.6987602
http://dx.doi.org/10.4204/EPTCS.260.10
http://dx.doi.org/10.1007/s10009-016-0416-3

J. Hecking-Harbusch and L. Tentrup 15

[19] Swen Jacobs, Roderick Bloem, Romain Brenguier, Ayrat Khalimov, Felix Klein, Robert Könighofer, Jens
Kreber, Alexander Legg, Nina Narodytska, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan
Sankur, Martina Seidl, Leander Tentrup & Adam Walker (2016): The 3rd Reactive Synthesis Competition
(SYNTCOMP 2016): Benchmarks, Participants & Results. In: Proceedings of SYNT@CAV, EPTCS 229,
pp. 149–177, doi:10.4204/EPTCS.229.12.

[20] Mikolás Janota (2018): Circuit-Based Search Space Pruning in QBF. In: Proceedings of SAT, LNCS 10929,
Springer, pp. 187–198, doi:10.1007/978-3-319-94144-8 12.

[21] Mikolás Janota (2018): Towards Generalization in QBF Solving via Machine Learning. In: Proceedings of
AAAI, AAAI Press.

[22] Mikolás Janota, William Klieber, Joao Marques-Silva & Edmund M. Clarke (2016): Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, pp. 1–25, doi:10.1016/j.artint.2016.01.004.

[23] Mikolás Janota & Joao Marques-Silva (2015): Solving QBF by Clause Selection. In: Proceedings of IJCAI,
AAAI Press, pp. 325–331.

[24] Mikolás Janota & Joao Marques-Silva (2017): An Achilles’ Heel of Term-Resolution. In: Proceedings of
EPIA, LNCS 10423, Springer, pp. 670–680, doi:10.1007/978-3-319-65340-2 55.

[25] William Klieber, Samir Sapra, Sicun Gao & Edmund M. Clarke (2010): A Non-prenex, Non-clausal
QBF Solver with Game-State Learning. In: Proceedings of SAT, LNCS 6175, Springer, pp. 128–142,
doi:10.1007/978-3-642-14186-7 12.

[26] Florian Lonsing & Armin Biere (2008): Nenofex: Expanding NNF for QBF Solving. In: Proceedings of SAT,
LNCS 4996, Springer, pp. 196–210, doi:10.1007/978-3-540-79719-7 19.

[27] Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl & Armin Biere (2012): Resolution-
Based Certificate Extraction for QBF. In: Proceedings of SAT, LNCS 7317, Springer, pp. 430–435,
doi:10.1007/978-3-642-31612-8 33.

[28] Tomás Peitl, Friedrich Slivovsky & Stefan Szeider (2017): Dependency Learning for QBF. In: Proceedings
of SAT, LNCS 10491, Springer, pp. 298–313, doi:10.1007/978-3-319-66263-3 19.

[29] Florian Pigorsch & Christoph Scholl (2009): Exploiting structure in an AIG based QBF solver. In: Proceed-
ings of DATE, IEEE, pp. 1596–1601, doi:10.1109/DATE.2009.5090919.

[30] David A. Plaisted & Steven Greenbaum (1986): A Structure-Preserving Clause Form Translation. J. Symb.
Comput. 2(3), pp. 293–304, doi:10.1016/S0747-7171(86)80028-1.

[31] Luca Pulina (2016): The Ninth QBF Solvers Evaluation - Preliminary Report. In: Proceedings of QBF@SAT,
CEUR Workshop Proceedings 1719, CEUR-WS.org, pp. 1–13.

[32] Markus N. Rabe & Leander Tentrup (2015): CAQE: A Certifying QBF Solver. In: Proceedings of FMCAD,
IEEE, pp. 136–143.

[33] Mate Soos, Karsten Nohl & Claude Castelluccia (2009): Extending SAT Solvers to Cryptographic Problems.
In: Proceedings of SAT, LNCS 5584, Springer, pp. 244–257, doi:10.1007/978-3-642-02777-2 24.

[34] Leander Tentrup (2016): Non-prenex QBF Solving Using Abstraction. In: Proceedings of SAT, LNCS 9710,
Springer, pp. 393–401, doi:10.1007/978-3-319-40970-2 24.

[35] Leander Tentrup (2017): On Expansion and Resolution in CEGAR Based QBF Solving. In: Proceedings of
CAV, LNCS 10427, Springer, pp. 475–494, doi:10.1007/978-3-319-63390-9 25.

[36] Kuan-Hua Tu, Tzu-Chien Hsu & Jie-Hong R. Jiang (2015): QELL: QBF Reasoning with Extended Clause
Learning and Levelized SAT Solving. In: Proceedings of SAT, LNCS 9340, Springer, pp. 343–359,
doi:10.1007/978-3-319-24318-4 25.

http://dx.doi.org/10.4204/EPTCS.229.12
http://dx.doi.org/10.1007/978-3-319-94144-8_12
http://dx.doi.org/10.1016/j.artint.2016.01.004
http://dx.doi.org/10.1007/978-3-319-65340-2_55
http://dx.doi.org/10.1007/978-3-642-14186-7_12
http://dx.doi.org/10.1007/978-3-540-79719-7_19
http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://dx.doi.org/10.1007/978-3-319-66263-3_19
http://dx.doi.org/10.1109/DATE.2009.5090919
http://dx.doi.org/10.1016/S0747-7171(86)80028-1
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-319-40970-2_24
http://dx.doi.org/10.1007/978-3-319-63390-9_25
http://dx.doi.org/10.1007/978-3-319-24318-4_25

	Introduction
	Quantified Boolean Formulas
	Abstraction-based Algorithm
	Certification
	Correctness
	Evaluation
	Case Study: Petri Games

	Related Work
	Conclusion

