Lazy Synthesis*

Bernd Finkbeiner! and Swen Jacobs?

L Universitat des Saarlandes
finkbeiner@cs.uni-saarland.de
2 Ecole Polytechnique Fédérale de Lausanne
swen. jacobs@epfl.ch

Abstract. We present an automatic method for the synthesis of pro-
cesses in a reactive system from specifications in linear-time temporal
logic (LTL). The synthesis algorithm executes a loop consisting of three
phases: Solve, Check, and Refine. In the Solve phase, a candidate solu-
tion is obtained as a model of a Boolean constraint system; in the Check
phase, the candidate solution is checked for reachable error states; in
the Refine phase, the constraint system is refined to eliminate any errors
found in the Check phase. The algorithm terminates when an imple-
mentation without errors is found. We call our approach “lazy,” because
constraints on possible process implementations are only considered in-
crementally, as needed to rule out incorrect candidate solutions. This
contrasts with the standard “eager” approach, where the full specifica-
tion is considered right away. We report on experience in the arbiter
synthesis for the AMBA bus protocol, where lazy synthesis leads to sig-
nificantly smaller implementations than the previous eager approach.

1 Introduction

A major advantage of synthesis over verification is that manual programming
is no longer required: synthesis automatically derives an implementation that is
correct by construction. A major disadvantage is that synthesis requires a much
more detailed specification. While the specifications used for verification typi-
cally focus on a small set of safety-critical properties, specifications for synthesis
must describe all relevant properties of the process one wishes to synthesize as
well as of the cooperating processes in the remainder of the system. This results
in a state explosion problem similar to the infamous problem in verification, be-
cause the state space of the synthesized implementation is based on the product
of all these properties.

An interesting example for this phenomenon is the synthesis of the AMBA
bus protocol, which is currently the largest published case study carried out with
automatic synthesis methods. Bloem et al. [1,2] report that the automatically

* This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS) and by the Swiss NSF
Grant #200021_132176.

generated implementation is about 100 times larger than the manually written
code and, furthermore, grows exponentially with the number of bus masters,
even though the manually written code almost remains constant. The approach
used by Bloem et al. may in fact not even show the full scale of the problem,
because the simplifying assumption is made that the synthesized process has
access to the full system state. Under incomplete information, i.e., when some
state variables are hidden from the synthesized process, an additional subset
construction is required that causes a further exponential blowup [3].

In this paper, we address the explosion of the state space during synthesis
with a novel combination of synthesis and verification. Rather than running a
synthesis procedure based on a full specification, we use verification to lazily
identify and add constraints on the synthesized process that are actually needed
to rule out incorrect implementations. Our starting point is a partial design,
which includes an implementation for the already implemented part of the sys-
tem, which we call the white-box process, and the interface to the part of the
system that is to be synthesized, which we call the black-bozx process. The imple-
mentation of the white-box process is given as a labeled transition system; for
the black-box process, an implementation is to be synthesized such that the com-
position of white-box and black-box implementation satisfies the specification,
which is given as a formula of linear-time temporal logic (LTL). Nondeterminism
in the white-box process is interpreted as hostile: the black-box process must en-
sure the satisfaction of the specification for all possible behaviors. Disjunctions
in the LTL specification, by contrast, represent friendly nondeterminism, leaving
design choices open to the synthesis of the black-box process.

Starting with an initial (trivial) constraint on the black-box process, we use
an SMT-solver to generate a sequence of candidate implementations. Each candi-
date is combined with the white-box processes and checked for reachable errors.
As long as such errors exist, we extract new constraints on the black-box process
that exclude the error in future iterations. The algorithm terminates when an
implementation without errors is found.

The new synthesis technique, which we call lazy synthesis, thus alternates
between constraint solving, which produces new candidates, and model check-
ing, which identifies errors in the candidates that lead to a refinement of the
constraints. We refer to the individual phases of this process as SOLVE, CHECK,
and REFINE. The SOLVE-CHECK-REFINE loop of lazy synthesis can be under-
stood as an extension of the CEGAR (Counter-Example Guided Abstraction
Refinement) loop [4] commonly used in verification, with the difference that the
counterexamples that drive the refinement process are not found in abstractions
of the given implementation, but rather in the continuously changing candidate
solutions produced by the SMT-solver.

As described so far, lazy synthesis tends to find implementations that are
significantly smaller than those found by eager methods, because we avoid the
full construction of the product state space, but the implementations are not
necessarily minimal. To further reduce the size of the synthesized implementa-
tions, we have integrated the bounded synthesis technique [5] into lazy synthesis.

