
Language Containment Checking with

Nondeterministic BDDs?

Bernd Finkbeiner

Computer Science Department
Stanford University

Stanford, CA 94305-9045
finkbein@cs.stanford.edu

Abstract. Checking for language containment between nondeterminis-
tic ω-automata is a central task in automata-based hierarchical verifica-
tion. We present a symbolic procedure for language containment checking
between two Büchi automata. Our algorithm avoids determinization by
intersecting the implementation automaton with the complement of the
specification automaton as an alternating automaton. We present a fix-
point algorithm for the emptiness check of alternating automata. The
main data structure is a nondeterministic extension of binary decision
diagrams that canonically represents sets of Boolean functions.

This is a slightly revised version (April 2001) of the following article:
c©2001 Springer-Verlag. Bernd Finkbeiner. Language Containment Checking with Nondetermistic BDDs. In Tiziana
Margaria and Wang Yi, editors, TACAS 2001. 7th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, volume 2031 of Lecture Notes in Computer Science, pages 24–38.

1 Introduction

Binary decision diagrams (BDDs) have greatly extended the scope of systems
that can be verified automatically: instead of searching the entire state space
of a model, the verification algorithm works with a symbolic representation of
relevant state sets. Symbolic methods have been developed for many verification
problems, in particular for temporal logic model checking [CGP99].

For the language containment problem L(A) ⊆ L(B) between two ω-
automata A and B, symbolic algorithms have so far only been proposed in the
case where B is deterministic [TBK95]. This is a serious restriction: in property-
oriented verification it is advantageous to allow for nondeterminism, since it
usually leads to simpler specifications (see [THB95] for examples). Having the
same type of automaton for A and B also makes hierarchical verification pos-
sible, where an intermediate automaton appears as an implementation in one
verification problem and as a specification in the next; the verification can fol-
low a chain of increasingly more complex models and ensure that observable
properties are preserved.

The standard approach to the language containment check L(A) ⊆ L(B) is
to first complement B, and then check the intersection with A for emptiness.

? This research was supported in part by the National Science Foundation grant CCR-
99-00984-001, by ARO grant DAAG55-98-1-0471, by ARO/MURI grant DAAH04-
96-1-0341, by ARPA/Army contract DABT63-96-C-0096, and by ARPA/AirForce
contracts F33615-00-C-1693 and F33615-99-C-3014.

The difficulty with this approach is that the classic constructions for the com-
plementation of ω-automata are all based on determinization. Determinization
algorithms for ω-automata, like Safra’s construction [Saf88], use an intricate
structure to describe deterministic states. Such states not only encode sets of
nondeterministic states reachable by the same input prefix, but also keep track
of the acceptance status of the nondeterministic computations. Safra-trees have
been found to be too complex to be directly encoded in a BDD [THB95].

In our solution we sidestep the determinization construction by intersecting
L(A) and L(B) not in their representation as nondeterministic automata, but
in the more general framework of alternating automata, where complementation
can be achieved by dualizing the transition function and acceptance condition.
This approach makes use of concepts from a new complementation construction
by Kupferman and Vardi [KV97]. The use of alternation not only simplifies the
algorithm, it also allows us to combine the two automata before any analysis
takes place. Thus, no effort is wasted on parts of B that are not reachable in the
combined automaton.

We describe a fixpoint algorithm that checks the resulting alternating au-
tomaton for emptiness. This construction involves reasoning about sets of sets
of states, one level of aggregation above the sets of states that can be repre-
sented by a BDD. We therefore propose an extension to BDDs: by allowing the
underlying automaton to be nondeterministic, sets of (deterministic) BDDs can
be embedded in a single (nondeterministic) structure.

Overview. In the following Section 2 we briefly survey related work. Sec-
tion 3 provides background on automata over infinite words. We review de-
terministic BDDs in Section 4 and present our nondeterministic extension in
Section 5. In Section 6 we develop the fixpoint construction for the emptiness
check on alternating automata.

2 Related Work

Language containment checking. There are two systems that provide com-
pletely automatic language containment checking. Omega [BMUV97] is a pack-
age of procedures related to ω-automata and infinite games over finite graphs.
Omega implements Safra’s construction and uses a completely explicit represen-
tation of the state space. HSIS [THB95] is a partially symbolic implementation,
again based on Safra’s construction. While the state space is still represented
explicitly, HSIS makes auxiliary use of BDDs to represent relations on states.

Simulation checking. Simulation is a strictly stronger property than
language containment. Tools capable of simulation checking, such as Mocha
[AHM+98], can therefore be used to prove language containment (usually with
some user interaction), but a failed simulation check does not contradict lan-
guage containment.

Nondeterministic BDDs. There is a rich literature on extensions to
BDDs. In particular the idea to add nondeterminism has been exploited be-
fore, but with a different objective: parallel-access diagrams [BD96] interpret

2

a

b

c

0

0, 1

0, 1 0, 1

0, 1 A

B

C D

0

0

0

1

1

0

1

0

1A : α = {a} B : α = {B}

Fig. 1. Büchi automata A and B. Accepting states are shown in gray.

nondeterminism as disjunction to achieve a more compact representation of cer-
tain Boolean functions. Takagi et al. [TNB+97] show that certain methods for
the satisfiability checking of combinatorial circuits and techniques that represent
Boolean functions as sets of product terms can be regarded as nondeterministic
BDDs.

Alternation. Muller and Schupp [MS87] observed that complementing an
alternating automaton corresponds to dualizing the transition function and ac-
ceptance condition. The application of alternation in verification methods has
been studied both for automata-based algorithms [Var95] and in deductive veri-
fication [MS00]. Alternating automata have been used in a new complementation
construction for Büchi automata [KV97].

3 Automata on Infinite Words

Automata on infinite words differ from automata on finite words in their accep-
tance mechanism: there are no final states; instead, acceptance is determined
w.r.t. the set of states that are visited infinitely often. Different types of accep-
tance conditions are studied (see [Tho94] for an overview). In the following we
will work with Büchi conditions.

Definition 1. A (nondeterministic) Büchi-automaton A = 〈Σ, Q, θ, ρ, α〉 con-
sists of a finite input alphabet Σ, a finite set of states Q, a set of initial states
θ, a transition function ρ : Q×Σ → 2Q and a set of accepting states α ⊆ Q.

A run of A on an input string l0, l1, . . . ∈ Σω is an infinite sequence of states
σ = v0, v1, . . . s.t. v0 ∈ θ and for every i ≥ 0, vi+1 ∈ ρ(vi, li), i.e., the first state
is an initial state and each successor state is included in the successor set given
by the transition function.

A run is accepting if some accepting state is visited infinitely often. The
language L(A) of a Büchi automaton consists of those input strings that have
accepting runs.

Example 1. The automaton A in Figure 1 accepts all infinite words over the
alphabet {0, 1} that begin with 0 and contain infinitely many 0s. Since B does
not accept the word 0ω, L(A) 6⊆ L(B).

The branching mode in a nondeterministic automaton is existential; a word
is accepted if its suffix is accepted in one of the successor states. Alternating

3

a A

b B C
a D A

b D B C
a D A

b D B C

. . .

a

b

c

0
0, 1

0, 1 0, 1

0, 1

A

B

C D

0

0

0

1

1

0

1

0

1

Fig. 2. Alternating automaton C and a computation for input word 0ω. Accepting
states α = {a, A, B, C, D} are shown in gray, stable states β = {a, b, c, A, C, D} as
boxes.

automata combine existential branching with universal branching. Again, many
different acceptance conditions are studied. We will work with a combined Büchi
and co-Büchi condition.

Definition 2. An alternating automaton is a tuple A = 〈Σ, Q, θ, ρ, α, β〉 with

Σ, Q, α as before; a set of stable states β, a set of initial state sets θ ∈ 22
Q

; and

the transition function ρ : Q × Σ → 22
Q

, a function from states and alphabet
letters to sets of successor state sets.

A run of an alternating automaton is a directed acyclic graph (dag) (N, E),
where the nodes are labeled with states state : N → Q. It is often useful to view
the dag as a sequence of sets of nodes which we call slices: the i-th slice is the
set of nodes that are reached after traversing i edges from root nodes. We call
the set of states that occur on the nodes of the i-th slice the i-th configuration.
Let configuration 0 be the root configuration, and, for finite segments of a run,
call the first configuration source and the last configuration target.

In a run for the input string l0, l1, . . . ∈ Σω, the root configuration is one of
the sets in θ, and, for each state v in the i-th configuration, the set of states on
successor nodes is one of the successor sets in ρ(v, li). A run is accepting if every
path visits some α-state infinitely often, and eventually only visits states in β.

Finding a Büchi automaton that accepts the complement of a nondeterminis-
tic Büchi automaton is complicated and leads to an exponential blow-up [Saf88].
Alternating automata can be complemented without blow-up by dualizing the
transition function and acceptance condition [MS87]. Thus, it is also very sim-
ple to construct an alternating automaton that accepts those words that are
accepted by the first but not by the second automaton:

Theorem 1. For two Büchi automata A1 = 〈Σ, Q1, θ1, ρ1, α1〉, A2 =
〈Σ, Q2, θ2, ρ2, α2〉 (where ρ2(p, l) 6= ∅ for all p ∈ Q2, l ∈ Σ), the alternating
automaton A = 〈Σ, Q, θ, ρ, α, β〉 with

– Q = Q1 ∪Q2,

– θ = {θ2 ∪ {p} | p ