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Abstract

We provide a uniform solution to the problem of
synthesizing a finite-state distributed system. An in-
stance of the synthesis problem consists of a system
architecture and a temporal specification. The architec-
ture is given as a directed graph, where the nodes rep-
resent processes (including the environment as a spe-
cial process) that communicate synchronously through
shared variables attached to the edges. The same vari-
able may occur on multiple outgoing edges of a single
node, allowing for the broadcast of data. A solution to
the synthesis problem is a collection of finite-state pro-
grams for the processes in the architecture, such that
the joint behavior of the programs satisfies the specifi-
cation in an unrestricted environment. We define in-
formation forks, a comprehensive criterion that char-
acterizes all architectures with an undecidable synthesis
problem. The criterion is effective: for a given archi-
tecture with n processes and v variables, it can be deter-
mined in O(n2 · v) time whether the synthesis problem
is decidable. We give a uniform synthesis algorithm
for all decidable cases. Our algorithm works for all
ω-regular tree specification languages, including the µ-
calculus. The undecidability proof, on the other hand,
uses only LTL or, alternatively, CTL as the specifica-
tion language. Our results therefore hold for the entire
range of specification languages from LTL/CTL to the
µ-calculus.

1 Introduction

Synthesis algorithms decide whether a given
specification has an implementation. For distributed
systems, the specification is usually given as a formula
of a temporal logic and an implementation is a collec-
tion of finite-state programs that satisfy the formula
when composed into the complete system.

The synthesis algorithms in the literature solve var-
ious instances of this problem that differ in the choice
of the system architecture and the specification logic.

Closed synthesis, the case of a single-process implemen-
tation without any interaction with the environment,
was solved for CTL [1] and LTL [11]. Open synthesis
concerns systems consisting of a single process and an
environment and was solved for CTL* [4] as well as the
µ-calculus [6]. An automata-based synthesis algorithm
for pipeline and ring architectures and CTL* specifica-
tions is due to Kupferman and Vardi [7]; Walukiewicz
and Mohalik provided an alternative game-based con-
struction [10]. There is also a negative result: Pnueli
and Rosner [9] showed that the synthesis problem is
undecidable for LTL specifications and the simple ar-
chitecture A0, consisting of the environment and two
independent system processes.

The question arises whether it is necessary to con-
tinue this series of isolated results, one for each ar-
chitecture and logic. Can we provide a comprehensive
criterion to determine if the distributed synthesis prob-
lem for a given system architecture and specification
logic is decidable? Can the synthesis problem in fact
be solved uniformly, that is, by a single algorithm for
all decidable cases? In this paper, we give a positive
answer to both questions.

In the uniform distributed synthesis problem, we de-
cide for a given architecture A and a temporal specifi-
cation ϕ over a set of boolean variables V whether there
exists a finite-state program for each process in A, such
that the composition of the programs satisfies ϕ. The
architecture A is given as a directed graph, where the
nodes represent processes, including the environment
as a special process. The edges of the graph are la-
beled by variables from V , indicating that data may be
transmitted between two processes. The same variable
may occur on multiple outgoing edges of a single node,
allowing for the broadcast of data. Among the set of
system processes, we distinguish two types: a process is
black-box if its implementation is unknown and needs
to be discovered by the synthesis algorithm. A process
is white-box if the implementation is already known
and fixed. Figure 1 shows several example architec-
tures, depicting the environment as a circle, black-box
processes as filled rectangles, and white-box processes
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Figure 1. Distributed architectures

as empty rectangles.

We provide a comprehensive criterion for the de-
cidability of the synthesis problem in a given archi-
tecture: the problem is decidable if and only if the
architecture does not contain an information fork. In-
tuitively, an information fork is a situation where two
black-box processes receive information from the envi-
ronment (directly or indirectly) in such a way that they
cannot completely deduce the information received by
the other process.

With the information fork criterion, it is very sim-
ple to determine for a given architecture whether the
synthesis problem is decidable. Consider, for example,
the 5-process two-way ring of Figure 1d. The synthesis
problem is undecidable because of the information fork
in the processes p4 and p5. The environment p1 can
transmit information through a, b, c to p4 that remains
unknown to p5, and, vice versa, transmit information
through a, b, f to p5 that remains unknown to p4. In-
terestingly, the architecture becomes decidable if we
eliminate one of the two processes (resulting in a 4-
process two-way ring) or, alternatively, fix one of their
implementations, turning the process into a white-box,
as shown for p4 in Figure 1e.

The information fork criterion connects and ex-
tends the isolated decidability results in the literature.
Pipelines and one-way rings, for example, have decid-
able synthesis problems [7] because the environment
cannot communicate any information to a process with-
out giving the same information to all processes to
the left (when depicted as in Figure 1). By allowing
for both broadcast and single-process communication,
we distinguish the undecidable architecture A0 in Fig-
ure 1a from the decidable architecture that can be ob-
tained by adding variable a to the edge between pro-
cesses p1 and p3 in architecture A0. By identifying

processes as black-box and white-box, we distinguish
the decidable architecture in Figure 1e from the unde-
cidable two-way ring in Figure 1d.

We solve the uniform synthesis problem with a sin-
gle algorithm for all decidable cases. The algorithm
consists of a first phase in which the architecture is
transformed and a second phase wherein an automata-
based construction solves the synthesis problem for the
simplified architecture. First, the processes are ordered
according to the information they possess about the en-
vironment’s behavior. Groups of black-box processes
with the same level of information can simulate each
other, and are therefore collapsed into single processes.
Then, we eliminate all white-box processes by replac-
ing the indirect communication through a white-box
process by direct edges between black-box processes.
As the last simplification step, we eliminate feedback
edges in the architecture, i.e., any backwards flow of
information from processes with a lower level of infor-
mation to those with a higher level. The feedback can
be predicted by the better-informed process, making
the edge in the architecture redundant.

