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Abstract. We review a number of temporal verification techniques for
reactive systems using modularity and abstraction. Their use allows the
verification of larger systems, and the incremental verification of systems
as they are developed and refined. In particular, we show how deductive
verification tools, and the combination of finite-state model checking and
abstraction, allow the verification of infinite-state systems featuring data
types commonly used in software specifications, including real-time and
hybrid systems.

1 Introduction

Reactive systems have an ongoing interaction with their environment. Many sys-
tems can be seen as reactive systems, including computer hardware, concurrent
programs, network protocols, and concurrent software. Temporal logic is a conve-
nient language for expressing properties of reactive systems [Pnu77]. A temporal
verification methodology provides methods for proving that a given reactive sys-
tem satisfies its temporal specification [MP95].

Computations of reactive systems are modeled as infinite sequences of states.
For finite-state systems, the possible system states are determined by a fixed
number of variables with finite domain, so there are finitely many such states.
Algorithmic verification (model checking) can automatically decide the validity
of temporal properties over such finite-state systems [CE81,QS82], and has been
particularly successful for hardware [McM93].

Software systems, on the other hand, are usually infinite-state, since they
contain system variables over unbounded domains, such as integers, lists, trees,
and other data types. Most finite-state verification methods cannot be applied
directly to such systems. The application of temporal verification techniques to
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software systems is further limited by the size and complexity of the systems
analyzed. Such limitations already appear in the verification of large finite-state
systems, e.g., complex hardware, where the state-explosion problem, and the
limitations of symbolic methods, restrict the number of finite-state variables
that can be considered by automatic methods.

Deductive verification, which relies on general theorem-proving and user in-
teraction, provides complete proof systems that can, in principle, prove the cor-
rectness of any property over an infinite-state system, provided the property is
indeed valid for that system. However, these methods are also limited by the size
and complexity of the system being analyzed, becoming much more laborious as
the system complexity grows.

To overcome these limitations, verification methods analogous to those used
to manage complexity in software design are being investigated. Modular ver-
ification follows the classic divide-and-conquer paradigm, where portions of a
complex system are analyzed independently of each other. It holds the promise
of proof reuse and the creation of libraries of verified components. Abstraction
is based on ignoring details as much as possible, often simplifying the domain
of computation of the original system. This may allow, for instance, abstracting
infinite-state systems to finite-state ones that can be more easily model checked.

This paper presents an overview of a number of abstraction and modular ver-
ification methods that we have recently investigated, geared to the verification
of general infinite-state reactive systems. These methods are being implemented
as part of the STeP (Stanford Temporal Prover) verification system (see Sec-
tion 2.3). We show how they help design and debug complex systems, modularly
described.

Outline: Section 2 presents the basic preliminary notions, and the STeP verifi-
cation system. In Section 3 we briefly present abstraction, describing a number
of simple (infinite-state) examples and their abstractions, generated and verified
using STeP. Section 4 presents modular verification, including a larger example
of a hybrid system that is modularly specified and verified, again using STeP.
Section 5 presents our conclusions and briefly discusses related work.

2 Preliminaries

2.1 System and Property Specification

Transition Systems: We use transition systems [MP95] to model finite- and
infinite-state reactive systems. An assertion language, usually based on first-
order logic, is used to represent sets of system states, described in terms of a set
of system wvariables V. A reactive system is given by V, a set of initial states 0,
and a set of transitions 7. The initial condition © is described by an assertion
over V, and transitions are described by transition relations, assertions over the
set of system variables V and a set of primed system variables V', giving the
value of the system variables at the next state. A run of the system is an infinite
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sequence of states sg, s1, ... where sg satisfies 8, and for each 7 > 0, there is some
transition 7 € T such that (s;, s;41) satisfies p,, the transition relation of 7.

Transitions can be just (weakly fair) or compassionate (strongly fair), indi-
cating that they cannot be enabled infinitely often (continuously, in the case
of justice) but never taken. A computation is a run that satisfies these fairness
requirements. See [MP95] for details.

Temporal Logic: To express properties of reactive systems, we use linear-time
temporal logic (LTL) [MP95], where we allow first-order quantification at the
state-level.