Bounded synthesis searches for implementations up to a given bound on the
number of states. To ensure the minimality of the synthesized implementation,
we maintain a constraint that limits the number of states of the implementation.
Starting with an initial low value (such as a single state), we increase the bound
whenever the constraint system becomes unsatisfiable. In our experience, the
number of states that is actually needed for a correct implementation is usually
very small compared to the product state space constructed by eager methods.
To evaluate this observation experimentally, we have repeated the AMBA
case study with lazy synthesis. It turns out that a large part of the protocol
specification [6] is already deterministic. We modeled this part as the white-box
process and thus focused the synthesis effort on the arbitration policy, which is
left open in the protocol specification. Unlike Bloem et al., we do not assume
complete information, and were therefore able to minimize the number of signals
the arbitration policy depends on. For typical fairness properties such as “every
bus master that requests a grant, will eventually get one,” expressed in LTL, lazy
synthesis finds implementations with a linear number of states in the number of
bus masters. This is in contrast with the exponential growth of the size of the
implementations reported by Bloem et al. [1,2] using eager synthesis.

The remainder of the paper is structured as follows. Section 2 introduces the
AMBA protocol case study as a motivating example. In Section 3, we introduce
the basic notions needed to discuss the synthesis problem; these notions allow
us, in Section 4, to formalize the synthesis problem of the AMBA protocol case
study. In Section 5, we describe the lazy synthesis algorithm. Section 6 gives
some details on our current implementation of the approach, and in Section 7
we demonstrate how we used the approach and its implementation to synthesize
arbiters for the AMBA specification. We conclude in Section 8 with a summary
and some ideas for future research directions.

2 The AMBA Case Study

We will use the Advanced Microcontroller Bus Architecture (AMBA) specifica-
tion [6] as a motivating example. This specification describes a communication
bus for a number of masters and clients on a microchip. The bus controller keeps
track of requests, and assigns the bus to one master at a time. Additionally, mas-
ters can ask for different kinds of locked bursts, i.e., sequences of transfers during
which only this master is allowed to use the bus. We introduce briefly the signals
that are used to realize the controller of this bus.

Requests and grants. To request the bus, master ¢ will raise a signal HBUS-
REQi. The controller decides who will be granted the bus by raising signal
HGRANTiI. HMASTER[n:0] is an n+ 1-bit signal, where n is chosen such that
the number of masters fits into n + 1 bits. It always contains the identifier of
the master which is currently active. Whenever the client raises HREADY,, it is
updated by letting HMASTER[n:0] = i, where HGRANTI is currently active.

Locks and bursts. A master can request a locked access by raising HLOCKi
(in addition to HBUSREQJ). If the locked access is granted, the master can set
HBURST]1:0] to either SINGLE (single cycle access), BURST4 (four cycle
burst) or INCR, (unspecified length burst). For a BURST4 access, the bus will
remain locked until the client has accepted 4 inputs from the master (signaled
by raising HREADY 4 times). In case of an INCR access, the bus will remain
locked until HBUSREQ) is lowered. The arbiter raises signal HMASTLOCK
if the bus is currently locked.

3 The Synthesis Problem

In this section we formalize the setting of our synthesis approach.

Partial designs. A partial design is a tuple D = (V,1,0, Ty), where V is
a set of boolean system variables, which also serve as the atomic propositions,
the disjoint subsets 1,0 C V, INO = (, are the input and output variables,
respectively, of the black-box process. Input variables of the white-box are all
variables from V', and outputs all variables from V'\ O. Ty is the implementation
of the white-box process, given as a labeled transition system, which is defined
in the following.

Implementations. We represent implementations as labeled transition sys-
tems. For a given finite set 1" of directions and a finite set X of labels, a X-
labeled T-transition system is a tuple T = (T,to,T,0), consisting of a finite
set of states T, an initial state top € T, a (nondeterministic) transition function
7:T x T — 2T, and a labeling function o : T — X.

A path in a labeled transition system is a sequence p : w — T X7 of states and
directions that follows the successor relation, i.e., for all i € w if u(i) = (¢;,€;)
then p(i+1) = (ti41,eir1) where t;11 € 7(¢;, €,41). We call the path initial if it
starts with the initial state and initial environment input: (0) = (to, €o)-

A process with input variables I and output variables O is implemented as a
20-labeled 2!-transition system. Let 77 = (T7, to,1,71,01) be a 201 Jabeled 271~
transition system, representing a process with inputs I; and outputs O2, and let,
likewise, T2 = (T2, t0,2, T2, 02) be a 2092_Jabeled 2/2-transition system, represent-
ing a second process with inputs I and outputs Os. The parallel composition of
71 and T3, denoted by 71|73, is the 201992 labeled 2(11W12)N(O1U02)_transition
system T = (T,¢,7,0), where the states consist of the product T = T x Tb,
to = (to,1,%0,2), the transition function matches inputs with outputs generated
in the previous step: 7((s1, $2),1) = 71(s1, ({U02(82))N11) X T2(s2, (1Uo01(s1))N12),
and the labeling function is the union o(s1, s2) = 01(s1) U 02(s2). We call the
parallel composition of the white-box implementation and the black-box imple-
mentation the system implementation.

