
ATL* Satisfiability is 2EXPTIME-Complete⋆

Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. The two central decision problems that arise during the de-
sign of safety critical systems are the satisfiability and the model checking
problem. While model checking can only be applied after implementing
the system, satisfiability checking answers the question whether a system
that satisfies the specification exists. Model checking is traditionally con-
sidered to be the simpler problem – for branching-time and fixed point
logics such as CTL, CTL*, ATL, and the classical and alternating time
µ-calculus, the complexity of satisfiability checking is considerably higher
than the model checking complexity. We show that ATL* is a notable
exception of this rule: Both ATL* model checking and ATL* satisfiability
checking are 2EXPTIME-complete.

1 Introduction

One of the main challenges in system design is the construction of correct im-
plementations from their temporal specifications. Traditionally, system design
consists of three separated phases, the specification phase, the implementation
phase, and the validation phase. From a scientific point of view it seems inviting
to overcome the separation between the implementation and validation phase,
and replace the manual implementation of a system and its subsequent validation
by a push-button approach, which automatically synthesizes an implementation
that is correct by construction. Automating the system construction also pro-
vides valuable additional information: we can distinguish unsatisfiable system
specifications, which otherwise would go unnoticed, leading to a waste of effort
in the fruitless attempt of finding a correct implementation.

One important choice on the way towards the ideal of fully automated system
construction is the choice of the specification language. For temporal specifica-
tions, three different types of logics have been considered: Linear-time logics [1],
branching-time logics [2], and alternating-time logics [3]. The different paradigms
are suitable for different types of systems and different design phases. Linear-
time logic can only reason about properties of all possible runs of the system.
Consequently, it cannot express the existence of different runs. A constructive
non-emptiness test of an LTL specification is therefore bound to create a system
that has exactly one possible run. Branching-time logics [2], on the other hand,

⋆ This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

Logic Model Checking (Structure) Model Checking Satisfiability Checking

LTL NLOGSPACE [4] PSPACE [5] PSPACE [4]

CTL NLOGSPACE [6] PTIME [5] EXPTIME [2]

CTL* NLOGSPACE [6] PSPACE [5] 2EXPTIME [4]

ATL PTIME [3] PTIME [3] EXPTIME [7]

ATL* PTIME [3] 2EXPTIME [3] 2EXPTIME

Fig. 1. For all previously considered branching-time temporal specifications, satisfiabil-
ity checking is at least exponentially harder than model checking (in the specification).
We show that ATL* is an interesting exception to this rule.

can reason about possible futures, but they refer to closed systems [3] that do not
distinguish between different participating agents. Finally, alternating-time log-
ics [3] can reason about the strategic capabilities of groups of agents to cooperate
to obtain a temporal goal. The following example illustrates the differences.

Consider a vending machine that offers coffee and tea. Ultimately, we want
the machine to react on the requests of a customer, who shall be provided with
coffee or tea upon her wish. In alternating-time logic, we have a natural cor-
respondence to this requirement: we simply specify that the customer has the
strategic capability to get coffee or tea from the machine, without the need of
cooperation, written 〈〈customer〉〉©getcoffee or 〈〈customer〉〉©gettea , respectively.

In branching-time logic, there is no natural correspondence to the property.
The typical approximation is to specify the possibility that coffee or tea is pro-
vided, written E © getcoffee or E © gettea , respectively. However, this does no
longer guarantee that the customer can choose; the specification is also fulfilled if
the health insurance company can override the decision for coffee. A workaround
may be to introduce a dedicated communication interface between the vending
machine and the customer, and represent the desire for coffee by a desirecoffee

bit controlled by the customer. The property may then be approximated by
E©desirecoffee and desirecoffee → A©getcoffee. In LTL, the possibility of differ-
ent system behaviors cannot be expressed within the logic. Here, in addition to
specifying an interface, we would have to distinguish between parts of the system
under our control (the vending machine) and parts outside of our control (the
customer). The most likely approximation would be desirecoffee → ©getcoffee,
with the addition that there is not only the need to design an interface to the
customer beforehand, but also to make assumptions about her behavior.

Using the workarounds for branching-time or linear-time logic requires solv-
ing the central design problem of designing interfaces in an early specification
phase, instead of starting with an abstract view on the system. Especially in the
case that synthesis fails, we could no longer distinguish if we made an error in
designing the interfaces, or if the specification is unrealizable.

As an example for this effect, we could consider to use alternating-time logic
for the specifications of protocol fairness. ATL* has, for example, been used
to express the fairness requirement “Bob cannot obtain Alice’s signature un-

less Alice can obtain Bob’s signature as well” [8] in contract signing protocols.
Using satisfiability checking techniques for alternating-time logics, we can auto-
mate [9] the proof that fair contract signing is not possible without a trusted
third party [10] (under the presence of other standard requirements).