Real-Time and Hybrid Systems: Real-time and hybrid systems can be mod-
eled using clocked and phase transition systems [MP96], which use the basic
transition system representation. Real-valued clock variables are updated by a
tick transition that advances time, constrained by a global progress condition.
In the case of hybrid systems, other continuous variables evolve over time, as
given by a set of differential equations. This allows the reuse of the standard
deductive verification techniques [MS98, KMP96].

Timed automata and hybrid automata can be easily translated into these
formalisms. Furthermore, by adopting the general transition system representa-
tion, clocked and phase transition systems can model systems with an infinite-
state control component. This includes, for instance, software with real-time
constraints and software-controlled hybrid systems. No extension of temporal
logic is required, since clock variables (including the global clock) can be di-
rectly referred to in specifications. For real-time and hybrid systems, fairness
constraints are usually replaced by upper bounds on how long transitions can
be enabled without being taken. Only runs that are non-zeno, where time grows
beyond any bound, are considered to be computations.

2.2 Deductive and Algorithmic Verification

As mentioned in Section 1, the two main approaches to the verification of tem-
poral properties of reactive systems are deductive verification (theorem-proving)
and algorithmic verification (model checking). In deductive verification, the va-
lidity of a temporal property over a given system is reduced to the general
validity of first-order verification conditions. In algorithmic verification, a tem-
poral property is established by an exhaustive search of the system’s state space,
usually searching for a counterexample computation.

Model checking procedures are automatic, while deductive verification often
relies on user interaction to identify suitable lemmas and auxiliary assertions.
However, model checking is usually applicable only to systems with a finite, fixed
number of states, while the deductive approach can verify infinite-state systems
and parameterized systems, where an unbounded number of components with
similar structure are composed.
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2.3 The STeP System

The Stanford Temporal Prover (STeP) supports the computer-aided formal veri-
fication of reactive, real time and hybrid systems based on their temporal specifi-
cations, expressed in linear-time temporal logic. STeP integrates algorithmic and
deductive methods to allow the verification of a broad class of systems, includ-
ing parameterized (N-component) circuit designs, parameterized (N-process)
programs, and programs with infinite data domains.

STeP is described in [BBCT95BBCT96]. The latest release of STeP, ver-
sion 2.0, is described in [MBB™98].

3 Abstraction

Abstraction reduces the complexity of a system being verified by considering
a simpler abstract system, where some of the details of the original concrete
system are hidden. There is much work on the theoretical foundations of reactive
system abstraction [CGL94,DGG94,L.GST95 Dam96], usually based on the ideas
of abstract interpretation [CCT7].

Most abstractions weakly preserve temporal properties: if a property holds
for the abstract system, then a corresponding property will hold for the concrete
one. However, the converse will not be true: not all properties satisfied by the
concrete system will hold at the abstract level. Thus, only positive results transfer
from the abstract to the concrete level. This means, in particular, that abstract
counterexamples will not always correspond to concrete ones.

Abstractions that remove too much information from the concrete system
and are thus too coarse will fail to prove the property of interest. They then can
be refined, by adding more detail, until the property can be proved or a concrete
counterexample is found.

3.1 From Infinite- to Finite-State

The intuition that motivates the use of abstraction in the verification of software
systems is the often limited interaction between control and data. The partic-
ular values taken on by data variables are often unimportant. Rather, it is the
relationship between these variables which is relevant to verifying the system.
For example, to decide which branch of a conditional statement will be taken, it
is sufficient to know whether its guard is true or false, and this information can
often be gleaned by an analysis of how each system transition affects the truth
value of that guard.

