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Abstract

Ensuring secure information flow in privacy critical systems is an important aspect
in system design. An example of such an information flow policy is observational
determinism, which ensures that two traces with the same observable input have
the same observable output. The temporal logic HyperLTL is designed to specify
such properties by extending LTL with explicit trace quantification. Therefore, a
HyperLTL formula defines a set of sets of traces instead of a single set of traces.
Current work focuses on monitoring and model checking of a HyperLTL formula
on a given system. In this work, we study the synthesis problem of HyperLTL. Syn-
thesis is to directly generate a system from a given specification with no need for
manual implementation, monitoring or model checking. In general, the synthesis
problem of HyperLTL is undecidable. In this thesis, we show that the synthesis
problem of the existential fragment (using solely existential quantifiers) is equiva-
lent to the satisfiability problem of HyperLTL and is, therefore, fully decidable. We
also give a decidable sub-fragment of the universal fragment as the whole univer-
sal fragment turns out to be undecidable. Further, we give a undecidability proof
for universal formulas in general. Furthermore, we proof the undecidability of the
synthesis problem for formulas with a quantifier alternation from universal to ex-
istential by a reduction from Post’s Correspondence Problem (PCP).

The results of this thesis have been included in the manuscript "Synthesizing
Reactive Systems from Hyperproperties" with the co-authors Bernd Finkbeiner,
Christopher Hahn, Marvin Stenger and Leander Tentrup. The manuscript is cur-
rently under review for publication.
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Chapter 1

Introduction

There have been many security critical vulnerabilities such as Hartbleed [1], Spec-
tre [13] or Meltdown [14] to just name a few. They are all bugs that gave access to a
private resource enabling an information flow of sensitive data to the attacker. In
information flow control, we would like to have no information flow from private
data into the public domain. As an example information flow property, observa-
tional determinism [18, 20] specifies that the public output should only depend on
the public input. Information flow properties are so called hyperproperties [6]. In
contrast to usual trace properties, hyperproperties reason about sets of traces in-
stead of single traces in isolation. This enables to reason about relations between
two or more traces. Being able to relate multiple traces enables one to say "on two
execution traces with the same public input, we want to have the same public out-
put".

HyperLTL [7] is a temporal logic that formalizes these Hyperproperties by ex-
tending Linear-Time Temporal Logic (LTL) [15], which is only able to define trace
properties. With universal (∀) and existential (∃) quantifiers, the logic is able to re-
fer to either all traces in a trace set or to enforce a property to hold on at least one
trace in the set. For example, observational determinism could be described as

∀π, π′. (Oπ ⇔ Oπ′) W (Iπ < Iπ′)

Here, we pick to two arbitrary traces π and π’ and enforce that the outputs (O) have
to be the same on both traces (weak-)until the inputs differ on the traces. So if the
inputs are the same at all time, the outputs have to be the same at all time.

Synthesis is a technique to generate a system that is automatically correct ac-
cording to a specification. This avoids human programming errors and speeds up
the system design. Much work has already been done synthesizing hardware cir-
cuits because they are relatively simple in contrast to higher level programming
languages. Due to the high interest, the annual Syntcomp [2], a competition on
synthesis tools, established in 2014. However, the current focus is on synthesizing
trace properties. This has the drawback that the produced systems cannot ensure
information flow properties. As these systems are automatically constructed, it is
difficult to change anything afterwards while preserving functionality. Especially
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information flow properties are hard to implement. With synthesis from hyper-
properties, a synthesized system could be designed to be correct and secure by
construction.

The initially mentioned Meltdown is an example where information flow con-
trol - possibly in combination with synthesis - could have prevented a critical se-
curity vulnerability. Meltdown is a vulnerability in the processors of (almost) all
computers. An essential part of that vulnerability is that a process can measure
the time a request to the cache of the system takes to be answered. This request
is answered fast if the data was already in the cache. Therefore, the process could
measure whether an other process used the data recently. This is not intended and
facilitates a whole series of attacks.

Many benchmark tests of the Syntcomp specify variants of an arbiter circuit. An
arbiter is a circuit that manages access of different processes to a shared resource
while ensuring mutual exclusion. It gets n request signals of different processes as
input and outputs n grants stating whether the arbiter gives the access to process
i. The arbiter has to take care to give access to at most one processor at a time and
to eventually give a grant to each process that sent a request.

In such an arbiter we could have information flow, too. A process could gather
information about the other requests by just looking at its own grant. The problem
is that such information leakage cannot be prohibited by an LTL specification. We
therefore need aHyperproperty. Using observational determinism, we can enforce
that the grant signal of a process depends only on its own request signal. With this
specification, we prevent information leakage of the other requests.

We can divide HyperLTL into fragments by analyzing the used quantifiers. In
HyperLTL quantifiers are only in the quantifier prefix allowed, i.e., no quantifiers
occur after a temporal or propositional operator. We denote with the fragments
∀* and ∃* the class of formulas in which we use solely the respective quantifier.
We also expand this notation by arbitrary combinations, e.g., ∀*∃* means that the
quantifier prefix of a formula inside this fragment contains first only ∀’s and then
only ∃’s.

In this thesis, we determine fragments of HyperLTL for which the synthesis
problem is decidable. We especially have a look at the ∃*-fragment and the ∀* frag-
ment. The ∃* fragment turns out to be fully decidable and we give a sub-fragment
of ∀* that is decidable, too. For the ∃* fragment, we show that the synthesis prob-
lem is equivalent to the satisfiability problem up to determinism. Satisfiability is
already shown to be decidable for the ∃* fragment as well as the ∃*∀* fragment [9].
Note that we need the ∀ quantifiers to specify the determinism.

The distributed synthesis problem for LTL [10] is realizing an LTL specification
in a restricted architecture. Figure 1.1 shows such an architecture that restricts the
output c to depend only on a and d on b. This property can again be specified with
observational determinism in the ∀* fragment.

It turns out that there are some architectures, e.g., the one in Figure 1.1, inwhich
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Figure 1.1: An architecture of two processes that specifies process p1 to produce
c from a and p2 to produce d from b. env is a special environment process that
provides the input variables.

the LTL synthesis problem is not decidable. As we can encode these architectures
in the ∀* fragment, this fragment is in undecidable in general. In the distributed
synthesis setting, there are architectures that are still decidable. These architectures
are, in someway, linear1. They are as expressive as the fully decidable Coordination
Logic [11]. In this thesis, we introduce an interesting sub-fragment of ∀* that can
be reduced to Coordination logic and is, therefore, decidable.

Finally, we provide a undecidability proof of ∀*∃* (first only universal and then
only existential quantifiers). We reduce Post’s Correspondence Problem (PCP) to
a HyperLTL formula with one ∀ quantifier followed by one ∃ quantifier. As PCP
is undecidable, the synthesis problem from HyperLTL formulas with at least one
quantifier alternation from ∀ to ∃ is undecidable.