The alternating-time temporal logic ATL* [3] extends the classic branching-
time temporal logic CTL* [4] with path quantifiers that refer to the strategic
capabilities of groups of agents. An ATL* specification 〈〈A′〉〉ϕ requires that the
group A′ of agents can cooperate to enforce the path formula ϕ. ATL* formu-
las are interpreted over concurrent game structures, a special type of labeled
transition systems, where each transition results from a set of decisions, one for
each agent. When interpreted over a concurrent game structure C, 〈〈A′〉〉ϕ holds
true in a state s of C if the agents in A′ can win a two player game against the
agents not in A′. In this game, the two groups of agents take turns in making
their decisions (starting with the agents in A′), resulting in an infinite sequence
ss1s2 . . . of states of the concurrent game structure C. The agents in A′ win this
game, if the infinite sequence ss1s2 . . . satisfies the path formula ϕ.

Since ATL* specifications can canonically be transformed into alternating-
time µ-calculus (ATM) formulas [11, 3], ATL* inherits the decidability and finite
model property from ATM [9]. This translation from ATL* to ATM, comprises a
doubly exponential blow-up, which is in line with the doubly exponential model
checking complexity of ATL* [11, 3]. The complexity of the ATL* satisfiability
and synthesis problem, on the other hand, has been an interesting open challenge
since its introduction [7]: While the complexity of the satisfiability problem is
known to be EXPTIME-complete for the least expressive alternating-time logic
ATL [12, 7] as well as for the most expressive alternating-time logic ATM [9],
the complexity of the succinct and intuitive temporal logic ATL* has only been
known to be in 3EXPTIME [9, 11], and to inherit the 2EXPTIME hardness from
CTL*, leaving an exponential gap between both bounds.

Outline. In this paper, we introduce an automata-theoretic decision procedure
to demonstrate that deciding the satisfiability of an ATL* specification and, for
satisfiable specifications, constructing a correct model of the specifications is no
more expensive than model checking: both problems are 2EXPTIME-complete
in the size of the specification. To the contrary, the cost of model checking
a concurrent game structure against an ATL* specification is also polynomial
in the size of the concurrent game structure. While polynomial conveys the
impression of feasibility, the degree of this polynomial is, for known algorithms,
exponential in the size of the specification [3, 11].

On first glance, an automata-theoretic construction based on automata over
concurrent game structures (ACGs) [9] – the alternating-time extension of sym-
metric alternating-automata [13] – does not seem to be a promising starting
point for the construction of a 2EXPTIME algorithm, because synthesis proce-
dures based on alternating automata usually shift all combinatorial difficulties
to testing their non-emptiness [14]. Using a doubly exponential translation from
ATL* through ATM to an equivalent ACG suffices to proof the finite model
property of ATL* [9], but indeed leads to a triply exponential construction.

In order to show that a constructive non-emptiness test for ATL* specifica-
tions can be performed in doubly exponential time, we combine two concepts:
We first show that every model can be transformed into an explicit model that
includes a certificate of its correctness. For this special kind of model, it suffices
to build an ACG that only checks the correctness of the certificate. Finally, we
show that we can construct such an automaton, which is only singly exponential
in the size of the specification. Together with the exponential cost of a construc-
tive non-emptiness test of ACGs [9], we can provide a 2EXPTIME synthesis
algorithm for ATL* specifications that returns a model together with a cor-
rectness certificate. 2EXPTIME-completeness then follows with the respective
hardness result for the syntactic sublogic CTL* [4] of ATL*.

2 Logic, Models and Automata

In this section we recapture the logic ATL* [3], concurrent game structures, over
which ATL* specifications are interpreted, and automata over concurrent game
structures [9], which are used to represent alternating-time specifications.

2.1 Concurrent Game Structures

Concurrent game structures [3] generalize labeled transition systems (or pointed
Kripke structures) to a setting with multiple agents. A concurrent game structure
(CGS) is a tuple C = (P,A, S, s0, l, ∆, τ), where

– P is a finite nonempty set of atomic propositions,
– A is a finite nonempty set of agents,
– S is a nonempty set of states, with a designated initial state s0 ∈ S,
– l : S → 2P is a labeling function that decorates each state with a subset of

the atomic propositions,
– ∆ is a nonempty set of possible decisions for every agent, and
– τ : S ×∆A → S is a transition function that maps a state and the decisions

of the agents to a new state.

For a CGS C, a strategy for a set A′ ⊆ A of agents is a mapping fA′ : S∗ →
∆A′

from finite traces to decisions of the agents in A′, and a counter strategy is
a mapping f cArA′ : S∗ × ∆A′

→ ∆ArA′

from finite traces and decisions of the
agents in A′ to decisions of the agents in A r A′. For a given strategy fA′ and
counter strategy f cArA′ , the set of plays starting at a position s1 is defined as

plays(s1, fA′) = {s1s2s3 . . . | ∀i≥1 ∃d′∈∆ArA′

. si+1 = τ(si, (fA′(s1 . . . si), d
′))},

plays(s1, f
c
ArA′) = {s1s2s3 . . . | ∀i≥1 ∃d∈∆A′

. si+1=τ(si, (f
c
ArA′(s1 . . . si, d), d))}.

