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Abstract

The key to many approaches to reason about pointer-
based data structures is the availability of a decision proce-
dure to automatically discharge proof obligations in a the-
ory encompassing data, pointers, and the reachability re-
lation induced by pointers. So far, only approximate so-
lutions have been proposed which abstract either the data
or the reachability component. Indeed, such approxima-
tions cause a lack of precision in the verification techniques
where the decision procedures are exploited.

In this paper, we consider the pointer-based data struc-
ture of singly-linked lists and define a Theory of Linked
Lists (TLL). The theory is expressive since it is capable of
precisely expressing both data and reachability constraints,
while ensuring decidability. Furthermore, its decidability
problem is NP-complete. We also design a practical deci-
sion procedure for TLL which can be combined with a wide
range of available decision procedures for theories in first-
order logic.

1. Introduction

The use of pointer-based data structures, i.e. of struc-
tures where an updatable field can be referenced from more
than one point, is widespread in programming as well as
in other areas of computer science. Many approaches (see,
e.g., [5 12, 2, 7, 26, 6, 20, 24, 19]) to reason about this
technique have been studied since the pioneering work of
Burstall [10], but the result has been methods that suffer
from extreme complexity and serious difficulties to incor-
porate reasoning in a wealth of decidable theories over data
and pointer values, such as integers.

The key to many of these approaches is the availabil-
ity of a decision procedure to automatically discharge proof
obligations in a theory encompassing cells, memories, and
a reachability relation induced by following pointers. Since
reachability is not a first-order concept, some higher-order
feature must be included to precisely cope with it. So, while
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there exist precise and automatic techniques to reason about
pointer reachability (see, e.g., [19]), little has been done
to combine such techniques with available decision pro-
cedures for theories over data and pointers. As a conse-
quence, approximate solutions have been proposed. Either
the structure over data and pointers have been abstracted
away so that tools to reason about reachability can be used
(see, e.g., [12]), or a first-order approximation of reachabil-
ity has been found (see, e.g., [26]) so that available deci-
sion procedures for the theories of pointers and data can be
used. Indeed, this compromise causes a lack of precision
in the verification techniques where such reasoning proce-
dures are used. It would be very desirable to build a de-
cision procedure capable of precisely reason about reacha-
bility while being extensible with available decision proce-
dures for fragments of first-order logic.

In this paper, we consider the pointer-based data struc-
ture of singly-linked lists and we define a Theory of Linked
Lists (TLL) as a class of structures of many-sorted first-
order logic. The theory is quite expressive: we can reason
about cells (which are pairs of data and pointers), indexed
collections of cells (i.e. memory configurations or heaps),
and the reachability of a certain cell from another.

We show the decidability of TLL by proving a small
model property. We also prove that the decision problem of
TLL is NP-complete. Then, we show that TLL satisfies the
hypothesis of a recent combination schema [29] that allows
us to incorporate arbitrary (decidable) theories over the ele-
ments or the pointers. Given a decision procedure for TLL,
we are capable of combining it with a wide range of avail-
able decision procedures for various decidable theories in
first-order logic. We are left with the problem of building a
decision procedure for TLL. In fact, the decision procedure
suggested by a naive exploitation of the small model prop-
erty is not practical. We view TLL as an extension of a core
theory Tgase by constructs for reachability. In this way, we
devise a reduction of the decision problem for TLL to that
of Tgase and then we regard this theory as a combination of
theories for which available decision procedures exist.

To summarize, the contributions of this paper are two.
First, we define the decidable theory TLL to reason about
singly-linked lists which is precise with respect to both el-



ements or pointers and reachability. Second, we design a
practical decision procedure for TLL and we show how to
extend it with a wide range of available procedures for de-
cidable fragments of first-order logic. The procedure for
TLL should improve the precision of the various verification
techniques requiring decision procedures for similar theo-
ries while ensuring complete automation.

Related Work. For lack of space, we only discuss works
which are closely related to ours. The theory TLL is similar
to that used in [25] (which is a refinement of that in [8]).
The decidability of TLL should explain why Isabelle is so
successful in automatically discharging most proof obliga-
tions about programs manipulating linked lists considered
in [25]. The use of decidable fragments of higher-order
logic to reason about pointer-based data structures have re-
ceived a lot of attention (see, e.g., [19]) and provides a high
degree of expressiveness for reachability. However, little
is known about the combination of such logics with decid-
able first-order theories to reason about data and pointer val-
ues. In [5], the decidability of a logic for pointer-based data
structures is proved by using a small model property. Our
proof is simpler since we use basic model-theoretic argu-
ments while [5] exploits known results on reachability in
finite trees. However, TLL is limited to linked lists while
the logic in [5] covers also trees and graphs. The logic
in [5] can only express properties involving the structure
of linked data structures and related reachability properties,
while TLL considers properties depending also on the data
stored in linked lists. A generalization of the logic used
in [5] has been recently described in [33] but again the em-
phasis is on expressing complex shape constraints rather
than taking into account theories on data and pointers. In
the context of Separation Logic [30], a decision procedure
for singly linked lists based on a small-model theorem is de-
scribed in [6]. The main difference with our work is that [6]
abstracts away the theories over data and pointers. In com-
bination with predicate abstractions, [2, 7] describe decision
procedures for logics which are similar to TLL. The main
difference is in expressiveness: both works abstract away
theories over data and the logic in [7] seem more restric-
tive than ours (for example, it cannot express disjointness
of lists). The works in [26, 24, 20] are the most closely re-
lated to ours since they all try to combine reachability rea-
soning with available procedures for decidable fragments of
first-order logic. The main difference is in the treatment of
reachability as they only provide first-order approximations
which are easy to combine with decision procedures but
provide limited precision. In contrast, we develop a (full)
decision procedure for TLL.