The transformation steps turn any architecture
without an information fork into an architecture that
satisfies two conditions: the resulting architecture is
acyclic and the order on the processes according to
the level of information is strict. For this type of
architecture, we solve the synthesis problem with an
automata-based construction that successively elimi-
nates processes along the information order, starting
with the best-informed process.

2 Uniform Distributed Synthesis

In the uniform distributed synthesis problem, we de-
cide for the triple (A,ϕ, {sw|w ∈W}), consisting of an
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architecture A, a specification ϕ, and a set of white-box
strategies {sw|w ∈ W}, whether there exists a finite-
state program (or strategy) for each black-box process
in A, such that the joint behavior satisfies ϕ.

Architectures. An architecture A is a tuple
(P,W, penv , E,O,H), where P is a set of processes
with a subset W ⊂ P of white-box processes and
a distinguished environment process penv ∈ P r W .
(P,E) is a directed graph, O = {Oe| e ∈ E} a set of
nonempty sets of (output) variables for every edge, and
H = {Hp| p ∈ P} a set of (possibly empty) sets of hid-
den variables for each process. We assume that the sets
in H are pairwise disjoint from each other as well as
from the sets in O. The same variable may occur on
two separate edges to indicate broadcasting, but only
if the edges originate in the same node.

As additional notation, we use V =
⋃

e∈E Oe ∪⋃
p∈P Hp for the set of variables, Ip =

⋃
p′∈P O(p′,p)

and Op =
⋃

p′∈P O(p,p′) ∪ Hp for the input and out-

put, respectively, of a process p, and P− = P r {penv}
for the set of system processes. For convenience, we
use O(p,p′) = ∅ for (p, p′) /∈ E. An architecture A is
called acyclic if the graph (P,E) is acyclic. A pro-
cess p is called idle if Op = ∅. The set B = P r W
contains the black-box processes and the environment;
B− = {p ∈ B r {penv} | Op 6= ∅} is the set of non-idle
black-box processes.

Implementations. A process p is implemented by
a strategy, i.e., a function sp : (2Ip)∗ → 2Op . A strategy
is finite-state if it can be represented by a finite-state
automaton. An implementation of an architecture is
a set of strategies S = {sp| p ∈ B−} for all non-idle
black-box processes.

Let OQ =
⋃

p∈QOp denote the common output of

a set Q ⊆ P− of processes and IQ =
⋃

p∈Q Ip r OQ

their common input. The composition
⊗

p∈Q sp = sQ :

(2IQ)∗ → 2OQ of a set of strategies {sp|p ∈ Q ⊆ P−}
maps the common input history of the processes in Q
to their common output: sQ : ε 7→

⋃
p∈Q sp(ε) and sQ :

x · υ 7→
⋃

p∈Q sp(memp(x · υ)), with memp : (2IQ)∗ →

(2Ip)∗, memp : ε 7→ ε and memp : x · υ 7→ memp(x) ·
((sQ(x) ∪ υ) ∩ Ip).

We use trees as a representation for strategies and
computations. As usual, a (full) tree is given as the set
Υ∗ of all finite words over a given set of directions Υ.
We define that every non-empty node x ·υ, x ∈ Υ∗, υ ∈
Υ, has the direction dir (x ·υ) = υ and the empty word
ε has some designated root-direction dir (ε) = υ0 ∈ Υ.
For given finite sets Σ and Υ, a Σ-labeled Υ-tree is a
pair 〈Υ∗, l〉 with a labeling function l : Υ∗ → Σ that

maps every node of Υ∗ to a letter of Σ. For a set Ξ×Υ
of directions and a node x ∈ (Ξ×Υ)∗, hideΥ(x) denotes
the node in Ξ∗ obtained from x by replacing (ξ, υ) by
ξ in each letter of x.

For a Σ-labeled Ξ × Υ-tree 〈(Ξ × Υ)∗, l〉, we define
the function xrayΞ : 〈(Ξ×Υ)∗, l〉 7→ 〈(Ξ×Υ)∗, l′〉 with
l′(x) = (pr1(dir (x)), l(x)) that maps Σ-labeled Ξ × Υ-
trees to Ξ × Σ-labeled Ξ × Υ-trees, adding the Ξ part
of the direction of a node to its label.

For a Σ-labeled Ξ-tree 〈Ξ∗, l〉 we define the Υ-
widening of 〈Ξ∗, l〉, denoted by wideΥ(〈Ξ∗, l〉), as the
Σ-labeled Ξ × Υ-tree 〈(Ξ × Υ)∗, l′〉 with l′(x) =
l(hideΥ(x)). In wideΥ(〈Ξ∗, l〉), nodes that are indis-
tinguishable for someone who cannot observe Υ (i.e.,
nodes x, y with hideΥ(x) = hideΥ(y)) have the same
label.

The specification ϕ refers to the computation
tree, which maps the output history of the en-
vironment to the joint output of all processes.
The computation tree of an implementation S is
defined as the 2V -labeled 2Oenv -tree 〈2Oenv

∗
, l〉 =

xray2Oenv (wide2Henv (〈(2Oenv rHenv )∗,
⊗

p∈P− sp〉)). An
implementation solves a triple (A,ϕ, {sw|w ∈ W}) if
its computation tree satisfies ϕ.

Synthesis. A triple (A,ϕ, {sw|w ∈ W}) is realiz-
able iff there exists an implementation that solves
(A,ϕ, {sw|w ∈ W}).

We call an architecture A decidable if there exists
an algorithm that decides for all specifications ϕ and
all sets of finite-state white-box strategies {sw|w ∈W}
if (A,ϕ, {sw|w ∈W}) is realizable.

3 Information Forks

As discussed in the introduction, an information fork
is a situation where two black-box processes receive in-
formation from the environment (directly or indirectly)
in such a way that they cannot completely deduce the
information received by the other process. Formally,
an information fork is a tuple (P ′, V ′, p, p′), where P ′

is a subset of the processes, V ′ is a subset of the vari-
ables disjoint from Ip ∪ Ip′ , and p, p′ ∈ B− r P ′ are
two different black-box processes. Such a tuple is an
information fork if P ′ together with the edges that are
labeled with at least one variable from V ′ forms a sub-
graph rooted in the environment and there exist two
nodes q, q′ ∈ P ′ that have edges to p, p′, respectively,
such that O(q,p) * Ip′ and O(q′,p′) * Ip.

For example, the architecture A0 contains the in-
formation fork ({p1}, ∅, p2, p3). The 5-process two-
way ring of Figure 1d contains the information
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fork (P ′, V ′, p, p′) with P ′ = {p1, p2, p3, p6}, V ′ =
{a, b}, p = p4, p

′ = p5.
We now show that the information fork criterion is

effectively decidable. Our construction is based on the
observation that every architecture that does not con-
tain an information fork can be ordered according to
the relative informedness of the processes.

Consider, for a black-box process p, the set Ep =
{e ∈ E|Oe * Ip} of edges that carry information in-
visible to p, and the set Up = {q ∈ B| there is no
directed path from penv to q in (P,Ep)} of processes
that are not reachable by such edges. The preorder 4

(read: has more or equal information than) is then de-
fined as follows: for two black-box processes p, p′ ∈ B,
p 4 p′ ⇔ p′ ∈ Up.

An architecture A is called ordered by a surjective
function f : B → Nn for some n ∈ N, if {penv} is the
preimage of 1 and for all p, p′ ∈ B: f(p) 6 f(p′) iff
p 4 p′. If f is bijective, A is called strictly ordered by
f . An architecture is called (strictly) ordered if it is
(strictly) ordered by some function f .

An architecture is called idle-free iff none of its
black-box processes are idle. Having no output, idle
processes have only the canonical strategy to output ∅
upon every input-history and can be pruned.

We define the related idle-free architecture A′ =
idlefree(A) to an architecture A, as follows:

• P ′ = W ∪B− ∪ {penv}, W ′ = W ,

• E′ = E ∩ P ′ × P ′,

• O′
e = Oe for all e ∈ E′ and

• H ′
p = Op r

⋃
p′∈P ′ O(p,p′) for all p ∈ P ′.

An architecture A is called weakly ordered iff
idlefree(A) is ordered.

Theorem 3.1 An architecture A is weakly ordered iff
A does not contain an information fork.

Proof: Suppose A contains an information fork
(P ′, V ′, p, p′), then p 64 p′, p′ 64 p. Hence, idlefree(A)
is not ordered. If A′ = idlefree(A) is ordered, then
∀p, p′ ∈ B− : p 4 p′ ∨ p′ 4 p and (P ′, V ′, p, p′) is not
an information fork. �

Whether a given architecture A contains an infor-
mation fork can therefore be checked as follows:

1. compute idlefree(A);

2. compute 4,

3. check if for each two processes p, p′ ∈ B,
p 4 p′ or p′ 4 p.

The algorithm runs in O(n2 ·v) time, where n = |P |
is number of processes and v = |V | is the number of
variables in the architecture A. As we show in Sec-
tion 5, architectures that contain an information fork
are undecidable. In the following section we show that
architectures without information forks are decidable.

4 The Synthesis Algorithm

The synthesis algorithm consists of three phases: in
the first phase, the architecture is transformed into a
strictly ordered acyclic architecture without white-box
processes. In the second phase, an automata-based
construction decides whether the simplified architec-
ture is realizable. If so, an implementation is computed
in the third phase.

4.1 Architecture Transformations

We apply four transformations: elimination of idle
processes, clustering of equally informed processes,
elimination of white-box processes, and elimination of
feedback edges.

Elimination of idle processes. An implementation
S = {sp} solves (idlefree(A), ϕ, {sw|w ∈ W}) iff it
solves (A,ϕ, {sw|w ∈W}).

Clustering of equally informed processes.

Black-box processes with the same level of information
can simulate each other and are therefore collapsed into
a single process. Let the architecture A be ordered by
a function f : B → Nn and let g : P → Nn ∪W with
g �B= f and g �W = idW .1 The quotient architecture
A′ = A/∼ (where ∼ is the equivalence induced by 4)
is defined as follows:

• B′ = Nn, W ′ = W ,

• E′ =
⋃

(p,p′)∈E{(g(p), g(p
′))} r

⋃
i∈B′{(i, i)},

• O′
(i,j) =

⋃
p∈g−1(i),p′∈g−1(j) O(p,p′) and

• H ′
i =

⋃
p∈g−1(i)Op r

⋃
j∈P ′ O′

(i,j).

The quotient architecture is strictly ordered by idn.

Lemma 4.1 Let the architecture A be ordered by a
function f . Then (A,ϕ, {sw|w ∈ W}) is realizable iff,
for A′ = A/∼, (A′, ϕ, {sw|w ∈ W}) is realizable.

1� and � denote input- and output-restrictions, respectively.
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Proof: Let Wi = {w ∈ W | there is no directed path
from penv to w in (P ′, E′) r {i}}.

Let S = {sp|p ∈ B−} solve (A,ϕ, {sw|w ∈ W}) and
let si =

⊗
p∈Wi∪f−1(NnrNi−1) sp, then S′ = {s′i|p ∈

B′−} with s′i : x 7→ si(hide2IirIi
(x)) ∩ Oi solves

(A′, ϕ, {sw|w ∈W}).
Conversely, let the implementation S′ =

{s′i|i ∈ B′−} solve (A′, ϕ, {sw|w ∈ W}) and let⊗
i∈Wi∪NnrNi−1

si = s′i : (2Ii) → 2Oi . Then S =

{sp|p ∈ B−} with sp : x 7→ s′f(p)(hide2
IprIf(p)

(x)) ∩Op

solves (A,ϕ, {sw|w ∈ W}). �

Elimination of white-box processes. We elimi-
nate a white-box process by attaching it to a process
in B that can simulate it. We choose the best-informed
process p0 that provides the white-box with input and
add edges from p0 to ensure that each black-box pro-
cess still has the same input after the elimination of
the white-box process. The strategy sw of a white-box
process w is turned into an equivalent specification ϕw

and added to the original specification ϕ.
Let A be an architecture that is strictly ordered

by idn, let {sw|w ∈ W} be a given set of white-
box strategies and let {ϕw|w ∈ W} be equivalent
specifications. The black-box synthesis problem re-
lated to (A,ϕ, {sw|w ∈ W}) is the synthesis problem
(A′, ϕ̂, ∅) = black (A,ϕ, {sw|w ∈W}), defined by:

• P ′ = B (= Nn), W ′ = ∅,

• O′
(b,b′) = O(b,b′) ∪

⋃
w∈set(b)O(w,b′),

• E′ = {e ∈ P ′ × P ′|O′
e 6= ∅},

• H ′
p = Op ∪

⋃
w∈set(b)O(w,b′) r

⋃
p′∈P O

′
(p,p′), and

• ϕ̂ =
∧

w∈Wrset(penv )
ϕw ∧ (

∧
w∈set(penv )

ϕw → ϕ),

where set : Nn → 2W , set : p 7→ {w ∈ W |p =
min{n; {b ∈ B| there is a directed path from b to w
in (P,E) that does not pass any black-box process}}}.
The architecture A′ is again strictly ordered.

Lemma 4.2 Let the architecture A be strictly ordered
by idn. Then (A,ϕ, {sw|w ∈ W}) is realizable iff
black (A,ϕ, {sw|w ∈ W}) is realizable.

Proof: Let S be an implementation that solves
(A,ϕ, {sw|w ∈ W}). Each black-box process p can
simulate the output of all black-box processes p′ > p.
Since the behavior of the white-box processes in set(p)
is determined by that output, p can simulate their out-
put as well.

Conversely, if S′ = {s′p} is an implementation solv-
ing black (A,ϕ, {sw|w ∈ W}), the restriction of the

strategies to the reduced output, S = {sp|p ∈ B−}
with sp = s′p �2Op , solves (A,ϕ, {sw|w ∈ W}). �

Elimination of feedback edges. Edges from pro-
cesses with a lower level of information to those with
a higher level are redundant, because the feedback can
be simulated by the better-informed process.

Let A be an architecture that is strictly ordered by
f with W = ∅. The acyclic architecture related to A,
A′ = acycle(A, f), is defined as follows:

• P ′ = P ,

• E′ = {(p, p′) ∈ E|f(p) < f(p′)},

• O′
e = Oe and H ′

p = Op r
⋃

p′∈P O
′
(p,p′).

The architecture acycle(A, f) is acyclic and strictly or-
dered by f .

Lemma 4.3 Let the architecture A be strictly ordered
by idn with W = ∅ and let A′ = acycle(A, idn). Then
(A,ϕ, ∅) is realizable iff (A′, ϕ, ∅) is realizable.

Proof: Let S = {si|i ∈ B−} solve (A,ϕ, ∅), and
let si =

⊗
j∈NnrNi−1

sj , then S′ = {s′i|p ∈ B′−} with

s′i : x 7→ si(x) ∩O′
i solves (A′, ϕ, ∅).

Conversely, if S′ = {s′i|i ∈ B′−} solves (A′, ϕ, ∅),
S = {s′i ◦ hide

2IirI′
i
|i ∈ B−} solves (A,ϕ, ∅). �

4.2 Realizability

As the result of the transformation steps we obtain a
strictly ordered acyclic architecture without white-box
processes. We solve the synthesis problem for the sim-
plified architecture in an automata-based construction.
Our construction builds on the algorithm for pipeline
architectures by Kupferman and Vardi [7]. We consider
synchronous behavior with delay. The adaptation to
the case without delay is straightforward [7].

Automata. An alternating automaton A =
(Σ, Q, q0, δ, α) runs on Σ-labeled Υ-trees (for a prede-
fined finite set Υ of directions). Q denotes a finite set
of states, q0 ∈ Q denotes a designated initial state, δ
denotes a transition function δ : Q× Σ → B+(Q× Υ),
and α is an acceptance condition.

A run tree on a given Σ-labeled Υ-tree 〈Υ∗, l〉 is
a Q × Υ∗-labeled tree where the root is labeled with
(q0, l(ε)) and where for a node n with a label (q, x) and
a set of children child (n), the labels of these children
have the following properties:

• for all m ∈ child(n) : the label of m is (qm, x ·υm),
qm ∈ Q, υm ∈ Υ such that (qm, υm) is an atom of
δ(q, l(x)), and
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• the set of atoms defined by the children of n sat-
isfies δ(q, l(x)).

A run tree is accepting if all its paths fulfill the ac-
ceptance condition. A parity condition is a function
α from Q to a finite set of colors C ⊂ N. A path is
accepted if the highest color appearing infinitely often
is even. A Streett condition is a set of pairs of sub-
sets of Q, (Gi, Ri)i∈I for some finite index set I, called
green and red states. A path is accepted iff for all
pairs (Gi, Ri)i∈I an element of Gi or no element of Ri

appears infinitely often.
A Σ-labeled Υ-tree is accepted if it has an accepting

run tree. The set of trees accepted by an alternating
automaton A is called its language L(A). An automa-
ton is empty, if its language is empty.

The acceptance of a tree can also be viewed as the
outcome of a game, where player accept chooses, for
every pair (q, σ) ∈ Q×Σ, a set of atoms of δ(q, σ), sat-
isfying δ(q, σ), and player reject chooses one of these
atoms, which is executed. The input tree is accepted
iff player accept has a strategy enforcing a path fulfill-
ing α.

A nondeterministic automaton is a special alternat-
ing automaton, where the image of δ consists only of
such formulae that, when rewritten in disjunctive nor-
mal form, contain exactly one element of Q×{υ} in ev-
ery disjunct. Note that for nondeterministic automata,
every node of a run tree corresponds to a node in the
input tree. For nondeterministic automata, δ can also
be viewed as a mapping δ : Q×Σ → 2Υ→Q. For nonde-
terministic automata, emptiness can be checked with
an emptiness game, where player accept also chooses
the letter of the input alphabet. A nondeterministic
automaton is empty iff the emptiness game is won by
reject.

Our synthesis algorithm consists of a series of au-
tomata transformations. Before we discuss the con-
struction in detail, we give an overview of the algo-
rithm.

Overview. Let A be an acyclic architecture with
W = ∅ and P = Nn, strictly ordered by idn. We define
Ôi =

⋃
i≤j≤n Oj for all i ∈ P and Îi = Ii ∪Oi−1 for all

i ∈ P r {penv}.
The input to our algorithm is a µ-calculus specifica-

tion ϕ. We translate ϕ into an equivalent alternating
parity automaton Aϕ and construct the following au-
tomata:

• the alternating parity automaton A1 =

cover2O1 (Aϕ), accepting the 2
bO2-labeled 2O1-trees

that solve the (not distributed and delay-free)
synthesis problem for an enriched input;

• the alternating parity automaton B1 = wait(A1),

accepting the 2
bO2-labeled 2

bI2-trees that solve the
(not distributed) synthesis problem for an enriched
input;

• for 2 ≤ i ≤ n :

– the alternating parity automaton Ai =

narrow2Ii (Bi−1), accepting the 2
bOi -labeled

2Ii-trees that solve the (not distributed) syn-
thesis problem for the remaining processes
{i, .., n};

– the nondeterministic parity automaton Ni =
ndet(Ai), equivalent to Ai;

– the alternating parity automaton
Bi = change2Oi ,2Ii+1rOi (Ni), accepting

those 2
bOi+1-labeled 2

bIi+1 -trees that solve
the (not distributed) synthesis problem for
the remaining processes {i + 1, .., n} for an
enriched input.

(A,ϕ, ∅) is realizable iff Nn is not empty.

Automata Constructions. The first step is to turn
the specification into an equivalent alternating automa-
ton. For µ-calculus specifications, the automaton has
O(n2) states and O(n) colors (n being the size of the
specification).

Theorem 4.4 [6] Given a µ-calculus specification ϕ
over a set V of atomic propositions and a finite set Υ,
we can construct an alternating parity automaton A
that accepts an 2V -labeled Υ-tree iff it satisfies ϕ.

We are only interested in those trees where the la-
bel of every node is in accordance with its direction.
The following automata transformation assures this
and deletes the now redundant information from the la-
bels. The state space of the resulting automaton is lin-
ear in the state space of the original automaton, while
the set of colors remains unchanged.

Theorem 4.5 [5] Given an alternating parity au-
tomaton A over Υ × Σ-labeled Υ-trees, we can con-
struct an alternating parity automaton A′ over Σ-
labeled Υ-trees, such that A′ accepts 〈Υ∗, l〉 iff A ac-
cepts xrayΥ(〈Υ∗, l〉). This automaton is denoted by
cover (A).

Since we consider communication with delay, the
output of the processes must not depend on the last
decision of the environment: i.e., all children of a node
must be labeled equally. This is assured by the follow-
ing transformation. The state space of the resulting
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automaton is linear in the state space of the original
automaton, while the set of colors remains unchanged.

For a Σ-labeled Υ-tree 〈Υ∗, l〉, we define the function
delay : 〈Υ∗, l〉 7→ 〈Υ∗, l′〉 with l′(ε) = l(ε) and l′(x·υ) =
l(υ0 · x) that maps Σ-labeled Υ-trees to Σ-labeled Υ-
trees.

Theorem 4.6 [7] Given an alternating parity automa-
ton A over Σ-labeled Υ-trees, we can construct an al-
ternating parity automaton A′ over Σ-labeled Υ-trees,
such that A′ accepts 〈Υ∗, l〉 iff A accepts delay(〈Υ∗, l〉).
This automaton is denoted by wait(A).