We structure the thesis as follows. In Chapter 2, the required preliminaries are
introduced. In Chapter 3, we analyze the different fragments. We will start by hav-
ing a look at the ∃* fragment and differentiating between deterministic and nonde-
terministic synthesis and continue with the ∀* fragment. There, we first give a con-
struction to reduce ∀* formulas to ∀1 formulas (only one single ∀ quantifier). That
procedure can be used to reduce the quantifier amount of a HyperLTL formula, if
applicable. We also use it to define the so called CL-fragment of HyperLTL, which
is a fragment that can be reduced to Coordination Logic. In the last section of the
fourth chapter, we proof the undecidability of ∃*∀* formulas. In Chapter 4, we give
a short overview over related work and in Chapter 5, we summarize our results
and present some ideas for future work.

1I.e., they are architectures that contain no information forks [10].





Chapter 2

Preliminaries

Trace properties reason about infinite traces that represent executions of a system.
In model checking, one ensures that all executions, i.e., traces of a system fulfill
the trace property in isolation. In contrast to that, hyperproperties are properties
that reason about sets of traces. Therefore it is able to relate multiple traces to each
other. This increases expressivity enormously.

In the following sections, we give introductions into the logics LTL and Hyper-
LTL that formalize trace properties and, respectively, hyperproperties.

2.1 LTL

LTL [15] is a logic that extends propositional logic with temporal operators
which allows us to reason about traces of atomic propositions. Therefore, LTL de-
fines trace properties. The two main additions are the next-operator©, that refers
to the trace with the first element skipped and the until-operator ϕ U ψ, which
states that formula ϕ holds until ψ holds. From the until-operator, we can derive
some other operators, e.g.,�ϕ, that states thatϕ always holds. With these formulas
we can describe, for example, a request-grant property of an arbiter �(request ⇒
© grant): "every request is answered with a grant in the next step". The syntax is
defined as follows.

Definition 2.1 (LTL Syntax)

ϕ := a | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕ U ϕ | ♦ϕ | �ϕ | ϕ W ϕ

where a ∈ AP is an atomic proposition of the set AP . We can derive the op-
erators finally: ♦ϕ := true U ϕ ("there is a time step in which ϕ holds"), globally:
�ϕ := ¬♦¬ϕ ("ϕ holds always"), and weak-until: ϕ W ψ := (ϕ U ψ)∨�ϕ (like U
with no need to fulfill ϕ at all). The other boolean operators ∧,⇒,⇔ are derived as
usual. The semantics are defined over traces t ∈ (2AP )ω. t[n] denotes the element
at position n while t[n,∞] denotes the trace with the first n elements cut off. We
define |= inductively by
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Definition 2.2 (LTL Semantics)

t |= a ⇔ a ∈ t[0]

t |= ¬ϕ ⇔ t 2 ϕ
t |= ϕ ∨ ψ ⇔ t |= ϕ or t |= ψ

t |=©ϕ ⇔ t[1,∞] |= ϕ

t |= ϕ U ψ ⇔ ∃n ∈ N. t[n,∞] |= ψ and ∀k < n. t[k,∞] |= ϕ

Two formulas ϕ and ψ are called equivalent ϕ ≡ ψ iff for all traces t holds t |= ϕ
iff t |= ψ. ϕ is called satisfiable iff there exists a trace twith t |= ϕ.

2.2 LTL Synthesis

For the synthesis problem, the atomic propositions are divided into input and
output AP = I ∪̇ O. The result of the synthesis problem is a strategy-tree that
maps an input sequence to an output (2I)+ 7→ (2O). Intuitively, this tree represents
the reaction (output) of a system to any possible sequence of inputs. Note that
the strategy-tree maps from non-empty input sequences to an output. The traces
of a strategy-tree t are defined by traces(t) = {(i0 ∪ o0), (i1 ∪ o1), . . . | in ∈ I,
on = t(i0, . . . , in) for all n ∈ N}.

Definition 2.3 (LTL Synthesis)
A strategy-tree t realizes an LTL formula ϕ iff traces(t) |= ϕ

2.3 HyperLTL

HyperLTL [7] extends LTL by a quantifier prefix consisting of universal (∀) and
existential (∃) quantification to refer to multiple traces. Therefore, HyperLTL rea-
sons about sets of traces T ⊆ (2AP )ω instead of single traces and, therefore, defines
hyperproperties. Our running example, observational determinism is a property
that takes advantage of this: ∀π, π′.(oπ ⇔ oπ′) W (iπ < iπ′) states that the outputs
of all traces behave deterministically, i.e., "for all traces the outputs are the same
until the inputs differ". Note that this trivially holds for single traces. Formally, the
syntax is defined as follows.

Definition 2.4 (HyperLTL Syntax)

ϕ := ∀π.ϕ | ∃π.ϕ | φ
φ := aπ | ¬φ | φ ∧ φ | ©φ | φ U φ | ♦φ | �φ | φ W φ
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where a ∈ AP is an atomic proposition and π ∈ V is a trace variable over the
set of trace variables V . The atomic propositions aπ are always assigned to a trace
π. The syntax is defined using an (initially empty) trace assignment A ∈ V → T :

Definition 2.5 (HyperLTL Semantics)

T |=A aπ ⇔ a ∈ A(π)[0]

T |=A ¬ϕ ⇔ T 2A ϕ
T |=A ϕ ∧ ψ ⇔ T |=A ϕ and T |=A ψ

T |=A ©ϕ ⇔ T |=A[1,∞] ϕ

T |=A ϕ U ψ ⇔ ∃n ∈ N. T |=A[n,∞] ψ and ∀k < n. T |=A[k,∞] ϕ

T |=A ∃π. ϕ ⇔ ∃t ∈ T. T |=A[π 7→t] ϕ

T |=A ∀π. ϕ ⇔ ∀t ∈ T. T |=A[π 7→t] ϕ

where A[n,∞](π) := A(π)[n,∞] denotes the assignment where the first n ele-
ments are removed from each trace and A[π 7→ t] denotes the modification of A
where π maps to t and everything else remains unchanged. A trace set T satisfies
a HyperLTL formula ϕ denoted by T |= ϕ iff T |=ε ϕ where ε is the empty assign-
ment. Two formulasϕ andψ are called equivalentϕ ≡ ψ iff for all trace sets T holds
T |= ϕ iff T |= ψ. ϕ is called satisfiable iff there exists a set of strategy-trees T with
T |= ϕ.

2.4 HyperLTL Synthesis

As in LTL synthesis, when discussing the synthesis problem from HyperLTL
the atomic propositions are divided into input and output AP = I ∪̇ O and the
objective is to find a strategy-tree (2I)+ 7→ (2O) that fulfills a given formula. The
definition is the same as in LTL.

Definition 2.6 (HyperLTL Synthesis)
A strategy-tree t realizes a HyperLTL formula ϕ iff traces(t) |= ϕ.

