Monitoring Hyperproperties*

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup

Reactive Systems Group
Saarland University
lastname@react.uni-saarland.de

Abstract. We investigate the runtime verification problem of hyper-
properties, such as non-interference and observational determinism, given
as formulas of the temporal logic HyperLTL. HyperLTL extends linear-
time temporal logic (LTL) with trace quantifiers and trace variables.
We show that deciding whether a HyperLTL formula is monitorable is
PSPACE-complete. For monitorable specifications, we present an effi-
cient monitoring approach. As hyperproperties relate multiple compu-
tation traces with each other, it is necessary to store previously seen
traces, and to relate new traces to the traces seen so far. If done naively,
this causes the monitor to become slower and slower, before it inevitably
runs out of memory. In this paper, we present techniques that reduce
the set of traces that new traces must be compared against to a mini-
mal subset. Additionally, we exploit properties of specifications such as
reflexivity, symmetry, and transitivity, to reduce the number of compar-
isons. We show that this leads to much more scalable monitoring with,
in particular, significantly lower memory consumption.

1 Introduction

Hyperproperties [10] generalize trace properties in that they not only check the
correctness of individual traces, but can also relate multiple computation traces
to each other. This is needed, for example, to express information flow security
policies like the requirement that the system behavior appears to be determin-
istic, i.e., independent of certain secrets, to an external observer. Monitoring
hyperproperties is difficult, because it is no longer possible to analyze traces in
isolation: a violation of a hyperproperty in general involves a set of traces, not
just a single trace. A naive approach would be to simply store all traces seen
so far. This would create two problems: a memory problem, because the needed
memory grows with the number of traces observed by the monitor, and a time
problem, because one needs to relate every newly observed trace against the
growing set of stored traces.

There are hyperproperties where this effect cannot be avoided. An example
is the hyperproperty with two atomic propositions p and ¢, where any pair of

* This work was partially supported by the German Research Foundation (DFG)
under the project SpAGAT (grant no. FI 936/2-1) in the priority program “Reliably
Secure Software Systems — RS3” and as part of the Collaborative Research Center
“Methods and Tools for Understanding and Controlling Privacy” (SFB 1223).

traces that agree on their p labeling must also agree on their ¢ labeling. Clearly,
for every p labeling seen so far, we must also store the corresponding ¢ label-
ing. In practice, however, it is often possible to greatly simplify the monitoring.
Consider, for example, the hyperproperty that states that all traces have the
same ¢ labeling (independently of the p labeling). In the temporal logic Hyper-
LTL [9], this property is specified as the formula Vr. Va'.O(pr <>y). The naive
approach would store all traces seen so far, and thus require O(n) memory af-
ter n traces. A new trace would be compared against every stored trace twice,
once as 7 and once as 7', resulting in a O(2n) running time for each new trace.
Obviously, however, it is sufficient in this example to store the first trace, and
compare all further incoming traces against this reference. The required memory
is thus, in fact, constant in the number of traces. A further observation is that
the specification is symmetric in 7 and 7’. Hence, a single comparison suffices.

In this paper, we present a monitoring approach for hyperproperties that
reduces the set of traces that new traces must be compared against to a minimal
subset. Our approach comes with a strong correctness guarantee: our monitor
produces the same verdict as a naive monitor that would store all traces and,
additionally, we keep a sufficient set of traces to always provide an actually
observed witness for the monitoring verdict. Our monitoring thus delivers a
result that is equally informative as the naive solution, but is computed faster
and with less memory.

We introduce two analysis techniques: Trace analysis reduces the stored set
of traces to a minimum, thus minimizing the required memory. Specification
analysis identifies symmetry, transitivity, and reflexivity in the specification, in
order to reduce the algorithmic workload that needs to be carried out on the
stored traces.

Trace Analysis. As an example for a system where confidentiality and infor-
mation flow is of outstanding importance for the intended operation, we consider
a conference management system. There are a number of confidentiality prop-
erties that such a system should satisfy, like “The final decision of the program
committee remains secret until the notification” and “All intermediate decisions
of the program committee are never revealed to the author”. We want to focus
on important hyperproperties of interest beyond confidentiality, like the prop-
erty that no paper submission is lost or delayed. Informally, one formulation of
this property is “A paper submission is immediately visible for every program
committee member”. More formally, this property relates pairs of traces, one
belonging to an author and one belonging to a program committee member. We
assume this separation is indicated by a proposition pc that is either disabled
or enabled in the first component of those traces. Further propositions in our
example are the proposition s, denoting that a paper has been submitted, and
v denoting that the paper is visible.