Example: Bakery: Consider the version of Lamport’s Bakery algorithm for
mutual exclusion shown in Figure 1, as specified in the Simple Programming
Language (SPL) of [MP95]. (STeP automatically translates such a program into
the corresponding fair transition system.) This system contains two infinite-
domain variables, y; and y», ranging over the non-negative integers. There is no
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local yi,y2 : integer where y1 =0 A y2 =0

loop forever do loop forever do
{o: mnoncritical mo: noncritical
by i=y2+ 1 I mi: y2:=y1+ 1
ly: await (y2 =0V y1 < y2) me: await (y1 =0V y2 < y1)
{3: critical mg: critical
ly: y1:=0 ma: y2:=0
-P1- -P2-

Fig. 1. Program BAKERY

upper bound on the values that these variables can take in a computation of the
system. Thus, the system is infinite-state, and cannot be directly model checked.
However, knowing only the truth value of the assertions

b1:y1:07
by 1y =0
bs 11 <o

is sufficient to determine which branches of the conditional statements are feasi-
ble. Using these assertions to replace the original integer variables, and maintain-
ing the finite-domain control variables, we can construct a finite-state abstraction
of the Bakery algorithm, shown in Figure 2. This abstract program can be given
to a model checker to verify the basic safety properties of the original system,
including mutual exclusion,

O-(at_l3 A at_ms) ,

stating that the two processes can never be both in their critical section at the
same time, and one-bounded overtaking:

O(at Lty — —at-mgW (at-mz W (mat_mg W at l3))) ,

which states that if process P1 is waiting to enter its critical section, then process
P2 can only enter its critical section at most once before P1 does.

All transitions in the concrete BAKERY program are just, except for the
noncritical statements at o and mg. Under certain conditions, the abstract
transitions can inherit the fairness properties of the original ones [KMP94,CU98].
This is the case here, so we can also prove accessibility,

D(at_fl — <>at_€3) 5

by model checking the abstract system with the inherited fairness requirements.
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local bi,b2,bs : boolean where b1, b2, b3

loop forever do loop forever do
{o: noncritical mo: noncritical
l1: (b1, b3) := (false, false) ma: (b2, bs3) := (false, true)
ly: await (b2 V b3) I meo: await (b1 V —bs)
{3: critical mg: critical
Ly: (b1, b3) := (true, true) mya: (b2, b3) := (true,b1)
-P1- -P2-

Fig. 2. Abstraction of Program BAKERY

3.2 Generating Abstractions

Constructing abstract systems manually can be time-consuming, and requires
that the correctness of the abstraction be checked during a separate phase. If
this is not done formally, a new potential source of error is introduced.

The Bakery example in the preceding section is an instance of assertion-
based abstraction, where a finite number of assertions {b1,...,b,} are used as
boolean variables in the abstract system, replacing the concrete variables they
refer to. An algorithm that generates an abstract system automatically, given
such a set of assertions (called the basis of the abstraction), is presented in
[CU98]. The algorithm uses a validity checker to establish relationships between
the basis elements, compositionally abstracting the transition relations of the
system to directly produce abstract transition relations. This algorithm has been
implemented as part of STeP, using the STeP validity checker, and automatically
generated the abstractions in this section.

Example: Fischer: As a second example, consider Fischer’s mutual exclusion
algorithm, as shown in Figure 3. This is a real-time system, with lower and upper
bounds L and U on the amount of time that each process can wait at any control
location. Provided that 2L > U, the program satisfies mutual exclusion [MP96].

The program can be modeled as a clocked transition system, with clock
variables ¢; and co measuring the time each process has been waiting at each
control location. Because of these clock variables, the system is infinite-state and
cannot be model checked directly.!

Examining the system suggests that the truth value of the assertions

bllclzL
bQZCgZL

together with the value of the finite-domain variables, is sufficient to determine
when transitions can be taken. However, these two assertions are not inductive,

! Specialized model checkers for real-time and hybrid systems, such as HyTech [HH95]
and Kronos [DOTY96], can automatically prove properties of such systems, but are
restricted to linear hybrid systems with finite control.
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local z: {0,1,2} where z =0

[¢o: loop forever do mo: loop forever do
[¢1: noncritical 7 m1: noncritical 7
ly: skip meo: skip
l3: while z # 1 do ms: while x # 2 do
f4: await £ =0 my4: await z =0
P o l5: x:=1 | P ms: x:=2
ls: skip me: skip
l7: if x =1 then my: if x =2 then
[Eg: critical} [mgz critical]
ly: skip my: skip
| Wiz:=0 1] L Lmio:z:=0 1]

Fig. 3. Fischer’s mutual exclusion algorithm.

i.e., the system contains transitions for which knowing the truth values of these
assertions is not sufficient to determine them after the transitions are taken. To
remedy this situation, we also consider the assertions:

by :c1 2> e
b4262201
bs:cp > co+ L
bg:co>c1+ L

These additional assertions yield sufficient information about the relationships
between the clock variables to generate a finite-state abstraction fine enough to
establish mutual exclusion: O—(at €4 A at_my).

Example: BRP: Finally, we turn to the bounded retransmission protocol (see,
e.g. [HS96,GS97,DKRT97]). The protocol consists of two processes, a sender
and a receiver, communicating over two lossy channels. The sender sends a list
of items (of some unspecified type) one by one, by repeatedly transmitting a
frame containing the current item until the frame is acknowledged. The receiver
repeatedly waits for a frame to arrive, acknowledges it, and appends the corre-
sponding item to the end of its own list.

To detect the arrival of duplicate frames and acknowledgements, each process
maintains a bit that is compared against a bit included in the frames and ac-
knowledgements. Which each outgoing frame, the sender attaches its bit, which
the receiver later copies into the acknowledgement it sends for that frame (if
the frame is not lost in transit). The sender ignores any acknowledgements that
arrive with the wrong bit, and flips its bit upon the arrival of a correct acknowl-
edgement. The receiver acknowledges every frame it receives, but only appends
the carried item to its list if the frame’s bit agrees with its own, and flips its
own bit in this case. If the number of retransmissions of any frame exceeds a
fixed, predetermined bound, the sender aborts transmission. The sender and
receiver each report the status of the transmission when they terminate. Both
sender and receiver report 0K (resp. NOT-0K) when they detect that the transmis-
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sion has succeeded (resp. failed). In addition, the sender may report DONT KNOW
should it happen to abort while transmitting the last item of the list.

One property we would like to establish is that the status reports are consis-
tent: either both processes report 0K, both report NOT_OK, or the sender reports
DONT_KNOW and the receiver OK or NOT_OK. This is specified as the invariance of:

sendDone A recvDone —
(sendStatus = OK A recvStatus = OK) V
(sendStatus = NOT_OK A recvStatus = NOT_0K) V
sendStatus = DONT_KNOW A (recvStatus = 0K V recvStatus = NOT_OK)

The system cannot be directly model checked: not only are the sender and
receiver lists unbounded, but the retransmission count sendCount is unbounded
as well, since the retransmission bound is unspecified. However, a finite-state
abstraction of the system can be generated. The assertion

b : sendList = nil

determines if the sender has successfully transmitted and received acknowledge-
ments for all the items to be sent. In this case, the sender cannot abort trans-
mission. The assertions

by : sendList = cons(head(sendList),nil)
b3 : sendCount = 0

ensure that the generated abstraction accurately models the sender’s behavior
when it chooses to abort with one item remaining to be sent. In that case, the
sender can report NOT_OK only if it has yet to transmit the last item. Otherwise,
the sender must report DONT_KNOW, since it is unclear whether the frame or its
acknowledgement was lost in transmission.

Using this basis ({b1, bz, b3}) to abstract the unbounded variables, and pre-
serving the finite-domain variables (which includes all the variables in the in-
variant to be proved), STeP automatically generates a finite-state abstraction
for which the above invariance is then model checked, automatically as well.

Another property we would like to establish is that the list is correctly trans-
mitted if the sender does not abort. That is, we would like to prove

¢ : O(sendDone A sendList =nil — recvList = LIST)

where LIST is the complete list being transmitted. Again, we use abstraction.

The assertions
b : sendList = nil
by : recvList = LIST

let us track the formula ¢ to be proven over the abstract system. The assertion

bs : frameItem = head(sendList)
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tracks the current item as it moves from sender to receiver. Finally,

by : recvList+-+sendList = LIST
bs : recvList+-+tail(sendList) = LIST

where ++ is the list concatenation operator, capture an inductive relationship
between the sender’s and the receiver’s lists at any point in time, and the list be-
ing transmitted; b4 Vbs is an invariant of the system. Given this basis, {by, ..., b5},
STeP automatically generates and model checks a finite-state abstraction.