Specifications. We use linear-time temporal logic (LTL) [7], with the usual
modalities Next O, Until U, Eventually <, and Globally 1, as the specification

logic. If a sequence 7 € w — 2V satisfies an LTL formula ¢, we say that =
is a model of ¢, denoted by m |= ¢. A 2V O labeled 29«-transition system
(T, to,T,0) satisfies an LTL formula ¢ if, for all initial paths p : w — T x 29w
of the transition system, the sequence o, : i — 6(u(z)) is a model of ¢, where
o(t,e) = o(t) Ue.

Realizability and synthesis. An LTL specification ¢ is (finite-state) realizable
in a partial design D = (V, 1,0, Ty) iff there exists an implementation 7p for
the black-box process, such that the system implementation Ty || Tp satisfies ¢.
In this case, we say that the black-box implementation is correct.

Following the bounded synthesis approach [5], we introduce a bound n € N on
the size of the black-box implementation. Given an architecture D = (V, I, 0, T),
a specification ¢, and a bound n, we say that ¢ is n-realizable in D if there exists
a correct implementation Tp of the black-box process, such that Tz has no more
than n states.

The synthesis problem is to compute a correct black-box implementation if
the given LTL specification is realizable in the given partial design.

4 The Partial Design of the AMBA Protocol

The starting point of the AMBA case study is the informal specification [6]
available from the ARM website. In order to apply lazy synthesis, the informal
specification needs to be formalized into a partial design and an LTL specifica-
tion. In this section, we discuss these modeling decisions.

The white-box process. Upon inspection of the AMBA specification, one can
easily see that at any given time, the valuations of variables HMASTER[n:0]
and HMASTLOCK are completely determined by the history of the other
variables of the system: whenever HREADY holds, the specification requires
that in the next state HMASTERIn:0] will be equal to ¢, for every ¢ such
that HGRANT!I holds in the current state. In addition to determining HMA S-
TER[n:0] wrt. HREADY and the HGRANT], this indirectly imposes a mutual
exclusion property on the HGRANT], since the property cannot be satisfied for
multiple HGRANT!] at the same time. In a similar fashion, HMASTLOCK is
determined: whenever a master ¢ is granted an access, variable HLOCKi deter-
mines whether it will be a locked access. If this is the case, and HBURST]1:0]
is either BURST4 or INCR, then HMASTLOCK has to be set until the de-
sired burst access is over, i.e. either until the client accepted 4 transmissions
from the master (each signaled by HREADY being high), or until the master
lowers HBUSREQI. Using this deterministic specification, we can easily build a
white-box process that governs variables HMASTER[n:0] and HMASTLOCK
and satisfies this part of the specification.

The black-box process. The remaining variables controlled by the system are
the HGRANTi variables. Except for their valuation in the initial state, these

are only indirectly specified by their influence on the other variables, and the
global requirements on the overall system. These variables are controlled by the
black-box process.

The interface of the white-box process. To keep the interface of the black-
box small, we add an auxiliary variable DECIDE to the white-box process,
which is set whenever the access of a master is finished. We will see that the
right definition of DECIDE allows the lazy synthesis algorithm to find a correct
black box process without knowing about the valuations of any other variables.

Figure 1 gives a slice of the resulting white-box process. In all of the depicted
states, HMASTER[n:0] has the same value. The overall white-box consists of
such a slice for every master, and transitions to states with a different valuation
of HMASTER[n:0] are only possible from state 0, or the corresponding state
in the given slice. HMASTLOCK is true in all states except 0 and 1, and
DECIDE is true in the states depicted as dashed circles. Transitions that do
not contain any conditions are taken unconditionally, and whenever none of the
outgoing transitions is possible, we remain in the state. From 0, transitions into
several different states of the other slices of the system are possible.

not HBUSREQi

.

/ \

HREADY \\3/)
T = HREADY,
(7)) HLOCKi,
\C_—{ BURST = INCR

HREADY HREADY,

(not HLOCKi or BURST = SINGLE)

T T~
& @ —O

HREADY HREADY, HLOCKi
BURST = BURST4
HREADY,
not HGRANTi

Fig. 1. Slice for one master of the AMBA white-box process

LTL specification. The LTL specification consists of the formula A1 A A2 =
G1 A G2 AN G3 A G4 with the assumptions and guarantees shown in Figure 2.
Formula (A1) and (A2) are assumptions on the environment: neither are the
clients busy forever, nor is the bus locked forever. The second formula is an
indirect assumption on the environment, as the only way HMASTLOCK can be
true forever in our white-box process is if HBUSREQ]i holds forever after master
i acquires a lock on an INCR burst. (G1) and (G2) are guarantees that follow
from the requirement that whenever HREADY is high, the white-box process

