
Generalized Rabin(1) Synthesis with Applications to
Robust System Synthesis?

Rüdiger Ehlers

Reactive Systems Group
Saarland University

Abstract. Synthesis of finite-state machines from linear-time temporal logic
(LTL) formulas is an important formal specification debugging technique for re-
active systems and can quickly generate prototype implementations for realizable
specifications.
It has been observed, however, that automatically generated implementations typ-
ically do not share the robustness of manually constructed solutions with respect
to assumption violations, i.e., they typically do not degenerate nicely when the as-
sumptions in the specification are violated. As a remedy, robust synthesis methods
have been proposed. Unfortunately, previous such techniques induced obstacles
to their efficient implementation in practice and typically do not scale well.
In this paper, we introduce generalized Rabin(1) synthesis as a solution to this
problem. Our approach inherits the good algorithmic properties of generalized
reactivity(1) synthesis but extends it to also allow co-Büchi-type assumptions
and guarantees, which makes it usable for the synthesis of robust systems.

1 Introduction

The problem of synthesizing finite-state systems from specifications written in linear-
time temporal logic has recently received an increase in interest. Algorithmic advances
in the solution of the synthesis problem have strengthened the practical applicability
of synthesis algorithms and consequently, solution quality considerations that are com-
mon in the manual engineering process of reactive systems start to appear in the scope
of synthesis as well.

In practice, many specifications consist of a set of assumptions the system to be
synthesized can assume about the behavior of its environment, and a set of guarantees
that it in turn has to fulfill. Such a situation is typical for cases in which a part of a
larger system is to be synthesized. In this context, one particularly well-known solution
quality criterion is the robustness of a system, i.e., how well it behaves under violations
of the assumptions. As an example, a bus arbiter system could be designed to work
in an environment in which not all clients request access to the bus as the same time.
This assumption might however be violated if a part of the system breaks at runtime
or errors were made in the engineering process. To counter these problems, manually
constructed safety-critical systems are typically built in a way such that at least some
guarantees are still fulfilled in such a case. Automatically synthesized systems however

? An earlier version of this paper appeared as arXiv/CoRR document no. 1003.1684.

2 R. Ehlers

typically do not exhibit robust behavior in such situations. As an example, the bus ar-
biter synthesized under this assumption could stop giving grants to clients completely
once too many requests have occurred in a computation cycle.

To remedy these problems, a few techniques especially geared towards the synthe-
sis of robust systems have been proposed. In [7], a robustness criterion and a synthesis
algorithm based on cost automata have been defined, with the specification being re-
stricted to consist of only safety properties. On the other hand, in [4], a robustness
criterion based on the number of guarantees that still hold if assumptions are violated is
defined, which connects robust synthesis to solving generalized Streett games. In both
cases, the scalability of these techniques appears to be limited.

In this paper, we propose generalized Rabin(1) synthesis, an extension of the gen-
eralized reactivity(1) synthesis principle, originally proposed by Piterman, Pnueli and
Sa’ar [20]. Our approach extends the expressivity of the latter approach while retaining
its good algorithmic properties.

In particular, while generalized reactivity(1) synthesis is applicable to all specifica-
tions whose assumptions and guarantees are representable as deterministic Büchi au-
tomata, we extend its expressivity by allowing also one-pair Rabin-type and, as a spe-
cial case, co-Büchi-type assumptions and guarantees, which are useful for representing
persistence requirements [25]. Equally important, these extensions make the class of
specifications that can be handled closed under applying a fairly straight-forward ro-
bustness criterion based on the number of computation cycles witnessing temporary
violations of the assumptions and guarantees. At the same time, our approach inherits
the good algorithmic properties of generalized reactivity(1) synthesis. Additionally, we
show that any further non-trivial expressivity extension would result in losing these.

In the following, we describe two algorithms solving the robust synthesis problem.
We start by showing how the generalized Rabin(1) synthesis problem can be reduced
to solving a parity game with 5 colors and describe its use for robust system synthesis.
Then, we discuss the fact that it is sometimes desirable to restrict the system to be syn-
thesized to having some upper time bound between a temporary violation of a safety
assumption and the final following violation of a safety guarantee afterwards, i.e., to
return to normal operation after some upper time bound. For such cases, we present an
adapted algorithm that has the additional advantage of extracting implementations hav-
ing an extra output signal that reports whether the system is currently in the recovery
mode after a violation of the assumption.

1.1 Related Work

Automatically synthesizing implementations from specifications given in linear-time
temporal logic (LTL) is a well-studied problem in the literature. Its solutions can be
classified into two sorts: (1) approaches that aim at handling the full expressivity of
LTL, and (2) techniques that trade the full expressivity of LTL against algorithmic ad-
vantages. One particularly well-known approach of the latter kind, which we also build
upon in this paper, is generalized reactivity(1) synthesis [20]. Its applicability in practice
is witnessed by the existence of several successful case studies [5, 6, 17, 25].

Synthesis of robust controllers is a relatively recent topic. In [3], Arora and Gouda
describe the closure and convergence robustness criteria. Bloem et al. [4] solve the

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 3

synthesis problem for the former criterion, where the number of guarantees that still
hold in case of assumption violations is to be maximized. The corresponding synthesis
problem is reduced to solving generalized Streett games. In [7], a quantitative approach
for safety assumptions and guarantees is proposed, where the robustness definition is
based on the number of computation cycles in which violations of the assumptions and
guarantees are witnessed. This approach thus uses the convergence robustness criterion.
Our work follows this line of research, but extends the idea to also allow liveness parts
in the specification. The restriction to qualitative robustness improves the scalability of
the proposed approach.