Plan of the paper. Section 2 introduces some background
notions. Section 3 formally defines TLL. Section 4 states

the small model property, describes how to build a practi-
cal decision procedure for TLL, and shows how to combine
the procedure with decision procedures for data and point-
ers. Section 5 discusses some conclusions and the future
work. The proofs of the key results and more programs
manipulating linked lists annotated with formulae of TLL
can be found in the Technical Report RI-310-06 of the De-
partment of Computer Science, Universita degli Studi di
Milano, available on-line at htt p: //ww. [ ori a.fr/
~rani se/ pubs/ TR- 310- 06- UNI M . pdf .

2. Formal Preliminaries

We assume the usual concepts of many-sorted first-order
logic (see, e.g., [16]). A signature X is a triple (S, F, P)
where S is a set of sorts, F' is a set of function symbols,
and P is a set of predicate symbols endowed with their ar-
ities constructed using the sorts in S. If X1 = (51, F1, P1)
and Yo = (Sa, F», P») are signatures, their union is the sig-
nature ¥; U ¥ = (Sl U SQ,Fl U FQ,Pl U PQ) Given
a signature 33, we assume the standard notions of X-term,
>-literal, and X-formula. A X-sentence is a >-formula
with no free variables. A literal is flat if it is of the form
v =y x#yxr= fy,....yn) pY1,---,Yn) OF
“p(Yy1,-.-,Yn), Where z,y,y1,...,y, are variables, f is
a function symbol, and p is a predicate symbol. Flattening
preserves the satisfiability of sets of literals and can be done
efficiently (see, e.g., [1]). If t () is a term (form, resp.), we
denote with vars, (t) (vars, (), resp.) the set of variables
of sort o occurring in ¢ (¢, resp.). If ¢ is either a term or a
formula, we denote with vars(p) the set |J, vars, (). Fi-
nally, if ® is a set of terms or a set of formulae, vars, ()
and vars(®) are defined as obvious. Below, we will iden-
tify conjunctions of formulae ¢; A --- A ¢, With the set
{1, 0n}.

We assume the usual notion of X-interpretation over a
set X of variables as a map which interprets each symbols in
Y (see, e.g., [16]). A X-structure is a X-interpretation over
an empty set of variables. A >-formula ¢ over a set X of
variables is satisfiable if it is true in some X-interpretation
over X. Two X-formulae ¢ and + over a set X of variables
are equivalent if their truth values (in symbols, o and 1)
are identical (i.e. ¢ = ), for all Z-interpretations over
X. Let A be an Q-interpretation over some set V' of vari-
ables. For a signature 3 C €2 and a set of variables U C V,
we denote with A*Y the interpretation obtained from A
by restricting it to interpret only the symbols in X and the
variables in U. Furthermore, we let A = A>?, Two X-
interpretations A and B are elementary equivalent iff for
each closed X-formula ¢, we have that A = ¢ iff B = ¢.
With Mod™ (®), we denote the class of many-sorted -
structures satisfying all the formulae in the set ®. We say
that a X-structure A is X = (So, Fo, 0))-term generated (or



simply term-generated when X is clear from the context),
with X C X3, iff for each 0 € Sy and each a € A, there
exists a Xo-term ¢ such that « = t, where ¢4 is the inter-
pretation of ¢ in A. The function symbols in 3, are usually
called constructors.

A X-theory is a pair (X, A) where X is a signature and
A is a class of X-structures. Given atheory T = (X, A), a
T-interpretation is a S-interpretation .4 such that A € A.
Given a X-theory T', a X-formula ¢ over a set X of vari-
ables is T-satisfiable if it is true in some T-interpretation
over X. We write A =7 » when A is a T-interpretation
satisfying . Given a X-theory T', two X-formulae ¢ and
1 over a set X of variables are T-equivalent if o = 1,
for all T-interpretations over X. Given a X-theory T', the
quantifier-free satisfiability problem of 7" is the problem of
deciding, for each quantifier-free >-formula o, whether or
not ¢ is T-satisfiable. We can regard the free variables in
o as Skolem constants when checking for the satisfiability
of the quantifier-free formula o, since ¢ is equisatisfiable to
its existential closure, which, in turn, is equisatisfiable to its
Skolemization.

2.1 Combination schemas

Let T; = (X;, A;) be a theory, for i = 1,2. The combi-
nation of 77 and T is the theory 77 & Ts = (X, A) where
Y=Y1UYsand A = {A | AEI € A;and AE2 S AQ}

If &, isaset of ¥;-sentencesand T; = (3;, Mod™ (®;)),
fori = 1,2, with ¥, N Yy = 0, then T, & T, =
(21 U 8o, Mod™*“>2(®, U ®,)) . (For a proof of this fact,
see [29].) We recall some classes of theories which will be
useful below.