Assumptions :

[0< HREADY (A1)

0<> —HMASTLOCK (A2)
Guarantees :

O (HREADY — \/i HGRANTI) (G1)

Vi# j: O (HREADY — —(HGRANTi A HGRANT])) (G2)

Vi: O (HBUSREQI — < (—HBUSREQi V HMASTER = i)) (G3)

Vi : O (-DECIDE — (HGRANTI <> OHGRANT!I)) (G4)

Fig. 2. The LTL specification of the AMBA specification.

must update HMASTER with any ¢ s.t. HGRANT! is true. As HMASTER
can only hold exactly one value, this implies that always exactly one grant must
be true. (G3) is the fairness guarantee of the system: a HBUSREQ)I that is
not lowered again will eventually be answered by setting HMASTERI[n:0] =
i. Finally, (G4) is an optional constraint on the auxiliary DECIDE variable.
Similar to the definition of auxiliary variables for verification, this property of
DECIDE will help guide the lazy synthesis algorithm.

5 Lazy Synthesis

We now describe the lazy synthesis algorithm, which solves the synthesis problem
for a given partial design and LTL specification. The first subsection gives an
overview of the SOLVE-CHECK-REFINE loop, the individual building blocks of
the loop are described in more detail in the following subsections.

5.1 The SOLVE-CHECK-REFINE loop

Figure 3 shows the main loop of the lazy synthesis algorithm. Given a partial
design D and a specification ¢, Procedure LAZYSYNTHESIS(D, ¢) computes the
least bound n € N such that ¢ is m-realizable in D and returns a black-box
implementation with n states.

The algorithm incrementally increases the bound n on the number of states of
the black-box implementation until an implementation is found. For each bound,
we incrementally strengthen the constraint C, starting with init_constraint, until
either the constraint becomes unsatisfiable and we try with higher bound n, or
a correct implementation is found, at which point the algorithm terminates.

The algorithm builds on the following subroutines, which will be explained
in the following subsections.

— SOLVE. The constraint C' is a ground formula over booleans (representing in-
puts) and integers (representing states), with function symbols that represent
transitions and outputs of the black-box component. It is used to forbid cer-
tain input/output patterns of the black-box process. Given such a constraint

LAZYSYNTHESIS(D, ¢)

14

n<+1
correct <— false
C < init_constraint
while correct = false
do
(model-found, Tg) = SOLVE(C, n)
if model-found = true
then
(correct, error-sequence) = CHECK(D, ¢, model)
if correct = false
then C <+ REFINE(C, error-sequence)
else n+n+1
C <+ init_constraint
return 7p

Fig. 3. Algorithm for lazy synthesis. Given a partial design D and a specification ¢,
procedure LAZYSYNTHESIS(D, ¢) computes the least bound n such that ¢ is n-realizable
in D and returns a black-box implementation with n states.

C and a bound n, procedure SOLVE(C, n) checks if there exists a black-box
implementation with at most n states that satisfies the constraint C. The
result is a pair (model-found, Tg), where the first component model-found is
a boolean flag indicating whether a solution has been found, and if this flag
is true, then the second component is a candidate implementation for the
black-box process.

CHECK. Given a partial design D, a specification ¢, and a black-box im-
plementation Tp constructed by SOLVE, CHECK(D, ¢, Tg) verifies whether
the composition of white-box and black-box implementation satisfies ¢. The
procedure returns a pair (correct, error-sequence), where the first compo-
nent is a boolean flag indicating whether the implementation is correct, and
the second component is a representation of the error paths found if the
implementation is not correct.

REFINE. Procedure REFINE(C, error-sequence) organizes the error paths
found by procedure CHECK into a tree representation that starts with the
initial state. This error tree is then translated into a new conjunct in the
constraint that forbids all error paths collected by procedure CHECK.

5.2 SOLVE

The goal of procedure SOLVE is to find an implementation for the black-box
process that satisfies the constraints collected so far. For a black-box process
with at most n states, we assume, without loss of generality, that the states are
the natural numbers from 0 to n — 1 and that the initial state is 0. We can also
assume that the black-box implementation is deterministic, because any given

nondeterministic implementation, for which the system implementation satisfies
the specification, can obviously safely be replaced by any of its deterministic re-
strictions. We represent the unknown transition function using an uninterpreted
function symbol trans of type B!l x {0,...n—1} — {0,...n —1}. The unknown
labeling function is represented by an uninterpreted function symbol label of
type {0,...,n — 1} — 29,

We denote with T(X) the set of terms over a set X of function symbols
and constants, and with C(X) the set of constraints over X. We use terms in
T({trans, label,0}) to symbolically identify the states that are reached after a
certain sequence of inputs and outputs, and constraints in C({trans, label,0}) to
describe conditions on such states. Any interpretation 7,0 of the symbols trans
and label defines an implementation of the black-box process, the 20-labeled 27-
transition system Tp = ({0,...n—1},0, 7, 0). To improve readability, we will also
use, for a given interpretation o of label, directly the variable names to denote
functions from states to Boolean values. I.e., HGRANTO(1)= true iff HGRANTO €
o(1). In the synthesis loop, procedure SOLVE(C,n) uses an SMT-solver to find
such interpretations. To enforce the limit on the size of the implementation, we
extend the constraint system that is passed to the solver with an appropriate
type constraint (i.e, Vb € Bl t € {0,...,n —1}. 0 < trans(b,t) < n —1).

