
Synthesizing Certificates in Networks of Timed Automata∗

Bernd Finkbeiner Hans-Jörg Peter

Saarland University

{finkbeiner | peter}@cs.uni-sb.de

Sven Schewe

University of Liverpool

sven.schewe@liverpool.ac.uk

Abstract

We present an automatic method for the synthesis of
certificates for components in embedded real-time sys-
tems. A certificate is a small homomorphic abstraction
that can transparently replace the component during
model checking: if the verification with the certificate
succeeds, then the component is guaranteed to be cor-
rect; if the verification with the certificate fails, then the
component itself must be erroneous. We give a direct
construction, based on a forward and backward reach-
ability analysis of the timed system, and an iterative
refinement process, which produces a series of succes-
sively smaller certificates. In our experiments, model
checking the certificate is several orders of magnitude
faster than model checking the original system.

1 Introduction

Model checking allows the developer of an embedded
real-time system to detect inconsistent timing require-
ments and functional errors early in the design process.
If the system contains an error, tools like UPPAAL [18]
provide evidence in the form of an error trace, which
can be used to reproduce the problem during simula-
tion. If the system is correct, however, most model
checkers only report the fact, without providing ev-
idence that would help the designer understand why
the system is correct, or help an independent verifier
reproduce the proof.

In this paper, we present an automatic abstraction
technique which provides such evidence. For a given
component in a network of timed automata, we com-
pute a quotient automaton, which we call the com-
ponent’s certificate. The certificate satisfies three key
properties. First, it is sound to replace the component

∗This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Com-
plex Systems” (SFB/TR 14 AVACS).

with its certificate during the verification of the net-
work. We guarantee both that if the verification with
the certificate succeeds, then the component itself is
correct, and that if the verification with the certificate
fails, then the component itself is erroneous. Second,
it is easy to verify the validity of the certificate: The
certificate is a simple homomorphic abstraction of the
component, which means that each location of the cer-
tificate represents a set of locations in the component.
Hence, verifying that the component is an accurate
implementation of the certificate amounts to a simple
(syntactic) simulation check. Third, the certificate is
much smaller than the component. Since certificates
only need to preserve those component properties that
are actually necessary to establish the correctness of
the full network, they can be based on a coarse equiv-
alence relation. The resulting quotients are small, as
illustrated by the following example.

Figure 1 shows a network of timed automata model-
ing a simple production plant with two controllers. The
plant processes workpieces at a rate of up to 0.5 pieces
per second. When a workpiece enters the plant, both
controllers are notified with the start signal. Then, the
machine controlled by the first controller works on the
piece (work1) and finishes within two seconds. Once
the first machine is done (finish1), the machine con-
trolled by the second controller works on the piece
(work2) and finishes (finish2) again within at most
two seconds. Afterwards, the controllers may be re-
set (reset) to be ready for the next workpiece. The
actions abort1 and abort2 model a situation where the
respective machine has not started working after one
second, in which case the controllers can abort. We are
interested in the property that the work on each work-
piece is done (if completed) in at most four seconds.

Figure 2 shows the certificate for controller #2. Lo-
cations e, f, i and locations g, h have been merged into
single locations. Clearly, this abstraction extends the
observable behavior of controller #2: for example, the
controller now accepts an arbitrary number of start sig-
nals. However, the certificate is sound for proving that

1

a

b

c

d

start ,
x := 0

work1

finish1,
x ≤ 2

abort1,
x > 1

reset

(a) Controller #1

e

f

g

h

i

start

finish1,
y := 0

work2

finish2

y ≤ 2

abort2,
y > 1

reset

(b) Controller #2

j

k l

π

reset
start ,
z := 0

finish2,
z > 4

finish2,
z ≤ 4

(c) Property automaton

Figure 1. Network of timed automata model-
ing a simple production plant with two con-
trollers. The following self loops are implicit:
work2,finish2 and abort2 on all locations of Con-
troller #1; work1,finish1 and abort1 on all loca-
tions of Controller #2; work1,work2, abort1 and
abort2 on all locations of the property automaton.

the work on each piece is done within four seconds, be-
cause the relevant requirement for controller #2, that
its work is finished within two seconds after receiving
the finish1 signal, is preserved.

Our construction of the certificate is based on two
equivalence relations over the locations of a given au-
tomaton within a network of timed automata. As ex-
plained in Section 4, two locations m1 and m2 are
forward-equivalent if the sets of states that can be
reached at m1 and at m2 are the same; dually, m1

and m2 are backward-equivalent if the sets of states
that, starting at m1 and at m2, can reach the error
are the same. In the example, locations g and h of
controller #2 are forward-equivalent because they are

e, f, i g, h

start , reset

finish1, y := 0

work2

abort2, y > 1

finish2, y ≤ 2

Figure 2. The certificate for controller #2 in
the production plant example shown in Figure 1.
There are implicit self loops for work1,finish1 and
abort1 on all locations.

both reachable in conjunction with locations d and k
and clock values x, y, z ∈ R≥0. Locations e, f, and i are
backward-equivalent: the error location π is unreach-
able from all these locations.

The forward and backward equivalences can be com-
puted directly, by computing the sets of forward and
backward reachable states in the network. In Section 6
we additionally show that it is possible to construct
the equivalence in an iterative fashion, where, start-
ing with a complete partition of the location set, suc-
cessively more and more locations are merged. This
approach has the advantage that it is possible to inter-
rupt the process as soon as the certificate has become
sufficiently small.

In Section 7, we present experimental results that
indicate that model checking the certificate is signifi-
cantly faster (in our experiments, by several orders of
magnitude) than model checking the original system.

Related Work. The term certifying model checkers
was coined by Namjoshi [20] in the setting of µ-calculus
model checking for labeled finite-state transition sys-
tems. Different from our component-based setting,
a certificate in [20] is a deductive proof of a global
property, which is checked by inductive, rather than
fixpoint-based methods.

Certificate synthesis reduces the size of a timed
automaton by merging locations. This approach
can be compared to reduction techniques that merge
states. Typically, some initial partition of the state
space is split until the coarsest stable refinement is
reached [2, 21, 11], or states are collapsed based on
some equivalence such as history equivalence or transi-
tion bisimulation [15]. An early proposal for an equiv-
alence that is parameterized with information about
the context of a process is context dependent process
equivalence [19].