Given a set of traces T', we can verify that the property holds by checking ev-
ery pair of traces (¢,¢') € T x T with pe ¢ t[0] and pc € ¢'[0] that s € ¢[i] implies
v € t'[i + 1] for every ¢ > 0. When T satisfies the property, T U {t*}, where ¢*
is a new trace, amounts to checking new pairs (t*,¢) and (¢,¢*) for ¢t € T. This,

however, leads to an increasing size of T and thereby to an increased number of
checks: the monitoring problem becomes inevitable costlier over time. To circum-
vent this, we present a method that keeps the set of traces minimal with respect
to the underlying property. When monitoring hyperproperties, traces may pose
requirements on future traces. The core idea of our approach is to characterize
traces that pose strictly stronger requirements on future traces than others. In
this case, the traces with the weaker requirements can be safely discarded. As
an example, consider the following set of traces

’{S}I {} l {} I {} I {} ‘ an author immediately submits a paper (1)

’ {} I{s}l {} I {} I {} ‘ an author submits a paper after one time unit (2)

’ {} I{s}l{s}l {} I {} ‘ an author submits two papers (3)

A satisfying PC trace would be {pc}{v}{v}{v}0 as there are author traces with
paper submissions at time step 0, 1, and 2. For checking our property, one can
safely discard trace 2 as it poses no more requirements than trace 3. We say that
trace 3 dominates trace 2. We show that, given a property in the temporal logic
HyperLTL, we can automatically reduce trace sets to be minimal with respect
to this dominance. On relevant and more complex information flow properties,
this reduces the memory consumption dramatically.

Specification Analysis. For expressing hyperproperties, we use the recently
introduced temporal logic HyperLTL [9], which extends linear-time temporal
logic (LTL) [22] with explicit trace quantification. We construct a monitor tem-
plate, containing trace variables, from the HyperLTL formula. We initialize this
monitor with explicit traces resulting in a family of monitors checking the rela-
tion, defined by the hyperoperty, between the traces. Our specification analysis
technique allows us to reduce the number of monitors in order to detect viola-
tion or satisfaction of a given HyperLTL formula. We use the decision procedure
for the satisfiability problem of HyperLTL [15] to check whether or not a uni-
versally quantified HyperLTL formula is symmetric, transitive, or reflexive. If a
hyperproperty is symmetric, then we can omit every symmetric monitor, thus,
performing only half of the language membership tests. A canonical example for
a symmetric HyperLTL formula is ObsDet = Vr.¥n'. (O = Ox)W (I # L), a
variant of observational determinism [21,24,30]. Symmetry is particular interest-
ing, since many information flow policies have this property. If a hyperproperty
is transitive, then we can omit every, except for one, monitor, since we can check
every incoming trace against any reference trace. One example for a transitive
HyperLTL formula is equality EQ := Vr.Vr'.0(ar ¢ ax/). If a hyperproperty is
reflexive, then we can omit the monitor where every trace variable is initialized
with the same trace. For example, both hyperproperties above are reflexive.

Related Work. The temporal logic HyperLTL was introduced to model
check security properties of reactive systems [9,17]. For one of its predecessors,
SecLTL [13], there has been a proposal for a white box monitoring approach [14]

based on alternating automata. The problem of monitoring HyperLTL has been
considered before [1,7]. Agrawal and Bonakdarpour [1] gave a syntactic charac-
terization of monitorable HyperLTL formulas and a monitoring algorithm based
on Petri nets. In subsequent work, a constraint based approach has been pro-
posed [7]. Like our monitoring algorithm, they do not have access to the im-
plementation (black box), but in contrast to our work, they do not provide
witnessing traces for a monitor verdict. For certain information flow policies,
like non-interference and some extensions, dynamic enforcement mechanisms
have been proposed. Techniques for the enforcement of information flow policies
include tracking dependencies at the hardware level [27], language-based moni-
tors [2,3,5,25,29], and abstraction-based dependency tracking [8,18,19]. Secure
multi-execution [12] is a technique that can enforce non-interference by executing
a program multiple times in different security levels. To enforce non-interference,
the inputs are replaced by default values whenever a program tries to read from
a higher security level.

2 Monitorability of HyperLTL

Let AP be a finite set of atomic propositions and let ¥ = 24P be the corre-
sponding finite alphabet. A finite (infinite) trace is a finite (infinite) sequence
over Y. We denote the concatenation of a finite trace u € X* and a finite or
infinite trace v € X* U X* by wv and write u < v if u is a prefix of v. Further,
we lift the prefix operator to sets of traces, i.e., U SV =Vue U v e V.u<v
for U C X* and V C X* U X*. We denote the powerset of a set A by P(A) and
define P*(A) to be the set of all finite subsets of A.

HyperLTL. HyperLTL [9] is a temporal logic for specifying hyperproperties. It
extends LTL [22] by quantification over trace variables 7 and a method to link
atomic propositions to specific traces. The set of trace variables is V. Formulas
in HyperLTL are given by the grammar

pu=Vm.p|In.p| , and
Yi=ar | Y VY |OY YUY,

where a € AP and 7 € V. We call a HyperLTL formula an LTL formula if it is
quantifier free. The semantics is given by the satisfaction relation Fp over a set of
traces T' C X*. We define an assignment I7 : V — X* that maps trace variables
to traces. II[i, 00] denotes the trace assignment that is equal to IT(m)[i, 00| for
all .

IHErar if a € II(m)[0]

H’:T—Kp lfH#TgO

HEp eV if I FEppor Il Ep

IIEr oUY if 30 > 0. II[i, 00] Epr Y AV0 < j <. II[j,00] Er ¢
HEpr3m. e if there is some t € T such that IT[7 — t] Fr ¢

We write T F ¢ for {} Fr ¢ where {} denotes the empty assignment. The
language of a HyperLTL formula ¢, denoted by L£(y), is the set {T'C X | T E
¢}. Let ¢ be a HyperLTL formula with trace variables V = {my,...,m} over
alphabet Y. We define Xy, to be the alphabet where p, is interpreted as an
atomic proposition for every p € AP and w € V. We denote by Fyrr, the LTL
satisfaction relation over X),. We define the m-projection, denoted by #,(s), for
a given s C Yy, and m € V, as the set of all p; € s.