The following transformation ensures that the out-
put of a process depends only on its input. The state-
space and the set of colors remain unchanged.

Theorem 4.7 [5] Given an alternating parity au-
tomaton A over Σ-labeled Ξ × Υ-trees, we can con-
struct an alternating parity automaton A′ over Σ-
labeled Ξ-trees, such that A′ accepts 〈Ξ∗, l〉 iff A ac-
cepts wideΥ(〈Ξ∗, l〉). This automaton is denoted by
narrowΞ(A).

As the last transformation requires a nondeterminis-
tic automaton as input, we have to translate the alter-
nating automaton into an equivalent nondeterministic
automaton. This translation is done in two steps: in
the first step, an alternating parity automaton A is
turned into a nondeterministic Streett automaton NS

using a method by Muller and Schupp [8]. If A has
n states and c colors, then NS has nO(c·n) states and
O(c·n) pairs. In the second step, we turn the nondeter-
ministic Streett automaton NS into a nondeterministic
parity automaton N . If NS has m states and p pairs,
then N has pO(p) ·m states and O(p) colors.

Note that in our construction this blow-up is con-
sumed by the blow-up of the previous automata trans-
formation; the resulting state-space is still of size
nO(c·n) and the resulting automaton has O(c ·n) colors.

Theorem 4.8 [8] Given an alternating parity automa-
ton A, we can construct a nondeterministic Streett au-
tomaton NS with L(A) = L(NS).

Theorem 4.9 Given a nondeterministic Streett au-
tomaton NS , we can construct a nondeterministic
parity automaton N with L(NS) = L(N ).

Construction: For NS = (Σ, Q, q0, δ, (Gi, Ri)i∈I)
running on Υ-trees, we define N = (Σ, Q′, q′0, δ

′, α) in
the following way:

• Q′ = Q× perm(I)× I × I, where perm(I) denotes
the set of permutations of the elements of I,

• (qυ, πυ , rυ, gυ)υ∈Υ ∈ δ′((q, π, r, g), σ) iff

– (qυ)υ∈Υ ∈ δ(q, σ),

– πυ = (p1, p2, . . . , pk) is obtained from π =
(j1, j2, . . . , jk) by shifting all numbers jl with
qυ ∈ Gjl

to the left,

– rυ is the greatest number such that q ∈ Rjrυ

(or 0 if q is in no red set) and

– gυ is the greatest number such that q ∈ Gjgυ

(or 0 if q is in no green set);

• q′0 = (q0, π0, r0, g0) for some arbitrary (π0, r0, g0),

• α : (q, π, r, g) 7→ 2g iff g 6 r and

• α : (q, π, r, g) 7→ 2r − 1 otherwise.

Proof: The construction uses the memoryless deter-
minacy of Streett games with index appearance record
[2, 8]. The states (q, π, r, g) consist of some state q
of NS , the memory (index appearance record) π, and
numbers r and g, memorizing the rightmost position of
an index in the index appearance record of the previous
state, such that q ∈ Rπ(r) and q ∈ Gπ(g), respectively.
We call these numbers maximal previous red (green)
position.

If both players play memoryless in the acceptance
game, the game will end in a circle with the following
properties: a subset of, say n, indices will be continu-
ally shifted to the left in the index appearance record,
while all other indices will remain unchanged on the
right. The game is won by player accept (green) iff
none of the unchanged indices is ever red in the circle.

The highest value of the maximal previous green
position in the circle is g = n, while the highest value
of the maximal previous red position r 6 n iff the game
is won by green. Hence, the maximal color of the circle
is odd (2rmax − 1 > 2n) if player reject (red) wins and
even (2gmax = 2n) if player accept (green) wins. �

Corollary 4.10 Given an alternating parity automa-
ton A, we can construct an equivalent nondeterminis-
tic parity automaton N . This automaton is denoted
by ndet(A).

The last transformation turns a nondeterministic
automaton N , accepting strategy trees of two processes
p1 and p2 with perfect knowledge, into an alternat-
ing automaton A, accepting strategy trees for p2 with
limited knowledge. Process p2 is aware of a subset of
the environment actions and the output of p1, delayed
by one turn.

For a Σ-labeled Υ-tree 〈Υ∗, l〉, we define the mem-
oryful version of 〈Υ∗, l〉, denoted by mem(〈Υ∗, l〉), as
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the Σ+-labeled Υ-tree 〈Υ∗, l′〉 with l′(ε) = l(ε) and
∀(x, υ) ∈ Υ∗ × Υ : l′(x · υ) = l′(x) · l(x · υ).

For a Σ-labeled Ξ × Υ-tree 〈(Ξ × Υ)∗, lΣ〉 and a Ξ-
labeled Υ× Θ-tree 〈(Υ × Θ)∗, lΞ〉 we define their com-
position, denoted by 〈(Ξ×Υ)∗, lΣ〉⊕〈(Υ×Θ)∗, lΞ〉, as a
Ξ×Σ-labeled Υ×Θ-tree 〈(Υ×Θ)∗, l〉, with the following
properties for 〈(Υ × Θ)∗, ldΞ〉 = delay(〈(Υ × Θ)∗, lΞ〉),
〈(Υ × Θ)∗, lmem〉 = mem(xrayΥ(〈(Υ × Θ)∗, ldΞ〉)) and
for all x ∈ (Υ × Θ)∗, υ ∈ Υ × Θ :

• l(ε) = ldΞ(ε) ∪ lΣ(ε)

• l(x · υ) = ldΞ(x · υ) ∪ lΣ(lmem(x))

For a set T of Ξ × Σ-labeled Υ × Θ-trees we define
shapeΞ,Υ(T ) as the set of Σ-labeled Ξ × Υ-trees 〈(Ξ ×
Υ)∗, lΣ〉 for which there is an Ξ-labeled Υ×Θ-tree 〈(Υ×
Θ)∗, lΞ〉 with 〈(Ξ × Υ)∗, lΣ〉 ⊕ 〈(Υ × Θ)∗, lΞ〉 ∈ T .

