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Abstract. Dependency quantified Boolean formulas (DQBF) is a logic
admitting existential quantification over Boolean functions, which al-
lows us to elegantly state synthesis problems in verification such as the
search for invariants, programs, or winning regions of games. In this pa-
per, we lift the clausal abstraction algorithm for quantified Boolean for-
mulas (QBF) to DQBF. Clausal abstraction for QBF is an abstraction
refinement algorithm that operates on a sequence of abstractions that
represent the different quantifier levels. For DQBF we need to general-
ize this principle to partial orders of abstractions. The two challenges to
overcome are: (1) Clauses may contain literals with incomparable depen-
dencies, which we address by the recently proposed proof rule called Fork
Extension, and (2) existential variables may have spurious dependencies,
which we prevent by tracking consistency requirements during the exe-
cution. Our implementation DCAQE solves significantly more formulas
than the existing DQBF algorithms.

1 Introduction

The search for functions given declarative specifications is often called the syn-
thesis problem and it is considered to be an extremely hard algorithmic problem.
The synthesis of invariants, programs, or winning regions of (finite) games can
all be expressed as the existence of a function f: B™ — B™ such that for all
tuples of inputs z1,...,2r € B™ some relation p(z1, f(x1),..., 2, f(2r)) over
function applications of f is satisfied. While it is possible to specify these prob-
lems in SMT or in first-order logic, existing algorithms struggle to solve even
simple instances of synthesis queries.

In order to develop a new algorithmic approach for synthesis problems, we
focus on the simplest logic admitting the existential quantification over Boolean
functions, dependency quantified Boolean formulas (DQBF). However, existing
algorithms for DQBF perform poorly, in particular on synthesis problems [4].
This is not surprising: Typical synthesis queries contain two or more function
applications, i.e. are of the form 3f.Vx1,xs. p(z1, f(x1), 22, f(22)), and involve
bit-vector variables, e.g. x1,z2 € B™. The so far best performing algorithm for
DQBEF needs to expand either 1 or x5 in order to reach a linear quantifier prefix,
which can then be converted to a QBF [12]. This means that they often reduce
to QBF formulas that are exponential in n.

* Work partially done while at University of California, Berkeley.
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Abstraction refinement algorithms have been very successful for QBF, win-
ning the recent editions of the annual QBF competition [16},(17.[21}23]. Inspired
by this success story, we lift the abstraction refinement algorithm called clausal
abstraction 23] to DQBF. The idea of clausal abstraction for QBF is to split the
given quantified problem into a sequence of propositional problems, one for each
quantifier in the quantifier prefix, and instantiate a SAT solver for each of them.
The SAT solvers solve the quantified problem by communicating assignments
(representing examples and counter-examples) to their neighbors.

Lifting clausal abstraction to DQBF comes with two major challenges: First,
clausal abstraction is based on Q-resolution [25] and Q-resolution is sound but
incomplete for DQBF [1]. In particular, clauses may contain variables from in-
comparable quantifiers, so called information forks [22] which characterizes the
reason for incompleteness. We address this problem using the Fork Eztension [22]
proof rule, which allows us to split clauses with information fork into a set of
clauses without information fork by introducing new variables. Second, clausal
abstraction relies on the linear quantifier order of QBF's in prenex normal form.
For DQBF, however, quantifiers can form an arbitrary partial order. When build-
ing a linear order by over-approximating the dependencies of existential variables
and applying clausal abstraction naively, those variables may have spurious de-
pendencies, i.e. they may only be able to satisfy all the constraints, if they de-
pend on variables that are not allowed by the Henkin quantifiers. We show how
to record consistency requirements, i.e., partial Skolem functions, that guarantee
that existential variables solely depend on their stated dependencies.

In this paper, we present the first abstraction based solving approach for
DQBF. The algorithm successfully applies recent insight in solving quantified
Boolean formulas: It is based on the versatile and award-winning clausal ab-
straction framework [13],[17,[23H25] and leverages progress in DQBF proof sys-
tems [22]. Their integration in this work is non-trivial. To handle the non-linear
dependencies, we use an over-approximation of the dependencies together with
consistency requirements. Further, we turn clausal abstraction into an incre-
mental algorithm that can accept new clauses and variables during solving. Our
experiments show that our approach consistently outperforms first-order reason-
ing [9] on the DQBF benchmarks and it is especially well-suited for the synthesis
benchmark set [4] where expansion-based solvers fall short.