2.4.1 Nondeterministic Synthesis

Note that HyperLTL formulas can enforce nondeterminism. For example, the
formula ∃π, π′. aπ ∧ ¬aπ′ can only be satisfied with sets of at least two traces. Sim-
ilarly, we can enforce formulas that can only be solved with a nondeterministic



8 Preliminaries

strategy. For example, ∃π, π′. �(inπ ⇔ inπ′)∧�(outπ 6= outπ′) can be only realized
by a system that acts differently on two runs with the same input. Such nondeter-
minism can be represented with sets of strategy-trees T . The traces of such a set
are simply the union of all individual trace sets traces(T ) :=

⋃
t∈T traces(t).

Definition 2.7 (Nondeterministic HyperLTL Synthesis)
Anon-empty set of strategy-trees T nondeterministically realizes a HyperLTL formula
ϕ iff traces(T ) |= ϕ.



Chapter 3

HyperLTL Synthesis

It turns out that the synthesis problem from HyperLTL is undecidable in general.
In this chapter, we will have a look on some fragments of HyperLTL and elaborate
whether they are decidable. In particular, we will consider ∃*-formulas that use
only ∃ quantifiers and ∀*-formulas (respectively). The ∃*-fragment turns out to
be fully decidable. A reduction to the HyperLTL satisfiability problem which is
decidable is given. The ∀*-fragment turns out to be partially decidable. We give
the definition of a fragment which correlates with the fully decidable Coordination
Logic [11]. We also prove that the rest of the fragment is not decidable.

The formal definition of the fragments is as follows. The ∀n fragment denotes
all formulas in which the quantifier block consists of exactly n ∀-quantifiers and
∀∗ :=

⋃
n∈N+ ∀n. Analogously for ∃.

3.1 ∃* Fragment

Synthesis from formulas in the ∃* fragment is possible. We divide this section
into the analysis of the deterministic and the nondeterministic synthesis problem.
For the nondeterministic synthesis it holds that a formula is realizable iff it is sat-
isfiable. For the deterministic synthesis problem, we have to add observational
determinism to the formula to achieve this equivalence between satisfiability and
realizability.

3.1.1 (Deterministic) Synthesis from ∃*

In the deterministic case, we have to ensure that the traces of the satisfiability re-
sult do not have different outputs on the same input. That is because we are limited
to a single tree in the deterministic synthesis problem. For example, ∃π, π′.oπ 6= oπ′

is satisfiable but not deterministically realizable with I = ∅, O = o. We enforce this
by simply adding the observational determinismHyperLTL formula to the original
formula.
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Lemma 3.1 Given an ∃* formula ϕ. The formula is realizable iff

ψ := ϕ ∧ ∀π, π′.
∧
o∈O

(oπ ⇔ oπ′) W
∨
i∈I

(iπ < iπ′)

is satisfiable.

Proof

"⇒" Assume ϕ is realizable. Let t be the strategy-tree that realizes ϕ. Hence,
traces(t) |= ϕ holds. It also holds that there are no two traces with differ-
ent output and same input (up to the point of input difference) because it is
only one strategy-tree. So traces(t) |= ψ holds, too. Therefore, ψ is satisfiable.

"⇐" Assume ψ is satisfiable. Let S be a set of traces that satisfies ψ. Construct a
strategy-tree t as follows.

t := in 7→

s[n] ∩O
if for some s ∈ S holds (1): in is a prefix of s|I
with n = |in| − 1

∅ else

Where s|I denotes the trace restricted to I , formallyn 7→ s(n)∩I . The |in|−1 is
needed because the 0th trace element should be the 1st tree element because
there is no output for the empty input sequence. Note that if (1) holds for
multiple s, then s(n) is the same for all of them because of the added non-
determinism-formula. We now have that S ⊆ traces(t) because each si is in t.
With S |= ϕ because ϕ |= ψ and ϕ being an existential formula, traces(t) |= ϕ.

�

Theorem 3.2 The synthesis problem for the ∃*-fragment of HyperLTL is decidable.

Proof Note that ψ from Lemma 3.1 can be expressed in the ∃*∀*-fragment (first ∃
quantifiers and then only ∀ quantifiers in the quantifier block). As the satisfiability
problem for the ∃*∀* fragment is decidable [9], the synthesis problem is decidable.

�

Corollary 3.3 Realizability of ∃* HyperLTL specifications is PSPACE-complete.

Proof We gave a linear reduction to the satisfiability of the ∃∗∀2 fragment. As
we have a bounded amount, i.e., two ∀ quantifiers, the satisfiability is in PSPACE.
Therefore, the realizability is in PSPACE. The problem is also PSPACE-hard because
LTL satisfiability that is equivalent to the ∃1 fragment is PSPACE-hard. Therefore
the problem is PSPACE-complete. �
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3.1.2 Nondeterministic Synthesis from ∃*

In the nondeterministic case, the problem is even simpler. We now do not need
to care about nondeterminism and can simply construct an arbitrary tree around
each trace we get from the satisfiability solution. Therefore, there is a one-to-one
correlation between satisfiability and synthesis.

Lemma 3.4 A formula ϕ ∈ ∃∗ is nondeterministically realizable iff it is satisfiable.

Proof

"⇒" Assume ϕ is nondeterministically realizable. Let T be the set of strategy-trees
that realizes ϕ. It holds traces(T ) |= ϕ by definition of realizability. There-
fore, ϕ is satisfiable.

"⇐" Assume ϕ is satisfiable. Let S be a set of traces that satisfies ϕ. For each trace
si ∈ S construct a set of strategy-trees T with elements ti as follows.

ti := in 7→ si[n] ∩O with n = |in| − 1

Hence for each i, ti contains the trace si because each trace of ti satisfies the
output-constraints of si and for all input-constraints of si there exists a path
πi in ti that satisfies them. Therefore, πi = si.
As S ⊆ traces(T ) and ϕ is an existential formula and S |= ϕ, traces(T ) |= ϕ
holds what says that T realizes ϕ nondeterministically. �

Theorem 3.5
The nondeterministic synthesis problem for the ∃*-fragment of HyperLTL is decidable.

Proof As the satisfiability problem for the ∃* fragment is decidable [9], the nonde-
terministic synthesis problem is decidable by Lemma 3.4. �

3.2 ∀* Fragment

The ∀* fragment is a little bit more involved. It turns out that the synthesis prob-
lem from ∀* is in general undecidable (and therefore the synthesis fromHyperLTL).
Butwe give a sub-fragment that is still decidable. This sub-fragment correlateswith
Coordination Logic, i.e., we will find a reduction of this sub-fragment to Coordina-
tion Logic which is fully decidable.
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In this Chapter, we will also have a short look on nondeterminism which turns
out to be not interesting in ∀*. In ∀* we cannot enforce nondeterminism. We will
also see some simplifications of formulas, i.e., we define a reduction from ∀* to ∀1

to apply it whenever possible to simplify the formula.

3.2.1 Nondeterministic ∀*

In this section, we show that the nondeterministic synthesis from ∀* is the same
as the deterministic synthesis from ∀*. Intuitively, this is because you cannot en-
force nondeterminism in ∀*, i.e., from a nondeterministic solution (non-empty set
of trees) all single trees are deterministic solutions because the traces of them are a
subset of the traces of the tree-set.