Ezxample 1. In the AMBA specification, the black-box process initially is only
constrained by an upper bound on the size of the implementation we are cur-
rently looking for and the valuations of its output variables in the initial state 0.
Suppose we want to synthesize an implementation for 2 masters, we are looking
for models of size up to 3, the only input to the black-box process is DECIDE,
and initially HGRANTO should be high, and HGRANT1 low. Thus, we assert

HGRANTO(0) A “"HGRANT1(0) AV b € B, n € {0,...,n—1}. 0 < trans(b,n) <2

in the SMT solver. We may get the model

HGRANTO : 0 — true trans : (false,0) — 1
1+ false (true,0) — 1
2 — true (false, 1) — 2
HGRANTIL : 0 — false (true,1) — 0
1+ false (false,2) — 0
2 — true (true,2) — 0

representing a candidate implementation of the black box.

5.3 CHECK

Procedure CHECK verifies whether the composition of the candidate black-box
implementation constructed by SOLVE with the white-box implementation satis-
fies the specification . If ¢ is violated, we extract a set of counterexamples. We
are interested in finite counterexamples, because they can easily be eliminated in
the subsequent REFINE phase. Since counterexamples to LTL specifications are

in general infinite, we first translate the LTL formula ¢ to a safety property, for
which all counterexamples are finite. As pointed out in [5], a reduction to safety
is possible whenever the size of the implementation is bounded. To construct
a monitor process for an LTL specification, we adapt a reduction given in [5],
Theorem 4 (there stated in terms of a translation from universal co-Biichi tree
automata to deterministic safety tree automata) to our setting.

Recall that a Biichi word automaton over alphabet X is a tuple A =
(@, Qo, A, F), where @ is a finite set of states, Qo C @ a subset of initial states,
ACQ x X xQ aset of transitions, and F' C @ a subset of accepting states. A
Biichi automaton accepts an infinite word w = wowiws ... € X¢ iff there exists
a run r of A on w, i.e., an infinite sequence roriry ... € Q¥ of states such that
ro € Qo and (75, w;, ri41) € A for all i € N, such that r; € F for infinitely many
J € N. The set of sequences accepted by A is called the language L(A) of A. Let
Ay = (Q-p, Qo,~p, Ay, F-p) be a Biichi automaton that accepts all sequences
in (2V)¥ that satisfy =, and therefore violate (.

Proposition 1. For every LTL formula ¢ and every bound m € N on the num-
ber of states of the system implementation, there exists a family of monitor
processes {Tpm' | M € N} with error state err, such that

1. any system implementation T satisfies @ if err is unreachable in T||T-p m’,
and

2. form’ >m-|Q-y|+ 1, any system implementation T with at most m states
satisfies ¢ if and only if err is unreachable in T || T-p m -

Proof. We construct a monitoring process T, m/ = (T, to, 7, 0) with designated
error state err:

- T=(Q—{0,...m,_})U{err};

— to is the function ¢ty : Q@ — {0,...,m/,_} with to(¢) = 0 if ¢ € Qo and
to(q) = - otherwise;

— 7(err,o) = {err},
7(f,0) = {err} if there are two states ¢ € F,¢ € @Q such that f(q) = m/
and the transition (g, 0,¢’) is in A, and
7(f,0) = {f'}, otherwise, with f'(¢') = max{f(q) + g(¢) | f(q) #
L (q,0,q") € A}, where g(q) = 1if ¢ € F and g(q) = 0if ¢ ¢ F, and
max () = _;

—o(t)y=0forallteT.

Each state of the monitoring process thus maintains, for each state ¢ of A,
two pieces of information: (1) whether or not ¢ is, in the current position, visited
on some run (if not, ¢ is assigned a blank _ symbol), and (2) the maximum
number of visits to accepting states on any run prefix of A-, ending in state g.
If the number of visits to accepting states is bounded by m/, the monitor does not
reach err and the system implementation satisfies ¢. For system implementations
with up to m states, it suffices to use m’ = m - |@Q-,| + 1. Consider the product
A= (Q X T, Qo x {to} {(a,1),0, (@) | (@,0,0') € Ao(t') = 7}, Fy x T) of
the system implementation and A-,. If, on some run of the product automaton,

10

the accepting states of A-, have been visited more than m - |Q-,| times, some
product state consisting of some state of the implementation and some accepting
state of A, must have been visited twice, and we can hence construct a path in
the implementation and an accepting run of A, by repeating the cycle infinitely
often. ad

Let D = (V,I,0,Tw) be a partial design, ¢ an LTL specification, m’ €
N a natural number, and Ty the states of Ty. We call the pair & =
((V,1,0, Tw || T=p,m’), Tw x {err}), consisting of a partial design and a set of
error states, the extended partial design. The white-box process of £ additionally
keeps track of the state of the monitor process 7=y m/.