2 Preliminaries

Let V be a finite set of propositional variables. We use the convention to de-
note universally quantified variables (short also universals) by x and existen-
tially quantified variables (or ezistentials) by y. The set of all universals is
denoted X, and the set of all existentials is denoted ). For sets of universals
and existentials we use X and Y, respectively. We consider DQBF of the form
Vay....Va,. Jy1(H1). ... Iym(Hn). @, that is, DQBF begin with universal quan-
tifiers followed by Henkin quantifiers and the quantifier-free part ¢. A Henkin
quantifier Jy(H) introduces a new variable y, like a normal quantifier, but also
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specifies a set H C X of dependencies. A literal [ is either a variable v € V or its
negation . We call the disjunction C' = (I3 Viy - - - V1,) over literals a clause, and
assume w.l.o.g. that the propositional part of DQBFSs are given as a conjunction
of clauses, i.e., in conjunctive normal form (CNF'). We call the propositional part
¢ of a DQBF in CNF the matriz and we use C; to refer to the ith clause of ¢
where unambiguous. For convenience, we treat clauses also as a set of literals and
we treat matrices as a set of clauses and use the usual set operations for their
manipulation. We denote by var(l) the variable v corresponding to literal I. For
literals [ of existential variables with dependency set H we define dep(l) = H.
For literals of universal variables we define dep(l) = {var(l)}. We lift the oper-
ator dep to clauses by defining dep(C) = [J,c dep(l). We define C|y for some
clause C' and set of variables V' as the clause {l € C' | var(l) € V'}.

Given a set of variables V' C V, an assignment of V is a function a: V — B
that maps each variable v € V to either true (T) or false (L). A partial as-
signment is a partial function from V to B, i.e. it may be undefined on some
inputs. To improve readability, we represent (partial) assignments also as a con-
junction of literals (i.e., a cube), e.g., we write 1T3 to denote the assignment
{z1 — T,z — L}. We use o U a’ as the update of partial assignment « with

/ s /!
o/, formally defined as (aU ) (v) = o'(v) ifve d.om(a )
a(v) otherwise .

We write a C o if a(v) = o/ (v) for every v € dom(«). To restrict the domain
of an assignment « to a set of variables V', we write a|y,. We denote the set of
assignments of a set of variables V by A(V'). A Skolem function f,: A(dep(y)) —
B maps an assignment of the dependencies of y to an assignment of y. The truth
of a DQBF & with matrix ¢ is equivalent to the existence of a Skolem function
fy for every variable y of the existentially quantified variables ), such that
substituting all existentials y in ¢ by their Skolem function f, results in a valid
formula. We use ®[a] to denote the replacement of variables bound by « in ¢
with the corresponding value.

Relation to QBF in prenex form. In QBF the dependencies of a variable are
implicitly determined by the universal variables that occur before the quantifier
in the quantifier prefix. This gives rise to the notion that QBF have a linear
quantifier prefix, whereas DQBF allows for partially ordered quantifiers.

3 Lifting Clausal Abstraction

In this section, we lift clausal abstraction to DQBF. We begin with a high level
explanation of the algorithm for QBF and a discussion of the invariants that
hold for QBF but are no longer valid for DQBF. For each of those we identify
the underlying problem and show how we need to modify clausal abstraction.
In the following subsections we then explain those extensions in detail. For the
remainder of this section, we assume w.l.o.g. that we are given a DQBF & with
matrix ¢, that ¢ does not contain clauses with information forks, and that every
clause is universally reduced. If a formula contains information forks initially,
they can be removed as described in Section [3.4]
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The clausal abstraction algorithm assigns existential and universal variables,
where the order of assignments is determined by the quantifier prefix, until all
clauses in the matrix are satisfied or there is a conflict, i.e., a set of clauses that
cannot be satisfied simultaneously. Those variable assignments are generated
by propositional formulas, one for every quantifier, which we call abstractions.
In case of a conflict, the reason for this conflict is excluded by refining the
abstraction at an outer quantifier.

The assignment order is based on the quantifier prefix. Thus, for QBF it holds
that an existential variable is only assigned if its dependencies are assigned. In
DQBF, Henkin quantifiers allow us to introduce incomparable dependency sets,
and hence, in general, there is no linear order of assignments. We thus weaken
this invariant by requiring that for every existential variable y, all of its depen-
dencies have to be assigned before assigning y. We ensure this by creating a
graph-based data structure, the dependency lattice, described in Section As
an immediate consequence, and in contrast to QBF, an existential variable may
be assigned different values depending on assignments to non-dependencies, and
we call this phenomenon a spurious dependency. To eliminate those spurious de-
pendencies, we enhance the certification approach of clausal abstraction [23] to
build, incrementally, a constraint system that enforces that an existential vari-
able only depends on its dependencies. These consistency requirements represent
partial Skolem functions. Section 3.5 describes how the consistency requirements
are derived, how they are integrated in the algorithm, and when they are inval-
idated.

We build an abstraction for every existential quantifier Y, splitting every
clause C of the matrix into three parts, based on whether a literal I € C'is (1) a
dependency, (2) a literal of a variable in Y, or (3) neither of the two. Section
gives a formal description of the abstraction. As mentioned, all dependencies of
Y must be assigned before we query the abstraction of the quantifier 3Y for a
candidate assignment of variables Y. From the perspective of this abstraction,
assignments to non-Y variables are equivalent when they satisfy the same set of
clauses. Vice versa, the only information that matters for other abstractions is
the set of clauses satisfied by variables Y or their dependencies. The abstraction
for Y therefore defines a set of interface variables consisting of satisfaction vari-
ables and assumption variables, one for every clause C, where the satisfaction
variable indicates whether the clause is satisfied by a dependency of Y and the
assumption variable indicates whether C' must still be satisfied by variables out-
side of Y. Conflicts are represented by a set of assumption variables that turned
out to be not satisfiable only by variables outside of Y. Refinements are clauses
over those assumption variables, requiring that at least one of those contained
clauses is satisfied by an assignment to Y.