Definition 1 (Finite model property) Let ¥ = (S, F, P)
be a signature, S; C S be a set of sorts, and T" be a X-
theory; T has the finite model property with respect to .S if
for every T-satisfiable quantifier-free X-formula ¢ there ex-
ists a T-interpretation A satisfying ¢ such that A, is finite,
for each sort o € Sg.

Let 3 = (S, F, P) be a signature, S C Sy be a set of
sorts, and T" be a Y-theory; T is stably infinite with respect
to Sy if for every T'-satisfiable quantifier-free X-formula ¢
there exists a T-interpretation A satisfying o such that A,
is infinite, for each sort o € S.

Definition 2 (Smoothness) Let ¥ = (.5, F, P) be a signa-
ture, So = {o1,...,0n,} C S be a set of sorts, and T
be a X-theory; T is smooth with respect to Sy if: (i) for
every T-satisfiable quantifier-free 3-formula ¢, (ii) for ev-
ery T-interpretation A satisfying ¢, (iii) for every cardi-
nal number k1, ..., k, such that k; > |A,,|, there exists
a T-interpretation B satisfying ¢ such that | B,,, | = &, for
1=1,...,n.

Definition 3 (Finite witnessability) Let X = (S, F, P) be
asignature, Sy C S be a set of sorts, and 7" be a X-theory;
T is finitely witnessable with respect to S if there exists
a computable function witness that for every quantifier-
free X-formula ¢ returns a quantifier-free ¥-formula ¢ =
witness(p) such that: (i) ¢ and (3v)y are T-equivalent,
where & = wars(¢) \ vars(p); (i) if ¢ is T-satisfiable
then there exists a T-interpretation A satisfying ¢ such that
the domain A, interpreting the sort o in A is the (finite)
set [vars, ()] of elements in A interpreting the variables
of sort ¢ in + (in symbols, A, = [vars,(¥)]*), for each
o€ Sy.

Definition 4 (Politeness) Let X = (S, F, P) be a signa-
ture, Sp C S be a set of sorts, and T" be a X-theory; T
is polite with respect to Sy if it is both smooth and finitely
witnessable with respect to Sj.

LetT; beaX; = (S;, F;, P;)-theory, for i = 1,2, and let
S = S1NSs. Assume that (a) the quantifier-free satisfiabil-
ity problem of T; is decidable, fori = 1,2; (b) Fi N F, = ()
and PN P, = (); and (c) T% is polite with respect to S. The
combination method in [29] consists of four phases.

First phase: variable abstraction. Let I" be a conjunction
of (X1 U Xo)-literals. The output of the variable abstrac-
tion phase is a conjunction I'; U I'y satisfying the following
properties: (a) each literal in T'; is a 3J;-literal, fori = 1, 2;
and (b) 'y U T is (Th @ T»)-satisfiable if and only if T is
(T & Ty)-satisfiable. (Note that properties (a) and (b) can
be effectively enforced with the help of fresh variables.) We
call I'; U T's a conjunction of literals in separate form.

Second phase: witness introduction. Let I'y U I's be
a conjunction of literals in separate form returned in the
variable abstraction phase. In the witness introduction
phase we compute vo = witnesst,(I'2), and we output
'y U {42} Intuitively, this phase introduces the fresh vari-
ables in vars(y2) \ vars(T"), whose role is to witness that
certain facts hold for the polite theory T5.

Third phase: decomposition. Let T'; U {42} be the con-
junction obtained in the witness introduction phase. Let
Vo = vars, (1) foreach o € S, and let V = |J, 4 Vo
In the decomposition phase we nondeterministically guess
a family E of equivalence relations £ = {E, C V, x V|
o € S}. Then, we construct the arrangement of V' induced
by F, defined by

arr(V,E)={z=y| (z,y) € Esando € S} U

{z#y|(z,y) € (Vo x Vo) \ Esando € S},

and we output the conjunction T'y U {2} U arr(V, E).

Fourth phase: check. Let T’y U {2} U arr(V, E) be
a conjunction obtained in the decomposition phase. The
check phase consists in the following steps: 1. if I'y U
arr(V, E) is T;-satisfiable go to step 2; otherwise output
fail. 2. If {42} U arr(V, E) is Ty-satisfiable go to step 3;
otherwise output fail. 3. output succeed.



The correctness of the method is proved in [29]. If we
assume that the theories being combined are stably infinite
and share only sort symbols, the combination schema above
reduces to the (many-sorted version of the) Nelson-Oppen
combination schema [31] by dropping the witness introduc-
tion phase and guessing an arrangement only over the set of
shared variables.

3. Thetheory TLL

We formally define the theory TLL to reason about cells,
memory configurations, and the reachability on pointers.

Definition 5 (The theory TLL) Let TLL := (¥, TLL)
where X1 = Ecens U EMemory ) EReachability U sets U
Ygridge (see Figure 1) and TLL is the class of Xr-
structures satisfying the conditions in Figure 2.

The interpretations of the sort symbols elem and addr is left
unspecified. So, we take .44, = (0,0, addr) and Xejem =
(0,0, elem). We will see how to overcome this limitation in
Section 4.3.

The interpretation of the function symbols in Xceys Or
YMemory 18 Standard: the former models pairs of elements
(data) and addresses (pointers), which are the content of
each cell in a list; the latter models memory configura-
tions, i.e. snap-shots of the memory where the linked lists
are stored. In particular, the interpretation of the symbols
in Xceiis U Xmemory IS Closely related to that proposed by
Burstall [10].