An error path of a system implementation 7 of an extended partial design
is a finite prefix p(0)u(1) ... pu(k) of a path u such that u(k) is an error state. A
counterexample is an initial error path. If no counterexamples have been found,
the algorithm terminates and returns 7z. Otherwise, the set of counterexamples
for m" = m - |Q-| is collected in the form of an error sequence Ey, Er,...E} €
(27)*, such that for each 0 < i < k, the states in F; have a minimal error path
of length 3.

Procedure CHECK assumes a fixed bound m’. While m' = m - |Q-,| + 1
is a safe choice, in practice it is more efficient to start with small bounds and
incrementally increase m’ if no implementation is found.

Ezxample 2. The properties from Figure 2 are translated into a monitoring pro-
cess. For simplicity, assume we only have a monitor for (G2), with i=0 and j=1.
The monitor moves from its initial state 0 into the error state err whenever
HREADY, HGRANTO0 and HGRANT1 are simultaneously true.

In the system implementation of the extended partial design, with the white-
box implementation from Fig. 1 and the black-box implementation from Ex-
ample 1, error states Ey are all tuples (a, b, err), where a is any state of the
black-box process and b is any state of the white-box process. We will denote
this set of states as (x,x*,err). The backwards reachable states from (x,*,err)
are all states in which the black-box is in state 2, since this triggers the monitor
to move into err. The black-box process only moves into 2 when it is in 1 and
DECIDE is false, so in all pre-states the white-box needs to be in one of the
states in S1 = {0,2,3,4,5,6}, or the corresponding states with HMASTER = 1.
Denoting these states by S, the backwards reachable states from E; = (2, *,)
are Fa = (1,51 U S, *). Finally, the black-box process can only reach state 1
from state 0, and does so without further conditions. Pre-states of S; U S7 in
the white-box are Ss = {0,1,2,4,5,7} and the corresponding S5, so backwards
reachable states from (1,5, U S7,*) are Ez = (0,52 U S5, %). Since E3 contains
the initial state (0,0, 0), the sequence Fy, ..., F3 is an error sequence.

5.4 REFINE

REFINE uses the error sequence found by CHECK to refine the constraint on the
black-box process. For this purpose, we first organize the error sequence into a

11

tree that starts with the initial state and branches according to the values of
the variables visible to the black-box process. We denote a Y-labeled finite tree
over a set 1" of directions as a pair (N,[), where N C 7™ is a prefix-closed set
of finite words over T, identifying the nodes of the tree, and [: N — X is the
labeling function. The root of the tree is the empty word €. A node w € N is a
leaf if it has no children, i.e., {w-v |v €Y} NN = . Let Vg = I UO be the set
of variables visible to the black-box process.

A counterezample tree for a system implementation 7 = (T, to, 7,0), an ex-
tended partial design & = ((V,I, O, Tw || T=p,m), Tw X {err}) and an error se-
quence FEg, E1,...E; € (27)* is a finite 27-labeled tree (N,l) with directions
Y = 27 such that the following conditions hold:

— The root of the tree is labeled with the singleton set {¢¢} consisting of the
initial state.

— For each node w € N and each direction v € 7" there is a child w-v € N iff
(1) the label of w does not contain an error state, i.e., {(w) N Fy = 0, and
(2) the set of states in Ej—jw)—1 that are v-successors of states in the label
of the parent is non-empty. In this case, the child is labeled with this set:

w-v € N iff l(w)NEy =0 and {7(q,v) | ¢ € l(w)} N Ej_yy|—1 # 0, and
- v) = {r(q,0) | ¢ € Uw)} N By 1.

To refine the constraint on the black-box process, we translate the counterex-
ample tree (N,l) into a constraint that ensures that, in future iterations, each
counterexample is prevented by the black-box process.

Proposition 2. Let (N,l) be a counterexample tree. There exists a constraint
C(n,1) that eliminates exactly those black-box implementations for which the sys-
tem implementation has one of the counterexamples in (N,1).

Proof. We set C(n;y := constr(e,0), where the function constr : (N x
T({trans, label,0})) — C({trans, label,0}) is defined inductively as follows:

— for a leaf node w € N, l(w) N Ey # 0,
constr(w, t) = false;
— for a non-leaf node w € N, l(w) N Ey = 0,

constr(w,) = /\ < label(t) # (vN O) > .