2.2 ATL*

ATL* extends the classical branching-time logic CTL* by path quantifiers that
allow for reasoning about the strategic capability of groups of agents.

ATL* Syntax. ATL* contains formulas 〈〈A′〉〉ψ, expressing that the group A′ ⊆
A of agents can enforce that the path formula ψ holds true. Formally, the state

formulas (Φ) and path formulas (Π) of ATL* are given by the following grammar
(where p ∈ P is an atomic proposition, and A′ ⊆ A1 is a set of agents).

Φ := true | p | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | 〈〈A′〉〉Π , and

Π := Φ | Π ∧Π | Π ∨Π | ¬Π | ©Π | Π UΠ .

Every state formula is an ATL* formula. We call an ATL* formula basic iff
it starts with a path quantifier 〈〈A′〉〉.

Semantics. An ATL* specification with atomic propositions ⊆ P is interpreted
over a CGS C = (P,A, S, s0, l, ∆, τ). ‖ϕ‖C ⊆ S denotes the set of states where
ϕ holds. A CGS C = (P,A, S, s0, l, ∆, τ) is a model of a specification ϕ (C |= ϕ)
with atomic propositions P iff ϕ holds in the initial state (s0 ∈ ‖ϕ‖C).

For each state s of C, path(s) denotes all paths in C that originate from s,
and path(C) =

⋃
{path(s) | s ∈ S} denotes the set of all paths in C.

An ATL* formula is evaluated along the structure of the formula.

– Atomic propositions and Boolean connectives are interpreted as usual:
‖true‖C = S, ‖p‖C = {s ∈ S | p ∈ l(s)}, and
‖ϕ ∧ψ‖C = ‖ϕ‖C ∩ ‖ψ‖C, ‖ϕ∨ ψ‖C = ‖ϕ‖C ∪ ‖ψ‖C, and ‖¬ϕ‖C = S r ‖ϕ‖C .

– Basic formulas ϕ = 〈〈A′〉〉ψ hold true in a state s if the agents in A′ have a
strategy which ensures that all plays starting in s satisfy the path formula ψ:
s ∈ ‖ϕ‖C ⇔ ∃fA′ : S∗ → ∆A′

. plays(s, fA′) ⊆ ‖ψ‖path
C

.

For a path formula ϕ and a CGS C, ‖ϕ‖path
C

⊆ path(C) denotes the set of
paths of C where ϕ holds. Path formulas are interpreted as follows:

– For state formulas ϕ, ‖ϕ‖path
C

=
⋃
{path(s) | s ∈ ‖ϕ‖C}.

– Boolean connectives are interpreted as usual: ‖ϕ∧ψ‖path
C

= ‖ϕ‖path
C

∩‖ψ‖path
C

,

‖ϕ ∨ ψ‖path
C

= ‖ψ‖path
C

∪ ‖ϕ‖path
C

, and ‖¬ϕ‖path
C

= path(C) r ‖ϕ‖path
C

.
– A path π = s1, s2, s3, s4 . . . satisfies ©ϕ (read: next ϕ), if the path
s2, s3, s4 . . . obtained by deleting the first letter of π satisfies ϕ:
‖© ϕ‖path

C
= {s1, s2, s3, s4 . . . ∈ path(C) | s2, s3, s4 . . . ∈ ‖ϕ‖path

C
}.

– A path π = s1, s2, s3, s4 . . . satisfies ϕUψ (read: ϕ until ψ), if there is a
natural number n ∈ N such that
(1) the path sn, sn+1, sn+2 . . . obtained by deleting the initial sequence
s1, s2, s3 . . . sn−1 of π satisfies the path formula ψ, and
(2) for all i < n, the path si, si+1, si+2 . . . obtained by deleting the initial
sequence s1, s2, s3 . . . si−1 of π satisfies the path formula ϕ:
‖ϕUψ‖path

C
= {s1, s2, s3, s4 . . . ∈ path(C) |

∃n ∈ N. (sn, sn+1, sn+2 . . . ∈ ‖ψ‖path
C

∧ ∀i < n. si, si+1, si+2 . . . ∈ ‖ϕ‖path
C

)}.

Note that the validity of basic formulas 〈〈A′〉〉ψ is implicitly defined by the
outcome of a two player game with an ω-regular (LTL) objective. Such games are
determined [11]. Consequently, there is a counter strategy f cArA′ : S∗ ×∆A′

→

∆ArA′

such that plays(s, f cArA′) ⊆ ‖¬ψ‖path
C

if and only if s /∈ ‖〈〈A′〉〉ψ‖C .