Theorem 3.6
A ∀* formula ϕ is deterministically realizable iff it is nondeterministically realizable.

Proof

"⇒" assume t realizes ϕ, i.e., traces(t) |= ϕ and by definition traces({t}) |= ϕ.
Therefore {t} nondet. realizes ϕ.

"⇐" assume T nondet. realizes ϕ, i.e., traces(T ) |= ϕ. Note that for each ∀* for-
mula ϕ it holds, that if a set X satisfies ϕ, also Y ⊆ X satisfies ϕ. Pick one
t ∈ T 6= ∅. Clearly traces(t) ⊆ traces(T ). Therefore traces(t) |= ϕ and t
realizes ϕ. �

Sometimes things get easier when enforcing determinism. We abbreviate our for-
mula for observational determinism as follows.

DA 7→C :=
∧
ci∈C

(ciπ ⇔ ciπ′) W
∨
ai∈A

(aiπ < aiπ′)

denotes that C only depends on A. If we add DI 7→O to a formula, we enforce the
outputs to depend only on the inputs, i.e., there cannot be a different output on
the same input. This is the case when we have more than one tree. But it is not
a restriction to the deterministic realizability problem because there we have only
one tree.

Corollary 3.7 A ∀* formula ϕ is realizable iff ϕ ∧DI 7→O is realizable.
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3.2.2 Reduction from ∀* to ∀1

In this chapter, we present a reduction from a formula with many universal
quantifiers to a formula with only one quantifier. This is done by simply removing
all but one quantifier and renaming the path variables. For example, ∀π1, π2.� aπ1∨
� aπ2 is reduced to its equivalent ∀1 formula ∀π.� aπ ∨� aπ. However, this reduc-
tion is not always possible as ∀π1, π2.�(aπ1 ⇔ aπ2) is not equivalent to its reduction
∀π.�(aπ ⇔ aπ). Note that a HyperLTL formula with exactly one ∀ quantifier is an
LTL property.

Definition 3.8 Let ϕ = ∀π1, π2, . . . , πn. ϕ
′ be a formula in ∀*. Define the reduced

formula of ϕ by reduce(ϕ) := ∀π. ϕ′[π1 7→ π][π2 7→ π] . . . [πn 7→ π] where ϕ′[πi 7→ π]
denotes the renaming of all occurrences of πi to π.

Although the reduced term is not always equivalent to the original formula, we
can use it as an indicator whether it is possible at all to express a ∀* formula with
only one quantifier as we see in the following theorem.

Theorem 3.9 It holds that ϕ ≡ reduce(ϕ) or @φ ∈ ∀1. φ ≡ ϕ

Proof Suppose there is some φ ∈ ∀1 with φ ≡ ϕ. Wewill prove that φ ≡ reduce(ϕ).
Let S be an arbitrary set of traces. Let S′ = {{s} | s ∈ S}. Because φ ∈ ∀1, S |= φ is
equivalent to ∀s′ ∈ S′. s′ |= φ, what is by assumption equivalent to ∀s′ ∈ S′. s′ |= ϕ.
Now, ϕ operates on singleton trace sets only. This means that all quantified paths
have to be the same what yields that we can use the same path variable for all of
them. So ∀s′ ∈ S′. s′ |= ϕ ⇔ s′ |= reduce(ϕ) what is again equivalent to S |=
reduce(ϕ). Because φ ≡ reduce(ϕ) and φ ≡ ϕ it holds that ϕ ≡ reduce(ϕ). �

Reduction from ∀n to ∀n−1

We can generalize the previous theorem as follows. Sometimes, the reduction to
a single ∀ quantifier is impossible although it is possible to reduce the quantifier
amount. Again, this is not always possible. Here we see a procedure to reduce
the quantifier amount by one. We can do this iteratively until we find the minimal
amount of quantifiers.

Let ϕ = ∀π1, π2, . . . , πn. ϕ
′ be a formula in ∀n.

Definition 3.10 Define the 1-reduced formula of ϕ by

reduce1(ϕ) := ∀π1, . . . , πn−1.
∧

i∈1...n

∧
j∈1...i−1

ϕ′[πi 7→ πj ][πn 7→ πi]



14 HyperLTL Synthesis

The intuition behind this is that in a formula with one path quantifier less, al-
ways twopaths have to be identical. And therefore, all possibleO(n2) combinations
have to be covered with conjunctions.

Theorem 3.11 It holds that ϕ ≡ reduce1(ϕ) or @φ ∈ ∀n−1. φ ≡ ϕ

Proof Suppose there is some φ ∈ ∀n−1 with φ ≡ ϕ. Now, we will prove that φ ≡
reduce1(ϕ).
Let S be an arbitrary set of traces. Let S′ = {s | s ⊆ S, |s| ≤ n−1}. Because φ ∈ ∀n−1

and therefore the n− 1 path variables of φ can only talk over n− 1 paths, S |= φ is
equivalent to ∀s′ ∈ S′. s′ |= φ, what is by assumption equivalent to ∀s′ ∈ S′. s′ |= ϕ.
Now, ϕ operates on trace sets of only n − 1 traces which means that at least two
path variables of ϕ have to refer to the same trace. We would now like to prove that
s′ |= ϕ⇔ s′ |= reduce1(ϕ) for any s′ ∈ S′.

"⇒": s′ |= ϕ implies s′ |= ϕ[πi 7→ πj ] for arbitrary i and j because [πi 7→ πj ] is
equivalent to restricting πi and πj to be the same. Therefore, s′ |= ϕ implies
s′ |= reduce1(ϕ).

"⇐": Because there are only n − 1 traces in s′, it is always the case that two path
variables πi and πj with w.l.o.g. i > j refer to the same trace. This behaviour
is encoded in the rewriting of [πi 7→ πj ]. Writingϕ[πi 7→ πj ][πn 7→ πi] is equiv-
alent to enforcing πi and πj to be the same. ([πn 7→ πi] is needed because we
do no longer have the variable πn and need to use the (now) unused variable
πi). If all these rewritings hold on s′ at the same time, ϕ holds on s′.

And the statement ∀s′ ∈ S′. s′ |= reduce1(ϕ) is again equivalent to S |= reduce1(ϕ)
because reduce1(ϕ) only reasons over n − 1 traces. Because φ ≡ reduce1(ϕ) and
φ ≡ ϕ it holds that ϕ ≡ reduce1(ϕ). �

3.2.3 ∀* in General Undecidable

In the fragment ∀*, we can encode a distributed architecture [10] for LTL syn-
thesis that is undecidable. In particular, we can encode the architecture shown in
Figure 3.1. This architecture basically specifies c to depend only on a and analo-
gously d on b. That can be encoded by D{a}7→{c} and D{b}7→{d}. The LTL synthesis
problem for this architecture is already shown to be undecidable [10], i.e., given
an LTL formula over I = {a, b} and O = {c, d} you cannot automatically construct
processes p1 and p2 that realize the formula.
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env

p1 p2

a b

c d

Figure 3.1: An architecture of two processes that specifies process p1 to produce
c from a and p2 to produce d from b. env is a special environment process that
provides the input variables.