\Y t “v, t t
e vz constr(w - v, trans(t, v))

a

Ezxample 3. We inspect the error sequence obtained during the CHECK phase
in Example 2. Forward reachable states from (0,0,0) are (1,53 U S%,0), where
S3={0,1,2,4}.

Construction of the counterexample tree can be seen as a branching model
checking procedure, which first partitions S3 into states Sy = {1} where
DECIDE holds, and S5 = {0,2,4} where it does not hold. Then, state sets

12

(0,0,0)
| —DECIDE

(1,{0,2,4,0',2",4'},0)

DECIDE/ \ﬁDECIDE
(2,{1,3,1'3'},0) (2,{0,2,4,5,0",2',4',5'},0)

Fig. 4. Counterexample Tree

(1,54 U S%,0) and (1,55 U SE,0) are intersected with Es from Example 2, re-
sulting in the empty set and (1, S5 U S{, 0), respectively. Forward reachable from
(1,55 U SE,0) are (2,56 U S§,0), where Sg = {0,1,2,3,4,5}.

Partitioning states again wrt. DECIDE gives us (2,{1,3,1’3'},0), and
(2,{0,2,4,5,0’,2',4’,5'},0). Since we have reached state 2 of the black-box pro-
cess (which triggers the monitor to move into err), all successor states of these
will be error states. Figure 4 depicts the resulting counterexample tree (leaving
out the leaves labeled with false). The corresponding counterexample constraint

1S
—HGRANTO(0) V HGRANT1(0)

V HGRANTO(trans(false,0)) V HGRANT1(trans(false,0))
V ((-HGRANTO(trans(true, trans(false,0)))

V' —HGRANTI1(trans(true, trans(false,0))))

A (FHGRANTO(trans(false, trans(false,0)))

V' —HGRANTI1(trans(false, trans(false,0)))))).

6 Symbolic Implementation

We have implemented the algorithm described in Section 5 in OCaml, tightly
integrating the SMT solver Z3 [8] and the BDD package CUDD [9].

Initialization. The input to our tool contains the partial design D and specifi-
cation ¢ of the desired system in one file. White box and monitor automata are
translated into a BDD representation of their initial and error states, as well as
their respective transition relations. These will not change during the main loop
of the algorithm.?

Main Loop: SOLVE, CHECK, REFINE

— SOLVE. The solve phase is handled by the SMT solver, which receives the
current set C' of constraints on the black-box process, and either returns a
model or the result unsatisfiable. In the latter case, we increase the bound
and try again.

3 This means that monitor automata currently do not grow with the size bound, but
their size m’ must be chosen large enough from start.

13

— CHECK. The model obtained from the SMT solver is translated into a BDD
representation, and we construct a BDD representation of the complete sys-
tem, including the candidate black box. We apply backward model checking,
storing BDD representations of the error sequence Ey, ..., Ej.

— REFINE. To obtain the counterexample tree, we start another model check-

ing run, this time going forward from the backwards reachable initial states
identified in the CHECK phase. In every iteration, we partition the reach-
able states according to the valuations of input variables of the black-box
process, resulting in a branching model checking process. To allow efficient
partitioning, we enforce an ordering on the BDD which always keeps input
variables on top. Furthermore, every element of this partition is intersected
with Fj_;, where j is the number of steps we have taken in the forward
model checking process. As a consequence, state sets that will not lead to
an error in the minimal number of steps become empty, and these branches
of the process are pruned.
During the branching model checking process, we store constraints on input
variables that correspond to the partitioning of the reachable states in the
counterexample tree. By construction, every branch of the process will have
reached the error states after k steps, and we obtain an error tree of depth k.
The constraints in this tree are combined as described in Section 5, such that
they exclude all minimal error paths from this model in the future candidate
models produced by SOLVE.

7 Experiments

Table 1 gives experimental results on the AMBA case study obtained with our
prototype implementation of the lazy synthesis approach. We synthesized ar-
biters for architectures with 2, 4 or 6 masters, using lazy synthesis with monitors
with a fixed valuation of m’ of 10, 14, or 18. For the interface of the black-box,
we tested the cases I = {DECIDE}, I = {DECIDE,HMASTLOCK}, and
I = {DECIDE, HMASTLOCK,HREADY}. DEC indicates that we used the
optional constraint (G4) from Figure 2 to guide the search.

Times are given in seconds, on an Intel Core i7 CPU @ 2.67GHz. TO marks
cases where a timeout of 5 hours has been reached, “unsat” cases where the
specification is unsatisfiable for the given monitor. The size of the synthesized
black-box is equal to the number of masters in the system. For 8 masters, the
tool timed out for all options mentioned above.