State minimization techniques are useful to obtain a

2

compact finite representation of the infinite state space
of a timed automaton. As systems with dense time
have an uncountable state space, all model checking
algorithms build on abstraction (and hence on state
minimization). The most widespread approach is to
use approximate [5] or precise [18, 9] abstractions of
the finite region graph [3] of timed automata. A com-
mon problem with these abstraction methods is, how-
ever, that they are not compositional and therefore
cannot be applied to individual automata in a network
of timed automata. Other reduction techniques, which
can potentially be combined with state minimization,
include partial order reduction (based on a local-time
semantics) [7] and clock elimination [10].

Algorithms similar to certificate synthesis are stud-
ied in the setting of compositional model checking. To
prove a property P for the parallel composition M‖N
of two timed automata M and N , the compositional
model checker CMC [16, 17] first transforms the prop-
erty with respect to N into P/N , and then, after
simplification, further into P/N/M. The transformed
property P/N/M is checked against the unit automa-
ton 1. In this process, P/N can be understood as a
certificate for M, because, if M satisfies P/N , then
M‖N must satisfy P. A certificate generated in this
way is not guaranteed to be a homomorphic abstrac-
tion of M, however. In fact, the computation of P/N
is completely independent of M.

A prominent approach to the compositional model
checking of untimed systems is by learning certificates
as deterministic word automata [8, 4, 1]. Here, a pre-
liminary certificate C (initially, an automaton accepting
the full language) is evaluated against both N and P by
model checking. As long as either C rejects some com-
putation of N or M‖C accepts a computation that vio-
lates P, C is refined to eliminate the particular counter-
example. This approach has been successful for dis-
crete systems (cf. the LTSA tool [8]). Since no simi-
lar learning algorithms are known for timed languages,
however, an immediate extension to real-time systems
appears impossible.

As a preparatory step to the work presented in this
paper, we investigated quotient-based certificates in
the discrete setting of the SPIN model checker [14].
Given two Promela processes M,N and a property au-
tomaton P, our tool RESY [13, 12] performs a graph-
theoretic analysis of the product of N and P to identify
states in M that can safely be merged. For timed sys-
tems, a graph-theoretical analysis alone is, of course,
not sound, because one location may be safe and an-
other unsafe, even if both have a (discrete) path to an
error location.

Contribution. In this paper, we present a general
theory and algorithms for the synthesis of certificates
in networks of timed automata. The contributions of
the paper are the following.

• We define novel equivalence relations for timed au-
tomata, which are coarser than simulation but still
sound for compositional model checking.

• Based on the new equivalence relations, we present
an algorithm for the automatic synthesis of certifi-
cates.

• We present an incremental approach for the syn-
thesis of certificates, which can be interrupted at
any time to produce a sound intermediate certifi-
cate.

2 Preliminaries

Timed Automata. A timed automaton [3] is a
tuple A = (L, I,Σ,∆, χ, F), where L is a finite set of
locations, I ⊆ L is a set of the initial locations, Σ is
a finite set of actions, ∆ ⊆ (L × Σ × C(χ) × 2χ × L)
is a transition relation, χ is a finite set of real valued
clocks, and F ⊆ L is a set of final locations.

The clock constraints ϕ ∈ C(χ) are of the form

ϕ = x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2,

where x is a clock in χ and c is a constant in N0. A
clock valuation ~t : χ → R≥0 assigns a non-negative
value to each clock and can also be represented by a

|χ|-dimensional vector ~t ∈ Rχ
≥0

. We use R = 2R
χ

≥0 to
denote the set of all clock valuations.

The states of a timed automaton are pairs (l,~t) of
locations and clock valuations. Timed automata have
two types of transitions: timed transitions, where only
time passes and the location remains unchanged, and
discrete transitions ∆. A timed transition, denoted
by (l,~t)

a
−→ (l,~t + a · ~1), consists of adding the same

non-negative value a ∈ R≥0 to all clocks. A discrete

transition, denoted (l,~t)
a
−→ (l′,~t′) for some a ∈ Σ, is a

transition δ = 〈l, a, ϕ, λ, l′〉 of ∆ such that ~t satisfies the
clock constraint ϕ of δ, and ~t′ = ~t[λ := 0] is obtained
from ~t by setting the clocks in λ to 0.

We distinguish system automata, which only have
final locations, from property automata, where the set
of final locations forms a proper subset of the locations.
We assume that, in a property automaton, the sets of
initial and final locations are disjoint.

We say that a finite sequence a1 . . . an ∈ (Σ∪R≥0)
∗

of transitions is in the language of A (a1 . . . an ∈ L(A))

if there is a path s0

a1−→ s1 . . . sn−1

an−−→ sn such that

3

the single si = (li,~ti) are states of the automaton, s0

is an initial state (that is, l0 ∈ I is an initial location

and ~t0 = ~0 is the zero vector), and si−1

ai−→ si are tran-
sitions of A. We write s0 −→∗ sn for the existence of
a finite sequence a1 . . . an ∈ (Σ ∪ R≥0)

∗ of transitions

with s0

a1−→ s1

a2−→ . . .
an−−→ sn, and call a finite automa-

ton safe if no final state is reachable from an initial
state (∄i ∈ I, f ∈ F, ~t ∈ R. (i,~0) −→∗ (f,~t)).

Composition. Timed automata can be com-
posed to networks, in which the automata run in
parallel and synchronize on shared actions. For two
timed automata A1 = (L1, I1,Σ1,∆1, χ1) and A2 =
(L2, I2,Σ2,∆2, χ2) with disjoint clock sets χ1∩χ2 = ∅,
the parallel composition A1‖A2 is the timed automa-
ton (L1 × L2, I1 × I2,Σ1 ∪ Σ2,∆, χ1 ∪ χ2), where ∆ is
the smallest set that contains

• for a ∈ Σ1∩Σ2, 〈(l1, l2), a, ϕ1∧ϕ2, λ1∪λ2, (l
′
1, l

′
2)〉

if 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1 and 〈l2, a, ϕ2, λ2, l

′
2〉 ∈ ∆2,

• for a ∈ Σ1 \ Σ2, 〈(l1, l2), a, ϕ1, λ1, (l
′
1, l2)〉 if

〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1, and

• for a ∈ Σ2 \ Σ1, 〈(l1, l2), a, ϕ2, λ2, (l1, l
′
2)〉 if

〈l2, a, ϕ2, λ2, l
′
2〉 ∈ ∆2.