Theorem 3.12 The synthesis problem for ∀* is undecidable.

Proof by reduction of the LTL synthesis problem in the architecture in Figure 3.1
to the synthesis problem from ∀*.

Let ϕ be an arbitrary LTL formula. Let φ := ∀π, π′. D{a}7→{c} ∧ D{b}7→{d} ∧ ϕπ
(where ϕπ denotes annotating each proposition in ϕwith π). It holds φ is realizable
iff ϕ is realizable in the architecture in Figure 3.1. This is because D{a}7→{c} exactly
encodes the condition that c only depends on a (d and b analogously). Therefore,
the synthesis problem from HyperLTL can not be decided. �

However, in the distributed synthesis from LTL there are architectures that are
decidable. These architectures1 are in some way "linear", i.e., the processes can be
ordered such that lower processes always have a subset of the information of up-
per processes. Coordination Logic [11] embraces exactly this decidable fragment
of distributed synthesis. We will characterize a fragment of ∀* that can be trans-
formed to Coordination Logic (CL) and is therefore decidable. But first we have to
introduce CL and with that some more theory on trees.

3.2.4 Coordination Logic

Formally, an O labeled (strategy-) tree t over a set of variables I is a mapping
(2I)+ → 2O from an input sequence to an output. For a tree t and a set J disjoint
to I we define the J-widening wideJ(t) : (2I∪̇J)+ → 2O by in 7→ t(in|I). Where
in|I denotes intersecting all elements of the sequence in to I . The disjoint union
of two O and P labeled trees t and t′ over I , t ∪̇ t′ : (2I)+ → 2O∪̇P is defined by
in 7→ t(in) ∪̇ t′(in). The opposite of widening is narrowing, what is only applicable

1,i.e., architectures without information forks [10]
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if the labeling function does not depend on the narrowed variables J . It is defined
iff the (at most one) possible t′ can be found for narrowJ(t) := t′ with t = wideJ(t′).
With these definitions we can define CL2. In CL, we have a `c.ϕ quantifier. This
quantifier introduces a so called coordination variable c. The coordination variables
correspond to the input variables. The ∀ and ∃ quantifier introduce strategies that
correspond to the labeling of the tree, i.e., the outputs.

Definition 3.13 (Coordination Logic Syntax)

ϕ := `c. ϕ | ∀s. ϕ | ∃s. ϕ | <LTL formula> φ

with AP = C∪̇S, c ∈ C and s ∈ S. In the following, we assume that every
formula is well formed, i.e., no coordination variable c and no strategy variable s
is introduced twice. We additionally enforce φ to contain no free variables3, i.e.,
variables that are not introduced by any s or c. As an abbreviation for introducing
a set of coordination variables B = {b0 . . . bn}, we use `B instead of `b0 . . . `bn. We
denote with scope(s) all coordination variables that occur left of s in the formula.
For the semantics, |= is defined inductively by

Definition 3.14 (Coordination Logic Semantics)

t |= <LTL formula> φ ⇔ t realizes φ
t |= ∀s. ϕ ⇔ ∀f : 2scope(s) → 2{s}. t ∪̇ f |= ϕ

t |= ∃s. ϕ ⇔ ∃f : 2scope(s) → 2{s}. t ∪̇ f |= ϕ

t |= `c. ϕ ⇔ wide{c}(t) |= ϕ

The CL formula ϕ is valid written |= ϕ iff the empty tree ((x ∈ ∅+) 7→ ∅) |= ϕ.
In the example `iserver ∃server `iclient ∀client. ϕ, the server sends some information
(server) based on iserver to a client and the client can additionally operate on the in-
formation iclient to satisfy the formula ϕ. Intuitively, the coordination variables are
the input and the strategy variables are the output as in the LTL synthesis problem.
The only restriction is that the strategy variables can only depend on the coordina-
tion variables that are already introduced. And that can be encoded in HyperLTL
by observational determinism as we will see in the following section.

2We actually define a subset where the quantifiers have to be in front of any other operators what
corresponds to the restriction for HyperLTL.

3That is a restriction of the original definition as now we have formulas forced to be equivalent to
either true or false. They would make it much more complicated and we do not need them here.
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3.2.5 CL Fragment of ∀*

The high level idea of the characterization of the CL fragment is seeking for
variable dependencies of the form DJ 7→{p} with J ⊆ I and p ∈ O in the formula.
If the hyper-part of the formula consists only of such constraintsDJi 7→{pi} with the
rest being an LTL property, this is the description of an architecture. If furthermore,
the DJi 7→{pi} can be ordered such that Ji ⊆ Ji+1 for all i, the architecture is linear
and an equivalent CL formula can be constructed. All in all, there are three main
steps to process a given formula ϕ:

1. First, first wemust add general determinism to the formula ϕdet := ϕ∧DI 7→O.
This does not change realizability as it is always the case in a strategy-tree.

2. Find for each output variable pi possible sets Ji of variables, pi depends on.
The terms of the form DJi 7→{pi} have to fully describe the hyper-part of the
formula. For that, the hyper-part is removed via reduce. We have to find
Ji’s with reduce(ϕ) ∧

∧
pi∈ODJi 7→{pi} ⇔ ϕdet. Note that this equivalence is

decidable as it is in the ∀* fragment [9]. If we can find such Ji’s, ϕ is an LTL-
property togetherwith somedependency descriptions for an architecture and
we are in the distributed synthesis setting of LTL. If furthermore, the pi can
be ordered such that Ji ⊆ Ji+1, we have a linear architecture and we proceed
with step three. Note that there are exponentiallymany possible combination
of Ji’s.

3. Construct a CL formula ϕ′ that is valid iff ϕ is realizable. For this, define
J ′i := Ji\

⋃
k<i Jk, Jn+1 := I\Jn and then the CL formula ϕ′:

`J ′1 ∃p1 . . . `J ′n ∃pn `Jn+1. reduce(ϕ)LTL

where reduce(ϕ)LTL denotes removing also the single ∀ and the path anno-
tations at the propositions after application of reduce().

In the following definition, this is subsumed in short words.

Definition 3.15 (CL fragment of ∀*) A formula ϕ is in the CL fragment of ∀* iff for
all pi ∈ O suitable Ji ⊆ I can be found such that

• ϕ⇔ reduce(ϕ) ∧
∧
pi∈ODJi 7→{pi}

• an ordering of the pi can be found such that Ji ⊆ Ji+1 for all i.

First of all, we observe that reduce(DA 7→B) ≡ true for all A,B ⊆ AP because
after the application of reduce, the formula solely reasons about one single trace
and for any proposition b ∈ B holds bπ ⇔ bπ.
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Note also that each ∀1 formula ϕ (or ϕ is reducible to a ∀1 formula) is in the
linear fragment because we can set all Ji = I and have additionally reduce(ϕ) = ϕ.