Lemma 1. Let v be an LTL formula over trace variables V. There is a trace as-
signment A such that A Ey ¢ if, and only if, ¥ is satisfiable under LTL semantics
over atomic propositions X,. The models can be translated effectively.

Monitorability. For the remainder of this section, we develop the notion of
monitorability for hyperproperties and show that deciding whether a HyperLTL
formula is monitorable is PSPACE-complete, i.e., no harder than the correspond-
ing problem for LTL. This result extends earlier characterizations based on re-
stricted syntactic fragments of HyperLTL [1].

For trace languages, monitorability is the property whether language con-
tainment can be decided by finite prefixes [23]. Given a trace language L C X%,
the set of good and bad prefixes is good(L) == {u € X¥* | Vv € XY . uv € L}
and bad(L) = {u € X* | Vv € Z¥. wv ¢ L}, respectively. L is monitorable if
Yu € X*.Fv € X*. uv € good(L)Vuv € bad(L). The decision problem, i.e., given
an LTL formula ¢, decide whether ¢ is monitorable, is PSPACE-complete [4].

A hyperproperty H is a set of trace properties, i.e., H C P(X*). Analogous to
the previous definition, we define monitorability for hyperproperties. Given H C
P(X“). The set of good and bad prefix traces is good(H) = {U € P*(X*) | VV €
P(X).U =V =V € H} and bad(H) = {U € P*(X*) | VV € P(X¥).U =
V =V ¢ H}, respectively. H is monitorable if

YU € P*(X%).3V € P*(5%).U 2V =V € good(H) V'V € bad(H) .

We present a method to decide whether an alternation-free HyperLTL for-
mula is monitorable.

Lemma 2. Given a HyperLTL formula ¢ =V ...V7g. ¥, where ¢ is an LTL
formula. It holds that good(L(p)) = 0 unless ¥ = true.

Theorem 1. Given a HyperLTL formula ¢ = Vmy ...Vmg. 1, where ¥ # true
is an LTL formula. ¢ is monitorable if, and only if, Vu € X5,.FJv € X}, uv €

bad(L()).

Proof. Assume Yu € X3,.3v € X5 uv € bad(L(z))) holds. Given an arbitrary
prefix U € P*(X*). Pick an arbitrary mapping from U to X}, and call it u/. By
assumption, there is a v’ € X3, such that «w'v" € bad(L()). We use this v’ to
extend the corresponding traces in U resulting in V' € P*(X*). It follows that
for all W € P(X%) with V X W, W E ¢, hence, V € bad(L(y)).

Assume ¢ is monitorable, thus, VU € P*(X*).3V € P*(X*).U IV =V ¢
good(L(p))VV € bad(L(p)). As the set of good prefixes good(L(y)) is empty by
Lemma 2 we can simplify the formula to YU € P*(X*).3V € P*(X*).U 2V =
V € bad(L(p)). Given an arbitrary u € X3, we translate it into the (canonical)
U’ and get a V' satisfying the conditions above. Let v € X3; be the finite trace
constructed from the extensions of u in ¥V’ (not canonical, but all are bad prefixes
since V' € bad(L(p))). By assumption, v'v' € bad(L()). O

Corollary 1. Given a HyperLTL formula ¢ = 3wy ... Imp.0, where is an LTL
formula. ¢ is monitorable if, and only if, Vu € X3,. Jv € X5, uv € good(L(1))).

Theorem 2. Given an alternation-free HyperLTL formula . Deciding whether
@ is monitorable is PSPACE-complete.

Proof. We consider the case that ¢ = Vmy...Vm. 9, the case for existentially
quantified formulas is dual. We apply the characterization from Theorem 1.
First, we have to check validity of 1) which can be done in polynomial space [26].
Next, we have to determine whether Yu € X3, 3v € X5 uwv € bad(L(v)). We
use a slight modification of the PSPACE algorithm given by Bauer [4]. Hardness
follows as the problem is already PSPACE-hard for LTL. |

3 Monitoring HyperLTL

There are many obstacles to overcome in monitoring hyperproperties (see [6] for
an overview of the challenges), such that classic monitoring approaches of trace
properties need to be carefully adjusted. In this section, we define a finite trace
semantics for HyperLTL and present our automata-based monitoring approach.

Finite Trace Semantics. We define a finite trace semantics for HyperLTL
based on the finite trace semantics of LTL [20]. In the following, when using
L(p) we refer to the finite trace semantics of a HyperLTL formula ¢. Let ¢ be a
finite trace, € denotes the empty trace, and |t| denotes the length of a trace. Since
we are in a finite trace setting, ¢[i, .. .] denotes the subsequence from position ¢ to
position |t| — 1. Let ITg, : V — X* be a partial function mapping trace variables
to finite traces. We define €[0] as the empty set. IIg,[i,...] denotes the trace

assignment that is equal to ITg, (m)[i, .. .] for all 7. We define a subsequence of ¢
as follows.
. € if i > |t
gl =9, . :
t[é, min(j, |t| — 1)], otherwise

I, Er oax if a € g, (m)[0]

Hﬁn ﬁT a2 ifHﬁnJ»ngO

Hﬁan@\/w ifﬂﬁnhTQDOI‘Hﬁn':Tw

g Er U if 3i > 0. Hpnli,...] Ep ¥ AV0 < j < i pnlj,..] Fr o

I, Er 3m. @ if there is some ¢ € T such that ITg,[m — t] Er ¢

—pCx N\ peCrr
Vet

Vs A Sp —5p @D - Vn 4> Vgt
Sp

Fig. 1. Visualization of a monitor template corresponding to formula given in Equa-
tion 4. We use a symbolic representation of the transition function 4.