Those refinements correspond to conflict clauses in search-based algorithms
and can be formalized as derived clauses in the @Q-resolution calculus [25]. Since
Q@-resolution is incomplete for DQBF and the incompleteness can be character-
ized by clauses with information fork, we check if a conflict clause derived by
the algorithm contains such a fork. If this is the case, we split this clause into
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a set of clauses that are fork-free. As a byproduct, new existential variables are
created. We show in Section how clauses with information fork are split and
how the clausal abstraction algorithm is extended to incrementally accept new
clauses and variables.

Ezample 1. We will use the following formula with the dependency sets {1},
{2}, and {x1, 22} as a running example.

Vxl,xg.Elyl(xl).Elyg(xg).ﬂyg(xl,xg).
(z1 VT2V Vys) (T1 Vy2 Vys) (B0 Ve VI3) (11 VT3) (21 V)
—— ——
Cy Co Cs Cy Cs

3.1 Dependency Lattice and Quantifier Levels

To lift clausal abstraction to DQBF, we need to deal with partially ordered
dependency sets. Given a DQBF @, the algorithm starts with closing the de-
pendency sets under intersection, which can also be described as building the
meet-semilattice (H, C). That is, H contains all dependency sets of variables in
@ and we add H N H' to H for every H, H € H until a fixed point is reached.
We call this meet-semilattice the dependency lattice. For our running example,
we have to add the empty dependency set, resulting in the dependency lattice
depicted on the left of Fig. [I| In addition to the dependency sets H and the edge
relation C, we depict the existential variables next to their dependency sets.

Quantifier Levels and Nodes. We continue with building the data structure
on which the algorithm operates. A node binds a variable of the DQBF. A uni-
versal node (V, X) binds universal variables X and an existential node (3,Y, H)
binds existential variables Y with dependency set H. Nodes are grouped together
in quantifier levels, where each universal level contains exactly one universal node
and existential levels may contain multiple existential nodes. We index levels by
natural numbers ¢, starting with 0. On the right of Fig. [I] is an example for the
data structure obtained from the dependency lattice on its left. Before describ-
ing the construction of quantifier levels, we state their invariants. For some node
N, let boundy(N) be the set of variables bound at N, i.e., the union of all X
where (V, X) is in a level with smaller index than node N. Let boundz(N) be the
analogously defined set of bound existential variables. The set of bound variables
is bound(N) = bounds(N) U boundy(N).



6 L. Tentrup, M.N. Rabe

Proposition 1. The quantifier levels data structure has the following properties.

1. Every variable is bound excactly once, i.e., for every variable v in @, there
is exactly one node (¥, X) or (3,Y, H) such thatve X orveY.

2. Every pair of nodes (3,Y,H) and (3,Y', H') with Y # Y’ contained in an
existential level have incomparable dependencies, i.e., HZ H' and H 2 H'.

3. For every pair of nodes (3,Y;, H;) and (3,Y;, H;) contained in existential
levels © and j with i < j, it holds that either H; C H; or H; and H; are
incomparable.

4. For every existential node (3,Y, H) it holds that H C boundy({3,Y, H)).

5. There is a unique mazimal (3,Y, H) with H D H' for every other (3,Y’, H').

In the following, we describe the construction of quantifier levels from a de-
pendency lattice. Every element of the dependency lattice H € H makes one
existential node, (3,Y, H), where Y is the set of existential variables with de-
pendency set H, i.e. dep(y) = H for all y € Y. Some existential nodes (like the
root node in our example) may thus be initially empty. The existential levels are
obtained by an antichain decomposition of the dependency lattice (satisfying
Proposition and . If the dependency lattice does not contain a unique
maximal element, we add an empty existential node (3, X, () (Proposition [I][5).

Universal variables are placed in the universal node just before the existential
level they first appear in as a dependency. This is achieved by a top-down pass
through the existential quantifier levels, adding a universal level with node N =
(V, X) before existential level with nodes (3,Y7, Hy),..., {3, Yy, Hx) such that
X = (U1<i<k Hz) \ boundy(N) (Proposition . Empty universal levels (V, 0)
are omitted. Level numbers follow the inverse order of the dependency sets,
such that the “outer” quantifiers have smaller level numbers than the “inner”
quantifiers; see Fig. [T}

If the formula is a QBF, it holds that boundy((3,Y, H)) = H. For QBF, this
construction yields a strict alternation between universal and existential levels,
but for DQBF existential levels can succeed each other, as shown in Fig.

Algorithmic Overview. The overall approach of the algorithm is to construct
a propositional formula 6 for every node, that represents which clauses it can
satisfy (for existential nodes) or falsify (for universal nodes). We describe their
initialization in detail below. In every iteration of the loop in algorithm SOLVE
(Fig. [2) the variable assignment ay is extended (case CandidateFound), which
we assume to be globally accessible, or node abstractions are refined by adding
an additional clauses (case Conflict).