As an example, consider ϕ = ∀π, π′. D{a}7→{c} ∧ �(cπ ⇔ dπ ∧ bπ ⇔ eπ) with
I = {a, b} and O = {c, d, e}. First, ϕ has to be "determinized" to ϕdet = ϕ ∧DI 7→O.
As c and d have to be equivalent, they both have to depend only on a. Possible J ’s
are {a} or {a, b} for both. But at least one of them has to be {a}. Otherwise, the J ’s
would not imply the D{a}7→{c}. Note that D{a}7→{d} suffices to imply the D{a}7→{c}
together with the �(cπ ⇔ dπ). For e we can choose between {b} and {a, b} where
{b} would yield an undecidable architecture. All in all we have the equivalence
ϕdet ⇔ collapse(ϕ) ∧D{a,b}7→{c} ∧D{a}7→{d} ∧D{a,b}7→{e}. This would yield the CL
formula `a ∃d `b ∃c, e. �(c ⇔ d ∧ b ⇔ e) of which the validity can be checked to
get the realizability of the initial formula.

Theorem 3.16 The synthesis from the CL fragment of ∀* is decidable.

In the following, we will prove that the previously described decision proce-
dure is correct, i.e., we prove that ϕ ∈ ∀∗ is realizable (w.r.t. the sets I and O)
iff the constructed CL formula ϕ’ is valid, assuming ϕ is in the CL fragment. The
procedure clearly always terminates.

Proof Assume Ji ⊆ I are the dependency-sets of the outputs pi ∈ O and they are
already properly ordered.

"⇐" assume ϕ’ is valid. Have a closer look at the semantic definition of CL.When-
ever a strategy variable pi is introduced, it can only depend on coordina-
tion variables in its scope that is Ji. Therefore, the formulas DJi 7→{pi} hold
in the tree t that is "constructed" in the definition of CL right before enter-
ing the LTL-part of the definition. Obviously, t realizes reduce(ϕ) as it real-
izes reduce(ϕ)LTL. These properties together yield that t realizes reduce(ϕ)∧∧
pi∈ODJi 7→{pi} which is equivalent to ϕ.

"⇒" assume a tree t realizes ϕ and therefore reduce(ϕ) ∧
∧
pi∈ODJi 7→{pi}. In par-

ticular, t also realizes reduce(ϕ)LTL. So we would like to construct t by using
the definition of ∃ and `. As in the definition, we start with the empty tree
t′ := ((x ∈ ∅+) 7→ ∅) and go from left to right trough the quantifier of ϕ’.
In the case of an ∃s, we choose f to be narrowC\scope(s)(t)|s. Where |s denotes
restricting f to s, i.e., x 7→ f(x) ∩ {s}. The narrowing is possible because s
only depends on its own J = scope(s).
In the case of a `c, the tree t′ is widened as usual what does not change the
strategy of the already chosen s. That is because widenA(narrowA(t′)) = t′.
Therefore, we can construct the t along the definition of validity of CL and ϕ’
is valid.
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Therefore, the constructed CL formula ϕ’ is valid iff ϕ is realizable. As the validity
of CL formulas is decidable [11], the synthesis from the CL fragment is decidable.

�

So far, we only analyzed formulas without quantifier alternations. In the next
sections, we also look at formulas with quantifier alternations.

3.3 ∀*∃* Fragment

The synthesis from the ∀*∃* fragment turns out to be undecidable. In this sec-
tion, we will reduce Post’s Correspondence Problem (PCP) [17] to the synthesis
problem from ∀1∃1. As PCP is undecidable, ∀*∃* is undecidable, too.

Theorem 3.17 The synthesis problem from the ∀*∃* fragment is undecidable.

In PCP, we are given two lists α and β consisting of finite words from some
alphabet Σ. For example, α = (a, ab, bba) and β = (baa, aa, bb), where αi denotes
the ith element of the list. One can think of the pairs (αi, βi) as domino stones. In
our example, we would have the three stones a

baa , ab
aa and bba

bb . PCP is the problem
to find an index sequence (ik)1≤k≤K with K ≥ 1 and 1 ≤ ik ≤ n for all k, such
that αi1 . . . αiK = βi1 . . . βiK . The domino-equivalent is to find a combination of
the domino stones such that the word written on the upper half of the stones is the
same as the word on the lower half. Assume, you have an infinite amount of every
domino stone type. In our example, a possible solutionwould be bba

bb
ab
aa

bba
bb

a
baa that

corresponds to the sequence (3,2,3,1).
To prove the undecidability of the synthesis problem from the ∀*∃* fragment,

we give a reduction from an arbitrary PCP instance to a ∀1∃1 formula. This proof
follows essentially the proof in [9]. There, we have one initial trace that represents
a solution to the PCP instance. And we enforce that every trace has a successor,

Figure 3.2: The sketch of a strategy-tree. The relevant traces are marked orange.
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i.e., a trace that is the same as it’s predecessor with the first stone removed. In the
deterministic synthesis problem, we have only one tree and need to encode this list
of successor traces in the tree structure. We do this as showed in Figure 3.2. The
relevant traces in which we encode the PCP instance are the orange colored traces
in the figure.

Let a PCP instance with Σ = {x1, x2, ..., xn} and two lists α and β with length
m be given. For the synthesis problem, we choose our set of atomic propositions as
follows: AP := I ∪̇Owith I := {i} andO := (Σ∪{ẋ1, ẋ2, ..., ẋn}∪{#̇,#})2, where
we use the dot symbol to encode that a stone starts at this position of the trace. As
abbreviation for x ∨ ẋ we write x̃ if we do not care if this symbol is an x or ẋ and
use ∗ as syntactic sugar for an arbitrary symbol out of Σ ∪ {#}. We construct the
following HyperLTL formula from the PCP instance:

ϕpcp := ∀π∃π′. ϕsol(π) ∧ (ϕrel(π)⇒ ϕsucc(π, π
′)

∧ ϕstart(
∨

i∈[1,m]

(ϕstonei(π) ∧ ϕshifti(π, π
′)), π))

• ϕsol(π) := � iπ ⇒ (
∨n
i=1(x̃i, x̃i)π U �(#̃, #̃)π) ensures that the trace with

globally i as input encodes the solution sequence in the outputs. It also in-
cludes that the sequence eventually terminates. This is represented by glob-
ally #̃.

• ϕrel(π) := ¬i U � i defines the set of relevant traces in our strategy-tree.

• ϕsucc(π, π
′) := (¬iπ ∧ ¬iπ′ U � iπ ∧ ¬iπ′ ∧©� iπ′) encodes that a trace π′ is a

successor of π.

• ϕstonei(π) encodes that the beginning of trace π represents a stone. An exam-
ple for the stone bba

bb is given below.

• ϕshifti(π, π
′) encodes that π′ is identical to the trace π with the first stone

(stonei) cut off and the rest of the sequence shifted. In contrast to the re-
duction in [9], we have to add an offset of one to the trace π′ as the relevant
trace of π′ starts one step later. See the example for stone bba

bb below.

• ϕstart(ϕ, π) := ¬iπ U ϕ ∧ � iπ cuts off an irrelevant prefix until the relevant
trace starts and asserts ϕ at the relevant trace.

• We furthermore assume that only one output symbol at once is allowed at
any position in the tree. That can be achieved by a disjunction for each pair
of the output symbols.

In the following, we give example formulas ϕstonei(π) and ϕshifti(π, π
′) for bba

bb .
One can obviously generalize them for arbitrary stones.
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ϕstone3(π) := ((ḃ, ḃ)π ∧©(b, b)π ∧©©(a, ∗̇)π ∧©©©(∗̇, ∗̃)π)

This encodes that stone3 is at the beginning of trace π followed by either another
stone or the end (as ∗ also abbreviates also #).

ϕshift3(π, π′) :=
∧

x∈Σ∪{#}

�(©©©(x̃, ∗)π ⇒©(x̃, ∗)π′) ∧

�(©©(∗, x̃)π ⇒©(∗, x̃)π′)

This encodes that the traces π and π′ are the same up to the removal of the first
stone. Note that the first component of the tuple is shifted by 3 and the second by
2 because the α-part of the stone has length 3 while the β-part has length 2. The
following figure shows the shifting of the relevant traces of a strategy tree from the
solution bba

bb
ab
aa

bba
bb

a
baa of our initial example.

(ḃ, ḃ)(b, b)(a, ȧ)(ȧ, a)(b, ḃ)(ḃ, b)(b, ḃ)(a, a)(ȧ, a)(#̃, #̃)ω ḃbaȧbḃbaȧ
ḃbȧaḃbḃaa

(ȧ, ȧ)(b, a)(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#̃, a)(#̃, #̃)ω ȧbḃbaȧ
ȧaḃbḃaa

(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#̃, a)(#̃, #̃)ω ḃbaȧ
ḃbḃaa

(ȧ, ḃ)(#̃, a)(#̃, a)(#̃, #̃)ω ȧ
ḃaa

(#̃, #̃)ω

Lemma 3.18 The constructed ∃∀ formula ϕ’ is realizable iff the PCP instance is satisfiable.

Proof The proof follows the same arguments as the reduction in [9].
"⇒" Assume ϕpcp is realizable. Then the trace with � i represents the solution-

sequence to the PCP instance. To extract the sequence of stones, we have to
analyze which stones are encoded at the beginning of the relevant traces. The
stone at the first relevant trace, i.e., the solution-trace is the first stone. Then
we iteratively look at the successor traces (ϕsucc). Their beginnings represent
the second, third, ... stone in the sequence.

"⇐" Assume, the PCP instance has the solution (i1, i2, . . . , ik) with the resulting
word w = αi1 . . . αik = βi1 . . . βik . Then there is a strategy-tree t with w writ-
ten at it’s solution-trace πwith� i. The beginning of a stone is alwaysmarked
with the dot over a symbol. The successor trace of π encodes the shifted word
with the stone i1 removed as described in ϕshifti . One can see, that t can ob-
viously fulfill the constraints in the formula and, therefore, t realizes ϕpcp. �

Proof (of Theorem 3.17) As PCP is undecidable and we gave a reduction from an
arbitrary PCP instance to a ∀1∃1 formula, ∀*∃* is undecidable. �

Note that this also yields that formulas with at least one alternation from ∀ to ∃ are
undecidable.
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Related Work

4.1 Model Checking

Model checking [5] is a technique that verifies the correctness of a given system
with respect to a given formula. The system is usually given as a transition system.
Transition systems consist of labeled states and transitions between them. The pos-
sible executions of a transition system are defined by the sequences of states that
can be walked along via the transitions from an initial state. The produced traces
are the label sequences of the states of the executions. See Figure 4.1 for an example.

LTLmodel checking is done with an automata based algorithm. There, we con-
struct a nondeterministic Büchi automaton from the negated LTL formula. After
that, we determinize the automaton and compute the cross product with the sys-
tem. The result of the cross product is an automaton that accepts exactly the traces
that are produced by the system and are at the same time invalid according to the
formula because we negated the formula in the beginning. Therefore, the automa-
ton is empty iff the system is correct, i.e., all system traces fulfill the specification.

HyperCTL* [7] is a logic that extendsHyperLTL. In contrast toHyperLTLwhere
quantifiers are only located in the quantifier prefix, it allows the use of quantifiers
inside the formula. This enables HyperCTL* to reason about branching properties
of a system as illustrated in Figure 4.1.

Model checking of HyperCTL* can be done as well as HyperLTL model check-
ing and is fully decidable [12]. The idea is to construct bottom up a series of au-
tomata. The lowest automaton reasons about n-tuples of traces if n is the amount
of quantifiers above it. The automaton for the whole formula is inductively con-
structed bottom up. For temporal and propositional operators, the automaton is
constructed as in LTL. For existential quantifiers, the resulting automaton is a cross
product of the automaton from the direct subformula and the transition system.
This new automaton reasons only about n-1-tuples of traces. However, because
universal quantifiers are handled via negated existential quantifiers, the automata
has to be negated for each quantifier alternation. This leads to an exponential blow-
up of the state amount of the automaton. Therefore, the model checking problem
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a b a b

Figure 4.1: These two transition systems cannot be distinguished by an LTL or Hy-
perLTL formula as they produce the same traces {∅∅aω, ∅∅bω}. However, they can
be distinguished in CTL* and HyperCTL* by ∀π.©∃π′. © aπ′ which is satisfied by
the left system but not by the right system.

of HyperCTL* is decidable in non-elementary time and space. As a corollary, we
get the result that model checking of the alternation free fragment, the procedure
is in PSPACE [12].

4.2 LTL Synthesis

LTL synthesis [16] can also be done by using automata. We have already seen
that it is possible to construct an automaton that accepts all words which are in the
specified language of an LTL specification. A realization of an LTL specification
would be a strategy-tree whose traces are all accepted by the automaton. This leads
to the so called tree automata. A tree automaton is an automaton that runs on
trees instead of traces. From an arbitrary automaton on traces, a tree automaton
can be constructed that accepts a tree iff all its traces are accepted from the initial
automaton. The emptiness of the tree automaton that is equivalent to the non-
existence of a solution to the synthesis problem can be checked by reduction to an
infinite game [16]. Therefore, the synthesis problem from LTL is decidable.

4.3 Distributed Synthesis from LTL

Distributed synthesis from LTL [10] is the problem of finding multiple imple-
mentations of processes in an architecture that together fulfill an LTL formula.
As already said, there are some architectures for which synthesis is undecidable.
These architectures are architectures that contain a so called information fork [10]



25

between two processes. Intuitively, that is the case if two processes (directly or in-
directly) get different information from the environment. For example this is the
case in Figure 3.1 where process p1 receives a but not b and vice versa for process
p2.

If an architecture contains no information fork, we can order the processes ac-
cording to their level of information, i.e., the environment/input variables that they
receive (direct or indirect). To decide the distributed synthesis problem fromLTL in
such an architecture one has to perform two steps. First, one transforms the archi-
tecture into a linear architecture. In such a linear architecture, processes with the
same level of information are collapsed to one single processes and the resulting
processes are ordered according to their level of information. At the end, a process
with a lower level of information has always a subset of the information of a higher
level process. In the second step, the processes are handled in order of their level
of information. For the first process, i.e., the process with the most information a
tree automaton is constructed. For each of the following processes, the automaton
is narrowed to fit to the informedness of the lower process. At the end we have to
do an emptiness check as in the LTL synthesis procedure.

4.4 Coordination Logic

With these linear architectures in mind, we can have a look at Coordination
Logic [11]. Coordination Logic is like synthesis of LTL but the strategy variables
are limited to depend only on the coordination variables that are already intro-
duced. Therefore, the strategy variables are also ordered by their level of infor-
mation. Outer strategy variables have always a subset of the information of inner
strategy variables. Therefore it is clear that each Coordination Logic formula can
simply be encoded in an distributed synthesis problem without information fork.
The strategy variables correspond to the processes and the coordination variables
correspond to the environment variables.

4.5 Bounded Synthesis from LTL

When synthesizing LTL specifications, the resulting system has no limitations
in terms of size, i.e., it is not guaranteed that the system produced by the synthesis
procedure is minimal. However, one usually seeks for small implementations to
minimize costs of, e.g., a hardware circuit. Bounded synthesis [19] is an approach
to solve this problem. In bounded synthesis, we seek for implementations that are
not larger than a given bound b. This search can be repetitively executed to find the
lowest possible boundwhich yields the minimal solution to the synthesis problem.
Another aspect of bounded synthesis is the decidability. As we talk only about
systems with a limited number of states, the synthesis problem is decidable even
for distributed architectures with information forks.



26 Related Work

In bounded synthesis from LTL, first of all, a universal co-Büchi tree automa-
ton is constructed. Co-Büchi means here that there are some rejecting states in the
automaton that are forbidden to be visited infinitely often in a run. Then, the cross
product with an transition system that we gather later is constructed. This yields
again an automaton. In this stage, so called annotation functions are introduced.
An annotation function λ annotates each state of an automatonwith a natural num-
ber. Additionally, for each transition q 7→ q′ of the automaton, λ(q) ≤ λ(q′) it has
to hold. If q′ is a rejecting state, it has λ(q) < λ(q′) has to hold. This ensures that
λ(q) indicates the maximal amount of rejecting states can occur on a path from the
initial state to q. If there is such an annotation function for an automaton, one can
clearly see that there is no loop containing a rejecting state because otherwise the
annotations in this loop have to be always increasing. The absence of such a loop
yields that every tree is accepted by the automaton. Therefore, there exists such
an annotation function if and only if the transition system from the cross product
realizes the formula from which the automaton is constructed.

However, we do not have this ominous transition system to construct the cross
product with te automaton. Here, a second important technique comes into play.
We will encode the problem as a SAT instance. The constraints of the SAT instance
ensure that some uninterpreted function symbols represent a transition system.
And some other constraints ensure that there exists a valid annotation function on
the cross product of the transition systemand the automaton. These two constraints
yield that the boolean formula is satisfiable iff there exists a transition system that
realizes the given formula. This transition system can easily be extracted from a
solution to the satisfiability problem.



Chapter 5

Conclusion

Finally, we can say that we analyzed the ∀* fragment and the ∃* fragment exhaus-
tively. The synthesis for the ∃* fragment is fully decidable and for the ∀* fragment,
it is partially decidable. That is a new contribution to the research on HyperLTL.
We can now synthesize HyperLTL properties in ∃* and the linear ∀* fragment. In
the following, we shortly revisit the example from the beginning. There, we had
an arbiter that had n request inputs and n grant outputs. The goal was to schedule
grants in a way that every request is eventually answered by a grant: �(requesti ⇒
♦ granti) globally for all i and mutual exclusion: ¬(requesti ∧ requestj) globally
for all i 6= j. To enforce observational determinism, we could very restrictively
say that every grant solely depends on its request. Sadly, this is not contained in
the CL fragment that we can reduce to the decidable Coordination Logic because
the dependencies cannot be ordered, i.e., these dependencies build an architecture
that is not linear and therefore not decidable. Note that despite this undecidability,
there exists an implementation that realizes these constraints by simply enabling
one grant after another (independently from all inputs), i.e., undecidability does
not imply unrealizability. Here we see the limits of decidability very clear.

However, we can recover this example by requiring observational determinism
only in a hierarchical manner. We can for example say "process i has more rights
than process j iff i > j". In this case, wewould like to have the property that process
j cannot read information about i’s request signal because i is higher ranked than j.
That is again a property that could be synthesized with the methods of this thesis
as it is in the CL fragment.

Other achievements of this thesis are the reductions to reduce the quantifier
amount in the ∀* fragment. Imagine the following scenario: Someone would like
to write a specification and it contains three ∀ quantifiers. When it comes to model
checking, the computation time exceeds all limits because in model checking, each
quantifier leads to a costly self composition of the constructed automata. After
some time, the computation is aborted by the impatient user. With the reduction
from ∀3 to ∀2 the model checker could warn the user that the property he inserted
can also be written with only two quantifiers. After a short time of pondering, the
user would write a smaller formula or would use the suggestion that the reduc-
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tion gave him. In this case, the model checker would finish after a short time of
calculation.

It is worth mentioning that it was unusual to search for nondeterministic solu-
tions as we usually only search for deterministic systems to implement. However,
nondeterministic solutions are interesting becausewe can express nondeterminism
in the logic. Wy should we then forbid it as a valid solution to give multiple strat-
egy trees? It is also more natural to allow nondeterministic solutions instead of a
deterministic "restriction". This shows up in the ∃* section. The nondeterministic
synthesis is directly equivalent to satisfiability while we have to add an extension
to the formula in the deterministic case.

5.1 Future Work

As a future work, I would propose to have a look at the ∃*∀* fragment. It is
already proven [3] that the realizability of the ∃*∀1 fragment is decidable while it
is undecidable for the ∃∗∀>1 fragment. Maybe there is an even bigger decidable
fragment inside ∃*∀* analogous to the CL fragment of ∀* (that fully contains the ∀1

fragment).
Bounded synthesis asmentioned in relatedwork can be extended toHyperLTL.

A first approach has already been done [3], although it covers only the ∀* fragment.
It could be extended to the full logic of HyperLTL.

CTL* [4, 8] is an extension to LTL that is able to refer to branching properties.
There also exists a lifting to HyperCTL* that we discussed in the related work. A
resulting future work would be to have a look at HyperCTL* synthesis. One could
also invest in finding some fragments for the satisfiability of HyperCTL*, that is
undecidable in general as it embeds HyperLTL.
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