In the area of hybrid systems and control theory, work has been performed on robust
synthesis where only the continuous part of the controller to be synthesized is to be
made robust [25], while for the discrete part, generalized reactivity(1) synthesis is used.
This paper can be seen as being orthogonal to that work as it solves the problem of
introducing robustness in the discrete part of the controller. Thus, combining the two
approaches leads to robustness of the overall solution synthesized. Also, in [25], so-
called stability or persistence properties, which correspond to co-Büchi-type properties
in the framework here, are used but applied to the generalized reactivity(1) synthesis
approach in a way that leads to incompleteness of the overall procedure. Thus, our
methods also increase the scope of properties expressible in that approach.

Closely related to robust synthesis is also the field of fault-tolerant synthesis. Here,
fault models and fall-back specifications that need to hold in case of fault occurrences
are explicitly given as input to the synthesis process. Most works in this area are con-
cerned with adding robustness to completely specified systems, with a few exceptions
(e.g., [11]). Our work follows the line of research in which the system to be synthesized
should work in a reasonable way in case of assumption violations even if no explicit
such fall-back specifications are given [7, 4]. Thus, the techniques presented in this pa-
per are even applicable if the fault model is unknown or it is not desired to invest time
in writing the additional fall-back specifications.

2 Preliminaries

Words, Languages and natural numbers: Let Σ be a finite set. By Σ∗/Σω we de-
note the set of all of its finite/infinite sequences, respectively. Such sequences are also
called words over Σ. Sets of words are also called languages. For some sequence
w = w0w1 . . ., we denote by wj the suffix of w starting with the jth symbol, i.e.,
wj = wjwj+1 . . . for all j ∈ IN.

Mealy machines: Reactive systems are usually described using a finite state machine
description. Formally, we define Mealy machines as five-tuplesM = (S,ΣI , ΣO, δ, s0)
where S is some finite set of states,ΣI andΣO are input/output alphabets, respectively,
s0 ∈ S is the initial state and δ : S × ΣI → S × ΣO is the transition function ofM.
The computation steps of a Mealy machine are called cycles.

For the scope of this paper, we set ΣI = 2API and ΣO = 2APO for some sets of
input/output atomic propositions API and APO.

4 R. Ehlers

The languages induced by Mealy machines: Given a Mealy machineM = (S,ΣI ,
ΣO, δ, s0) and some input word i = i0i1 . . . ∈ Σω

I , M induces a run π = π0π1 . . .
and some output word o = o0o1 . . . over i such that π0 = s0 and for all j ∈ IN:
δ(πj , ij) = (πj+1, oj). Formally, we define the language ofM, written as L(M), to
be the set of words w = w0w1 . . . ∈ Σω with Σ = 2API]APO such that M induces
a run π over the input word i = w|ΣI

= (w0 ∩ ΣI)(w1 ∩ ΣI) . . . such that w|ΣO
=

(w0 ∩ΣO)(w1 ∩ΣO) . . . is the output word corresponding to π.

Linear-time temporal logic: For the description of the specification of a system, line-
ar-time temporal logic (LTL) is a commonly used logic. Syntactically, LTL formulas
are defined inductively as follows (over some set of atomic propositions AP):

– For all atomic propositions x ∈ AP, x is an LTL formula.
– Let φ1 and φ2 be LTL formulas. Then ¬φ1, (φ1 ∨ φ2), (φ1 ∧ φ2), Xφ1, Fφ1, Gφ1,

and (φ1Uφ2) are also valid LTL formula.

The validity of an LTL formula φ over AP is defined inductively with respect to an
infinite trace w = w0w1 . . . ∈ (2AP)ω . Let φ1 and φ2 be LTL formulas. We set:

– w |= p if and only if (iff) p ∈ w0 for p ∈ AP
– w |= ¬ψ iff not w |= ψ
– w |= (φ1 ∨ φ2) iff w |= φ1 or w |= φ2
– w |= (φ1 ∧ φ2) iff w |= φ1 and w |= φ2
– w |= Xφ1 iff w1 |= φ1
– w |= Gφ1 iff for all i ∈ IN, wi |= φ1
– w |= Fφ1 iff there exists some i ∈ IN such that wi |= φ1
– w |= (φ1Uφ2) iff there exists some i ∈ IN such that for all 0 ≤ j < i, wj |= φ1

and wi |= φ2

We use the usual precedence rules for LTL formulas in order to be able to omit
unnecessary braces and also allow the abbreviations typically used for Boolean logic,
e.g., that a→ b is equivalent to ¬a ∨ b for all formulas a, b.

Labeled parity games: A labeled parity game is a tuple G = (V0, V1, Σ0, Σ1, E0, E1,
v0,F) with V0 and V1 being the sets of vertices of the two players 0 and 1, Σ0 and Σ1

being their sets of actions, and E0 : V0 × Σ0 → V1 and E1 : V1 × Σ1 → V0 being
their edge functions, respectively. We abbreviate V = V0] V1 and only consider finite
games here, for which V0, V1, Σ0 and Σ1 are finite. The initial vertex v0 is always a
member of V0. The coloring function F : V0 → IN assigns to each vertex in V0 a color.
For the scope of this paper, we only assign colors to vertices of player 0. We introduce
the notation F−1 to denote the set of vertices of V0 having a given color, i.e., for c ∈ IN,
F−1(c) = {v ∈ V0 : F(v) = c}.

A decision sequence in G is a sequence ρ = ρ00ρ
1
0ρ

0
1ρ

1
1 . . . such that for all i ∈

IN, ρ0i ∈ Σ0 and ρ1i ∈ Σ1. A decision sequence ρ induces an infinite play π =
π0
0π

1
0π

0
1π

1
1 . . . if π0

0 = v0 and for all i ∈ IN and p ∈ {0, 1}, Ep(πpi , ρ
p
i) = π1−p

i+p .
Given a play π = π0

0π
1
0π

0
1π

1
1 . . ., we say that π is winning for player 0 if max{F(v) |

v ∈ V0, v ∈ inf(π0
0π

0
1 . . .)} is even for the function inf mapping a sequence onto the

set of elements that appear infinitely often in the sequence. If a play is not winning for
player 0, it is winning for player 1.

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 5

Given some parity game G = (V0, V1, Σ0, Σ1, E0, E1, v0,F), a strategy for player
0 is a function f0 : (Σ0 × Σ1)

∗ → Σ0. Likewise, a strategy for player 1 is a function
f1 : (Σ0 ×Σ1)

∗ ×Σ0 → Σ1. In both cases, a strategy maps prefix decision sequences
to an action to be chosen next. A decision sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . is said to be

in correspondence with fp for some p ∈ {0, 1} if for every i ∈ IN, we have ρpi =

fp(ρ
0
0ρ

1
0 . . . ρ

1−p
i+p−1). A strategy is winning for player p if all plays in the game that

are induced by some decision sequence that is in correspondence to fp are winning for
player p. It is a well-known fact that for parity games, there exists a winning strategy
for precisely one of the players (see, e.g., [15]). We call a state v ∈ V0 winning for
player p if changing the initial state to v makes or leaves the game winning for player
p. Likewise, a state v′ ∈ V1 is called winning for player p if a modified version of the
game, that results from introducing a new initial state with only one transition to v′ is
(still) winning for player p.

If a strategy fp for player p is a positional strategy, then fp(ρ00ρ
1
0 . . . ρ

1−p
n+p−1) =

f ′p(E1−p (. . . E1(E0(v0, ρ
0
0), ρ

1
0), . . . , ρ

1−p
n+p−1)) for some function f ′p : Vp → Σp. By

abuse of notation, we call both f ′p and fp positional strategies. Note that such a function
f ′p is finitely representable as both domain and co-domain are finite. For parity games,
it is known that there exists a winning positional strategy for a player if and only if there
exists some winning strategy for the same player.

Note that a translation between this model and an alternative model where the col-
oring function is defined for both players is easily possible with only a slight alteration
of the game structure.

ω-automata: An ω-automaton A = (Q,Σ, q0, δ,F) is a five-tuple consisting of some
finite state set Q, some finite alphabet Σ, some initial state q0 ∈ Q, some transition
function δ : Q × Σ → 2Q and some acceptance component F (to be defined later).
We say that an automaton is deterministic if for every q ∈ Q and x ∈ Σ, |δ(q, x)| ≤ 1.
Given an ω-automaton A = (Q,Σ, q0, δ,F), we also call (Q,Σ, q0, δ) the transition
structure of A.

Given an infinite word w = w0w1 . . . ∈ Σω and an ω-automaton A = (Q,Σ, q0, δ,
F), we say that some sequence π = π0π1 . . . is a run forw if π0 = q0 and for all i ∈ IN,
πi+1 ∈ δ(πi, wi). The language ofA, written as L(A), is the set of all words for which
an accepting run through A exists. The acceptance of π by F is defined with respect to
the type of F , for which many have been proposed in the literature [15].

– For a safety winning condition, all infinite runs are accepting. In this case, the F-
symbol can also be omitted from the automaton definition.

– For a Büchi acceptance condition F ⊆ Q, π is accepting if inf(π) ∩ F 6= ∅. Here,
F is also called the set of accepting states.

– For a co-Büchi acceptance condition F ⊆ Q, π is accepting if inf(π) ∩ F = ∅.
Here, F is also called the set of rejecting states.

– For a parity acceptance condition, F : Q → IN and π is accepting in the case that
max{F(v) | v ∈ inf(π)} is even.

– For a Rabin acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(E1, F1), . . . , (En, Fn)}, there exists some 1 ≤ i ≤ n such that inf(π) ∩ Ei = ∅
and inf(π) ∩ Fi 6= ∅.

6 R. Ehlers

– For a Streett acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(E1, G1), . . . , (En, Fn)} and for all 1 ≤ i ≤ n, we have inf(π) ∩ Ei 6= ∅ or
inf(π) ∩ Fi = ∅.

For a one-pair Rabin automaton A = (Q,Σ, q0, δ, {(E,F)}), we call F the Büchi
acceptance component of the automaton while E is denoted as being the co-Büchi ac-
ceptance component. This terminology is justified by the fact that a one-pair Rabin
automaton A = (Q,Σ, q0, δ, {(E,F)}) accepts some word if and only if it is accepted
by the co-Büchi automaton AC = (Q,Σ, q0, δ, E) and the Büchi automaton AB =
(Q,Σ, q0, δ, F). Whenever a deterministic Rabin automatonA = (Q,Σ, q0, δ, (E,F))
does not accept a word, we say that its Büchi part is violated if the states in F are vis-
ited only finitely often along the unique run, and say that its co-Büchi part is violated
if some state in E is visited infinitely often along this run. Henceforth, we assume that
all Büchi, co-Büchi, parity, Rabin and Streett automata are deterministic and without
loss of generality, for all of their states q ∈ Q and input symbols x ∈ Σ, we have
|δ(q, x)| = 1. We say that a parity automaton is weak if all states that are in the same
strongly connected component have the same color.