Awar s jsomorphic to AL x A, gq, 229

cell elem

Property 6 A

So, we can regard a memory configuration as a pair of ar-
rays indexed by addresses: the former storing elements and
the latter storing addresses, which is exactly the view of
memory in [10].

Paths cannot be considered as finite sequences of ad-
dresses equipped with the usual constructors (e.g., cons)
and operations (e.g., concatenation). In fact, any path
[i1,...,1,] must be such that its addresses must be non-
repeating (cf. Figure 2). While this invariant is trivially sat-
isfied for the empty and the singleton sequence (for which
we provide the constructors € and [_]), it may be violated by
the concatenation of two sequences. This is the reason why
we introduce the predicate append, which holds when con-
catenating two paths sharing no address so that the result is
still a path.

There are infinite and finite lists. We are interested in
studying only finite lists which can be furtherly classified in

acyclic (terminating with null) and cyclic lists, as depicted
in Figure 3. We introduce the following predicates to for-

AT A
Acyclic

i T e T T e f

Figure 3. The two types of (finite) lists in TLL

malize each types of finite lists and their union:

acyclic(m,i) < null € addr2set(m, i) 1)

is € addr2set(m,1)
f € addr2set(m, 1)
ip € addr2set(m, 1)
ip # f

mlip].next = is
m[f].next = is

cyclic(m,i) < Fis, f,ip.

@

>>>> >

isfinite(m,4) << acyclic(m, 1) V cyclic(m, 7). 3)

For cyclic lists, the cell pointed to by i, (cf. Figure 3) is
said to be (heap) shared since there are two next -fields
(namely, that of the cells pointed to by f and by i,) whose
value is i,. Notice also that isfinite recognizes only finite
lists, in the sense that if isfinite(m, i) holds then there exists
an integer n > 0 such that the cardinality of addr2set(m, )

is equal to n.

As it is particularly useful to talk about sets of addresses,
e.g., the set of addresses of the cells belonging to a given
linked lists, we have included the signature Yses of a sim-
ple theory of sets whose elements can only be addresses.
Indeed, we need bridge functions either to map paths of ad-
dresses to sets of addresses (cf. pathZset) or to compute
the set of addresses which can be reached by following a
chain of next -fields from a given address in a given mem-
ory configuration gcf. getp and addr2set). Being able to
characterize sets of addresses is not only convenient but it
also enables us to avoid the use of quantifiers. For example,
consider the case where we want to express the fact that the
lists identified by two variables 7 and j do not share any
non-empty segment of list as depicted in Figure 4. With the
help of the predicate reach, it Is easy to see that the only
way to represent the situation requires the use of quantifiers

(see, e.g., [2]):

acyclic(m, 7) A acyclic(m, j)A
reach(m, i, ki, p;) A

Vki, kj.3pi,pj. ( reach(m, j, k;,p;) N =k #kj
ki # null N kj # null

where k;, k; are variables of sort addr, and p;, p; are vari-
ables of sort path. Instead, by using sets of addresses, we
can more compactly specify (without resorting to quanti-
fiers) that the intersection of the two sets of addresses reach-
able from ¢ and j, respectively, is the singleton set contain-

L]
T

Figure 4. Two separate linked lists

ull




| Signature | Sorts | Functions | Predicates

error : cell
> cell mkcell : elem,addr — cell .
Cells elem _.data : cell — elem
_next : cell - addr
mem null : addr
> Memory addr 1] : mem,addr — cell —
cell upd : mem,addr, cell — mem
> N r;j(;‘: € : path append : path, path, path
Reachability path [.] : addr — path reach ~ : mem,addr,addr, path
addr g Poset € : addr,set
Yisets {_} : addr — set : ’
set C . set,set
U,N,\ : set,set — set
mem path2set . path — set
addr
Y Bridge addr2set : mem,addr — set —
set et :  mem, addr, addr — path
path gewp : ) ) P

Note: As usual, we model fields as unary functions returning the various pieces of information stored in the field of a
cell. To emphasize the fact that a function f represents a field, we will write z. f in place of f(z), where x is a cell.

Figure 1. The signature of the theory TLL

Interpretation of sort symbols: cell, mem, set, and path

Each sort o in X1 1S mapped toa non-empty set A, such that:
(a) Acell - Aelem X Aaddr; (b) Amem = AAaddr;

cell

(€) Aset is the power-set of Acei;  (d) Apatn IS the set of all finite sequences of (pairwise) distinct elements of A.i.

Signature | Interpretation

— mbkcell™(e, i) = (e, i), foreach e € Agem and i € A,gar;
— (e,1).data* = e, for each e € Agem and i € Augar;

— (e,4).next* =i, foreach e € Agem and i € Auqqr;

— error.next? = null?.