4 Modular Specification and Verification

The advantages of modular description and development of complex systems are
well-known. From the formal verification point of view, decomposing systems
into modules allows verification that more closely follows the design structure of
the system. For instance, general properties of a parameterized module can be
proved once and then reused when the module is instantiated.

[FMS98] presents modular transition systems, a system specification formal-
ism that allows systems to be built from transition modules. Modules consist
of an interface, which describes the interaction with the environment, includ-
ing a list of shared variables and the name of exported transitions, and a body,
which describes the module’s actions, as transitions that can be synchronized or
interleaved with those of other modules.

Complex modules are constructed from simpler ones by module expressions.
The description language includes recursive module definitions, module com-
position and instantiation, variable hiding and renaming, and augmenting and
restricting module interfaces. Composition can be synchronous or asynchronous;
transitions with the same label are composed synchronously, while the rest are
interleaved. This modular system specification language is being added to STeP,
together with the corresponding modular proof rules.

When designing a system modularly, one would like to prove simple prop-
erties of individual modules, and combinations of modules, before the entire
system is specified. Assumption-guarantee reasoning is often used to prove prop-
erties of a module that depend on its environment, before that environment is
fully specified. Abstraction can facilitate this process: Modular properties can
be model checked for abstractions, relative to assumptions on the environment.
Furthermore, for real-time and hybrid systems, part or all of the complex real-
time behavior can be abstracted away when debugging individual modules. More
expensive verification methods should only be used after the design components
and some of their combinations pass these simple (and fast) checks.

4.1 Example: Steam Boiler Case Study

The steam boiler case study [ABL96] is a benchmark for specification and verifi-
cation methods for hybrid controlled systems. At the time of its appearance we
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developed a STeP implementation of the system, including both the plant and
the controller, consisting of some 1000 lines of STeP SPL code.

However, at that time STeP did not provide any modularity or abstraction
techniques. Although we managed to prove some simple properties over that
program and discovered numerous bugs in our model of the system, we quickly
decided that full verification was not feasible with the tool at hand.

With modularity and abstraction techniques in place in STeP, the case study
was revived. The system was rewritten as a modular transition system consisting
of ten modules with a total of 80 transitions, 18 real-valued variables, and 28
finite-domain variables. In the following we briefly describe the system, and then
present some of the techniques we have used to analyze it.

System Description: Our specification of the system is shown schematically
in Figure 4. The system consists of a physical plant, a controller, a maintenance
department and an operator desk.

The plant, at the top of Figure 4, contains the boiler itself, a pump that
supplies water to the boiler, sensors that measure the water level in the boiler
and the steam flow out of the boiler, and an actuator that can start and stop
the pump.

The controller, at the bottom of Figure 4, consists of three sub-modules: the
control program processes the sensor values and determines the output to the
actuator, and generally monitors the plant. It is responsible to detect unsafe con-
ditions and faulty equipment and, if necessary, generate an emergency stop. The
maintenance communication sub-module, MaintCom, keeps track of equipment
status, based on input from the maintenance department and the central control
program. The operator communication sub-module, OperatorCom, processes the
input from the operator desk during the start-up phase.

Space considerations prohibit showing the entire system, but to illustrate
our modular description language, Figure 5 shows the top-level composition of
the various modules. There are eight basic modules: Maintenance, MaintCom,
Operator, OperatorCom, ControlProgram, Boiler, Pump and Environment. The
sensor and actuator are incorporated into the boiler and the pump, respectively.

The MaintFun module is the parallel composition of instances of the MaintCom
and Maintenance modules. Multiple instances of the same module may be used
in a composition. For example, the full system, module BoilerSystem, contains
three instances of the MaintFun module, one for the steam flow sensor, one
for the level sensor, and one for the pump. In each case the generic variables
equipmentDefective and equipmentState are instantiated as the variable spe-
cific to the corresponding piece of equipment. The Environment module specifies
how variables may be modified by the physical environment of the plant. Finally,
we close the system by hiding all shared variables, indicating that their behavior
is determined completely by the modules included in the system.