1 We assume that the set A of agents is known and fixed. For satisfiability checking, one
could argue that this is not necessarily the case. However, we can assume without loss
of generality that there is at most one agent that does not occur in the formula [7].

2.3 Automata over Concurrent Game Structures

Automata over concurrent game structures (ACGs) [9] provide an automata-
theoretic framework for alternating-time logics. Generalizing symmetric au-
tomata [13], ACGs contain universal atoms (�, A′), which refer to all successor
states for some decision of the agents in A′, and existential atoms (♦, A′), which
refer to some successor state for each decision of the agents not in A′. ACGs can
run on CGSs with arbitrary sets ∆ of decisions. For the purpose of this paper,
it suffices to consider ACGs with a Co-Büchi acceptance condition.

An ACG is a tuple A = (Σ,Q, q0, δ, F), where Σ is a finite alphabet, Q
is a finite set of states, q0 ∈ Q is a designated initial state, δ is a transition
function, and F ⊆ Q is a set of final states. The transition function δ : Q×Σ →
B

+(Q× ({�,♦} × 2A)) maps a state and an input letter to a positive Boolean
combination of universal atoms – (q,�, A′) – and existential atoms – (q,♦, A′).

A run tree 〈R, r : R → Q × S〉 on a given CGS C = (P,A, S, s0, l, ∆, τ) is a
Q×S-labeled tree where the root is labeled with (q0, s0) and where, for a node
n with a label (q, s) and a set L = {r(n · ρ) |n · ρ ∈ R} of labels of its successors,
there is a set A ⊆ Q× ({�,♦} × 2A) of atoms satisfying δ(q, l(s)) such that

– for all universal atoms (q′,�, A′) in A, there exists a decision d ∈ ∆A′

of the agents in A′ such that, for all counter decisions d′ ∈ ∆ArA′

,
(q′, τ(s, (d, d′))) ∈ L, and

– for all existential atoms (q′,♦, A′) in A and all decisions d′ ∈ ∆ArA′

of
the agents not in A′, there exists a counter decision d ∈ ∆A′

such that
(q′, τ(s, (d, d′))) ∈ L.

A run tree is accepting iff all paths satisfy the Co-Büchi condition that only
finitely many positions on the path are labeled with a final state (or rather: with
an element of F × S), and a CGS is accepted iff it has an accepting run tree.

The atoms of an ACG A are the elements of the set atom(A) ⊆ Q×({�,♦}×
2A) of atoms that actually occur in some Boolean function δ(q, σ), and the size
|Q| + |atom(A)| of A is the sum of the number of its states and atoms.

Theorem 1. [9] A constructive non-emptiness test of an ACG can be performed
in time exponential in the size of the ACG. ⊓⊔

An automaton is called universal if all occurring Boolean functions δ(q, σ)
are conjunctions of atoms in Q× {(�, ∅)}.

3 From General to Explicit Models

In this section we show that every model of a specification can be transformed
into an explicit model, which makes both the truth of each basic subformula in
the respective state and a (counter) strategy that witnesses the validity or inva-
lidity of this basic subformulas explicit. This result is exploited in the following
section by constructing a small ACG Aϕ that accepts the explicit models of ϕ.
Constructing an explicit model from a general model consists of three steps:

(a) (b)

Fig. 2. In the central third step of the transformation of an arbitrary model into an
explicit CGT, a CGT is widened in order to enable a finite encoding of witness strategies
for the (in)validity of basic subformulas in the labels. Figure 2a shows a CGT for a
single agent a and a binary set ∆ = {left , right}, where 〈〈a〉〉ϕ holds in every position.
The color coding maps a witness strategy for 〈〈a〉〉ϕ to every position p – in the single
agent case an infinite path rooted in p that satisfies ϕ. In Figure 2a, the path that
always turns left is a witness strategy for the validity of 〈〈a〉〉ϕ in the root, indicated
by coloring this path and the root of the tree in the same color (red). In general,
witness strategies cannot be finitely encoded in the labels of a CGT, because there is
no bound on the number of paths a position belongs to. The tree is therefore widened

by extending ∆ to ∆′ = {(left ,new), (left , cont), (right ,new), (right , cont)} (Figure 2b).
Witness strategies for the resulting CGT are constructed from witness strategies for the
original CGT by turning first to a new , and henceforth to a cont direction, avoiding the
unbounded overlap of witness strategies – for 〈〈a〉〉ϕ, every position p occurs in at most
one witness strategy that does not start in p – allowing for their finite representation.

1. In a first step, we add a fresh atomic proposition b for each basic subformula
b of ϕ, and extend the labeling function such that b ∈ l(s) ⇔ s ∈ ‖b‖C.

2. In a second step, we unravel the model obtained in the first step to a tree.
Using trees guarantees that no position can be part of infinitely many wit-
nesses. However, the number of witness strategies a position might belong to
remains unbounded. (Or: May be linear in the number of its predecessors.)