Monitoring Algorithm. In this subsection, we describe our automata-based
monitoring algorithm for HyperLTL. We employ standard techniques for build-
ing LTL monitoring automata and use this to instantiate this monitor by the
traces as specified by the HyperLTL formula.

Let AP be a set of atomic propositions and V = {m,...,m,} a set of trace
variables. A deterministic monitor template M = (X, Q, d, qo) is a four tuple of
a finite alphabet X = 247XV 4 non-empty set of states @, a partial transition
function 6 : Q x X — @, and a designated initial state gy € Q. The automata
runs in parallel over traces (24F)*, thus we define a run with respect to a n-
ary tuple N € ((2AF)*)" of finite traces. A run of N is a sequence of states
Qoq1 -+ - Gm € QF, where m is the length of the smallest trace in N, starting in
the initial state gy such that for all ¢ with 0 < ¢ < m it holds that

J 4qi, U U {(a77rj)} = {qit+1 -
)

J=laeN(j)(4

A tuple N is accepted, if there is a run on M. For LTL, such a determinis-
tic monitor can be constructed in doubly-exponential time in the size of the
formula [11,28].

Ezample 1. We consider again the conference management example from the
introduction. We distinguish two types of traces, author traces and program
committee member traces, where the latter starts with proposition pc. Based on
this traces, we want to verify that no paper submission is lost, i.e., that every
submission (proposition s) is visible (proposition v) to every program committee
member in the following step. When comparing two PC traces, we require that
they agree on proposition v. The monitor template for the following HyperLTL
formalization is depicted in Fig. 1.

vr.va'. ((mpex Aper) = OO(sx = Quar)) A((per Apeq) — OO(vx < vi)) (4)

The offline and online algorithms for monitoring HyperLTL formulas are
presented in Fig. 2. The offline algorithm takes a HyperLTL formula ¢ and a
set of traces T as input. After building the deterministic monitoring automaton
M, it checks every n-ary tuple N € T™. If some trace tuple N is not accepted
by M, then this path assignment violates the formula . The online algorithm
is similar, but proceeds with the pace of the incoming stream, which has an

input : V" HyperLTL formula ¢
output: satisfied or n-ary tuple
witnessing violation
M, =(2,Q,,q0) = build_template(p);
input : V" HyperLTL formula ¢ ST = Q;
set of traces T' T :=0;
output: satisfied or n-ary tuple
witnessing violation

t:=c¢

while p < new element do

M, = build template (¢); if p is new trace then
for each tuple N € T" do T U{t};
if M, accepts N then t=g¢
‘ proceed; S = {qo | for new n-tuple};
else else
‘ return N; t:=1p;
end progress every state in S according to §;
end if violation then
return satisfied; ‘ return witnessing tuple;
Algorithm 1: Offline Algorithm. dend
en

end
return satisfied;

Algorithm 2: Online Algorithm.

Fig. 2. Evaluation algorithms for monitoring V" HyperLTL formulas.

indicator when a new trace starts. We have a variable S that maps tuples of
traces to states of the deterministic monitor. Whenever a trace progresses, we
update the states in .S according to the transition function §. If on this progress,
there is a violation, we return the corresponding tuple of traces as a witness.
When a new trace t starts, only new tuples are considered for S, that are tuples
N € (T U{t})" containing the new trace ¢, i.e., N ¢ T".

In contrast to previous approaches, our algorithm returns a witness for vi-
olation. This highly desired property comes with a price. In constructed worst
case scenarios, we have to remember every system trace in order to return an ex-
plicit witness. However, it turns out that practical hyperproperties satisfy certain
properties such that the majority of traces can be pruned during the monitoring
process.

4 Minimizing Trace Storage

The main obstacle in monitoring hyperproperties is the potentially unbounded
space consumption. In the following, we present two analysis phases of our al-
gorithm. The first phase is a specification analysis, which is a preprocessing
step that analyzes the HyperLTL formula under consideration. We use the re-
cently introduced satisfiability solver for hyperproperties EAHyper [16] to detect
whether a formula is (1) symmetric, i.e., we halve the number of instantiated
monitors, (2) transitive, i.e, we reduce the number of instantiated monitors to
two, or (3) reflexive, i.e., we can omit the self comparison of traces. The second

analysis phase is applied during runtime. We analyze the incoming trace to de-
tect whether or not this trace poses strictly more requirements on future traces,
with respect to a given HyperLTL formula.