Comparison to Bloem et al. The AMBA case study has been carried out
with an eager synthesis method by Bloem et al. [1,2]. Similar to our auxiliary
variable DECIDE, they defined several auxiliary variables and constraints that
help guide the synthesis process. However, in contrast to our approach, Bloem
et al. synthesized the complete controller, including the deterministic parts we
have included in our white box. The advantage of synthesizing the complete con-
troller is that it justifies the assumption of complete information, which results

14

Table 1. Experimental Results

DEC w/o DEC
m’'=10 m'=14|m'=18 m’'=10 m'=14|m'=18
[I| = 1| =2\|I| =3||I| =1|{I| = 1||I| =1||I| =2||I| =3||I|=1||I| =1
2 Masters | 0.6 0.6 0.6 0.4 0.7 0.3 0.3 0.5 0.4 0.5
4 Masters | 14.6 | 18.4 | 61.0 | 39.1 | 2429 | 476 | 162.6 | TO | 332.6 | 923.9
6 Masters | unsat | unsat | unsat [9952.0{ TO |unsat |unsat |unsat| TO TO

in a simpler synthesis problem. However, focusing the synthesis on the black-box
process, which does not have access to the full state, allows us to obtain smaller
implementations. Using lazy synthesis, we can minimize both the interface be-
tween black and white box (and thus, find the signals on which the arbitration
policy depends) and minimize the number of states of the the black-box imple-
mentation. The size of the implementation synthesized using the lazy approach
is linear in the number of masters, while Bloem et al. report exponential growth.

8 Conclusions

We have presented lazy synthesis, a novel combination of synthesis and veri-
fication. Lazy synthesis focuses the synthesis effort on the relevant part of the
design, the black-box process and ensures that only constraints that are needed to
rule out incorrect implementations are considered. The main practical advantage
of lazy synthesis is that it produces dramatically smaller implementations than
eager methods. This has three main reasons. First, unnecessary constraints are
avoided. Second, the incomplete information of the black-box process is treated
accurately, and, hence, irrelevant dependencies are avoided. Third, lazy synthesis
integrates bounded synthesis, and thus ensures that the number of states in the
implementation is minimal.

A related method, called counter-example guided inductive synthesis
(CEGIS), has been proposed for functional synthesis of sequential and concur-
rent programs [10, 11]. Like lazy synthesis, the approach is based on generating
candidate solutions to the synthesis problem, and refining them based on er-
ror traces, but there are several differences. One of the main differences to lazy
synthesis is that program executions in CEGIS are finite, while we consider
properties of reactive systems on possibly infinite traces. Furthermore, synthesis
in CEGIS is restricted to specific constructs, like finding values for constants
and regular expressions, or reordering program statements given in the partial
implementation. Finally, in case the candidate implementation does not satisfy
the specification, we produce a constraint that excludes all minimal error paths
from subsequent models, while the CEGIS approach only excludes one particular
error per iteration.

Future Work. There are two major issues that deserve further investigation.
The first issue concerns the limitation of the presented approach to finite-state

15

white-box processes. This limitation could be avoided by integrating lazy syn-
thesis with automatic abstraction refinement (cf. [12]). The second issue is the
limitation to single black-box processes. In distributed systems, there are typi-
cally multiple processes that each have an incomplete view of the global state.
Even though the synthesis problem for distributed architectures is, in general,
undecidable, lazy synthesis should, in principle, be applicable to distributed ar-
chitectures, because both the verification problem and the bounded synthesis
problem are decidable.

Acknowledgments. We thank Bertrand Jeannet for help with the OCaml
interface of CUDD.

References

1. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic hardware synthesis from specifications: A case study. In: Proc. DATE.
(2007) 1188-1193

2. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. In: Proc. COCV. (2007) 3-16

3. Reif, J.H.: The complexity of two-player games of incomplete information. J.
Comput. Syst. Sci. 29(2) (1984) 274-301

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In Emerson, E.A., Sistla, A.P.; eds.: CAV. Volume 1855 of
Lecture Notes in Computer Science., Springer (2000) 154-169

5. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Proc. ATVA. Volume 4762 of
Lecture Notes in Computer Science., Springer-Verlag (2007) 474-488

6. ARM Ltd.: AMBA specification (rev.2). Available from www.arm.com (1999)

7. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS, IEEE Computer
Society Press (1977) 46-57

8. De Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Proc. TACAS, Springer-
Verlag (2008) 337-340

9. Somenzi, F.: CUDD: CU Decision Diagram Package, Release 2.4.2. University of
Colorado at Boulder (2009)

10. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS. (2006) 404-415

11. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.
In: PLDI. (2008) 136-148

12. Dimitrova, R., Finkbeiner, B.: Abstraction refinement for games with incomplete
information. In Hariharan, R., Mukund, M., Vinay, V., eds.: FSTTCS. (2008)

16