3. In a final step, we widen the tree by adding a single Boolean decision to the
set ∆ of decisions available to every agent (cf. Figure 2).
This widening allows us to map arbitrary but fixed witness (counter) strate-
gies from the original tree to witness (counter) strategies in the widened tree
such that witnesses for the validity of the same basic subformula b (or its
negation ¬b) in different states do not overlap. (With the exception of the
trivial case that the witness strategy must cover all successors.) This allows
us to explicitly encode the witnesses in the widened strategy trees.

From Models to Basic Models. For a given ATL* specification ϕ, we denote
with Bϕ the set of its basic subformulas. We call a model C = (P ⊎Bϕ, A, S, s0,
l, ∆, τ) |= ϕ of an ATL* formula ϕ basic if, for all basic subformulas b ∈ Bϕ of ϕ
and all states s ∈ S of C, b ∈ l(s) ⇔ s ∈ ‖b‖C. Since the additional propositions
Bϕ do not occur in the specification, the following lemma holds trivially:

Lemma 1. An ATL* formula is satisfiable iff it has a basic model. ⊓⊔

From Models to Tree Models. We call a CGS C = (P,A, S, s0, l, ∆, τ) a
concurrent game tree (CGT) if S = (∆A)∗, s0 = ε, and τ(s, d) = s · d. For
a CGS C = (P,A, S, s0, l, ∆, τ), we call TC = (P,A, (∆A)∗, ε, l ◦ u,∆, τ ′) where

τ ′(s, d) = s · d, and where the unraveling function u : (∆A)∗ → S is defined
recursively by u(ε) = s0, and u(s) = s′ ⇒ u(s ·d) = τ(s′, d), the unraveling of C.
We extend u to finite and infinite paths (u(s0s1s2 . . .) = u(s0)u(s1)u(s2) . . .).

Lemma 2. A CGS C is a (basic) model of a specification ϕ if and only if its
unraveling TC is a (basic) model of ϕ.

Proof. By induction over the structure of ϕ, it is easy to prove that s ∈
‖ϕ‖TC

⇔ u(s) ∈ ‖ϕ‖C , and π ∈ ‖ϕ‖path
TC

⇔ u(π) ∈ ‖ϕ‖path
C

. The only non-
trivial part in the induction is the transformation of the witness strategies
for basic formulas (ϕ = 〈〈A′〉〉ψ). However, we can simply use the unraveling
function u to transform a witness (counter) strategy fA′ or f cArA′ for C into
a witness (counter) strategy f ′

A′ or f cArA′

′, respectively, for TC . For this, we
fix f ′

A′(π) = fA′(u(π)) or f cArA′

′(π, d) = f cArA′(u(π), d), respectively. This en-
sures that plays(u(s), fA′) = u(plays(s, f ′

A′)) := {u(π) | π ∈ plays(s, f ′
A′)}, or

plays(u(s), f cArA′) = u(plays(s, f cArA′

′)). Using the induction hypothesis, we get

plays(s, f ′
A′) ⊆ ‖ψ‖path

C
or plays(s, f cArA′

′) ⊆ ‖¬ψ‖path
C

, respectively. ⊓⊔

From Tree Models to Explicit Tree Models. For a CGT T =
(P,A, (∆A)∗, ε, l,∆, τ), we call the CGT Tw = (P,A, (∆′A)∗, ε, l ◦ h,∆′, τ ′),

where ∆′ = ∆ × {new , cont}, h : (∆′A)∗ → (∆A)∗ is a hiding function that
hides the {new , cont} part of a trace position-wise, and τ ′(s, d) = s · d is the
usual transition function of trees, the (Boolean) widening of T .

Lemma 3. A CGT T is a (basic) model of a specification ϕ if and only if its
(Boolean) widening Tw is a (basic) model of ϕ.

Proof. By induction over the structure of ϕ. Again, the only non-trivial part is
the transformation of the witness strategies for basic formulas (ϕ = 〈〈A′〉〉ψ).
For this part, we can use the hiding function h to transform a witness strategy
fA′ in T into a witness strategy f ′

A′ in its widening Tw by choosing f ′
A′(π) =

(fA′(h(π)), ∗), where ∗ ∈ {new , cont} can be chosen arbitrarily. This ensures
plays(h(s), fA′) = h(plays(s, f ′

A′)) := {h(π) | π ∈ plays(s, f ′
A′)}. Using the in-

duction hypothesis, we get plays(s, f ′
A′) ⊆ ‖ψ‖path

C
. As in the previous lemma, we

get the analogous result for the transformation of a witness counter strategy. ⊓⊔

Let, for a basic subformula Bϕ ∋ b = 〈〈A′〉〉ϕb of a specification ϕ,
a(b) = A′ and a(¬b) = A r A′ denote the set of agents that cooperate
to ensure ϕb and the set of their opponents, respectively, and let Eϕ =
{(b,new), (b, cont), (¬b,new), (¬b, cont) | b ∈ Bϕ} denote an extended set of sub-
formulas. We call a concurrent game structure C = (P ⊎Bϕ⊎Eϕ, A, S, s0, l, ∆, τ)
well-formed if it satisfies the following requirements:

– ∀s∈S. b/∈l(s) ⇒ ∀d∈∆a(b)∃d′∈∆a(¬b). (¬b,new)∈l(τ(s, (d, d′))),
– ∀s∈S. (¬b,new)∈l(s) ⇒ ∀d∈∆a(b)∃d′∈∆a(¬b). (¬b, cont)∈l(τ(s, (d, d′))),
– ∀s∈S. (¬b, cont)∈l(s) ⇒ ∀d∈∆a(b)∃d′∈∆a(¬b). (¬b, cont)∈l(τ(s, (d, d′))),
– ∀s∈S. b∈l(s) ⇒ ∃d∈∆a(b)∀d′∈∆a(¬b). (b,new)∈l(τ(s, (d, d′))),
– ∀s∈S. (b,new)∈l(s) ⇒ ∃d∈∆a(b)∀d′∈∆a(¬b). (b, cont)∈l(τ(s, (d, d′))), and
– ∀s∈S. (b, cont)∈l(s) ⇒ ∃d∈∆a(b)∀d′∈∆a(¬b). (b, cont)∈l(τ(s, (d, d′))).

For a basic subformula Bϕ ∋ b = 〈〈a(b)〉〉ϕb of ϕ and its negation ¬b, we call
the set of traces witness(s, b) = {ss1s2s3 . . . ∈ path(s) | b ∈ l(s), (b,new) ∈ l(s1)
and ∀i ≥ 2. (b, cont) ∈ l(si)} and witness(s,¬b) = {ss1s2s3 . . . ∈ path(s) |
b /∈ l(s), (¬b,new) ∈ l(s1) and ∀i ≥ 2. (¬b, cont) ∈ l(si)} the explicit wit-
nesses for b and ¬b in s. C is called an explicit model of ϕ if the explicit wit-
nesses are contained in the set of paths that satisfy ϕb and ¬ϕb, respectively.
(witness(s, b) ⊆ ‖ϕb‖

path
C

and witness(s,¬b) ⊆ ‖¬ϕb‖
path
C

for all s ∈ S and
b ∈ Bϕ.) Note that explicit models of ϕ are in particular basic models of ϕ.

Lemma 4. Given a CGT T that is a basic model of an ATL* formula ϕ and a
set of witness strategies for T , we can construct an explicit model of ϕ.

Proof. In the proof of the previous lemma, we showed that the widening Tw of a
basic tree model T of ϕ is a basic model of ϕ. Moreover, we showed that, for the
translation of witness (counter) strategies that demonstrate the (in)validity of a
subformula b ∈ Bϕ of ϕ in a state s of Tw, any extension ∗ ∈ {new , cont} can
be chosen. In particular, the agents in a(b) or a(¬b), respectively, can choose to
first pick the new extension, and henceforth to pick the extension cont . For non-
universal specifications, that is, for the case a(b) 6= ∅ or a(¬b) 6= ∅, respectively,
this particular choice provides the guarantee that states reachable under the new
strategy f ′

a(b) or counter strategy f ca(¬b)
′, respectively, from different states in Tw

are disjoint. (∀s1, t1 ∈ (∆′A)∗ ∀i, j > 1. s1s2s3 . . . ∈ plays(s1, f
′
a(b)) ∧ t1t2t3 . . . ∈

plays(t1, f
′
a(b)) ∧ si = tj ⇒ s1 = t1, and the analogous result for f ca(¬b)

′.)

For universal specifications, that is, for the case a(b) = ∅ or a(¬b) = ∅,
respectively, the respective player intuitively has no choice, and the (counter)
strategy f ′

a(b) or f ca(¬b)
′ is well defined.

In both cases, we mark the positions reachable under f ′
a(b) in one step from

a position s1 with b ∈ l(s1) by (b,new) and positions reachable under f ca(¬b)
′ in

one step from a position s1 with b /∈ l(s1) by (¬b,new), and we mark positions
reachable in more than one step by (b, cont) and (¬b, cont), respectively.

By construction, the resulting CGT Tw is well-formed, and b ∈ l(s) ⇒
witness(s, b) = plays(s, f ′

a(b)) and b /∈ l(s) ⇒ witness(s,¬b) = plays(s, f ca(¬b)
′)

hold. By Lemma 3, we also get b ∈ l(s) ⇒ plays(s, f ′
a(b)) ⊆ ‖ϕb‖

path
C

and

b /∈ l(s) ⇒ plays(s, f ca(¬b)
′) ⊆ ‖¬ϕb‖

path
C

. ⊓⊔

Theorem 2. A specification has an explicit model if and only if it has a model.