For the ease of argumentation, we assume that all
timed automata within a network have the same set Σ
of actions. Technically, we can complete a timed au-
tomaton by adding a transition 〈l, a, true, ∅, l〉 for every
additional symbol a and every location l of the timed
automaton without changing the network seman-
tics. This completion implies that (s1

1, s
2
1;~t

1
1,~t

2
1)

a1−→

(s1
2, s

2
2;~t

1
2,~t

2
2)

a2−→ . . .
an−1

−−−→ (s1
n, s2

n;~t1n,~t2n) is a path in

A1‖A2 if, and only if, (s1
1,~t

1
1)

a1−→ (s1
2,~t

1
2)

a2−→ . . .
an−1

−−−→

(s1
n,~t1n) is a path in A1 and (s2

1,~t
2
1)

a1−→ (s2
2,~t

2
2)

a2−→

. . .
an−1

−−−→ (s2
n,~t2n) is a path in A2. In particular, A1‖A2

is safe if there is no path on which a final state is reach-
able in A1 and A2 at the same time.

Finite Representation. The decidability of timed
automata relies on the possibility to symbolically rep-
resent the unbounded semantics in the finite region
graph [3], which in turn can be represented efficiently
by federations of clock zones [6].

For a timed automaton A = (L, I,Σ,∆, χ, F), we
call the value of a clock x ∈ χ maximal if it is strictly
greater than the highest constant cmax any clock is
compared to. (cmax is sometimes called the clock ceil-
ing.) We say that two clock valuations ~t1,~t2 : χ → R≥0

are in the same clock region, denoted ~t1 ∼R
~t2, if

• the set of clocks with maximal value is the same
in ~t1 and in ~t2 (∀x ∈ χ.~t1(x) > cmax ⇔ ~t2(x) >
cmax), and

• ~t1 and ~t2 agree (1) on the integer parts of the clock
values, (2) on the relative order of the non-integer
parts of the clock values, and (3) on the equality
of the non-integer parts of the clock values with 0.
That is, for all clocks x, y with non-maximal value,

it holds that (1) ⌊~t1(x)⌋ = ⌊~t2(x)⌋, (2) ~̂t1(x) ≤

~̂t1(y) ⇔ ~̂t2(x) ≤ ~̂t2(y), and (3) ~̂t1(x) = 0 if, and

only if, ~̂t2(x) = 0, where ~̂ti(x) = ~ti(x)−⌊~ti(x)⌋ for
i = 1, 2.

We denote with [~t]R = {~t′ ∈ R | ~t ∼R
~t′} the clock

region ~t belongs to. We say that two states s1 = (l1,~t1)
and s2 = (l2,~t2) of A are region-equivalent, denoted by
s1 ∼R s2, if their locations are the same (l1 = l2)
and the clock valuations are in the same clock region
(~t1 ∼R

~t2), and denote with [(l,~t)]R = {(l,~t′) ∈ L ×
R | ~t ∼R

~t′} the equivalence class of region-equivalent
states (l,~t) belongs to.

Regions are a suitable semantics for the abstraction
of timed automata, because they essentially preserve
the language: if there is a discrete transition s

a
−→ s′

from a state s to a state s′ of a timed automaton, then
there is, for all states r ∼R s region-equivalent to s, a
state r′ ∼R s′ region-equivalent to s′, such that r

a
−→ r′

is a discrete transition with the same label. For timed
transitions, a slightly weaker property holds: If there

is a timed transition s
t
−→ s′ from a state s to a state

s′, then there is, for all states r ∼R s region-equivalent
to s, a state r′ ∼R s′ region-equivalent to s′ such that

there is a timed transition r
t′

−→ r′ (but possibly with a
different t′ 6= t).

The finite semantics of a timed automaton A =
(L, I,Σ,∆, χ, F) is the finite graph sem(A) =
(S, I ′,Σ,∆′, χ, F ′) where

• the abstract states S = {[(l,~t)]R | (l,~t) ∈ L×R} of
sem(A) is the set of equivalence classes of region-
equivalent states of A, with

• the classes I ′ = (I × {~0})/∼R
of states that are

region-equivalent to initial states of A as initial
states,

• the set ∆′ = {(s, s′) ∈ S × S | ∃r ∈ s, r′ ∈ s′, a ∈

Σ ∪ R≥0. r
a
−→ r′} of transitions, and

• the classes F ′ = {[(l,~t)]R | (l,~t) ∈ F × R} of
states that are region-equivalent to final states of
A as final states.

4

We denote (s, s′) ∈ ∆′ by s → s′. The finite semantics
is safety preserving:

Lemma 2.1 [3] For a timed automaton A =
(L, I,Σ,∆, χ, F) there is a finite path from a state (l,~t)
to a state (l′,~t′) if, and only if, there is a finite path
from

[
(l,~t)

]
R

to
[
(l′,~t′)

]
R

in sem(A).

Proof: For every finite path s0

a1−→ s1 . . . sn−1

ak−→ sk

of A, [s0]R → [s1]R . . . [sn−1]R → [sk]R is a path in
sem(A) by the definition of sem(A).

Conversely, we show by induction on the length of
the path that, for every path in sem(A) from

[
(l,~t)

]
R

to[
(l′,~t′)

]
R
, A has a path from (l,~t) to a state s ∼R (l′,~t′)

region equivalent to (l′,~t′). A transition [s1] → [s2] in
the finite semantics implies that there are representa-
tives r1 ∼R s1 and r2 ∼R s2 of [s1]R and [s2]R, respec-

tively, and an a ∈ Σ ∪ R≥0, such that r1

a
−→ r2 holds

true. We distinguish two cases:
(1) If this concrete transition is discrete (a ∈ Σ)

than it refers to some transition δ = 〈l, a, ϕ, λ, l′〉. δ
can be taken from all representatives (l,~t1) ∼R s1

of [s1]R because the validity of ϕ is independent of
the representative. Taking δ from two representatives
(l,~t1), (l,~t

′
1) ∼R s1 of [s1]R leads to states (l′,~t2) and

(l′,~t′2) with the same location and ~t2 = ~t1[λ := 0] and
~t′2 = ~t′1[λ := 0]. Since ~t1 ∼R

~t′1 implies ~t1[λ := 0] ∼R

~t′1[λ := 0], (l′,~t2) ∼R (l′,~t′2) holds true.
(2) If this concrete transition is timed (a ∈ R≥0), it

suffices to show that ~t1 ∼R
~t′1 and ~t2 = ~t1 +a ·~1 implies

the existence of an a′ ∈ R≥0 such that ~t′2 = ~t′1 + a′ · ~1.
This is obviously true: If one of the non-maximal
clocks, say x, has an integer value in ~t2, we have to
choose a′ = ~t2(x) − ~t′1(x). Otherwise we pick a non-
maximal clock x with a minimal fractional part f and
set a′ = ~t2(x) − f −~t′1(x) + ε for a sufficiently small ε.
(Sufficiently small means smaller than all strictly pos-
itive fractional parts of clock values and of differences
of clock values.) �

3 The Certificate Synthesis Problem

We now give a formal definition for the problem
of synthesizing certificates in networks of timed au-
tomata. Let M be a timed automaton in a network
M‖N . We call the timed automaton N the environ-
ment of M. Typically, N is the parallel composition of
several system automata and some property automaton
that defines the safety-critical properties of the com-
plete network.