Modules can communicate with each other through shared variables or by
synchronization of transitions. For example, the Maintenance, Boiler, Pump and
Operator modules communicate via shared variables, as do the three parts of
the ControlProgram, whereas the communication between the Controller and
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Module MaintFun: (M: Maintenance) || (MC: MaintCom)
Module OperatorFun: (0: Operator) || (MO: OperatorCom)

Module BoilerSystem:
Hide( 1levelEqState, steamEqState, pumpEqState,
levelDefective, steamDefective, pumpDefective in
( (C:ControlProgram) || (B:Boiler) || (P:Pump)
|| Rename((SteamMaint:MaintFun)
equipmentDefective = steamDefective;
equipmentState = steamEqgState)
|| Rename((LevelMaint:MaintFun)
equipmentDefective = levelDefective;
equipmentState = levelEgState)
|| Rename ((PumpMaint:MaintFun)
equipmentDefective = pumpDefective;
equipmentState = pumpEgState)
|| (Ops: OperatorFun) || (E: environment)))

Fig. 5. Top-level modular specification of the Steam Boiler system

the other modules is solely via synchronized transitions. This reflects the fact
that the controller only has access to the current plant data at the time that
sensors are sampled.

4.2 System Analysis: Modularity and Inheritance

The modular structure of the system allows us to prove properties of the system
at various levels. For example, we may want to prove the consistency between the
internal states of the Maintenance and the MaintCom modules for all the pieces
of equipment. It is attractive to prove this property over the MaintFun module
and then let all of its instances in the full system inherit it, rather than proving
it directly over the entire system; furthermore, since the MaintFun module is
finite-state, we can use a model checker for the modular proof, whereas the
full system contains real-valued variables, ruling out the use of a model checker
within STeP.

The MaintFun module contains two shared variables, equipmentDefective
and equipmentState. To be able to inherit properties, we must assume that
these variables can be arbitrarily modified by the module’s environment. How-
ever, to prove the consistency property we need a stronger assumption on the
environment.

We provide two ways to state such assumptions: the most general way is to
specify the property as an assume-guarantee property, of the form A — G, where
the assumption A is discharged upon parallel composition of the module with
its environment. However, in some cases this leads to rather large, unintuitive
temporal formulas. A second, weaker way to specify an assumption is to include
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an explicit environment restriction in the module. This restriction becomes part
of the environment transition when the modular property is proven. When a
module with an environment restriction is composed, the transition relations of
the composing modules are required to satisfy the restriction. We now show an
example of each approach:

Environment Restriction: Specifying the consistency property as an assume-
guarantee property is possible, but rather awkward, mainly because within a
temporal formula it is hard to separate the actions of the module from those of
its environment. On the other hand, we can include the assertion

(equipmentState’ = equipmentState) V (equipmentState’ = broken)

as an environment restriction for the MaintFun module, stating that the en-
vironment can set equipmentState to broken, but cannot modify it in any
other way. We can then prove the property directly over the MaintFun module.
Subsequently, we ensure that the modules composed with MaintFun satisfy this
property when building the full system.

Assume-Guarantee Reasoning: An example of a temporal property for which
an assume-guarantee proof is well-suited is

G : O(equipmentDefective — < equipmentState = inOrder) ,

stating that if a piece of equipment is defective then it will eventually be in
working order again.

The sequence of events in an equipment failure are as follows: At an arbi-
trary time, the environment can set any equipment to be defective, resulting in
either a faulty sensor reading, or the pump failing to start when requested. The
Controller detects that the equipment is broken, and sets the corresponding
equipment status to broken. The maintenance function of the Controller then
informs the maintenance department, which acknowledges the report and repairs
the equipment, eventually setting the equipment to inOrder. All of the steps in-
volved in achieving the inOrder condition are controlled by the MaintFun mod-
ule, except for the detection of the failure, which is done by the ControlProgram
module. Thus we can specify the property G under assumption A, as A — G:

O(equipmentDefective — < equipmentState = broken)
—

O(equipmentDefective — < equipmentState = inOrder)

This implication can be model checked over the MaintFun module.
When the MaintFun module is instantiated, the full system inherits three
assume-guarantee properties of the form A" — G:

O(steamDefective — < steamEqState = broken)

—

O(steamDefective — < steamEqState = inOrder)



286 Manna, Colén, Finkbeiner, Sipma and Uribe

for the steam sensor,

O(levelDefective — < levelEqState = broken)

—

O(levelDefective — < levelEqState = inOrder)
for the level sensor, and

O(pumpDefective — < pumpEqState = broken)
—

O(pumpDefective — < pumpEqState = inOrder)

for the pump. We then need separate proofs for each of the three assumptions,
specific to the particular failure detection method of that piece of equipment.