The automaton A accepts a strategy tree for p2 iff
there is a (not necessarily forgetful) strategy for p1 such
that the composition of the two strategies is accepted
by N . The key to achieve this is to guess such a strat-
egy for p1 nondeterministically. The state-space and
the coloring function remain unchanged.

Theorem 4.11 Given a nondeterministic parity au-
tomaton N over Ξ × Σ-labeled Υ × Θ-trees, we can
construct an alternating parity automaton A over Σ-
labeled Ξ×Υ-trees, such that L(A) = shapeΞ,Υ(L(N )).
This automaton is denoted by changeΞ,Υ(N ).

Proof: For N = (Ξ × Σ, Q, q0, δ, α) we set A =
(Σ, Q, q0, δ

′, α) with δ′(q, σ) 7→∨
ξ∈Ξ,f∈δ(q,(ξ,σ))

∧
υ∈Υ,ϑ∈Θ(f(υ, θ), (ξ, υ)).

When A reads the root σ0 of the input tree 〈(Ξ ×
Υ)∗, lΣ〉, it guesses a ξ0 ∈ Ξ, which is our guess for
lΞ(ε). We proceed in accordance with δ(q0, (ξ0, σ0)).
By the definition of δ′, each copy of A that is sent to a
state q into a direction (υ, θ) is sent to state q into the
direction (ξ, υ). In the acceptance game for the input
tree, the environment now chooses a pair of a state q
and a node x (i.e., it chooses a direction and the node
is evaluated accordingly). �

This construction is a generalization of Kupferman
and Vardi’s transformation [7], where only the special
case Υ = ∅ is considered. It makes use of the fact that
in case of nondeterministic tree automata only one copy
is sent in every direction.

4.3 Synthesis

The triple (A,ϕ, ∅) is realizable iff Nn is not empty.
The construction involves one transformation of an al-

ternating parity automaton to a nondeterministic par-
ity automaton for each i ∈ {2, . . . , n}, and therefore
takes (n− 1)-exponential time.

Theorem 4.12 The distributed synthesis problem
for a weakly-ordered acyclic architecture A, where
idlefree(A)/ ∼ has n black-box processes, and a speci-
fication given as a µ-calculus formula can be solved in
n-exponential time.

Proof: The actual emptiness test or the synthesis of a
strategy for process n can be done in time polynomial
in the state-space and exponential in the number of
colors. More precisely, if Nn has m states and c colors,
a strategy (or the proof of emptiness) can be found in
mO(c) time [3]. The overall complexity is not altered
by this step.

If (A,ϕ, ∅) is realizable, it is easy to deduce a partial

function tn, mapping the state-space of Nn to 2
bOn ,

from a winning strategy for accept in the emptiness
game of Nn.

We obtain strategies for processes 2, . . . , n− 1 from
the combined strategy s for all processes in {2, . . . , n}.
For a process i ∈ {2, . . . , n}, the resulting strategy is
the projection of the combined strategy to its respec-
tive output: si = s �2Oi (which depends only on the
input of process i).

To compute the combined strategy for the processes
i, . . . , n from the combined strategy for the processes
i + 1, . . . , n, one can simply take the partial function
ti+1, build a safety automaton from this function run-

ning on 2
bOi+1-labeled 2Ii+1-trees, intersect it with Ni,

and solve the resulting parity game. While the num-
ber of colors is decreasing, the number of states is the
number of states of Ni multiplied with the size of the
domain of the partial function ti+1. Hence, the over-
all size of the state-space is quasi linear in the state-
space of Nn and the overall complexity remains (n−1)-
exponential.

A solution for the original problem is obtained from
the strategies in the simplified problem by simply ap-
plying output restrictions, as shown in the proofs in
Section 4. �

5 Undecidable Architectures

The algorithm from Section 4 solves the synthesis
problem for all architectures without information forks.
In this section we show that the occurrence of an in-
formation fork is a sufficient condition for the unde-
cidability of an architecture and hence establish the
completeness of our approach.
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Rosner and Pnueli [9] showed undecidability for the
architecture A0 and LTL using a reduction from the
halting problem. In the proof of Lemma 5.1 we give a
new reduction that applies to both CTL and LTL. The-
orem 5.3 further extends the result to all architectures
that contain an information fork.

Lemma 5.1 The distributed synthesis problem for
CTL and LTL specifications is undecidable for the ar-
chitecture A0.

Proof: For a given deterministic Turing machine M ,
we define a specification ϕM that is realizable iff M
halts on the empty input tape.

In the architecture A0 (see Figure 1a), the environ-
ment p1 communicates independently with two system
processes p2 and p3 through their input variables a and
b, respectively. In a first step, we define a specifica-
tion ψM that has exactly one (not necessarily finite-
state) implementation in which the environment p1 can
prompt processes p2 and p3 to output the entire compu-
tation of M (i.e., a series of successive configurations)
on the hidden variables c and d, respectively, by send-
ing a start command through the input variables a and
b, respectively. Further start commands have no effect.