Ycells

— a[i]* = a(i), foreach a € Apem and i € Auqar;
EMemory - ’U,pd'A(a, i, U) = Qju, TOreach a € Amem, @ € Aaddr, and u € Acen;
— aA(nullA) = errorA, for each a € Amem

— el is the empty sequence;
— [i] is the sequence containing i € A,q4q, as the only element;

— ([i1y ooy in]s [J1s eos i)y [11s eoos s J1s -oes Jm]) € append™ iff iy, and j; are all distinct;
EReachability

—(a,i,7,p) € reach™ iff i = j and p = ¢, or there exist addresses i1, . . . , i, € Aaqgdr SUCh that:
(i) p = [i1,. .., inl; (iii) a(i,).nextA = i, 1, for1 <r < n;
(i) iy = 1; (iv) a(i,).next? = j.

The symbols §, {_}, U, N, \, €, and C are interpreted according to their standard interpretation over

E ets
Set sets (of addresses).
— addr?setA(a, i) = {j € Aaddr | Ip € Aparh St (a,1,4,p) € reachA};
SBridge — path?setA(p) = {i1,...,in} Orp=[i1, ..., 3] € Apatn;

.. if (a,1,7,p) € reach™
— getp™(a, i, j) —{ p 1t(@im)

. otherwise foreach a € Amem, p € Apath, aNd 4, j € Aaddr.

Note: a;.,, abbreviates the function «’ with domain A,4q, and co-domain A such that o’(z) = u, if z = ¢, and
a'(x) = a(x), otherwise. We denote the set of functions with domain X and co-domain Y as Y X.

Figure 2. Characterization of a X1 | -interpretation A




ing null:
acyclic(m, #) A acyclic(m, j) A

addr2set(m, i) N addr2set(m, j) = {null}.

To further illustrate the expressiveness of TLL, we consider
how TLL-formulae can be used to annotate the program for
in-place list reversal of acyclic lists:*

o :=null;
WH LE (!i # null) DO
t := M!i].next;
M!i].next :=lo;
o:=1!i;
=1t
END

The mutable variable Mstores memory configurations. The
list before the execution of the program is identified by the
mutable variable i . At any iteration of the loop, i points
to the suffix of the initial list (still to be reversed) while the
mutable variable o points to the reverse of the prefix of the
initial list. After the execution of the program, i points to
nul I and o to the reverse of the initial list. The mutable

variable t serves only to swap pointers.
The following TLL-formulae ensure that the set of reach-
able cells remains the same (no memory leakage:

Pre-cond.:  acyclic(M, i) A R? = addr2set(M, 1)
Post-cond.:  acyclic(M, 0) A RY = addr2set(M, o)
Invariant:  acyclic(M, i) A acyclic(M, o)A

addr2set(M, i) N addr2set(M, o) = {null}A

addr2set(M i) U addr2set(M,0) = RY.
The pre-condition states that i points to a (possibly) empty
acyclic list and it defines the set RY of reachable cells in the
memory configuration before the execution of the program.
The post-condition requires that the set of memory locations
reachable before the execution of the program (namely, RY)
must be the same of the one reachable afterwards. The in-
variant of the loop states that the lists i and o are acyclic,
that the sets of reachable cells from i and o are disjoint,
and that their union is equal to the set of cells which is
reachable fromi before the execution of the loop. By using
a verification condition generator such as [14], it is possi-
ble to generate three quantifier-free formulae whose TLL-
unsatisfiability implies the absence of memory leakage.

4. An extensible decision procedure for TLL

We design a decision procedure for the satisfiability
problem of TLL. We do this in two steps. First, we prove
that TLL enjoys the small-model property (cf. Definition 1)
with respect to the domains of elem and addr. From this, it
immediately follows the decidability of TLL by enumerat-
ing 1 -structures up to a certain cardinality. Indeed, such

1We use a dialect of ML with immutable and mutable variables as the
one used in [14].

a brute force procedure is not usable in practice. The sec-
ond step consists of showing how to use the small-model
property to build a usable decision procedure for the satis-
fiability problem of TLL by harnessing the recent advances
in first-order decision procedures.

4.1 Small model property

Let I" be a conjunction of TLL-literals. To simplify the
proof of the small model property, we pre-process the set "
of literals by performing flattening (see Section 2) and then,
identifying a set of normalized TLL-literals obtained by ex-
haustively applying some simple syntactic transformations
to a set of flat literals.

Definition 7 A TLL-literal is normalized if it is a flat literal
of the form:

e1# ez, i#7,

i = null, u = error,

u = mkcell(e, 1), u = rd(a,1), a = upd(b,i,u),
x={i}, z=yUz, z=y\z,
P#4q, p=[d,

x = path2set(p) , append(p1,p2,p3), —append(p1,p2,ps),
x = addr2set(a,i), p= getp(a,i,j),

where e1, eo, e are elem-variables, i, j are addr-variables,
u, v are cell-variables, a,b are mem-variables, x,y, z are
set-variables, and p, ¢, p1, p2, p3 are path-variables.

Lemma 8 Deciding the TLL-satisfiability of quantifier-
free TLL-formulae is equivalent to checking the TLL-
satisfiability of normalized TLL-literals.

The small-model property of TLL is shown by considering
an arbitrary TLL-interpretation .4 satisfying a conjunction
of normalized literals T" and reducing A¢jem and Aaqq, to fi-
nite sets whose cardinalities are bounded by a certain poly-
nomial in the size of the constants in I". This is done in two
phases. First, we identify certain sub-terms of sort elem and
addr in I" that are used to identify finite sub-sets A’,_, and
Al 14r OF Aciem and A,qqr, respectively. Second, we navigate
through the pointer structure induced by A so that the vari-
ous paths only contain addresses in A’ . At this point we
have obtained a TLL-interpretation A" and we are left with
the problem of showing that it satisfies I". This is done by
case analysis on normalized literals.