4.3 System Analysis: Abstraction

As we saw in Section 3, abstraction can reduce an infinite-state system to a
finite-state one by capturing relationships between infinite-domain variables, in
the form of assertions. As an example of the use of abstraction, consider the

property

0 steamEqState = inOrder A —steamDefective
v — (steamEqState = inOrder W steamDefective) / ’

stating that as long as the steam flow sensor is not defective its status will be
inOrder. That is, the controller will not detect a failure in nondefective equip-
ment. This property is certainly desirable, since the failure status of a piece of
equipment may cause a plant shutdown. We will prove it over the full system.

To check whether the steam flow sensor is operating correctly, at each cycle
the controller predicts the range of possible sensor readings for the next reading,
based on a minimum and maximum assumed gradient in the flow. If the reading
is outside this range, it is considered defective, and the controller will set its
status to broken.

Although the property involves only finite-domain variables, its validity is
obviously dependent on real-valued variables such as the actual and predicted
steam flow. However, the property does not depend on the particular values of
these variables, but only on certain relationships between them. The following
assertion basis is sufficient to prove the property:

b1 : steamflow =C.s

by : C.s =B.sf

b3 : C.s > C.sPredLow

by : C.s < C.sPredHigh

bs : C.s <B.sf —mingrad x delta

bg : C.s > B.sf —maxgrad * delta

b7y : C.s =C.sLow

bg: C.s =C.sHigh

bg : C.sPredLow = C.s + mingrad x delta
bio : C.sPredHigh = C.s + maxgrad * delta
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Here, steamflow is the sensor reading, C.s is the local value of the steam flow
within the controller, and B.sf is the actual steam flow going out of the boiler.
Parameters mingrad and maxgrad are the minimum and maximum gradients of
the steam flow, and delta is the sampling interval. We assume that mingrad < 0,
maxgrad > 0, and delta > 0.

The addition of these variables to the system allows us to remove all real-
valued variables and construct a finite-state abstraction that contains sufficient
information to prove the property.

Abstraction Test Points: When constructing abstract transition relations,
the algorithm of [CU98] uses a set of test points, built from the abstraction basis
{b1,...,b,}, to determine the effect of a transition on the truth value of the
basis elements under different circumstances. By default, the test points used
are of the form {p; — p)}, where p; and p, are basis elements or their negation.
When generating the abstraction, a validity checker is used, in essence, to check
the implication
pLA pr— Pl

for every transition (compositionally over the structure of the formula that de-
scribes the transition relation); if valid, the implication is added to the abstracted
transition relation.

These default test points are enough to generate the abstractions described
in Section 3. However, in some cases a more precise abstraction is required to
prove the desired property, which could have been obtained if more complex
relationships between basis elements had been explored.

Thus, our implementation allows additional test points to be specified ex-
plicitly for particular transitions, letting p; and pj, above be general boolean
combinations of basis elements. This has the effect of refining the abstracted
system, producing an abstraction for which more properties can be proved.

To illustrate the abstraction process, some examples of concrete and cor-
responding abstract transition relations are given below. The evolution of the
physical system, modeled by the concrete relation

0%, : B.st’ > B.sf + mingrad « delta A B.sf’ < B.sf + maxgrad * delta
is abstracted to

Py (by — by Ag) A preserve({by, bs, by, bz, bg, bg, b1o})

where preserve(S) stands for Ages(z’ = x).2

The two transitions involved in the prediction of the acceptable steam flow
range are

¢  C.steamReliable A C.sLow’ =C.s A C.sHigh’ =C.s
PP1°\/ (~C.steamReliable A ...)