4.1 Specification Analysis

Symmetry. Symmetry is particular interesting since many information flow
policies satisfy this property. Consider, for example, observational determinism
ObsDet =Y. ¥1'. (O = Op)W (I # I/). We detect symmetry by translating
this formula to a formula ObsDet gy that is unsatisfiable if there exists no set
of traces for which every trace pair violates the symmetry condition:

ObsDet gy, = 3m. 37" ((Or = O)W (I # 1)) «» ((Of = Ox)W(I, # 1))

This is a sufficient condition for the invariance of ObsDet under m and 7/, which
we define in the following, and, therefore, ObsDet is symmetric.

Definition 1. Given a HyperLTL formula ¢ = Vmy...Vm,.¢, where i is an
LTL formula over trace variables {m1,...,7,}. We say ¢ is invariant under
trace variable permutation o 1V — V, if for any set of traces T C X¥ and any
assignment IT : V — T, Il Er ¢ < (IT o o) Fr . We say ¢ is symmetric, if it
is tnvariant under every trace variable permutation in YV — V.

We generalize the previous example to formulas with more than two universal
quantifiers. We use the fact, that the symmetric group for a finite set V of n trace
variables is generated by the two permutations (m 72) and (w1 mg « -+ Tp—1 Tp).
If the HyperLTL-SAT solver determines that the input formula is invariant under
these two permutations, then the formula is invariant under every trace variable
permutation and thus symmetric.

Theorem 3. Given a HyperLTL formula ¢ = Vmy...Vm,.1, where ¥ is an

LTL formula over trace variables {my,...,mp}. ¢ is symmetric if and only
Zf (psymm = 371-1 e 371-n~ (1/1(7(.1’77.27 e 77Tn7177rn) Ao ’(/}(71-27 Tlyee- 771'”71,7'('”))
V(W(71, Tay ooy 1, Tn) < (T2, T3, ..., T, T1)) is unsatisfiable.

Transitivity. While symmetric HyperLTL formulas allow us to prune half of the
monitor instances, transitivity of a HyperLTL formula has an even larger impact
on the required memory. Observational Determinism, considered above, is not
transitive. However, equality, i.e, EQ = Vr.¥7'.0O(ar < an), for example, is
transitive and symmetric and allow us to reduce the number of monitor instances
to one, since we can check equality against any reference trace.

Definition 2. Given a HyperLTL formula o = Vmi.Vme. 1), where 1 is an
LTL formula over trace variables {my,me}. Let T = {t1,t2,t3} € X% be
three-elemented set of traces. We define the assignment II;; : V — X% by
II; j = {m — t;,ma — t;}. We say ¢ is transitive, if T was chosen arbitrary
and (Hl,g Er ’w) AN (H2,3 Er ¢) = H173 Er .

Theorem 4. Given a HyperLTL formula ¢ = V. Vmo. 9, where ¥ is an LTL
formula over trace variables {my,ma}. @ is transitive if and only if Pians =
Ay ImaIms. (Y(w1, 72) A (e, m3)) = (w1, 73) is unsatisfiable.

Reflexivity. Lastly, we introduce a method to check whether a formula is reflex-
ive, which enables us to omit the composition of a trace with itself in the mon-
itoring algorithm. Both HyperLTL formulas considered in this section, ObsDet
and F(Q), are reflexive.

Definition 3. Given a HyperLTL formula ¢ = Vmy...V7m,.¢, where 1 is an
LTL formula over trace variables {m1,...,m,}. We say ¢ is reflexive, if for any
trace t € X and the corresponding assignment II : V — {t}, I Fyy .

Theorem 5. Given a HyperLTL formula p =V ...V7m,. 0, where is an LTL
formula over trace variables {m1,...,m,}. ¢ is reflexive if and only if Yren =
Ir.—p(m,m, ...,) is unsatisfiable.

4.2 Trace Analysis

In the previous subsection, we described a preprocessing step to reduce the
number of monitor instantiations. The main idea of the trace analysis, considered
in the following, is to check whether a trace contains new requirements on the
system under consideration. If this is not the case, then this trace will not be
stored by our monitoring algorithm. We denote M., as the monitor template of
a V* HyperLTL formula ¢.

Definition 4. Given a HyperLTL formula ¢, a trace set T and an arbitrary
t € TR, we say that t is (T, p)-redundant if T is a model of ¢ if and only if
T U {t} is a model of ¢ as well. Formally denoted as follows.

VI"DT.T' € L(p) & T U{t} € L(p).

Ezxample 2. Consider, again, our example hyperproperty for a conference man-
agement system. “A user submission is immediately visible for every program
committee member and every program committee member observes the same.”
We formalized this property as a V? HyperLTL formula in Equation 4. Assume
our algorithm observes the following three traces of length five.

’ {} I{b}l {} I {} I {} ‘ an author submits a paper (5)
’ {} I {} I{S}I {} I {} ‘ an author submits a paper one time unit later (6)
’ {} I {} l{s}l{s}l {} ‘ an author submits two papers (7)

Trace 6 contains, with respect to ¢ above, no more information than trace 7.
We say that trace 7 dominates trace 6 and, hence, trace 6 may be pruned from
the set of traces that the algorithm has to store. If we consider a PC member
trace, we encounter the following situation.