A configuration C is output as follows: it starts with
the (possibly empty) sequence of tape symbols left of
the read/write head, followed by first the internal state
of M , and then the sequence of tape symbols from the
position of the read/write head up to the first blank -
sign.

Let ⊥ denote the terminal state of the Turing ma-
chine and let C ` C′ denote that C′ is the configuration
succeeding C.

The specification ψM = ψp2 ∧ ψp3 is constructed as
the conjunction of the assertions ψp2 and ψp3 , where
ψp2 is defined as follows:

• Initially, p2 outputs ⊥ symbols, until the first start
symbol is received. Then, p2 outputs the initial
configuration ofM and the second configuration of
M , followed by a sequence of legal configurations
of M .

• If p2 and p3 output C and C′ respectively (starting
concurrently) and C ` C′ holds, then the configu-
rations Cnew and C′

new , output next by p2 and p3,
respectively, have to satisfy Cnew ` C′

new .
Note that their output starts concurrently iff the
head was not at the end of the tape (i.e. over the
blank) in C′, and C′

new is output with a delay of
exactly one symbol otherwise.

ψp3 is the corresponding assertion, where the roles of
p2 and p3 are swapped.

A simple inductive argument shows that ψM has
only the canonical implemention, where both processes
output the computation of M :

Assume there is an implementation, where both pro-
cesses always output the first i configurations following
the canonical implementation, but one process (w.l.o.g.
p2) fails to output the i+1th configuration. If p1 sends
the start command on b exactly n steps after sending
the start command on a, where n is the number of
steps needed to output the i− 1th configuration, then
p3 writes the i− 1th configuration at the same time as
p2 outputs the ith configuration. Hence, p2 is forced to
output the i+ 1th configuration correctly as well.

Consequently, the specification ϕM , ensuring that

• ψM holds and

• p2 and p3 always eventually output ⊥,

has a (finite state) implementation iff M halts on the
empty input tape. The specification ψM can easily be
expressed in both CTL and LTL. �

The argument that the canonical implementation is
the only possible implementation relies on the fact that
p2 is oblivious of b and p3 is oblivious of a. In the
architecture A0, a and b are hidden because the envi-
ronment communicates with both processes separately
and neither process is aware of the other’s output. We
generalize the argument to all architectures with an in-
formation fork by first showing that the architectureA0

remains undecidable if the output becomes visible and,
in a second step, by allowing for indirect communica-
tion between the environment and the two processes.

Lemma 5.2 The distributed synthesis problem for
CTL and LTL specifications is undecidable for
the architecture with P = {penv , p, p

′}, E =
{(penv , p), (penv , p

′), (p, p′), (p′, p)}, V = {i, i′, h, h′},
Openv

= {i, i′}, Ip = {i, j}, Iq = {i′, j′}, Op = {j},
Op′ = {j′} (architecture A0 plus communication be-
tween p2 and p3).

Proof: We introduce a perfect encryption function
for each process output (for example XOR) and enlarge
the input by the key. In this setting, we can state the
specification as in the proof of Lemma 5.1, with the
difference that the decrypted version of the output has
to fulfill the output-requirements. The processes are
oblivious of its decrypted meaning, even though they
may read each other’s encrypted output. �

For the undecidability of an architecture it already
suffices if the environment can pass separate informa-
tion to two different processes. This extends the class
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of undecidable architectures further to those containing
an information fork.

Theorem 5.3 The distributed synthesis problem for
LTL and for CTL specifications is undecidable for all
architectures that contain an information fork.

Proof: If (P ′, V ′, p, p′) is an information fork, it
is possible to specify that some output pair (a, b) of
the environment is communicated through V ′ to all
processes in P ′, but only output a is communicated
to process p (through O(q,p) r Ip′) and only output b
is communicated to process p′ (through O(q′,p′) r Ip,
q, q′ ∈ P ′ as in the definition of information forks).
Undecidability therefore follows as in Lemma 5.2. �

Corollary 5.4 The algorithm from Section 4 solves
the synthesis problem for all decidable architectures.

6 Conclusions

The invention of model checking in the 1980s has
brought formal methods to industrial practice. Hard-
ware and many communication protocols can be mod-
eled as finite-state automata and their automatic anal-
ysis makes formal verification economically feasible. A
major drawback of model checking methods is that
they require the complete design to be known before
they can be applied. It is, however, crucial to find de-
sign errors early, before much effort has gone into the
implementation.

Our results make incomplete designs accessible to
automated analysis. As soon as enough components
have been implemented to make the architecture decid-
able, we can automatically complete the design by de-
riving an implementation for the remaining processes.
If synthesis fails, the unrealizability of the specification
demonstrates an error in the existing partial design.

Will it be possible to completely automatize the con-
struction of distributed systems? The results of this pa-
per mark the limits of system synthesis, because our al-
gorithm is already applicable to all decidable architec-
tures. Automated program construction is still likely
to work in many practical applications. An example
is the system maintenance phase, which dominates the
life-time cost of most systems today. Since in every
maintenance cycle only a few components are modi-
fied, nearly all components remain white-box and the
architecture is likely to be decidable.

Semi-algorithms for undecidable architectures are a
promising area of future research: if a finite-state solu-
tion exists, it can be found by a simple enumeration of
the process strategies. Our results show that it is not
necessary to enumerate the strategies of all processes.

Since enumerating the strategies of a black-box process
turns that process white-box, it suffices to consider a
sufficient subset of the processes, such that all infor-
mation forks are eliminated from the architecture.
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