Lemma 9 (Small model property) Let I" be a conjunction
of normalized TLL-literals, and let V; = wars,(T"), for
each sort 7. Also, let n = |Veiem|, m = |Vaddr|, 7 = |Vinem|
and s = |Vpawn|. Then the following are equivalent:

1. T"is TLL-satisfiable;

2. Tistrueina TLL-interpretation .4 such that | Agem| <
n+7 - |Asgdr] and |Apgar| <m + 1+ rm + 2 + 53,
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Figure 5. TLL as a combination of theories

The small model property yields a brute force method to
check the TLL-satisfiability of normalized literals. One
must enumerate all sets A,qqr and Agjem, With cardinalities
bounded by the polynomials of Lemma 9 in search of an
TLL-interpretation satisfying the conjunctions of normal-
ized literals. With Lemma 8, this yields the decidability
of the TLL-satisfiability problem.

Theorem 10 The problem of deciding the TLL-
satisfiability of quantifier-free TLL-formulae is decidable
and NP-complete.

4.2 A usable decision procedure for TLL

Our goal is to build a decision procedure for TLL by
leveraging the vast literature on decision procedures for
fragments of first-order logic and their combinations (see,
e.g., [1] for further pointers to the literature). In this re-
spect, it is particularly useful to regard TLL as a combi-
nation of theories, as depicted in Figure 5 (where dashed
arrows denote the ‘import’ relation and solid arrows mark
the presence of a bridge function, labelling the arrow,
between two theories). Let Ty, := (X,,X), where
x € {elem, addr, cell, mem, set, Reachability} and X :=
{A®x | A% € TLL}. More precisely, we want to com-
bine the decision procedures for the various theories by us-
ing a many-sorted variant of the Nelson-Oppen combination
schema [31]. To this end, we must show (i) the availabil-
ity of decision procedures for all sub-theories and (ii) that
the hypotheses (signature disjointness except for sort sym-
bols and stably-infiniteness) for applying the combination
schema are satisfied.

Requirements (i) and (ii) are unproblematic for the the-
ories Teem and Thqqr Of equality over elem and addr, re-
spectively. There are many decision procedures available in
the literature for such a theory (see, e.g., [27, 1]) and it is
well-known that they are stably-infinite. It is also easy to
meet requirements (i) and (ii) for the theories Tcelis, Tmem,
and T (cf. Figure 5). In fact, for each of these theories, it

Distinctness & Uniqueness:

Vi, l.cons(i,1)

Vi, l.hd(cons(i,1))

Vi, 1.t (cons(i,1))

VIl # nil = cons(hd(l), ¢l(1))

nil

([Tl N

i
l
l
k-Acyclicity: Vi1, ..., i, ,l.cons(i1, ..., cons(ig, 1)) # 1

Generatedness: Vi.(I = nil V 3i,l’.1 = cons(3,1'))

Note: 4,1, ..., %5 are variables of sort addr and [, 1’ are
variables of sort fseq.

Figure 6. The axioms for Tt

is possible to build decision procedures by adapting exist-
ing techniques. Furthermore, it is known that the theories
Tceisy Tmem, and Ty are stably-infinite (see, e.g., [29]) and
only share sort symbols.

The situation is more complex for Treachabitity (Cf. Fig-
ure 5) for which we must solve two problems. First, there
is no available decision procedure for Treachability- Below,
instead of building such a procedure, we show how to re-
place TRreachability With another theory (preserving satisfia-
bility) for which it is easier to re-use existing techniques.
Second, we must transform the input set of literals to be
checked for satisfiability in order to eliminate the bridge
functions in Figure 5 while preserving satisfiability, so to
meet requirement (ii) above.

Replacing Treachability With Tpaen.  So far, to mechanize
the reasoning in Treachabiiy @nd similar theories, the ap-
proach has been to identify a suitable set of first-order ax-
ioms approximating reachability (see, e.g., [26, 20]) and use
it in combination with other decision procedures. In this
way, only sound but potentially incomplete procedures have
been designed. The main problem is that reachability can
only be axiomatized in extensions of first-order logic with
operators to compute the reflexive and transitive closure of
the one-step reachability relation induced by the next -field
(see, e.g., [22] for a detailed discussion on the limitations of
approximating reachability in first-order logic). In the fol-
lowing, we build a decision procedure for Treachability DY
using an alternative characterization of paths and then ex-
ploiting the small-model property.

We want to represent paths by using finite sequences
of addresses rather than with the operators in Xreachability
(cf. Figures 1 and 2). So, we introduce the theory Ttseq
of finite (arbitrary) sequences of addresses. The signature
Yfseq CONtains the sort symbols addr and fseq, the func-
tion symbols nil : fseq, cons : addr x fseq — fseq,
hd : fseq — elem, tl : fseq — fseq, and the empty set
of predicate symbols. Its axioms are depicted in Figure 6.
We abbreviate with DU the set containing the axioms for



distinctness and uniqueness of the constructors cons and
nil, with Acyclic the infinite set of axioms of k-acyclicity
(for £ > 1), and with Gen the singleton set containing the
axiom expressing the fact that any finite sequence must be
generated by the constructors nil and cons. In the follow-
ing, let F'Seq := DUUAcyclicU Gen. Itis possible to show
that [23, 32] any two models .4 and B of F'Seq are elemen-
tary equivalent. Hence, we are free to choose any particu-
lar sub-class of Mod ™% (FSeq) to define the theory Tteq
and use FSeq to check the satisfiability in the particular
class of models. We define Tteq as the pair (Xfeq, T Gen)
where TGen is the class of term-generated structures in
Mod™=(FSeq).

Property 11 Let I' be a set of Xeq-literals. Then, I' is
Ttseq-satisfiable iff I is (Xtseq, Mod > (FSeq))-satisfiable.

This Property is an immediate consequence of the com-
pleteness of F'Seq. There exist decision procedures in the
literature for similar theories of lists (see, e.g., [15, 28])
which can easily be adapted for Teq. We notice that Ttseq
is stably infinite since all the structures in TGen have an
infinite domain for fseq (see, e.g., [17]).

Now, we define the theory T,,.., by extending the theory
Ttseq With some auxiliary function and predicate symbols
so that the symbols of Treachability @ppearing in normalized
literals (cf. Definition 7) can easily be defined. The addi-
tional (with respect to Tt.q) symbols and axioms of Tpa¢h
are depicted in Figure 7. Let ¥, be the signature consist-
ing of all the symbols in Figures 6 and 7, and PATH be the
set of axioms in Figures 6 and 7. The theory T., is the
pair (Xpath, ETGen), where ETGen := { A%t | A%atn |=
PATH and A¥=s € TGen}. It is possible to extend the
theory

TBase = Taddr S Telem D Tcell @ Tmem @ Tpath D Tset
with definitions in such a way that the missing functions
and predicates of TLL (namely, ¢, [], path2set, append,
and addr2set) can be defined as € = nil, [i] = cons(i, nil),
ispath(p) = path2set(p) = fseq2set(p),
( ispath(p1) A ispath(p2) A >

fseq2set(p1) N fseq2set(p2) =0 A

app(p1,p2) = p3

isreachablep(m, i, j,p) = getp(m,i,5) = p
—isreachablep(m, i, j,p) = getp(m,i,5) = nal.
Let ¥ := Ypath U {getp, append, path2set} and GAP

be the definitions above. The theory TLL is the pair

(X517, ETGen), where
ETGen := {AYTL|A™L = GAP and A% € ETGen}.

By using the formulae in GAP and a simple induction (re-
call that the class TGen of structures is term generated), it
is possible to prove the following Lemma.

Lemma 12 Let T be a set of normalized literals (cf. Defini-
tion 7). Then, I' is TLL-satisfiable (cf. Figures 1 and 2) iff T’

is 'FL\L—satisfiabIe, after renaming the sort symbol fseq with
path (and vice-versa).

< append(p1,p2,Pp3)

From TLL to Thase- By Lemma 12, we know that

we can use TLL in place of TLL for satisfiability check-
ing. Hence, we are left with the problem of reducing

the 'FL\L-satisfiabiIity of normalized literals to the Tgace-
satisfiability of quantifier-free formulae, which can be
solved by using a many-sorted variant of the Nelson-
Oppen schema [31] since, as we argued above, the theo-
ries Taddr; Telem, Teell; Tmem, Tpath, and T are stably infi-
nite and share only sort symbols. To see how to perform the
reduction, two observations are crucial. First, the symbolic
execution (or, equivalently, the unfolding of the definitions
in GAP and PATH) of the function and predicates in X7
over ground terms yields terms built out of the symbols in
Yfseq- INthe following, let T := Y \ Ygeeq @nd assume
that the sort fseq is appropriately renamed to path and vice-
versa.

Property 13 For every ground X.—--term, there exists an
equivalent ground X¢eq-term.

(The proof is a simple induction.) Second, by the small-
model property (cf. Lemma 9), it is always possible to enu-
merate the finitely many ground terms of sort path and of
sort elem. Hence, by substituting all possible ground terms
of sort path (and of sort elem) in the set of normalized
literals and symbolically executing the definitions of the

symbols in Yo7, it is always possible to reduce the TLL-
satisfiability problem of normalized literals to the Tgase-
satisfiability of quantifier-free formulae. Let I" be a set

of normalized Yreachabiiity-literals, /N be the bound on the
cardinality of the domain of addr, according to the small-
model property (cf. Lemma9). Let D := {a1,...,an} be a
set of fresh variables of sort addr, and

6= /\
1<k#I<N
so that § A n constrains the cardinality of the domain of
addr to be N. Let D, := {a},...,al;} be a finite set of
fresh variables for each variable p of sort path in I, let
FSeq(D,) := {t | tis a ground term built out of the sym-

bols in {nil, cons} U D,, and of depth at most N}, and

A Ve=o

a:addrel’ i=1

ap # a ni=

N
e o= N\ Vd=a
p:pathel’ i=1
wo= N \/ (0 =aqnllispath(q)]))

p:path€l’ g€ FSeq(Dyp)

so that 1, A n, constrains the set of support of path to span
over the paths of addresses (i.e. non-repeating sequences of
addresses) of length up to N, where [[ispath(q)]] denotes
the unfolding of ispath(q). With the notation introduced
above, we have the following property.

Property 14 T is TLL-satisfiable iff VI [[T5]] i Thase-
satisfiable, where

o \/JL, T; isthe disjunctive normal form of I' A (6 A1) A
(M A 1)),



app : fseq, fseq — fseq

fseq2set : fseq — set

app(nil,l) = 1
app(cons(i,1),1') = cons(i, app(l,1"))

0
{i} U fseq2set(l)

fseq2set(nil)
fseq2set(cons(i,1))

ispath : fseq

last : fseq — elem

tspath(nil)
ispath(cons (i, nil))
{i} Z fseq2set(l) A ispath(l) = ispath(cons(i,1))

i
last(l)

last(cons (i, nil))
1 # nil = last(cons(i,1))

isreachable : mem x addr x addr

isreachablep : mem x addr x addr x path

isreachable(m,i,1)
mli].next = i’ A isreachable(m, i, j) = isreachable(m,1,7)

isreachablep(m, i, i, nil)
m[i].next = i’ A isreachablep(m,i’,j,p)
= isreachablep(m, 1, j, cons(i,p))

Note: ¢, are implicitly universally quantified variables of sort addr and [, 1’, p are implicitly universally

quantified variables of sort fseq.

Figure 7. Signature and axioms of T,u, (extending Tteeq)

o ['; contains a literal of the form p = ¢ for each p vari-
able of sort path inI" and ¢ a term in FiSeq(D,,),

e T'; is the result of substituting all variables p of sort
path in T with a term ¢ in FSeq(D,) whenp = ¢ isin
I'; and eliminating trivial equalities,

e [[T';]] is the result of unfolding all applications of the
symbols in S occurring in I';. (Notice that [[T';]]
contains only YXgas-terms.)

This is a consequence of Property 13, the small-model prop-
erty (Lemma 9), and simple properties of the transformation
into disjunctive normal form.

The reader may be concerned about the usability of the
decision procedure suggested by Property 14. In fact, the
formula V;.”Zl[[fj]] to be checked for Tp,e-satisfiability
can be quite large. Fortunately, a new generation of tools to
check the Satisfiability of quantifier-free formulae Modulo
a Theory (SMT) based on an integration of SAT solving and
(combinations of) decision procedures for sets of literals is
available (e.g., [9, 4, 13, 21]). Such tools have been proven
quite successful [3] to handle large formulae and so they
seem to be able to efficiently check the Tg,s-satisfiability

of V7, [[T]).
4.3 Modular Extensions of TLL

So far, we have assumed that .44, = (0,0, addr) and
Yetem = (0,0, elem). We now show how to extend TLL
with some other theories about data and/or pointers. For
example, consider the problem of modeling xor-linked lists
which are particular kind of singly-linked lists allowing one
to simulate doubly-linked lists by storing in the next field

of each cell the exclusive-or of two contiguous addresses
of cells.? If we want to take into account that addresses
are encoded by fixed-size bit vectors when modeling xor-
linked lists, we need to extend TLL with a theory FSBYV of
finite-size bit-vectors such as [11]. But then we are in trou-
ble, since FSBV does not satisfy the requirement of stably-
infiniteness which is necessary to apply (a many-sorted ver-
sion of) the Nelson and Oppen schema [27]. Fortunately,
as said in Section 2.1, there exists a combination method
allowing us to overcome this difficulty via the concept of
polite theory (cf. Definition 4) that can be combined with
any arbitrary theory, not necessarily stably-infinite (such as
FSBV).

Politeness of TLL. We now prove that TLL is polite so
that we can modularly extend TLL with an arbitrary the-
ory on data and/or pointer values. It is not difficult to show
that TLL is smooth (Definition 2) and finitely witnessable
(Definition 3) with respect to {elem, addr}. Hence (by Def-
inition 4), we have that

Lemma 15 TLL is polite with respect to {elem, addr}.

A consequence of this Lemma and the correctness of the
combination method in Section 2.1 is

Theorem 16 Let T be any theory satisfying the following
properties: (i) for any quantifier-free formula ¢ of T, it is
possible to decide whether or not  is T-satisfiable; (ii) T
does not share logical symbols with TLL besides equality
and it does not contain the sorts mem, set, and path. Then,
itis possible to decide the satisfiability of any quantifier-free
formula ¢ in the combination of TLL and 7.

2ht t p: // en. wi ki pedi a. or g/ wi ki / Xor 1 i nked_l i st



5. Conclusion and Future Work

We introduced the theory TLL to annotate programs ma-
nipulating linked lists. We showed that the satisfiability
problem of TLL is decidable, it is NP-complete, and that
TLL can be extended with arbitrary (decidable) theories
modeling data or pointer values. Finally, we described how
to adapt available decision procedures and methods for their
combination to build a usable decision procedure for TLL.

There are two main lines of future work. The former is
to use extensions of the theories of arrays [18] which allows
one to express local reasoning & la Separation Logic [30].
The latter consists of adapting our approach to other pointer
data structures such as trees and direct acyclic graphs. In
fact, we believe it possible to model nodes with n outgoing
pointers by using a cell constructor of arity n + 1 (n pointer
fields plus one data field), then generalize the small model
property (cf. Lemma 9), and use this to build a practical
decision procedure along the lines of Section 4.2.
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