A timed automaton C is a certificate for M in M‖N
if C is a sound homomorphic abstraction of M. Sound
homomorphic abstractions are defined as follows:

• A timed automaton M′ is a homomorphic abstrac-
tion of a timed automaton M = (L, I,Σ,∆, χ, F),
if there exists an equivalence relation ≃⊆ L×L on
the locations of M such that M′ is the quotient of
M with respect to ≃. For a given equivalence rela-
tion ≃, the quotient M/≃ is defined as the timed
automaton (L′, I ′,Σ,∆′, χ, F ′) with

– L′ = {[l] | l ∈ L} where [l] = {l′ | l′ ≃
l} denotes the equivalence class of a location
l ∈ L with respect to ≃,

– I ′ = {[l] | l ∈ I}, F ′ = {[l] | l ∈ F}, and

– ∆′ = {〈[l], a, ϕ, λ, [l′]〉 | 〈l, a, ϕ, λ, l′〉 ∈ ∆}.

• A timed automaton M′ is a sound abstraction of
a timed automaton M in a network M‖N , if it
holds that M‖N is safe if and only if M′‖N is
safe.

In general, a timed automaton M may have mul-
tiple certificates; in particular, M itself is always a
certificate, where the equivalence ≃ is simply the iden-
tity relation on the locations. Computing the minimal
certificate is possible in theory (for example, by enu-
merating all certificates) but too expensive in practice:

Theorem 3.1 For a timed automaton M in a network
M‖N and a positive integer k, the problem of deciding
whether there exists a certificate for M with k locations
is NP-complete in the number of locations of M‖N .

Proof: Safety of M‖N can be checked in lin-
ear time in the number of locations; the problem is
therefore in NP. We show NP-hardness with a reduc-
tion from graph k-colorability. An undirected graph
G = (V,E) is k-colorable if there is a function f :
V → {1, 2, . . . , k} such that f(u) 6= f(v) whenever
there is an edge {u, v} ∈ E. Let V = {v1, . . . , vn}.
To decide k-colorability of G, we consider the fol-
lowing pair of timed automata M,N . The automa-
ton M = (V, V,E,∆M, ∅, V) has one location for
each vertex in V . The actions consist of the edges
in E. For each action {vi, vj} we add a transition
from location vi to location vj if i < j: ∆M =
{(vi, {vi, vj}, true, ∅, vj) | vi, vj ∈ V, i < j}. The
automaton N = (E ∪ {sI , sF }, {sI}, E,∆E , ∅, {sF })
reaches the final location sF only on paths with ex-
actly two discrete transitions that have the same ac-
tion. We add a transition from the initial location on
input e to location e, and from location e on input e
to the final location sF : ∆E = {(s0, e, true, ∅, e) | e ∈
E} ∪ {e, e, true, ∅, sF) | e ∈ E}.

On the one hand, every certificate C for M in M‖N ,
whose equivalence ≃ has k equivalence classes, defines

5

a k-coloring f of G: (vi ≃ vj) ⇔ (f(vi) = f(vj)): if
there were a pair of vertices vi, vj with {vi, vj} ∈ E
and vi ≃ vj , then C‖N would have an error path on
{vi, vj}, {vi, vj}, whereas M‖N does not have any er-
ror paths. On the other hand, if G is k-colorable, then
the quotient of M with respect to ≃ is a certificate,
because C‖N , like M‖N , has no error paths: on every
path in C‖N , each e ∈ E occurs at most once. �

In the following sections we present equivalence rela-
tions that, while inexpensive to compute, define small
certificates.

4 Forward and Backward Equivalences

In this section, we define the forward equivalence ≃F

and the backward equivalence ≃B over the locations of a
timed automaton M in a network M‖N . Intuitively,
two locations of M are forward-equivalent, if merg-
ing them does not make additional states reachable in
sem(M‖N), and backward-equivalent, if merging them
does not make final states reachable from additional
states in sem(M‖N).

Let LM and LN be the locations of M and N , re-
spectively, and let sem(M‖N) = (LM × LN ×R/∼R

,
I,Σ,∆, χ, F). For locations m1,m2 ∈ LM we define

m1 ≃F m2 ⇔ ∀n ∈ LN ,~t ∈ R.

∃i1 ∈ I s.t. i1 −→∗
[
(m1, n,~t)

]
R

⇔∃i2 ∈ I s.t. i2 −→∗
[
(m2, n,~t)

]
R
;

m1 ≃B m2 ⇔ ∀n ∈ LN ,~t ∈ R.

∃f1 ∈ F s.t.
[
(m1, n,~t)

]
R
−→∗ f1

⇔∃f2 ∈ F s.t.
[
(m2, n,~t)

]
R
−→∗ f2.

Both equivalences define certificates.

Theorem 4.1 For a timed automaton M in a network
M‖N , both M/≃F

and M/≃B
are certificates of M.

Proof: We prove that a final state is reachable
in M‖N if, and only if, a final state is reachable in
M/≃F

‖N and M/≃B
‖N , respectively. For the “if”

direction, consider an arbitrary path of M‖N to a

final state: (m0, n0,~0)
a1−→ (m1, n1,~t1)

a2−→ . . .
an−−→

(mk, nk,~tn). Then there exists the corresponding path

([m0], n0,~0)
a1−→ ([m1], n1,~t1)

a2−→ . . .
an−−→ ([mk], nk,~tn)

in M/≃F
‖N and M/≃B

‖N , respectively.
To prove the “only if” direction for forward equiv-

alence, we first observe that the reachability of
(m,n, [~t]R) in sem(M‖N) implies by the definition of
forward equivalence that, for all states m′ ∈ [m]F for-
ward equivalent to m ≃F m′, (m′, n, [~t]R) is reachable
in sem(M‖N), too.

Using this observation, we show that the exis-
tence of a path from an initial state to a final
state ([m]F , n, [~t]R) in sem(M/≃F

‖N) implies the ex-
istence of a path from an initial state to a final state
(m′, n, [~t]R) for all representatives m′ ≃F m of [m]F in
sem(M‖N) by induction over the length of the path in
sem(M/≃F

‖N).
For the induction basis, the claim holds true for

traces of length 0: If ([m]F , n, [~t]R) is forward-reachable
by a trace of length 0 in sem(M/≃F

‖N), then
([m]F , n, [~t]R) ∈ I is initial. (That is, n and a rep-
resentative i ∼ m of [m]F are initial locations of N
and M, respectively, and ~t = ~0.) Using the previ-
ous observation, this implies that s′ = (m′, n, [~t]R) is
forward-reachable for every location m′ ≃F m that is
forward-equivalent to m.

For the induction step (k 7→ k + 1), assume
that ([m0]F , n0, [~0]R) → ([m1]F , n1, [~t1]R) → . . . →
([mk]F , nk, [~tn]R) → ([mk+1]F , nk+1, [~tk+1]R) and that
(e0, [m0]F , [~0]R) is an initial state of sem(M/≃F

‖N).
By induction hypothesis, all representatives sk =
(m′, nk, [~tn]R) in sem(M‖N) of ([mk]F , nk, [~tn]R) in
sem(M/≃F

‖N), there is finite trace from some initial
state i of sem(M‖N) to sk (i −→∗ sk). By the defini-
tion of homomorphic abstractions, ([mk]F , nk, [~tn]R) →
([mk+1]F , nk+1, [~tk+1]R) implies that there are rep-
resentatives m′ ∈ [mk] and m′′ ∈ [mk+1]F such
that (m′, nk, [~tn]R) → (m′′, nk+1, [~tk+1]R) is a tran-
sition of sem(M‖N). Together, this implies that
(m′′, nk+1, [~tk+1]R) is reachable in sem(M‖N), and,
using the previous observation, we can conclude that
all representatives of ([m′′]F , nk+1, [~tk+1]R) are reach-
able in sem(M‖N).

The “only if” direction for backward equivalence
can be demonstrated analogously. �

The computation of the set of reachable states
is a standard fixed point construction. Let
(S, I,Σ,∆,X, F) = sem(M‖N) be the finite semantics
of the composition of M and N .

• Succ(S′) = {s ∈ S | ∃s′ ∈ S′. s′ → s}, and

• Pred(S′) = {s ∈ S | ∃s′ ∈ S′. s → s′},

that map a set S′ of states to the states reachable
from some state in S′ and from which some state in S′

is reachable, respectively, then the set FR of forward-
reachable states and the set BR of backward reachable
states are obtained by the following fixed point com-
putations:

FR0 = I BR0 = F
FRi+1 =Succ(FRi) BRi+1 = Pred(BRi)
FR = limi FRi BR = limi BRi.

6

a

b c

d

s, x > 3 s, x > 4

t, x < 1 t, x < 2

(a) M

e

f

π

s

t

(b) N

Figure 3. Example network M‖N . Loca-
tions b and c are neither forward nor backward -
equivalent.

In our implementation, the reachability fixed points
are computed using a table that maps each location
of M‖N to a clock federation. Testing the forward
or backward equivalence of two locations m1 and m2

of M then reduces to checking the equivalence of the
entries for (m1, n) and (m2, n) for all locations n of N .

A certificate based on both the forward and the
backward equivalence can be obtained by computing
the two equivalences in sequence, for example by first
computing a forward and then a backward quotient:
CFB = (M/≃F

)/≃B
.

5 Forward-Backward Reachability

The forward and backward equivalences introduced
in the previous section base the equivalence either on
forward reachability or on backward reachability, but
not on both directions at the same time. This results in
unnecessarily large quotients, as the following example
illustrates.

Figure 3 shows the network M‖N . Locations b and
c of the timed automaton M can safely be merged,
because the final location remains unreachable in the
network. However, b and c are not forward-equivalent,
because they are forward-reachable at different times:
location b is reached for x > 3, location c for x > 4
(both in conjunction with location f of N). Since their
backward reachability differs also (x < 1 for b and x <
2 for c), they are not backward-equivalent either.

In this section, we define a coarser equivalence that
takes both forward and backward reachability into
account. For a timed automaton A with finite se-
mantics sem(A) = (S, I,Σ,∆, χ, F), we denote the
forward-backward reachable states, that is, the states

of sem(A) that are reachable from an initial state, and
from which a final state is reachable, with fbr(A) ⊆ S
(s ∈ fbr(A) ⇔ ∃i ∈ I. i −→∗ s ∧ ∃f ∈ F. s −→∗ f).

Note that it is not sound to simply restrict the def-
initions of forward and backward equivalence to the
forward-backward reachable states in M‖N . Consider
a modification of the example from Figure 3, where the
guard on the transition from location a to location b is
changed to x > 1. The subsets of the forward-reachable
states in b and c that are also backward reachable are
both still empty. However, merging b and c is no longer
safe, because the quotient would, for example, include
the path to the final location that passes the merged
location {b, c} at time 1.5. In the following definition
we therefore pose a slightly stronger requirement, by
considering the forward-backward reachable states of
N in isolation, rather than in the combination M‖N .

With fbr(A)χ′ we denote the generalization of the
regions to additional clocks with unconstrained value,
that is, the integer part of the values for the new
clocks as well as the relative order of the fractional
part between the new and old clocks, among the new
clocks, and compared to 0 is unconstrained. (We as-
sume without loss of generality that the clock ceiling
cmax is the same for all timed automata under consid-
eration.) Let LM and χM be the locations and clocks,
respectively, of M, and let sem(M‖N) = (LM×LN ×
R/≃R

, I,Σ,∆, χ, F). For locations m1,m2 ∈ LM we
define

m1 ∼F m2 ⇔ ∀(n,~t) ∈ fbr(N)χM
.