Proof. The ‘if’ direction is implied by the Lemmata 1–4. For the ‘only if’ direc-
tion, it is obvious that, for a given explicit model (P ⊎Bϕ ⊎Eϕ, A, S, s0, l, ∆, τ)
of an ATL* formula ϕ, and for the projection of the labeling function to
the atomic propositions (l′(s)=l(s)∩P), (P,A, S, s0, l

′, ∆, τ) is a model of ϕ. ⊓⊔

4 ATL* Satisfiability is 2EXPTIME-Complete

We exploit the explicit model theorem by constructing an ACG Aϕ from an
ATL* specification ϕ that accepts only the explicit models of ϕ. Testing if a CGS

is a model of ϕ is considerably harder than testing if it is an explicit model. The
latter only comprises two simple tests: Checking the well-formedness criterion
can be performed by a (safety) ACG with O(|Bϕ|) states, while, for all basic
subformulas b ∈ Bϕ of ϕ, testing if all paths in witness(s, b) satisfy the path
formula ϕb and if all paths in witness(s,¬b) satisfy the path formula ¬ϕb can
be performed by a universal ACG that is exponential in ϕb.

Automata that check the (much weaker) model property, on the other hand,
need to guarantee consistency of the automaton decisions, which is usually solved
by using deterministic word automata to represent the single ϕb, leading to an
exponentially larger ACG (with parity acceptance condition and a number of
colors exponential in the length of ϕ).

We call a CGS C plain if all states in C are reachable from the initial state.
We can restrict our focus without loss of generality to plain concurrent game
structures, because unreachable states have no influence on the model property
(nor are they traversed by an automaton).

Lemma 5. For a specification ϕ, we can build an ACG Aw with O(|Eϕ|) states
that accepts a plain CGS C = (P ⊎Bϕ ⊎Eϕ, A, S, s0, l, ∆, τ) iff it is well-formed.

Proof. We can simply set Aw = (Σw, Qw, q
w
0 , δ, ∅) with Σw = 2Bϕ⊎Eϕ (the

atomic propositions P are not interpreted), Qw = {qw0 } ⊎ Eϕ, and

– δ(qw0 , σ)=(qw0 ,�, ∅)∧
∧
b∈σ∩Bϕ

((b,new),�, a(b))∧
∧
b∈Bϕrσ((¬b,new),♦, a(b))

∧
∧

(b,∗)∈σ∩Eϕ
((b, cont),�, a(b)) ∧

∧
(¬b,∗)∈σ∩Eϕ

((¬b, cont),♦, a(b)), and

– for all e ∈ Eϕ, δ(e, σ) = true if e ∈ σ, and δ(e, σ) = false otherwise.

The (qw0 ,�, ∅) part of the transition function guarantees that every reachable
position in the input CGS is traversed, and the remainder of the transition
function simply reflects the well-formedness constraints. ⊓⊔

Theorem 3. [4] Given an LTL formula ϕ, we can build an equivalent universal
Co-Büchi word automaton whose size is exponential in the length of ϕ. ⊓⊔

In the context of this paper, the equivalent universal word automaton is read
as a universal ACG U that accepts exactly those words that satisfy the LTL
formula. (Words can be viewed as special concurrent game structures with a
singleton set of decisions (|∆| = 1) or an empty set of agents (A = ∅).)

Let, for a path formula ψ, ψ̂ denote the formula obtained by replacing all
occurrences of direct basic subformulas b ∈ Bψ by b (read as atomic proposition).

Lemma 6. For a specification ϕ and every Bϕ ∋ b = 〈〈a(b)〉〉ϕb we can build two
universal ACGs Ab and A¬b whose size is exponential in the size of ϕ̂b and that
accept a plain CGS C = (P ⊎Bϕ⊎Eϕ, A, S, s0, l, ∆, τ) iff witness(s, b) ⊆ ‖ϕ̂b‖

path
C

and witness(s,¬b) ⊆ ‖¬ϕ̂b‖
path
C

, respectively, hold true.

Proof. By Theorem 3 we can translate the LTL formula ϕ̂b into an equivalent
universal ACG Ub = (P ⊎ Bϕ, Qb, q

b
0, δb, Fb) whose size is exponential in the

length of ϕ̂b. From Ub, we infer the universal ACG Ab = (P ⊎ Bϕ ⊎ Eϕ, Qb ×
{new , cont} ⊎ {qb}, qb, δ, Fb × {cont}) with the following transition function:

– δ(qb, σ) = (qb,�, ∅) if b /∈ σ and
– δ(qb, σ) = (qb,�, ∅) ∧

∧
q∈δb(qb

0
,σ)((q,new),�, ∅) otherwise,

– δ((q,new), σ) = true if (b,new) /∈ σ and
– δ((q,new), σ) =

∧
q′∈δb(q,σ)((q

′, cont),�, ∅) otherwise, and
– δ((q, cont), σ) = true if (b, cont) /∈ σ and
– δ((q, cont), σ) =

∧
q′∈δb(q,σ)((q

′, cont),�, ∅) otherwise.

δ again uses the (qb,�, ∅) part of the transition function to traverse every
reachable position in the input CGS. The assignments δ((q, ∗), σ) = true ensure
that, starting in any reachable state s, only the infinite paths in witness(s, b)
are traversed. The remaining transitions reflect the requirement that, for all
reachable positions s, all paths in witness(s, b) must satisfy the path formula ϕ̂b.

A¬b can be constructed analogously. ⊓⊔

Theorem 4. For a given ATL* specification ϕ, we can construct an ACG Aϕ

that is exponential in the size of ϕ and that accepts a plain CGS if and only if
it is an explicit model of ϕ.

Proof. We build the automaton Aϕ = (2P⊎Bϕ⊎Eϕ, {q0}⊎Qw ⊎
⊎
b∈Bϕ

{qb, q¬b}⊎

(Qb ⊎Q¬b) × {new , cont}, q0, δ,
⊎
b∈Bϕ

(Fb ⊎ F¬b) × {cont}) that consists of the
states of the ACG Aw and, for every basic subformula b ∈ Bϕ of ϕ, of the
ACGs Ab and A¬b, and a fresh initial state q0. The transition function for
the non-initial states is simply inherited from the respective ACG, and for the
initial state we set δ(q0, σ) = false if σ does not satisfy ϕ (when read as a
Boolean formula over atomic propositions and basic subformulas), and δ(q0, σ) =
δ(qw0 , σ) ∧

∧
b∈Bϕ

δ(qb, σ) ∧ δ(q¬b, σ) otherwise.
The lemmata of this section imply that Aϕ is exponential in the size of ϕ,

and accepts a plain CGS if and only if it is an explicit model of ϕ. ⊓⊔

It is only a small step from the non-emptiness preserving reduction of ATL*
to a 2EXPTIME algorithm for ATL* satisfiability checking and synthesis.

Together, Theorems 1, 2 and 4 provide a 2EXPTIME algorithm for a con-
structive satisfiability test for an ATL* specification. The corresponding hardness
result can be inferred from the 2EXPTIME completeness [4] of the satisfiability
problem for the syntactic sublogic CTL* (and even for CTL+ [15]) of ATL*.

Corollary 1. The ATL* satisfiability and synthesis problems are 2EXPTIME-
complete. ⊓⊔

5 Conclusions

We showed that the satisfiability and synthesis problem of ATL* specifications
is 2EXPTIME-complete. This result is surprising: For the remaining branching-
time temporal logics, the satisfiability problem is at least exponentially harder
than the model checking problem [4, 14] (in the size of the specification).

What is more, the suggested reduction indicates that ATL* synthesis may
be feasible. The exponential blow-up in the construction of the ACG is the same
blow-up that occurs when translating an LTL specification to a nondetermin-
istic word automaton. While this blow-up is unavoidable in principle, it is also

known that no blow-up occurs in most practical examples. This gives rise to the
assumption that, for most practical ATL* specifications ϕ, the size of the empti-
ness equivalent Co-Büchi ACG Aϕ will be small. Moreover, Aϕ is essentially
universal (plus a few simple local constraints), and synthesis procedures for uni-
versal Co-Büchi automata have recently seen a rapid development (cf. [16–18]).

ATL* specifications thus seem to be particularly well suited for synthesis:
They form one of the rare exceptions of the rule that testing (model-checking)
is simpler than constructing a solution.

References

1. Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifi-
cations. PhD thesis, Stanford University (1982)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proc. IBM Workshop on Logics of Pro-
grams, Springer-Verlag (1981) 52–71

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49 (2002) 672–713

4. Emerson, E.A.: Temporal and modal logic. MIT Press (1990)
5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state

concurrent systems using temporal logic specifications. Transactions On Program-
ming Languages and Systems 8 (1986) 244–263

6. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47 (2000) 312–360

7. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: Atl satisfiability is indeed
exptime-complete. Journal of Logic and Computation 16 (2006) 765–787

8. Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security 11 (2003) 399–430

9. Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time µ-calculus. In: Proc. CSL, Springer-Verlag (2006) 591–605

10. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
Report 175, Technion, Haifa, Israel (1980)

11. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, IEEE Computer
Society Press (2001) 279–290

12. van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc.
LICS, IEEE Computer Society Press (2003) 208–217

13. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull.
Soc. Math. Belg. 8 (2001)

14. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic
Logic 5 (1999) 245–263

15. Wilke, T.: CTL+ is exponentially more succinct than CTL. In: Proc. FSTTCS’99,
Springer-Verlag (1999) 110–121

16. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science, Pittsburgh (2005) 531–540

17. Kupferman, O., Piterman, N., Vardi, M.: Safraless compositional synthesis. In:
Proc. CAV, Springer-Verlag (2006) 31–44

18. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Proc. ATVA, Springer Verlag
(2007) 474–488