’ {} I{S}I {} I {} I {} ‘ an author submits a paper (8)
’ {} | {} l{S}I{S}I {} ‘ an author submits two papers (9)
{3 [

{V}I {V}I {V}‘ a PC member observes three submissions — (10)

10

Our algorithm will detect no violation, since the program committee member
sees all three papers. Intuitively, one might expect that no more traces can
be pruned from this trace set. However, in fact, trace 10 dominates trace 8 and
trace 9, since the information that three papers have been submitted is preserved
in trace 10. Hence, it suffices to remember the last trace to detect, for example,
the following violations.

L [
{3 [

or

’ {} I {} l {} I {} I{s}‘ fan author submits a non-visible paper ¢ (13)

{V}I {V}I {v}‘ a PC member observes three submissions (11)

{V}I {V}I {} ‘ fa PC member observes two submissions ¢ (12)

Note that none of the previous user traces, i.e., trace 5 to trace 9, are needed to
detect a violation.

Definition 5. Givent,t’ € TR, we sayt dominates ¢’ if t' is ({t}, p)-redundant.

The observations from Example 2 can be generalized to a language inclusion
check (cf. Theorem 6), to determine whether a trace dominates another trace. For
proving this, we first prove the following two lemmas. For the sake of simplicity,
we consider V2 HyperLTL formulas. The proofs can be generalized. We denote
M, [t/n] as the monitor where trace variable 7 of the template Monitor M., is
initialized with explicit trace t.

Lemma 3. Let ¢ be aV? HyperLTL formula over trace variables {m,m}. Given
an arbitrary trace set T and an arbitrary trace t, T U {t} is a model of ¢ if and
only if T is still accepted by the following two monitors: (1) only w1 is initialized
with t (2) only wo is initialized with t. Formally, the following equivalence holds.

VT C TRVt € TR.TU{t} € L(g) & T C LIM[t/m]) AT C LM, [t/m))

Lemma 4. Given a V2 HyperLTL formula ¢ over trace wvariables V =
{m1,...,mn} and two traces t,t' € TR, the following holds: t dominates t' if
and only if

LIM[t/m]) © LM[t'/m]) A L(M[t/m2]) € LMt /a])

Proof. Assume for the sake of contradiction that (a) ¢ dominates ¢ and w.l.o.g.
(b) LM[t/m]) & LIM[t'/m1]). Thus, by definition of subset, there exists a
trace £ w1th te LM [t/m]) and t ¢ L(M[t'/m1]). Hence, IT = {my ~ t,mg —
t} is a valid trace assignment, whereas I’ = {7, + t/, 75 + £} is not. On the
other hand, from (a) the following holds by Definition 5: VI” with {¢t} C T it
holds that T" € L(p) & T’ U {t'} € L(p). We choose T" as {t,t}, which is a
contradiction to the equivalence since we know from (a) that IT is a valid trace
assignment, but II’ is not a valid trace assignment.

For the other direction, assume that L(M[t/m]) € L(M[t'/mi]) and
L(M[t/ms]) C L(M[t'/m2]). Let T be arbitrary such that {t} C T’. We
distinguish two cases:

11

input : V" HyperLTL formula ¢,
redundancy free set of traces T'
trace t
output: redundancy free set of traces Tmin € T U {t}

M, = build_template (¢)

foreach t' € T do

if Aoy LM[t'/n]) © L(M,t/n]) then
I return T'

end

end

foreach t' € T do

if Aoy LM[t/m]) C LMt /n]) then

T T\ {1}

end

end
return T U {t}

Fig. 3. Storage Minimization Algorithm.

— Case T" € L(p), then (a) T" C L(M,[t/m]) C L(M[t'/m]) and (b) T" C
L(M,[t/ms]) C L(M[t'/m2]). By Lemma 3 and 77 € L(yp), it follows that
T U{t'} € L(p).

— Case T" ¢ L(y), then T U {t} ¢ L(p) for an arbitrary trace .

A generalization leads to the following theorem, which serves as the foundation
of our trace storage minimization algorithm.

Theorem 6. Given a Y™ HyperLTL formula ¢ over trace wvariables V :=
{m1,..., T} and two traces t,t' € TR, the following holds: t dominates t' if
and only if

N\ LM [t/7]) © LM /7)) -

TeY

Corollary 2. Given an 3" HyperLTL formula ¢ over trace variables V =
{m1,...,mn} and two traces t,t' € TR, the following holds: t dominates t' if
and only if N\, oy LIM[t'/n]) © LM, [t/7]).

Theorem 7. Algorithm 3 preserves the minimal trace set T, i.e., for allt € T
it holds that t is not (T \ {t}, ¢)-redundant.

5 Monitoring Alternating HyperLTL Formulas

With the classic definition of monitorability (cf. Section 2), hardly any alter-
nating HyperLTL formula is monitorable as their satisfaction cannot be charac-
terized by a finite trace set, even for safety properties. Consider, for example,
the formula ¢ = V. 37'.0(ar — bys). Assume a finite set of traces T' does not
violate the formula. Then, one can construct a new trace ¢t where a € t[i] and

12

b ¢ t[i] for some position ¢, and for all traces ¢ € T it holds that b ¢ ¢'[i].
Thus, the new trace set violates (. Likewise, if there is a finite set of traces that
violates ¢, a sufficiently long trace containing only b’s stops the violation.

If we fix a set of traces, we can check the satisfaction of an alternating
HyperLTL formula with a modification of the offline monitoring algorithm pre-
sented earlier. This way, we can verify alternating hyperproperties after the
execution of a system based on recorded traces. In our conference management
system example, the property “There was a submission for every paper that is
visible for a program committee member.” is a hyperproperty that utilizes alter-
nation and can be formalized as the VAHyperLTL formula

V. Hﬂl.pcﬂ—/ A (_‘pcﬂ— — OD(S‘IT — va/)) . (14)

In the following, we present an extension to our offline algorithm for monitoring
VdHyperLTL and 3VHyperLTL formulas. Further, we show that the trace storage
minimization technique is also applicable for alternating HyperLTL formulas,
allowing to determine at runtime whether a trace needs to be stored or not.
We considered offline monitoring of universally quantified V*HyperLTL in
Section 3 by checking whether M, accepts N for every N € T™, given a
trace set T and a HyperLTL formula ¢. In contrast, an offline monitor for a
vV*3d"HyperLTL and 3"V"HyperLTL formula has to perform the checks

/\ \/ check if M, accepts N x M , and
NeT™ MeT™

\/ /\ check if M, accepts M x N , respectively.

MeT™ NeTn

We give a characterization of the trace dominance introduced in the last
section for HyperLTL formulas with one alternation. These characterizations
can be checked similarly to the algorithm depicted in Fig. 3.

Theorem 8. Given a HyperLTL formula ¥Yr.3n’ .4 two traces t,t' € TR, the
following holds: t dominates t' if and only if

LM[t/7]) € LM[E /7)) and LM[E /7)) € LM[t/7]) .

Corollary 3. Given a HyperLTL formula 3In.V7'. ¢ two traces t,t' € TR, the
following holds: t dominates t' if and only if

LM /7)) C LM t/]) and LMJE/]) © LM /7))

Ezxample 3. We show the effect of the dominance characterization on two ex-
ample formulas. Consider the HyperLTL formula V. 37'.0(ar — by) and the
traces {b}0, {b}{b}, {a}0, and {a}{a}. Trace {a}{a} dominates trace {a}(as
instantiating 7 requires two consecutive b’s for ' where {a}{) only requires a b
at the first position (both traces do not contain b’s, so instantiating 7’ leads to
the same language). Similarly, one can verify that {b}{b} dominates trace {b}{.

Consider alternatively the formula 37.V#x'.0O(ar — byr). In this case, {a}d
dominates {a}{a} and {b}0) dominates {b}{b}.

13

Table 1. Specification Analysis for universally quantified hyperproperties.

symm/|trans|refl

ObsDet1 V' Ox = I/) = O(0x = On)
ObsDet2 [Vavr. (In = 1)) — C(Ox = O.)
ObsDet3 V' (Or = Op) W (Ir # I7)
QuantNoninf|Vro ... Vre. ~((A; Ir; = Ixo) A N\iy; O # On;))
EQ V.V’ .O(ar < az)

Vv’ ((ﬁpc7T Apce) = O0(sx — OUr/))
ConfMan A((per A peqr) = OO(vr 4 vy))

> NNNNS
<> >=[>=
x (INNNN S

For our conference management example formula given in Equation 14, a trace
{pc}P{v} dominates {pc}Pd and P{s} dominates PO, but B{s}d and {pc}d{v}

are incomparable with respect to the dominance relation.

6 Evaluation

In this section, we report on experimental results of the presented algorithm
and the accompanying optimizations. Our results show that those optimizations
are orthogonal, i.e., none of the techniques subsumes the other. For the spec-
ification analysis, we checked variations of observational determinism, quanti-
tative non-interference [17], equality and our conference management example
for symmetry, transitivity, and reflexivity. The results are depicted in Table 1.
The specification analysis comes with low costs (every check was done in under
a second), but with a high reward in terms of constructed monitor instances
(see Fig. 5). For hyperproperties that do not satisfy one of the properties, e.g.,
our conference management example, our trace analysis will still dramatically
reduce the memory consumption.

For evaluating our trace analysis, we use a scalable, bounded variation of
observational determinism: V7. Vr'.0cp,(Ir = Inr) = O<nie(Or = Oxr). Fig-
ure 4 shows a family of plots for this benchmark class, where c is fixed to three.
We randomly generated a set of 10° traces. The blue (dashed) line depicts the
number of traces that need to be stored, the red (dotted) line the number of
traces that violated the property, and the green (solid) line depicts the pruned
traces. When increasing the requirements on the system, i.e., decreasing n, we
prune the majority of incoming traces with our trace analysis techniques.

In Fig. 5 we compare the running time of the monitoring optimizations pre-
sented in this paper to the naive approach. As a specification, we use the observa-
tional determinism property with a single input and a single output proposition.
We compare the naive monitoring approach to the monitor using specification
analysis and trace analysis, as well as a combination thereof. We randomly built
traces of length 2000, with one byte of low input, i.e., one atomic proposition
is allowed to appear for 8 steps. The remaining atomic propositions are one low
output and five high in and outputs. Applying both of our techniques results in
a tremendous speed up of the monitoring algorithm.

14

10— 7 100 —
LN P S TR < E
2] [* = o=]
103 - 4 103 f E
I f
102 4 102 E
10t 4 10! | E
100 4 100 1
L L L L J L L L L L L L J
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
n =16 n =14 n=12
-10° .10 -10°

Fig. 4. Absolute numbers of violations in red (dotted), number of instances stored in
blue (dashed), number of instances pruned in green (solid) for 10° randomly generated
traces of length 100000. The y axis is scaled logarithmically.

-10°
—_— naive]l /]
- - = specification analysis
trace analysis §' 6l |
both g
o 4 o]
E*
+ -
g "’
2ol R .
0 il ! !
0 500 1,000 1,500 2,000

of instances

Fig. 5. Runtime comparison of naive monitoring approach with a version using speci-
fication analysis, trace analysis, and a combination of both.

7 Conclusion

In this paper, we have presented an automata based monitoring approach for
HyperLTL. We showed that deciding whether an alternation-free formula is mon-
itorable is PSPACE-complete. We presented two optimizations tackling different
problems in monitoring hyperproperties. Trace analysis minimizes the needed
memory, by minimizing the stored set of traces. Specification analysis reduces
the algorithmic workload by reducing the number of comparisons between a
newly observed trace and the previously stored traces. Combined, we have made
significant progress towards the practical monitoring of hyperproperties.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties in
HyperLTL. In: Proceedings of CSF. pp. 239-252. IEEE Computer Society (2016)

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for

dynamic languages. In: Proceedings of CSF. pp. 43-59. IEEE Computer Society
(2009)

Austin, T'H., Flanagan, C.: Permissive dynamic information flow analysis. In: Pro-
ceedings of PLAS. p. 3. ACM (2010)

Bauer, A.: Monitorability of omega-regular languages. CoRR abs/1006.3638 (2010)
Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in
webkit’s javascript bytecode. In: Proceedings of POST. LNCS, vol. 8414, pp. 159—
178. Springer (2014)

. Bonakdarpour, B., Finkbeiner, B.: Runtime verification for HyperLTL. In: Pro-

ceedings of RV. LNCS, vol. 10012, pp. 41-45. Springer (2016)

Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification
for alternation-free HyperLTL. In: Proceedings of TACAS. LNCS, vol. 10206, pp.
77-93 (2017)

Chudnov, A., Kuan, G., Naumann, D.A.: Information flow monitoring as abstract
interpretation for relational logic. In: Proceedings of CSF. pp. 48-62. IEEE Com-
puter Society (2014)

Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sanchez,
C.: Temporal logics for hyperproperties. In: Proceedings of POST. LNCS, vol.
8414, pp. 265-284. Springer (2014)

Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6), 1157-1210 (2010)

d’Amorim, M., Rosu, G.: Efficient monitoring of omega-languages. In: Proceedings
of CAV. LNCS, vol. 3576, pp. 364-378. Springer (2005)

Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of SP. pp. 109-124. IEEE Computer Society (2010)

Dimitrova, R., Finkbeiner, B., Kovacs, M., Rabe, M.N., Seidl, H.: Model checking
information flow in reactive systems. In: Proceedings of VMCAI. LNCS, vol. 7148,
pp. 169-185. Springer (2012)

Dimitrova, R., Finkbeiner, B., Rabe, M.N.: Monitoring temporal information flow.
In: Proceedings of ISoLA. LNCS, vol. 7609, pp. 342-357. Springer (2012)
Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of CONCUR.
LIPIcs, vol. 59, pp. 13:1-13:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

Finkbeiner, B., Hahn, C., Stenger, M.: Eahyper: Satisfiability, implication, and
equivalence checking of hyperproperties. In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part II. pp. 564-570 (2017)

Finkbeiner, B., Rabe, M.N., Sdnchez, C.: Algorithms for model checking HyperLTL
and HyperCTL*. In: Proceedings of CAV. LNCS, vol. 9206, pp. 30-48. Springer
(2015)

Guernic, G.L., Banerjee, A., Jensen, T.P., Schmidt, D.A.: Automata-based con-
fidentiality monitoring. In: Proceedings of ASTAN. LNCS, vol. 4435, pp. 75-89.
Springer (2006)

Kovacs, M., Seidl, H.: Runtime enforcement of information flow security in tree
manipulating processes. In: Proceedings of ESSoS. LNCS, vol. 7159, pp. 46-59.
Springer (2012)

Manna, Z., Pnueli, A.: Temporal verification of reactive systems - safety. Springer
(1995)

McLean, J.: Proving noninterference and functional correctness using traces. Jour-
nal of Computer Security 1(1), 37-58 (1992)

16

22.

23.

24.

25.

26.

27.

28.

29.

30.

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. pp. 4657 (1977)

Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Proceedings of FM. LNCS, vol. 4085, pp. 573-586. Springer (2006)

Roscoe, A.W.: CSP and determinism in security modelling. In: Proceedings of SP.
pp. 114-127. IEEE Computer Society (1995)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5-19 (2003)

Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
In: Proceedings of STOC. pp. 159-168. ACM (1982)

Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. In: Proceedings of ASPLOS. pp. 85-96. ACM
(2004)

Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for systemc.
Formal Methods in System Design 41(3), 236-268 (2012)

Vanhoef, M., Groef, W.D., Devriese, D., Piessens, F., Rezk, T.: Stateful declassi-
fication policies for event-driven programs. In: Proceedings of CSF. pp. 293-307.
IEEE Computer Society (2014)

Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of CSF. p. 29. IEEE Computer Society (2003)

17