∃i1 ∈ I s.t. i1 −→∗
[
(m1, n,~t)

]
R

⇔∃i2 ∈ I s.t. i2 −→∗
[
(m2, n,~t)

]
R
;

m1 ∼B m2 ⇔ ∀(n,~t) ∈ fbr(N)χM
.

∃f1 ∈ F s.t.
[
(m1, n,~t)

]
R
−→∗ f1

⇔∃f2 ∈ F s.t.
[
(m2, n,~t)

]
R
−→∗ f2.

We call two locations m1,m2 ∈ LM weakly forward-
equivalent if m1 ∼F m2 and weakly backward-equivalent
if m1 ∼B m2. Compared to forward and backward
equivalence as defined in the previous section, the re-
quirements have been weakened in the sense that we
ignore global states whose N part is incompatible with
N alone. Ignoring these states is safe:

Theorem 5.1 For a timed automaton M in a network
M‖N , both M/∼F

and M/∼B
are certificates of M.

Proof: The proof of Theorem 4.1 applies directly.
The only point that deserves more attention is the in-
duction step for the “only if” direction: Here we have
to argue why the restriction to the forward-backward

7

reachable fragment of N is sound. The soundness fol-
lows from the simple fact that the projection se

0 →
se
1 → . . . → se

n of a path s0 → s1 → . . . → sn of
sem(M/∼F

‖N) or sem(M/∼B
‖N), respectively, is a is

a path of sem(N). Thus, states of sem(N) that are
ignored in the construction of ∼F or ∼B cannot be
part of a state of sem(M/∼F

‖N) or sem(M/∼B
‖N),

respectively, that occurs on a path from an initial to
a final state in sem(M/∼F

‖N) or sem(M/∼B
‖N), re-

spectively. �

A simple corollary of the theorem is that every
equivalence relation ∼ that is finer than ∼F or ∼B

can be used to obtain a certificate.

Corollary 5.2 For a timed automaton M in a net-
work M‖N and an equivalence relation ∼ such that
∼F⊇∼ or ∼B⊇∼, M/∼ is a certificate of M. �

6 Iterative Construction

A direct construction of the forward and backward
reachable states is often too expensive. In this sec-
tion, we therefore propose an approximative technique
that over- and underapproximates these sets based on
an over- and underapproximation of the successor op-
erator. Constructing the approximations is cheap, but
results in certificates, because the resulting equivalence
relation is finer than the corresponding (weak) forward
or backward equivalence.

In the second subsection, we show that the approxi-
mation can be stepwise refined, converging to the pre-
cise forward and backward reachable sets. The refine-
ment steps are inexpensive, and intermediate results
can be used to build intermediate certificates.

6.1 Approximating Reachability

The approximative reachability analysis is based on
an abstraction structure, which we define to be any
partition Π of the states S of the finite semantics
sem(M‖N) = (S, I,Σ,∆,X, F) of M‖N . Intuitively,
the state sets in Π constitute blocks in the state space
that are either added completely or not at all by the
approximative Succ and Pred operators. We obtain two
versions of each operator: Succ(P) computes the union
of all state sets P ′ ∈ Π of the partition Π such that
some state in P ′ has a predecessor in P ; Succ(P) com-
putes the union of all state sets P ′ in Π such that all
states in P ′ have a predecessor in P . Pred and Pred

are defined analogously:

Succ(P) =
⋃
{P ′ ∈ Π | ∃s′ ∈ P ′ ∃s ∈ P. s → s′},

Succ(P) =
⋃
{P ′ ∈ Π | ∀s′ ∈ P ′ ∃s ∈ P. s → s′},

Pred(P ′) =
⋃
{P ∈ Π | ∃s ∈ P ∃s′ ∈ P ′. s → s′},

Pred(P ′) =
⋃
{P ∈ Π | ∀s ∈ P ∃s′ ∈ P ′. s → s′}.

Replacing the precise Succ and Pred operators in
the fixed point construction from Section 4, we obtain
four state sets: an overapproximation FR and an un-
derapproximation FR of the forward reachable states,
and, likewise, an overapproximation BR and an under-
approximation BR of the backward reachable states.

FR0 = I BR0 =F
FRi+1 = FRi ∪ Succ(FRi) BRi+1 =BRi ∪ Pred(BRi)
FR = limi FRi BR = limi BRi

FR0 = I BR0 =F

FRi+1 = FRi ∪ Succ(FRi) BRi+1 =BRi ∪ Pred(BRi)

FR = limi FRi BR = limi BRi

Our implementation again computes the four ap-
proximated reachability fixed points using a table that
maps each location of M‖N to a clock federation.We
can establish the forward/backward equivalence of two
locations m1 and m2 of M once the entries for the over-
and underapproximation coincide for the entries for
(m1, n) and (m2, n) for all locations n of N by the same
technique as in the precise method described in Sec-
tion 4. Likewise, we can exclude the forward/backward
equivalence of two locations m1 and m2 as soon as, for
some location n of N , the underapproximation of the
set of regions attached to (m1, n) is not a subset of the
overapproximation of the regions attached to (m2, n).
We can approximate weak forward and weak backward
equivalence by intersecting with fbr(N)χM

as described
in Section 5.

6.2 Abstraction Refinement

Finer abstraction structures result in coarser equiv-
alence relations and, hence, smaller quotients. We it-
eratively construct a sequence of successively coarser
equivalences by stepwise refining the partition Πi. This
results in an ascending chain

FR
0 ⊆ FR

1 ⊆ FR
2 . . .

of underapproximations and a descending chain

FR
0
⊇ FR

1
⊇ FR

2
⊇ . . .

of overapproximations. Both chains converge to FR

when Πi converges to the set of singleton sets. (In

8

Certificate synthesis UPPAAL
explored states time [ms]

Benchmark N M C factor time [ms] M‖N C‖N M‖N C‖N
FP 2 43 7 5 1.4 4 47 35 8 7
FP 3 64 49 17 2.9 21 273 153 10 13
FP 4 85 343 64 5.4 339 1471 1116 19 41
FP 5 106 2401 218 11 6702 7493 9527 73 330
CP 2 11 5 2 2.5 3 17 9 6 6
CP 3 19 25 4 6.3 9 65 33 8 7
CP 4 35 125 8 15.6 14 257 182 10 10
CP 5 67 625 16 39.1 68 1025 321 22 18
CP 6 131 3125 32 97.7 394 4097 969 77 41
CP 7 259 15625 64 244 2110 16835 2913 339 109
CP 8 515 78125 128 610 11961 65537 16982 1675 584
GPS 2 17 6 3 2 2 48 12 6 6
GPS 3 17 36 4 9 6 201 61 8 8
GPS 4 17 216 6 36 44 831 27 12 10
GPS 5 17 1296 7 185 307 3405 33 30 14
GPS 6 17 7776 8 972 3020 13863 36 121 18
GPS 7 17 46656 9 5184 22239 56181 42 613 16
GPS 8 17 279936 10 27994 381624 226911 51 3041 19