2 We only include the transition relation fragments relevant to the abstraction; in
particular, finite-state control variables that are retained are not included. We plan
to make the entire concrete and abstract systems available elsewhere.
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and
¢  C.sPredLow’ = C.sLow + mingrad * delta

LR C.sPredHigh’ = C.sHigh + maxgrad * delta .
They are abstracted to

A C.steamReliable — b, A b A preserve({bs,...,bs,bg,b10})
PP1* A ~C.steamReliable — ...

and
Pyt (by — by Aby) A (bg — by Abg A preserve({b1, ba, bs, bg, by, bs}) .

For these transition relations, the default test points suffice. The transition
that models the sensor sampling, BoilerSensorsC, is a synchronized transition
between the Boiler and the ControlProgram modules, with transition relation

¢ C.s’ = steamflow’ A
PS " steamflow’ = if steamDefective then outofrange else B.sf .

This transition requires an extra test point in order to establish a sufficiently
strong postcondition, namely:

{—steamDefective A b5 A bg A bg A b1} BoilerSensorsC {bs A by}

This results in the abstract transition relation

4 by A (—steamDefective — by A b ADg) A
Ps (—steamDefective A bs Abg A bg A big — by Aby AV ADY) .

This abstraction allows us to prove the desired property ¢ above.

5 Conclusions and Related Work

We have shown how abstraction and modularity allow for more automatic and
incremental verification of reactive systems. Deductive methods allow the veri-
fication and abstraction of infinite-state systems, including the unbounded data
types used in software systems.

Clearly, much has to be done before these techniques are practical for large-
scale software system design. In practice, a combination of formal and informal
methods is required. However, we believe that abstraction, refinement and mod-
ularity will be useful in all of these settings.

Proving simple properties can help debug systems while they are being de-
signed. The abstraction and verification of individual modules can be regarded
as a “lightweight” formal method, in the sense of [JW96], which can be used
before moving on to more “heavyweight” ones. Initial negative results can help
debug the system; positive results will establish simple properties that will be
useful in more complex, global proofs.

In the important special case of hybrid and real-time systems, untimed com-
ponents can be isolated and debugged using model checking, and timed compo-
nents can be abstracted to model checkable ones.
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Related Work

Abstraction and Deductive Verification: The methods for automatic in-
variant generation presented in [BBM97] are a special case of abstraction, where
abstract interpretation is carried out using pre-defined abstract domains for
which fixpoints (or their approximations) can be efficiently computed. These
methods are implemented in STeP, automatically generating local, linear, and
polyhedral invariants, depending on the abstract domain used.

Verification diagrams [MP94,BMS95] provide a visual representation of the
proof of the system validity of particular temporal properties. Deductive model
checking [SUMO9S] interactively explores and refines an abstraction of the system
state-space in search for a counterexample. Both of these verification methods
can be seen as providing an appropriate assertion-based abstraction, when they
succeed. Furthermore, they incorporate well-founded domains, for those cases
where a finite-state abstraction does not exist.

Abstraction, Modularity and Model Checking: A procedure that explicitly
generates an abstract state-space for an assertion-based abstraction, similar to
our abstraction algorithm, is presented in [GS97]; another automatic abstraction
procedure that uses validity checking is presented in [BLO9S].

In [HLP98], a system specified in LISP code is abstracted, manually, to a
model-checkable finite-state system, uncovering significant flaws in the original
design. [DGHO95] investigates the separation of control and data in infinite-state
systems, combining model checking with the generation of verification conditions
that are established deductively. [Lon93,CGL94] show how abstraction and mod-
ularity can be combined for finite-state systems that are synchronously composed
and symbolically model checked.

Refinement: In general, refinement can be seen as the dual of abstraction, and
used as a formal system design methodology [dBdRR90,KMP94]: first, a high-
level version of the algorithm can be verified to meet the desired specifications.
Then, implementation details can be added to the system, while ensuring that
the desired properties still hold.

STeP: [BMSU97] presents the modular specification and verification of the well-
known generalized railroad crossing real-time case study. Invariants are proved,
or automatically generated, separately for each module. They are then used to
prove properties for combinations of modules which, in turn, are used to prove
the desired properties for the entire system.

Other STeP test cases are reported in [BLM97,MS98]. For more information,
including abstraction and verification examples, see the STeP web pages at:

http://www-step.stanford.edu/

Acknowledgements: We thank Nikolaj Bjgrner and Anca Browne for their
comments.
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