Parity automata and parity games: Given a deterministic parity automaton A =
(Q,Σ, q0, δ,F) with Σ = 2(API]APO), it is well-known that A can be converted to
a parity game G such that G admits a winning strategy for player 1 (the so-called system
player) if and only if there exists a Mealy machine M reading ΣI = 2API and out-
puttingΣO = 2APO such that the language induced byM is a subset of the language of
A (see, e.g., [23]). Furthermore, from a winning positional strategy in G, such a Mealy
machineM can easily be extracted.

Game solving and symbolic techniques: Many algorithms have been proposed for
solving parity games, of which some are implementable symbolically, i.e., the sets of
vertices and the edge functions can be represented implicitly by using, for example,
binary decision diagrams (BDDs) [8, 14, 10]. In practice, BDDs have been shown to be
useful when representing and computing properties of systems that are composed of
many components that run in parallel [20, 12, 2]. One particularly important operation
that needs to be performed in game solving is the computation of attractor sets. Given
two sets of vertices A and B, we define attrp(A,B) to be the set of game vertices from
which player p can enforce that eventually some vertex in B is visited while along the
way, the set of vertices A is not left. For the scope of this paper, we let attrp deal only
with vertices of player 0, i.e., A and B may only contain vertices of player 0 and we do
not restrict visits to vertices of player 1. The attractor set and a corresponding strategy
for player p can be computed symbolically [2, 1].

Specifications: In this paper, we consider specifications of the form ψ = (a1∧a2∧. . .∧
ana) → (g1 ∧ g2 ∧ . . . ∧ gng). By abuse of notation, we allow both LTL formulas and
deterministic automata as assumptions {a1, . . . , ana

} and guarantees {g1, . . . , gng
}. A

wordw ∈ (2AP)ω satisfies ψ if either for some LTL assumption ai,w 6|= ψ, for some as-
sumption automaton ai, w /∈ L(ai), or for all LTL and automata guarantees gi, w |= gi
and w ∈ L(gi), respectively. We assume that all LTL formulas in ψ range over the same
set of atomic propositions AP and all automata use 2AP as alphabet. Converting an LTL
formula to an equivalent deterministic automaton is a classical topic in the literature, is

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 7

explained in [15] and nowadays, suitable tools are available [16]. We say that an LTL
formula has a Rabin index of one if it can be converted to Rabin automata with one
acceptance pair.

In this paper, we are especially interested in specifications in which the assumption
and guarantee conjuncts are of the forms ψ, Gψ, GFψ, Fψ and FGψ with the only LTL
temporal operator occurring in ψ being X. These are called initialization, basic safety,
basic liveness, eventuality and persistence properties.

3 Generalized Rabin(1) Synthesis

In this section, we present the core construction of the generalized Rabin(1) synthesis
approach (abbreviated by GRabin(1) in the following) and then prove that its scope
cannot be extended without losing its good properties. Afterwards, we discuss its appli-
cation to the synthesis of robust systems. We start with a specification of the form

ψ = (a1 ∧ a2 ∧ . . . ∧ ana)→ (g1 ∧ g2 ∧ . . . ∧ gng)

for some set of assumptions {a1, . . . , ana
} and some set of guarantees {g1, . . . , gng

}.
We assume that these are given in form of deterministic one-pair Rabin automata. Most
specifications found in practice can be converted to such a form using commonly known
techniques [21, 18, 16].

Our construction transforms such a specification to a deterministic parity automa-
ton with at most 5 colors that accepts precisely the words that satisfy ψ. The number of
states of the generated automaton is polynomial in the product of the state numbers of
the individual Rabin automata a1, . . . , ana

, g1, . . . , gng
. The generated parity automa-

ton can then be syntactically transformed into a parity game (taking into account the
partitioning of the atomic propositions into input and output bits) that is winning for
player 1 if and only if there exists a Mealy machine over the given sets of inputs and
outputs such that all of its runs satisfy the specification. By using for example the par-
ity game solving algorithm by McNaughton/Zielonka [19], the realizability problem is
then solvable symbolically. This algorithm is constructive, i.e., it is able to produce a
winning strategy that can be used as a prototype implementation.

Let A be the set of assumption one-pair Rabin automata and G be the set of such
guarantee automata. For improved readability of the following description of the algo-
rithm, by abuse of notation, we introduce δ, Q, q0, Σ, and F as functions mapping au-
tomata onto their components. For example, given some automaton A = (Q̃, Σ̃, q̃0, δ̃,
(Ẽ, F̃)), we have δ(A) = δ̃.

For A = {a1, . . . , ana
} and G = {g1, . . . , gng

}, we construct the deterministic
parity automaton A′ = (Q′, Σ′, δ′, q′0,F ′) that accepts precisely the words on which ψ
is satisfied as follows:

– Σ′ is chosen such that for all a ∈ A]G: Σ′ = Σ(a)
– Q′ = Q(a1)× . . .×Q(gng

)× {0, 1, . . . , na} × {0, 1, . . . , ng} × B
– For all q = (qa1 , . . . , q

g
ng
, qW , qR, qV) ∈ Q′ and x ∈ Σ′, we define δ′(q, x) =

(q′a1 , . . . , q
′g
ng
, q′W , q′R, q′V) such that:

• For all 1 ≤ i ≤ na: δ(ai)(qai , x) = q′ai

8 R. Ehlers

• For all 1 ≤ i ≤ ng: δ(gi)(q
g
i , x) = q′gi

• q′W = (qW + 1) mod (na + 1) if q′aqW ∈ F (aqW) or qW = 0, otherwise
q′W = qW .
• q′R = (qR + 1) mod (ng + 1) if q′g

qR
∈ F (gqR) or qR = 0, otherwise q′R =

qR.
• q′V = true if and only if (at least) one the following two conditions hold:
∗ qW = 0
∗ for all 1 ≤ i ≤ ng , q′gi /∈ E(gi) and qV = true