Table 1. Certificate synthesis for Fischer’s protocol (FP), the Combination Platform (CP), and the Gear Pro-
duction Stack (GPS). The table shows the size of the environment automaton (N), the size of the component
automaton (M), the size and reduction factor of the certificate (C, factor), the running time of the direct
certificate construction, and the performance of UPPAAL on M‖N and C‖N , given as the number of states
explored and the running time. All benchmarks were measured on an AMD Opteron processor with 2.6 GHz.

practice, the precise equivalence is usually found much
earlier.)

We start with some initial partition Π0 that sep-
arates the final states from all other states. In our
implementation, Π0 partitions the states according to
their locations.

In every iteration of the refinement loop, we split
Πi with a set P̂ ⊆ S of states, resulting in the new
partition

Πi+1 =
⋃{

{P1, P2} | ∃P ∈ Πi.

P1 = P ∩ P̂ ∧ P2 = P \ P̂
}
.

The set P̂ is chosen by the refinement heuristic. A
simple strategy that improves the approximation of the
forward reachable states is to choose P̂ = Succ(FR

i).
In each new iteration, some results of the previous

iteration can be reused. For example, the inclusion
FR

i ⊆ FR
i+1 suggests to use FR

i+1

0 = FR
i (instead of

FR
i+1

0 = I). Note that this guarantees that no element
of any partition is added twice to the underapproxima-

tion. Likewise, the inclusion FR
i ⊆ FR ⊆ FR

i
suggests

to use FR
i

0 = FR
i. An iterative computation of the

backward-reachable states can be defined analogously.

After every iteration, the approximation defines an
equivalence ≈, which can be used to compute an in-
termediate certificate C′. While ≈ is finer than the
precise forward or backward equivalences, it often re-
duces M significantly already after a few refinement
steps. In that case, we can replace M with C′, and,
if desired, switch between computing the forward and
backward equivalence. A reuse of intermediate results
is still possible after replacing M with C′: we again
start with FR

i+1

0 = FR
i/≈ and BR

i+1

0 = BR
i/≈.

7 Benchmarks and Results

Table 1 shows experimental results with our pro-
totype implementation on Fischer’s mutual exclusion
protocol (FP 2–5) and two case studies provided by
our industrial partners BPS IT-Solutions and META-
LEVEL Software AG (CP 2–8 and GPS 2–8). For each
benchmark, the table shows the size of the environment
automaton and the component automaton, the size and
reduction factor of the certificate, the running time of
the certificate synthesis, and the performance of the
UPPAAL [18] model checker on M‖N and C‖N .

9

Iteration 1 Iteration 10 Iteration 15
Benchmark M C time [ms] C time [ms] C time [ms]
FP 2 7 7 5 — — — —
FP 3 49 49 6 46 43 — —
FP 4 343 343 47 343 1087 129 2743
FP 5 2401 2377 581 2377 33174 1914 102829
CP 2 5 5 3 — — — —
CP 3 25 18 4 6 6 — —
CP 4 125 66 9 26 48 10 72
CP 5 625 258 27 157 253 22 675
CP 6 3125 1026 143 810 2171 149 9659
CP 7 15625 4098 879 3685 20450 1256 259731
CP 8 78125 16386 5217 15658 409907 8258 8144794
GPS 2 6 6 4 5 9 4 12
GPS 3 36 31 10 31 18 31 38
GPS 4 216 139 15 139 19 139 44
GPS 5 1296 607 52 607 153 607 320
GPS 6 7776 2587 310 2587 641 2587 1541
GPS 7 46656 10831 2043 10831 3376 10831 7179
GPS 8 279936 44779 14171 44779 20175 44779 35973

Table 2. Incremental construction of the certificate for Fischer’s protocol (FP), the Combination Platform
(CP), and the Gear Production Stack (GPS). The table shows the size of the component automaton (M), and
the size of the certificate (C), and the running time of the synthesis algorithm after 1, 10, and 15 iterations.
All benchmarks were measured on an AMD Opteron processor with 2.6 GHz.

Fischer’s protocol (FP). Fischer’s mutual exclusion
protocol is a standard benchmark for the verifi-
cation of real-time systems, parameterized in the
number of participants.

Combination Platform (CP). The combination plat-
form benchmark, provided by META-LEVEL
Software AG, models a platform used in car man-
ufacturing that combines several testing machines
with units for cleaning and polishing. The dif-
ferent units work in parallel and synchronize af-
ter completing their tasks. The critical property
of the combination platform is that the work is
completed by a certain deadline. The benchmark
is parameterized in the number of sub-controllers
included in the model.

Gear Production Stack (GPS). The gear production
stack benchmark, provided by BPS IT-Solutions,
models a production machine for gear wheels,
which consists of units for casting, hardening, and
polishing. The units work sequentially on a sin-
gle workpiece. Like in the CP benchmark, the
property requires that the work is completed by a
certain deadline. The benchmark is again param-
eterized in the number of sub-controllers included
in the model.

Comparing the growth of the component M with
the growth of the certificate C in our parameterized
benchmarks, it is evident that the certificate grows
much slower. The difference is most clear-cut in the
GPS benchmarks, where the size of M grows exponen-
tially, while the size of C only grows linearly.

The running times for the certificate synthesis shown
in Table 1 refer to the direct construction of the cer-
tificate. Our implementation approximates the weak
equivalence relations defined in Section 5 based on a
cheap approximation of the set fbr(N) that partitions
the states according to their locations.

Table 2 shows experimental results for the incremen-
tal certificate synthesis from Section 6. Our implemen-
tation starts with an initial abstraction that partitions
the states according to their location. As a result, the
first intermediate certificate already shows a significant
reduction in the number of locations.

If the incremental algorithm is run until termina-
tion, the accumulated running time is, in our experi-
ments, higher than the running time of the direct con-
struction. One reason for this effect may be our simple
refinement heuristic (P̂ = Succ(FR

i)). Good heuristics
for choosing the refinement sets, as well as the initial
abstraction and the termination point of the iteration,
are interesting topics for future research.

10

8 Conclusions

We have presented a solution to the problem of syn-
thesizing a certificate for a timed automaton M in a
network M‖N . In contrast to the NP hardness of find-
ing the minimal certificate, the cost of our construction
is just linear in the number of locations; nevertheless,
the dramatic decrease in size from the component M
to the certificate C in our experimental results suggests
that the certificates found by our construction are close
to minimal.

Since our approach is based on a reachability con-
struction, the worst-case complexity in terms of the
number of clocks is exponential. To address this issue
we have proposed an iterative approximation method
that can be interrupted at any time to produce a sound
certificate.

We believe that the certificates constructed by cer-
tifying model checkers will be useful to designers in
understanding which component requirements are hard
in the sense that they are necessary to guarantee the
safety of the system, and which requirements are soft,
that is, relevant for the quality provided by the sys-
tem but not for its safety. Such a classification is an
important piece of documentation and useful in future
adaptations of the verified design.

References

[1] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Syn-
thesis of interface specifications for Java classes. In
Proceedings of the 32nd Annual Symposium on Princi-
ples of Programming Languages (POPL 2005), 12–14
January, Long Beach, California, USA, pages 98–109.
ACM Press, 2005.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill,
and H. Wong-Toi. Minimization of timed transition
systems. In Proceedings of the Third International
Conference on Concurrency Theory (CONCUR 1992),
24–27 August, Stony Brook, NY, USA, volume 630 of
Lecture Notes in Computer Science, pages 340–354.
Springer-Verlag, 1992.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] R. Alur, P. Madhusudan, and W. Nam. Symbolic
compositional verification by learning assumptions.
In Proceedings of the 17th International Conference
on Computer Aided Verification (CAV 2005), 6–10
July, Edinburgh, Scotland, UK, volume 3576 of Lecture
Notes in Computer Science, pages 548–562. Springer-
Verlag, 2005.

[5] F. Balarin. Approximate reachability analysis of timed
automata. In Proceedings of the 17th IEEE Real-
Time Systems Symposium (RTSS 1996), 4–6 Decem-
ber, Washington, DC, USA, pages 52–61. IEEE Com-
puter Society, 1996.

[6] J. Bengtsson. Clocks, DBM, and States in Timed Sys-
tems. PhD thesis, Uppsala University, 2002.

[7] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial
order reductions for timed systems. In Proceedings of
the 9th International Conference on Concurrency The-
ory (CONCUR 1998), 8–11 September, Nice, France,
volume 1466 of Lecture Notes in Computer Science,
pages 485–500. Springer-Verlag, 1998.

[8] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Păsăreanu. Learning assumptions for compositional
verification. In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2003), 7–11
April, Warsaw, Poland, volume 2619 of Lecture Notes
in Computer Science, pages 331–346. Springer-Verlag,
2003.

[9] C. Daws and S. Tripakis. Model checking of real-time
reachability properties using abstractions. In Proceed-
ings of the 4th Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS
1998), 28 March–4 April, Lisbon, Portugal, volume
1384 of Lecture Notes in Computer Science, pages 313–
329. Springer-Verlag, 1998.

[10] C. Daws and S. Yovine. Reducing the number of clock
variables of timed automata. In Proceedings of the 17th
IEEE Real-Time Systems Symposium (RTSS 1996),
4–6 December, Washington, DC, USA, pages 73–81.
IEEE Computer Society, 1996.

[11] H. Dierks, S. Kupferschmid, and K. G. Larsen. Au-
tomatic abstraction refinement for timed automata.
In Proceedings of the 5th International Conference
on Formal Modeling and Analysis of Timed Systems
(FORMATS 2007), 3–5 October, Salzburg, Austria,
volume 4763 of Lecture Notes in Computer Science,
pages 114–129. Springer-Verlag, 2007.

[12] B. Finkbeiner, H.-J. Peter, and S. Schewe. RESY:
Requirement synthesis for compositional model check-
ing. In Proceedings of the 14th International Confer-
ence on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2008), 31 March–
3 April, Budapest, Hungary, volume 4963 of Lecture
Notes in Computer Science, pages 463–466. Springer-
Verlag, 2008.

[13] B. Finkbeiner, S. Schewe, and M. Brill. Automatic
synthesis of assumptions for compositional model
checking. In Proceedings of the 26th International
Conference on Formal Methods for Networked and
Distributed Systems (FORTE 2006), 26–29 Septem-
ber, Paris, France, volume 4229 of Lecture Notes in
Computer Science, pages 143–158. Springer Verlag,
2006.

[14] G. Holzmann. The Spin Model Checker, Primer and
Reference Manual. Addison-Wesley, Reading, Mas-
sachusetts, 2003.

[15] I. Kang, I. Lee, and Y.-S. Kim. An efficient state space
generation for the analysis of real-time systems. IEEE
Transactions on Software Engineering, 26(5):453–477,
2000.

11

[16] F. Laroussinie and K. G. Larsen. Compositional model
checking of real time systems. In Proceedings of the
6th International Conference on Concurrency Theory
(CONCUR 1992), 21–24 August, Philadelphia, PA,
USA, volume 962 of Lecture Notes in Computer Sci-
ence, pages 27–41. Springer-Verlag, 1995.

[17] F. Laroussinie and K. G. Larsen. CMC: A tool for
compositional model-checking of real-time systems. In
Proceedings of the 11th International Conference on
Formal Description Techniques for Distributed Sys-
tems and Communication Protocols (FORTE 1998),
3–6 November, 1998, Paris, France, volume 135 of
IFIP Conference Proceedings, pages 439–456. Kluwer,
1998.

[18] K. Larsen, P. Petterson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for
Technology Transfer, 1(1+2):134–152, Dec. 1997.

[19] K. G. Larsen. A context dependent equivalence be-
tween processes. Theoretical Computer Science, 49(2-
3):185–215, 1987.

[20] K. S. Namjoshi. Certifying model checkers. In Proceed-
ings of the 13th International Conference on Computer
Aided Verification (CAV 2001), 18–22 July, Paris,
France, volume 2102 of Lecture Notes in Computer
Science, pages 2–13. Springer-Verlag, 2001.

[21] M. Yannakakis and D. Lee. An efficient algorithm
for minimizing real-time transition systems. Formal
Methods in System Design, 11(2):113–136, 1997.

12