The nodes are responsible for determining candidate assignments to the vari-
ables bound at that node, or to give a reason why there is no such assignment.
If a node is able to provide a candidate assignment, we proceed to the successor
level (Fig. [2| line . A conflict occurs when the algorithm determines that the
current assignment oy definitely violates the formula (unsat conflict) or satisfies
it (sat conflict). When conflicts are inspected (explained in Section [3.3), they
indicate a level that tells the main loop how far we have to jump back (Fig.
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procedure SOLVE(DQBF @)
levels <— build quantifier levels
initialize every node in levels, i.e., build abstraction 6, set entries < ||
ay —{}, wl+0
loop
match SOLVELEVEL(lvl)
CandidateFound = vl < lwl + 1
Conflict(ympBackToLvl) = vl < jmpBackToLvl

Result(res) = return res

Fig. 2. Main solving algorithm that iterates over the quantifier levels.

line . The last alternative in the main loop is that we have found a result,
which allows us to terminate (line E[)

3.2 Initialization of the abstractions 6

The formula 6 for each node represents how the node’s variables interact with
the assignments on other levels. The algorithm guarantees that whenever we
generate a candidate assignment for a node, all variables on outer (=smaller)
levels have a fixed assignment, and thus some set of clauses is satisfied already.
Existential nodes then try to satisfy more clauses with their assignment, while
universal nodes try to find an assignment that makes it harder to satisfy all
clauses. An existential variable y may not only depend on assignments of its
dependencies, but also on assignments of existential variables with strict smaller
dependency as they are in a strictly smaller level (see Section and thus are
assigned before y. We call this the extended dependency set, written ezdep(y),
and it is defined as dep(y) U{y’ € V| dep(y’) C dep(y)}. For aset Y C Y, we
define ezdep(Y) = U,y exdep(y).

The interaction of abstractions is established by a common set of clause sat-
isfaction variables S, one variable s; € S for every clause C; € ¢. Given some
existential node (3,Y, H) with extended dependency set D = exdep(Y) and as-
signment oy of outer variables V' (w.r.t. 3Y, ie., V = bound((3,Y, H))). For
every clause C; € ¢ it holds that if s; is assigned to true, one of its dependencies
has satisfied the clause, that is, ay E C;|p. Thus, an assignment of the satis-
faction variables aig is an abstraction of the concrete variable assignment oy as
multiple assignments could led to the same satisfied clauses.

For universal quantifiers, this abstraction is sufficient as the universal player
tries to satisfy as few clauses as possible. For existential quantifiers, however, the
existential player can choose to either satisfy the clause directly or assume that
the clause will be satisfied by an inner quantifier. Thus, we add an additional
type of variables A, called assumption variables, with the intended semantics
that a; is set to false at some existential quantifier 3Y" implies that the clause C;
is satisfied at this quantifier (either by an assignment ay to variables Y of the
current node or an assignment of dependencies represented by an assignment ag
to the satisfaction variables S), formally, ay Ul ay B C;|pyy if a; is false.
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procedure SOLVELEVEL({vl)

if lvl is universal then return SOLVEy (levels|lvl]) Fig.3. Algorithm for

solving a quantifier level
by iterating over the
contained nodes.

1:
2
3 for each node n in levels[livl] do

4: if SoLVEg(n) = Conflict(jmpBackToLvl) then
5: return Conflict(jmpBackToLul)

6 return CandidateFound

We continue by defining the abstraction that implements this intuition. For-
mally, for every node (3,Y, H) and every clause C;, we define C~ = {l € C; |
var(l) € exdep(Y)} as the set of literals on which the current node may depend,
C: ={l € C; | var(l) € Y} as the the set of literals which the current node
binds, and C; == {l € C; | var(l) & exdep(Y)UY } as the set of literals on which
the current node may not depend. By definition, it holds that C' = CFUCSUCT .
The clausal abstraction 6y for this node is defined as A¢, ¢, (ai V s; V C77). Note,
that s; and a; are omitted if C;~ = () and C; = 0, respectively.

Over time, the algorithm calls each node potentially many times for candidate
assignments, and it adds new clauses learnt from refinements. The new clauses
for existential nodes will only contain literals from assumption variables L C A,
representing sets of clauses that together cannot be satisfied by the inner levels.
The refinement \/ a;er Qi ensures that some clause C; with a; € L is satisfied at
this node.

Universal nodes (V, X) have the objective to falsify clause. We define the
abstraction fx for this node as A, ¢, (8: V=C7) = A¢,c, (sz v /\leci: Z). Ob-
serve that universal nodes do not have separate sets of variables A and S, but
just one copy S. This is just a minor simplification, exploiting the formula struc-
ture of universal nodes. Note that s; set to false implies that ax falsifies the
literals in the clause, that is, ax F —~C;~. Refinements are represented as clauses
V., er S over literals in S.