– For all q = (qa1 , . . . , q
g
ng
, qW , qR, qV) ∈ Q′, we have that F ′ maps q to the least

value in c ∈ {0, 1, 2, 3, 4} such that:
• c = 4 if for some 1 ≤ i ≤ na: qai ∈ E(ai)
• c ≥ 3 if qV = true and for some 1 ≤ i ≤ ng , qgi ∈ E(gi)
• c ≥ 2 if qR = 0.
• c ≥ 1 if qW = 0

– q′0 = (q0(a1), . . . , q0(gng
), 0, 0, false)

The components qa1 , . . . , q
g
ng

in a state tuple q = (qa1 , . . . , q
g
ng
, qW , qR, qV) ∈ Q′

represent the automata of A] G running in parallel. The remaining part of the state
tuples corresponds to some additional control structure for checking if the overall spec-
ification is satisfied. Note that adding the control structure only results in a polynomial
blow-up. The parts of the control structure have the following purposes:

– The counter qW keeps track of the assumption automaton number for which an
accepting state in its Büchi component is to be visited next. The construction is
essentially the same as for de-generalizing generalized Büchi automata (see, e.g.,
[22]).

– The counter qR does the same for the guarantees.
– The bit qV tracks if accepting states for the Büchi components of all automata in A

have been visited since the last visit to a rejecting state for the co-Büchi component
of some guarantee.

A full proof of the correctness of the construction can be found in [13].

3.1 Extending generalized Rabin(1) synthesis

The generalized Rabin(1) synthesis approach presented above is capable of handling all
assumptions and guarantees that have a Rabin index of one. A natural question to ask
at this point is whether the approach can be extended in order to be also able to handle
specifications with conjuncts of a higher Rabin index without losing its good properties.
These are:

– the fact that the state space of the generated parity automaton is the product of
the state spaces of the individual automata and some polynomially sized control
structure, which makes the automaton state space amenable to an encoding using
symbolic techniques, and

– the constant number of colors, which allows the application of efficient symbolic
parity game solving algorithms.

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 9

Unfortunately, the approach cannot be extended while retaining these advantages. To
see this, consider Streett game solving, which is known to be co-NP-complete [15]. If
we were able to accommodate one-pair Streett automata (which are a special case of
two-pair Rabin automata) as guarantees in the synthesis approach presented, we could
decompose a Streett automaton with n acceptance pairs (for some n ∈ IN) into n one-
pair Streett automata, each having the transition structure of the original Streett automa-
ton, take these as guarantees and use no assumptions. The specification is then realizable
if and only if it is realizable for the original Streett automaton. Since however, the indi-
vidual one-pair Streett automata have the same transition structure and thus transition
in a synchronized manner, if we were able to build a parity game having the properties
stated above, the parity game would only have a number of vertices polynomial in the
size of the original Streett automaton and thus, due to the constant number of colors,
the realizability problem for the original Streett automaton would be solvable in poly-
nomial time. So the existence of a similar algorithm for generalized Streett(1) synthesis
or generalized Rabin(2) synthesis would imply P=NP.

3.2 Application to synthesize robust systems

Assume that we have a specification of the form (a1 ∧ a2 ∧ . . . ∧ ana) → (g1 ∧ g2 ∧
. . . ∧ gng

), where all assumptions and guarantees are either initialization, basic safety,
basic liveness or persistence properties. During the run of a system satisfying ψ, the
assumptions may be violated temporarily. A common criterion for the robustness of a
system is that in such a case, it must at some point return to normal operation mode after
such a temporary assumption violation [7, 3]. In the scope of synthesis, implementing
such a convergence [3] criterion requires fixing a definition of temporary assumption
violations. Taking a specification of the form stated above, only a violation of the ini-
tialization or basic safety assumptions can be detected during the run of the system.
Moreover, only the basic safety properties can be violated temporarily as an initializa-
tion property is only evaluated at the start of a system run. Thus we define:

Definition 1. Given a word w = w0w1 . . . ∈ (2AP)ω and an LTL formula ψ = Gφ, we
say that position i ∈ IN in the word witnesses the non-satisfaction of ψ if there exists
some j ≤ i such that for no w′ ∈ (2AP)ω , wj . . . wiw′ |= φ. Furthermore, given a
specification of the form (a1 ∧ a2 ∧ . . . ∧ ana

) → (g1 ∧ g2 ∧ . . . ∧ gng
), where all

assumptions are initialization, basic safety, basic liveness or persistence properties, we
say that the assumptions/guarantees are temporarily violated on a word w at position
i if position i witnesses the non-satisfaction of some basic safety assumption/guarantee
in the specification, respectively.

In [3], convergence has been defined for the safety case. In this paper, we extend the
definition to the liveness and persistence cases:

Definition 2. Given a specification of the form (a1 ∧ a2 ∧ . . . ∧ ana
) → (g1 ∧ g2 ∧

. . . ∧ gng
), where all assumptions and guarantees are initialization, basic safety, ba-

sic liveness or persistence properties, we say that a system converges if the following
conditions hold for all words in the language of the system:

10 R. Ehlers

– there exists a bound on the number of temporary basic safety guarantee violations
in between any two temporary basic safety assumption violations and after the last
temporary basic safety assumption violation, and

– Ifw is a word in the language of the system satisfying the initialization assumptions
and for some j ∈ IN,wj satisfies all non-initialization assumptions, thenw satisfies
the initialization guarantees and for some j′ ≥ j,wj′ satisfies all non-initialization
guarantees.

In this definition, there is no requirement that a converging system also performs some
progress on its liveness (and persistence) properties in between two temporary assump-
tion violations even if they are sufficiently sparse, which in practice a robust system
should surely do. Nevertheless, we argue that for the scope of synthesis, this definition
is still useful. The reason is that all synthesis procedures used nowadays produce finite-
state solutions. Thus, if temporary assumption violations stop occurring for a couple of
computation cycles and at the same time, some progress is made with respect to liveness
assumptions (i.e., accepting states are visited for their automata), the system has, after a
finite period of time, also continue to work towards fulfilling the liveness guarantees. If
this was not the case, we could find a loop in the finite-state machine description of the
system that witnesses non-convergence, which would be a contradiction. Given that our
synthesis procedure only produces finite-state solutions (as parity game solving algo-
rithms typically do), it is thus enough to require that after the last temporary assumption
violation the system converges in order to ensure that the system converges in general.
We can easily express convergence after the last temporary assumption violation in LTL
by prefixing the guarantees and the basic safety assumptions in the specification using
the F (finally) operator of LTL.

Definition 3. Given a specification of the form ψ = (a1 ∧ a2 ∧ . . . ∧ ana
) → (g1 ∧

g2 ∧ . . . ∧ gng
), where all assumptions and guarantees are initialization, basic safety,

basic liveness or persistence properties, and as, . . . , ana are precisely the basic safety
assumptions, we define the ruggedized version of ψ to be:

ψ′ = (a1 ∧ . . . ∧ as−1 ∧ F(as) ∧ . . .F(ana
))→ (F(g1) ∧ F(g2) ∧ . . . ∧ F(gng

))

Note that when taking a generalized Rabin(1) specification consisting only of initial-
ization, basic safety, basic liveness and persistence properties, ruggedizing it does not
change its membership in this class, as basic safety properties are converted to persis-
tence properties, basic liveness properties stay untouched (as FGF(φ) is equivalent to
GF(φ) for all LTL formulas φ) and likewise, persistence properties are not altered. This
property does not hold for generalized reactivity(1) specifications, as the ruggedization
process converts pure safety properties to persistence properties.

Thus, we can solve the robust synthesis problem, where converging systems are to
be found that satisfy a given specification, by ruggedizing the specification and using
the generalized Rabin(1) synthesis approach. The convergence criterion above however
does not state that under no safety assumption violation, also no guarantee violation
should be performed by the system to be synthesized, which is also required in the
vast majority of practical cases where synthesis can be applied. In order to incorporate
this requirement to the synthesis process, we can build a deterministic weak automaton

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 11

from the original specification but using only safety assumptions and guarantees. By
taking the conjunction of this automaton with the parity automaton obtained from the
ruggedized specification using the construction stated above, we obtain a five-color
parity game for which all implementations realizing the specification also have this
additional property.

So far, we have required all assumption and guarantee conjuncts to be initializa-
tion, basic safety, basic liveness and persistence properties. We leave the question how
to ruggedize specifications consisting of arbitrary one-pair Rabin automata as assump-
tions and guarantees open, as there is no extension to the ruggedization concept that is
suitable in general. As an example, in general we could have the assumption in a spec-
ification that at precisely every second computation cycle, some input bit should be set
to true. If during the execution of the system, the environment flips the phase of the
signal (e.g., from setting the bit to true every even cycle to setting it to true every odd
cycle), whether this should count as only a temporary violation or a permanent one de-
pends on the application. Thus, a generic ruggedization construction for specifications
that do not only have initialization, basic safety or liveness and persistence conjuncts
cannot be given.

4 Bounded-transition-phase Generalized Rabin(1) Synthesis

In the preceding section, we defined generalized Rabin(1) synthesis and its application
to synthesize robust systems. These systems have the property that after a temporary
violation of some assumption, the system returns to normal operation mode after a
finite period of time. The system might however have the drawback that the length of
the period is not under its control and might grow arbitrarily. Consider the following
example, which is a realizable specification over API = {i} and APO = {o}:

(i ∧ GFi ∧ G(i↔ Xi))→ (G(o↔ i) ∧ Go)

The environment can temporarily violate its specification by switching from continu-
ously choosing i = true to i = false and vice versa. While the environment plays
a stream of i = false, the system has to violate some of its guarantees. However, the
environment has to switch back to setting i = true at some point in order not to violate
its liveness property. Thus, also the ruggedized version of the specification is realizable.
However, we cannot give a time bound on the duration of a phase in which i is set to
false continuously and thus, there is no implementation of the specification that has a
time bound on the length of the transition phase in which the system switches back to
normal operation mode after the last temporary assumption violation.

Definition 4. Given a specification ψ = (a1 ∧a2 ∧ . . .∧ana)→ (g1 ∧ g2 ∧ . . .∧ gng),
where all assumptions and guarantees are initialization, basic safety, basic liveness
or persistence properties, we say that a robust system is in normal operation mode
with respect to ψ after the input/output prefix word w ∈ (2API]APO)∗ if the system can
enforce that the postfix wordw′ ∈ (2API]APO)ω representing the following input/output
either has the property that the initialization assumptions are not satisfied inww′, or no
safety guarantee temporary violation is witnessed inww′ from position |w|+1 onwards
before the next safety assumption violation.

12 R. Ehlers

We say that a system is in recovery mode whenever it is not in normal operation
mode. Undoubtedly, systems that guarantee an upper time bound on the number of
computation cycles being in recovery mode after a temporary assumption violation has
occurred (provided that no further such violation occurs during the recovery process)
are more desirable [9]. In this section, we show how to obtain these with the generalized
Rabin(1) synthesis approach, whenever possible. As a side-result, the systems synthe-
sized also have an additional output bit that always indicates whether normal operation
mode has already been restored.

We solve the bounded-transition-phase generalized Rabin(1) synthesis problem by
borrowing ideas from [9], where finitary winning conditions for parity games are in-
troduced, but only apply these to the co-Büchi part of the specification that has been
introduced when ruggedizing the original specification. In contrast to [9], we thus avoid
that specifications in which the system to be synthesized is required to wait for some
external events for fulfilling its obligations become unrealizable, which applies to the
majority of the industrial case studies available for generalized reactivity(1) synthesis
at the moment (see, e.g., [5, 6, 26]).

Let ψ be a generalized reactivity(1) specification. We start by ruggedizing ψ and
convert the resulting LTL formula to a deterministic parity automaton A′ as described
in the previous section, but this time modify the construction slightly to always set the
qV flag to true. With this modification, if some rejecting state for the co-Büchi-part of
some guarantee Rabin automaton is visited along a run, this results in an occurrence of
color 3, except if at the same time some state in the co-Büchi-part of an assumption is
visited (which leads to color 4). When computing the automata from the specification
conjuncts, for the persistence properties, we make sure that their automata are co-Büchi-
tight. We say that a deterministic co-Büchi word automaton is co-Büchi-tight for some
LTL formula ψ = FGφ if a run of the automaton visits a rejecting state precisely at the
positions in the corresponding word that witness the non-satisfaction of Gφ. We define:

Definition 5. Given a parity gameA with colors {0, 1, 2, 3, 4}, we say that some strat-
egy f for player 1 is a winning color-3 bounded-transition-phase strategy if there exists
some constant c ∈ IN such that on every run ofA that is in correspondence to f , a visit
to color 3 along the run can only occur within c steps after an occurrence of color 4.

Whenever we have a winning color-3 bounded-transition-phase strategy for the game
induced by A′, the strategy represents an implementation realizing ψ using only a
bounded transition-phase before returning to normal operation mode after a tempo-
rary assumption violation, as in A′, all visits to color 3 signal visits to co-Büchi states
in some Rabin guarantee automaton, which in turn witness temporary guarantee viola-
tions. Thus, such a strategy represents a system implementation for which the number
of computation steps in which it can be in recovery mode between any two temporary
assumption violations is limited.

Let G = (V0, V1, Σ0, Σ1, E0, E1, v0, c) be the game built from A′. We use a func-
tion parityp(B,C) for computing the set of winning vertices in a parity game, i.e., for
p ∈ {0, 1}, it maps the sets of V0-vertices B and C onto the set of vertices from which
player p can win the game, assuming all states in B to be winning for this player and
all states in C to be winning for the other player. We assume that the parityp function
also computes a winning strategy. Note that the commonly used parity game solving

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 13

algorithms can easily be modified to handle such additional parameter sets B and C
and to compute such a strategy [14, 10].

At any point during a run in which player 1 plays a bounded-transition strategy, she
is either in the transition phase or in a vertex from which she can win without being
in the transition phase, i.e., from which she has a winning strategy that does not visit a
vertex with color 3 before a vertex with color 4 is visited and at the same time, if a color-
4-vertex is never visited again, is winning using only vertices with colors 0, 1 and 2.
Using this observation, we can compute the set of V0-vertices from which player 1 can
win while being in the transition phase using a fixed point characterization of the set:

W = νX.X ∧ attr1(F−1(4) ∨ parity1(F−1(4) ∧X,F−1(3))) (1)

The subformula parity1(F−1(4)∧X,F−1(3)) computes from which vertices the game
can be won when not being in the transition phase, assuming that the states in X are
winning during the transition phase, as a visit to color 4 allows switching to the transi-
tion phase, and a vertex with color 3 must not be visited beforehand. Taking the attractor
set of parity1(F−1(4) ∧ X,F−1(3)) allows finding the vertices from which player 1
can enforce that either a vertex with color 4 is visited after a finite period of time or that
in a finite number of steps, vertices are reached which are winning even when not being
in the transition phase. Using this set W , the set of vertices from which player 1 can
win when not being in the transition phase can then be obtained by computing:

Y := parity1(F−1(4) ∧W,F−1(3) ∧W) (2)

Theorem 1. Given a parity game G, the set of the vertices of player 0 in a game from
which a winning color-3 bounded-transition-phase strategy exists for player 1 is equal
to the set of vertices computed by Equation 2.

Note that in this setting, the parity function only needs to deal with three-color par-
ity games, as the vertices with color 4 and 3 are assumed to be winning and losing for
the system player, respectively, so they can be remapped to color 0 for the scope of the
parity function. This allows the usage of specialized three-color parity game solving
algorithms such as the one described in [10], which has been shown to work well for
symbolic game solving in practice. Also, as the computations of attractors, conjunc-
tions, disjunctions and fixed points can be done symbolically [14], we obtain a fully
symbolic algorithm for computing the states from which a winning color-3 bounded-
transition-phase strategy exists.

Extracting such a strategy is also simple. While being in Y , the system player plays
the strategy computed by the parity function. Whenever this is not the case, it moves
along the attractor towards Y . Since an implementation can track its current vertex in
the game, it can easily output a signal stating whether it is in Y or not. This signal then
serves as an indicator whether the system is in normal operation or recovery mode.

The description of the algorithm established in this section does not immediately
generalize to the case that the original specification also contains co-Büchi objectives,
as co-Büchi rejecting states may be visited before the first occurrence of a safety as-
sumption violation in practice, but after the ruggedization of the specification and the

14 R. Ehlers

conversion to a parity game, such a visit is not allowed by a color-3 bounded-transition-
phase strategy. It is however easy to adapt our algorithm to fix this problem: we addi-
tionally introduce the colors 5 and 6 and map violations of the co-Büchi parts of Rabin
guarantee and assumption automata that correspond to safety conjuncts in the original
specification to these colors. The colors 3 and 4 are then still used for the persistence
properties of the original specification, using the qV bit of the construction from Sect.
3. Then, we only need to search for color-5 bounded-transition-phase strategies instead
of color-3 ones and alter the equations 1 and 2 to W = νX.X ∧ attr1(F−1(5) ∨
parity1(F−1(6) ∧X,F−1(5))) and Y := parity1(F−1(6) ∧W,F−1(5)).

5 Conclusion

In this paper, we presented generalized Rabin(1) synthesis. We have shown that our
approach is the maximally possible extension to generalized reactivity(1) synthesis that
has the same good algorithmic properties. As an application, we have defined a robust-
ness criterion suitable for specifications consisting of initialization, basic safety, basic
liveness, and persistence conjuncts and shown that the set of generalized Rabin(1) speci-
fications consisting only of these conjuncts is closed under the process of ruggedization,
which automatically transforms a specification into one for a system that needs to be
robust against environment assumption violations. By applying a special algorithm for
bounded-transition-phase generalized Rabin(1) synthesis, we can furthermore search
for implementations that are even more robust in the sense that the transition phase be-
tween the normal operation mode and the recovery mode after a temporary assumption
violation has to be bounded in length by some constant.

The practical applicability of the techniques described in this paper is witnessed by
the fact that in robotics, where generalized reactivity(1) synthesis starts to be applied,
the inability of generalized reactivity(1) synthesis to handle co-Büchi-type specifica-
tions is discussed in some publications in that field (see, e.g., [17, 26]). Our techniques
allow specifying such properties and are implementable in a fully symbolic manner.
When applied to only Büchi-type assumptions and guarantees, the basic GRabin(1)
synthesis approach is equivalent to the one for generalized reactivity(1) synthesis de-
scribed in [4] and as a lightweight modification to the former algorithm, it inherits its
good algorithmic properties.

Acknowledgements: This work was supported by the German Research Foundation
(DFG) within the program “Performance Guarantees for Computer Systems” and the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS).

The author wants to thank Roderick Bloem and Krishnendu Chatterjee for interest-
ing discussions and ideas on [13].

References

1. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: Mocha:
Modularity in model checking. In Hu, A.J., Vardi, M.Y., eds.: CAV. Volume 1427 of LNCS.,
Springer (1998) 521–525

Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 15

2. Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games.
STTT 7(2) (2005) 118–128

3. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant computing.
IEEE Trans. Software Eng. 19(11) (1993) 1015–1027

4. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robustness in the
presence of liveness. [24] 410–424

5. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Interactive
presentation: Automatic hardware synthesis from specifications: a case study. In Lauwereins,
R., Madsen, J., eds.: DATE, ACM (2007) 1188–1193

6. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify,
compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci. 190(4) (2007) 3–16

7. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In:
FMCAD, IEEE (2009) 85–92

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
puters 35(8) (1986) 677–691

9. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in omega-regular games. ACM
Trans. Comput. Log. 11(1) (2009)

10. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with an appli-
cation to timed games. In: CAV. Volume 4590 of LNCS., Springer (2007) 108–120

11. Dimitrova, R., Finkbeiner, B.: Synthesis of fault-tolerant distributed systems. In Liu, Z.,
Ravn, A.P., eds.: ATVA. Volume 5799 of LNCS., Springer (2009) 321–336

12. Ehlers, R.: Symbolic bounded synthesis. [24] 365–379
13. Ehlers, R.: Generalised Rabin(1) synthesis. arXiv/CoRR abs/1003.1684 (2010)
14. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract).

In: FOCS, IEEE (1991) 368–377
15. Grädel, E., Thomas, W., Wilke, T., eds.: Automata, Logics, and Infinite Games: A Guide to

Current Research. Volume 2500 of LNCS. Springer (2002)
16. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear tem-

poral logic. Theor. Comput. Sci. 363(2) (2006) 182–195
17. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and

motion planning. IEEE Transactions on Robotics 25(6) (2009) 1370–1381
18. Krishnan, S.C., Puri, A., Brayton, R.K., Varaiya, P.: The Rabin index and chain automata,

with applications to automatas and games. In Wolper, P., ed.: CAV. Volume 939 of LNCS.,
Springer (1995) 253–266

19. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2) (1993)
149–184

20. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In Emerson, E.A.,
Namjoshi, K.S., eds.: VMCAI. Volume 3855 of LNCS., Springer (2006) 364–380

21. Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, Weizmann Institute of
Science, Rehovot, Israel (March 1989)

22. Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical Computer Science
– Vol. B: Formal Models and Semantics. MIT Press (1994) 133–191

23. Thomas, W.: Church’s problem and a tour through automata theory. In Avron, A., Der-
showitz, N., Rabinovich, A., eds.: Pillars of Computer Science. Volume 4800 of LNCS.,
Springer (2008) 635–655

24. Touili, T., Cook, B., Jackson, P., eds.: Computer Aided Verification, 22nd International
Conference, CAV 2010. Volume 6174 of LNCS. Springer (2010)

25. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Automatic synthesis of robust embedded
control software. In: AAAI Spring Symposium on Embedded Reasoning. (2010)

26. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for temporal logic
specifications. In Johansson, K.H., Yi, W., eds.: HSCC, ACM (2010) 101–110