In our running example, clauses 3-5 (71 Va2 V73)(y1 V73) (21 Vy1) are repre-
sented at node (3, {y1},{z1}) by clauses (a3 V71)(as V y1)(y1). Note especially,
that o ¢ exdep(y1) = {x1}, thus there is no s variable in the first encoded
clause, despite x5 being assigned earlier in the algorithm (Fig. [1f).

3.3 Solving Levels and Nodes

SOLVELEVEL in Fig. 3] directly calls SOLVEy or SOLVE3 on all the nodes in the
level. For existential levels, if any node returns a conflict, the level returns that
conflict (Fig. [3] line [f).

We assume a SAT solver interface SAT (1), «) for matrices ¢ and assumptions
(represented by an assignment) «. It returns either Sat(a’), which means the
formula is satisfiable with assignment o’ J «, or Unsat(«’), which means the
formula is unsatisfiable and o’ C « are the failed assumptions (i.e. the unsat
core), that is, SAT(¢, @) is unsatisfiable as well.

‘We process universal and existential nodes with the two procedures shown in
Fig. |4l The SAT solvers generate a candidate assignment to the variables (lines
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1: procedure SOLVE3(node = (3,Y, H)) 11: procedure SOLVEy(node = (V, X))
2 ay < CHECKCONSISTENCY (ary/ ) 12: ag + prjy(X, ay)

3 ag + prjig(Y,ay) 13:  match saT(0x, as)

4:  match SAT(0y,ay Uag) 14: Unsat(a) =

5: Unsat(a) = 15: return REFINE(sat, ag, node)
6: return REFINE(unsat, &|g, node) 16: Sat(a) = update ay with alx
7 Sat(a)) = update oy with aly 17: return CandidateFound

8 if node is maximal element then

9 return REFINE(sat, ag, node)

10: return CandidateFound

Fig. 4. Process existential and universal nodes.

and [13)) of that node, which is then used to extend the (global) assignment vy
(line and . In case the SAT solver returns Unsat, the unsat core represents
a set of clauses that cannot be satisfied (for existential nodes) or falsified (for
universal nodes). The unsat core is then used to refine an outer node (lines |§|
and and we proceed with the level returned by REFINE.

Solving Existential Nodes. There are some differences in the handling of
existential and universal nodes that we look into now. The linear ordering of the
levels in our data structure means that there may be a variable assigned that an
existential node must not depend on. We therefore need to project the assign-
ment ay to those variables in the node’s dependency set. We define a function
prjz: 2¥ x A(V) — A(S) that maps variable assignments ay to assignments of
satisfaction variables S such that s; is set to true if, and only if, some literal
| € C is assigned positively by ay . Thus, the projection function only considers
actual dependencies of (3,Y, H):

prjs(Y,av)(si) = {

For our running example, at node (3, {ya2}, {z2}), the projection for the first
clause C; = (21 VT2 VY Vys) is prig({y2}, Tixa)(s1) = pris({y2}, x122)(51) = L
and prjs({y2},7T1%2)(s1) = prjs({y2}, z1%2)(s1) = T because C; = (T3).

If the SAT solver returns a candidate assignment at the maximal existential
node (i.e., the node on innermost level), we know that all clauses have been
satisfied, and we have therefore refuted the candidate assignment of some uni-
versal node. This is handled by calling REFINE in line [0] For existential nodes

we additionally have to check for consistency, which we discuss in Section
(called in line [2)).

Solving Universal Nodes. Similar to the projection for existential nodes, we
need an (almost symmetric) projection for universal nodes (line . It has to
differ slightly from prj5, because we use just one set of variables S for universal
nodes. A universal quantifier cannot falsify the clause if it is already satisfied.

prjy(X, av)(si) = {

T if ay = C<
1 otherwise

T if oy F Cilpound (v, x)
undef otherwise
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: procedure REFINE(res, ag, node)
if res = unsat then

1

2

3 Cconﬂzct = Uoiegpyas(si):L Cilbaund(nade) > Cconﬁict is universally reduced
4 if Ceonfict contains information fork then

5 fork elimination = add clauses and variables, update abstractions

6: RESETCONSISTENCY for all nodes

7 return Conflict(lvl = 0)

8 if next < DETERMINEREFINEMENTNODE(Tes, ag, node.level) then

9 return Conflict(next.level)

10 else > conflict at outermost 3/V node
11 return Result(res)

Fig. 5. Refinement algorithm that applies Fork Extension in case of information forks.

3.4 Refinement

Algorithm REFINE in Fig. [o|is called whenever there is a conflict, i.e. whenever it
is clear that «y satisfies the formula (sat conflict) or violates it (unsat conflict).
In case there is an unsat conflict at an existential node, we build the (universally
reduced) conflict clause from ag [25] in line 3] If the clause is fork-free, we can
apply the standard refinement for clausal abstraction [23] with the exception that
we need to find the unique refinement node first (line [8). This backward search
over the quantifier levels is shown in Fig.[6] For an unsat conflict, we traverse the
levels backwards until we find an existential node that binds a variable contained
in the conflict clause. Because the conflict clause is fork-free, the target node of
the traversal is unique. For a sat conflict, we do the same for universal nodes
but the uniqueness comes from the fact that universal levels are singletons. We
then add the refinement clause to the SAT solver at the corresponding node
(lines [6] and and proceed. For sat conflicts, we have to additionally learn
consistency requirements at existential nodes (line that make sure that the
node produces the same result if the assignment (restricted to the dependencies
of that node) repeats. In case the conflict propagated beyond the root node, we
terminate with the given result.

Fork Extension. In case that the conflict clause contains a fork, we apply Fork
Extension [22@ Fork Extension allows us to split a clause Cy vV Cy by introducing
a fresh variable y. The dependency set of y is defined as the intersection dep(C7)N
dep(Cy) and represents that the question whether Cy or Cy satisfies the original
clause needs to be resolved based on the information that is available to both of
them. Fork Extension is usually only applied when C; and C5 have incomparable
dependencies (dep(Cy) € dep(C2) and dep(Ci) 2 dep(Cs)), as only then the
dependency set of y is smaller than those of C'; and of C5. The formal definition
of the rule is

C1UCy y is fresh FE
Fy(dep(Cy) N dep(Ca)). CLU{y} A CoU{T) —

3 Fork Extension as introduced in [22] is incomplete for general DQBF. However, it is
complete for a normal form of DQBF. We refer to the full version [26] for details.
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1: procedure DETERMINEREFINEMENTNODE(Tes, ag, lvl)

2 while (vl > 0 do

3 if res = unsat and vl is existential then

4 for node (3,Y, H) in levels[lvl]] do 1> check if Y is contained in conflict clause
5 if Cily # 0 for some C; € ¢ with ag(s;) = L then

6 Oy < 0y AV cpag(s;)=L G > refine abstraction
7 return (3,Y, H)

8: else if res = sat and Wl is universal with node (V, X) then

9 if Ci|x # 0 for some C; € ¢ with ag(s;) =T then

10 Ox < 0x A \/CiE%as(si):T 35 > refine abstraction
11 return (V, X)

12 else if res = sat and vl is existential then > add consistency requirements
13 LEARNENTRY(N) for each N = (3,Y, H) in levels[lvl] with H C boundy(N)

14: Wl ll —1
15: return res

Fig. 6. Backward search algorithm to determine refinement node.

Ezxample 2. As an example of applying Fork Extension, consider the quantifier
prefix Vzizo. Jyi(x1). Jyo(x2) and clause (T1 V y1 V y2). Applying FEx with
the decomposition Cy = {Z1,y1} and Cy = {y2} results in the clauses (Z7 V
y1 V ys3)(Us V y2) where ys3 is a fresh existential variable with dependency set
dep(ys) = 0 (dep(Cy) = {x1} and dep(Cs) = {x2}).

After applying Fork Extension, we encode the newly created clauses and vari-
ables within their respective nodes. We update the abstractions with those fresh
variables and clauses as for the initial abstraction discussed in Section Ad-
ditionally, we reset learned Skolem functions as they may be invalidated by the
refinement (Fig. [5] line [6).

3.5 Consistency Requirements

The algorithm described so far produces correct refutations in case the DQBF
is false. For positive results, the consistency of Skolem functions of incom-
parable existential variables may be violated. Consider for example the for-
mula Vz1Vxs. Jy1 (x1). Jya(x2). Jys(x1, z2). ¢ and assume that for the assignment
T1T3, there is a corresponding satisfying assignment 7175y3. If the next assign-
ment is Tjxa, then the assignment to y; has to be the same as before (y; — 1)
as the value of its sole dependency x; is unchanged.

We enhance the certification capabilities of clausal abstraction [23] to build
consistency requirements that represent partial Skolem functions in our algo-
rithm during solving. We incrementally build a list of entries, where the first
component in an entry is a propositional formula over the dependencies and
the second component is the corresponding assignment «y . Before generating a
candidate assignment in SOLVE3, we call CHECKCONSISTENCY (Fig. [7]) to check
if the assignment ay for the given assignment ay of dependencies is already
determined, by iterating through the learned entries (Fig. 7} lines . If it is



—_
\V]

L. Tentrup, M.N. Rabe

procedure CHECKCONSISTENCY (ay)
for (cond,ay) in entries do
if sAT(cond, ay ) is Sat then return ay
return empty assignment
procedure RESETCONSISTENCY Fig.7. Algorithms for
entries < [| handling consistency
reset learned clauses at universal nodes requirements.
procedure LEARNENTRY (node = (3,Y, H))
let ag and ay be from lineof Fig.
emﬁm'es.push((/\ci‘O‘S(si)z—r CS,ay))

the case, we get an assignment ay that is then assumed for the candidate gen-
eration. Note that in this case, the SAT call in line ] of SOLVE7 is guaranteed to
return Sat (we already verified this assignment, otherwise it would not have been
learned). Further, consistency requirements are only needed for existential nodes
(3,Y,H) with H C boundy({3,Y, H)), i.e., that observe an over-approximation
of their dependency set. For those nodes, the consistency requirements enforce
that whenever two assignments of the dependencies are equal, the assignment of
ay returns the same value as well. We call RESETCONSISTENCY (Fig. [7)) to reset
the consistency requirements in case we applied Fork Extension (Fig line @
as the new clauses may affect already learned parts of the function. We, further,
have to reset the clauses learned at universal nodes (Fig. [7] line[7).

We learn a new consistency requirement by calling LEARNENTRY (Fig. [7)
on the backward search on sat conflicts, that is in line in Fig. [} When
we determine the refinement node for sat conflicts, we call LEARNENTRY in
every existential node (3,Y, H) with H C boundy({3,Y, H)) on the path to
that node. In our example, when the base case of (3, {ys}, {1, z2}) returns (all
clauses are satisfied, line |§| in Fig. , we add consistency requirmenets at nodes
(3, {y2}, {z2}) and (3, {y1}, {x1}) before refining at (¥, {z1,z2}).

3.6 Example

We consider a possible execution of the presented algorithm on our running
example. For the sake of readability, we combine unimportant steps and fo-
cus on the interesting cases. Assume the following initial assignment a; =
x1Z271 Y2 before node Nyor = (3, {ys}, {z1, z2}). The result of projecting func-
tion prjz({ys}, 1) is $1528352s5 and the SAT solver (Fig. [4] line {4) returns
Unsat(a}) with core of = 5353 as there is no way to satisfy both clauses (s2V ys3)
and (s4 V y3) of the abstraction. The refinement algorithm (Fig. [5)) builds the
conflict clause Ceonfiict = C2|vound(ns) U Calpounda(ng) = (T1 V y2 V y1) at line
which contains an information fork between y; and y». We have already seen in
Example [2] that the fork can be eliminated resulting in fresh variable ys with
dep(ys) = 0 and the clauses 6 and 7 (T1 V y1 V ya)(Ta V y2).

Now, the root node contains variable y4, for which we assume assignment
{ys — T}. For the same universal assignment as before (z173), the assignment
of y2 has to change to {y2 — T} due to the newly added clause 7, leading to
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Qg = T1T2y1Y2y4 before node N,p,,4,.. The only unsatisfied clause is C4y which can
be satisfied using {ys — L}, leading to the base case (Fig. [d] line [0). During
refinement, we learn Skolem function entries (x1 A y4,71) and (Ta A y4,y2) at
nodes (3, {yl}ﬂ {x1}> and (3, {yQ}v {x2}> as prjﬂ({yl}v T173) and prjﬂ({y2}v T173)
assign s1, S5, sg and s1, Sg positively, respectively.

For the following universal assignment 7%, the value of y- is already deter-
mined by the consistency requirements (Fig. 4} line [2)) to be positive. There is
a continuation of the algorithm without further unsat conflict, determining that
the instance is true.

3.7 Correctness

We sketch the correctness argument for the algorithm, which relies on formal
arguments regarding correctness and certification of the clausal abstraction al-
gorithm [23] and the subsequent analysis of the underlying proof system [25]E|
For soundness, the algorithm has to guarantee that existential variables are as-
signed consistently, that is for an existential variable y with dependency dep(y)
it holds that f,(a) = fy(a') if a|gepy) = @'lgep(y) for every a and o'. Our
algorithm maintains this property at every point during the execution by a
combination of over-approximation and consistency requirements. Completeness
relies on the fact that the underlying proof system is refutationally complete for
DQBF. Progress is guaranteed as there are only finitely many different conflict
clauses and, thus, only finitely many Skolem function resets.

4 Evaluation

We compare our prototype implementation, called DCAQEEL against the pub-
licly available DQBF solvers, 1IDQ [10], HQS [12], and IPROVER [19]. We ran
the experiments on machines with a 3.6 GHz quad-core Xeon processor with
timeout and memout set to 10 minutes and 8 GB, respectively. We used the
DQBF preprocessor HQSPRE [28] for every solver except HQS. We evaluate
our solver on the DQBF case studies regarding reactive synthesis [4] and the
partial equivalence checking problem (PEC) [7}/12].

The first two benchmark sets consider the partial equivalence checking (PEC)
problem [11], that is, the problem whether a circuit containing not-implemented
(combinatorial) parts, so called “black boxes”, can be completed such that it
is equivalent to a reference circuit. The inputs to the circuit are modeled as
universally quantified variables and the outputs of the black boxes as existen-
tially quantified variables. Since the output of a black box should only depend
on the inputs that are actually visible to the black box, we need to restrict the
dependencies of the existentially quantified variables to subsets of the univer-
sally quantified variables. The benchmark sets PEC1 and PEC2 refers to [7]

4 A formal correctness proof is given in the full version [26].
® Available at https://github.com/ltentrup/cagel
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Table 1. Number of instances solved within 10min. For every solver, we give the
number of solved instances overall (#) and broken down by satisfiable (T ), unsatisfiable
(1), and uniquely solved instances (x).

Benchmark  # DCAQE 1DQ HQS IPROVER

# T L x| # T Lx # T L x| # T L *

PEC1 |7] 1000/ 839 7832224| 37 0 370/ 636 10 626 32| 71 0 71 0

PEC2 [12] 720| 342 71 271 12| 214 45169 0| 401 104 297 60| 288 60 228 0

BoSy |4] 1216|(1006 389 617 66| 924 335 589 2| 735 231 504 0| 946 370 576 20
2936|(2187 1175 1772 1305

600 T T
—— DCAQE
R —— IPROVER
8 400 - DQ -
< HQS
[+
-E 200 |

I | L L _ | | |
%50 600 650 700 750 800 850 900 950 1,000

# solved instances

Fig. 8. Cactus plot for the BoSy benchmark.

and |12], respectively. The second case study (BoSy) considers the problem of
synthesizing sequential circuits from specifications given in linear-time temporal
logic (LTL) [4]. The benchmarks were created using the tool BoSy [5] and the
LTL benchmarks from the Reactive Synthesis Competition [14}/15]. Each formula
encodes the existence of a sequential circuit that satisfies the LTL specification.

The results are presented in Table[I] The PEC instances contain over-proport-
ionally many unsatisfiable instances and we conjecture that the differences be-
tween DCAQE and 1DQ/IPROVER can be explained by the effectiveness of the
resolution-based refutations that DCAQE is based on. HQS performs well on
those benchmarks as well, which could be due to the fact that it implements
the fast refutation technique [7] that was introduced alongside the benchmark
set PEC1. The reactive synthesis benchmark set is were DCAQE excels. The
benchmark set contains many easily solvable benchmarks, indicated by the high
number of instances that are commonly solved by all solvers. However, there are
also a fair amount of hard instances and DCAQE solves significantly more of
those than any other solver. Further, we can see the effect mentioned in the in-
troduction of infeasibility of expansion-based methods as shown by the result of
HQS. The cactus plot given in Fig. [§] shows that DCAQE makes more progress,
especially with a larger runtime where the other solvers solve very few instances
after 100s. These results give rise to the hope that the scalability of more expres-
sive synthesis approaches [3}/6L|8] can be improved by employing DQBF solving.
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5 Related Work

The satisfiability problem for DQBF was shown to be NEXPTIME-complete [20].
Frohlich et al. [9] proposed a first detailed solving algorithm for DQBF based
on DPLL. They already encountered many challenges of lifting QBF algorithms
to DQBF, like Skolem function consistency, replay of Skolem functions, forks in
conflict clauses, but solved them differently. Their algorithm, called DQDPLL,
has some similarities to our algorithm (in the same way that clausal abstraction
and QDPLL share the same underlying proof system [25]), but performs signif-
icantly worse |9]. We highlight a few differences which we believe to be crucial:
(1) Our algorithm tries to maintain as much order as possible. Placing univer-
sal nodes at the latest possible allows us to apply the cheaper QBF refinement
method more often. (2) We learn consistency requirements only if they have
been verified to satisfy the formula, while DQDPLL learns them on decisions.
Consequently, in DQDPLL, learned Skolem functions become part of the clauses,
thus, making conflict analysis more complicated and less effective as they may be
undone during solving. We keep the consistency requirements distinct from the
clauses, all learned clauses at existential nodes are thus valid during solving. (3)
Skolem functions in DQDPLL are represented as clauses representing truth-table
entries, thus, become quickly infeasible. In contrast, we use a separate certifi-
cation mechanism as in QBF solvers [23]. iDQ [10] uses an instantiation-based
algorithm which is based on the Inst-Gen calculus, a state-of-the art decision
procedure for the effectively propositional fragment of first-order logic (EPR),
which is also NExpTIME-complete. HQS [12] is an expansion based solver that
expands universal variables until the resulting instance has a linear prefix and
applies QBF solving afterwards. Bounded unsatisfiability [7] asserts the existence
of a partial (bounded) expansion tree that guarantees that no Skolem function
exists. QBF preprocessing techniques have been lifted to DQBF [27,28]. Our
solving technique is based on clausal abstraction [23] (also called clause selec-
tion [17]) for QBF, which can provide certificates [23]. Later, it was shown that
refutation in clausal abstraction can be simulated by Q-resolution [25].

6 Conclusions

We lifted the clausal abstraction algorithm to DQBF. This algorithm is the first
to exploit the new Fork Resolution proof system and it significantly increases
performance of DQBF solving on synthesis benchmarks. In particular, in the
light of the past attempts to define search algorithms [9] (which are closely re-
lated to clausal abstraction) for DQBF this is a surprising success. It appears
that the Fork Extension proof rule was the missing piece in the puzzle to build
search/abstraction algorithms for DQBF.

Acknowledgments. We thank Bernd Finkbeiner for his valuable feedback on
earlier versions of this paper. This work was partially supported by the Ger-
man Research Foundation (DFG) as part of the Collaborative Research Center
“Foundations of Perspicuous Software Systems” (TRR 248, 389792660) and by
the European Research Council (ERC) Grant OSARES (No. 683300).
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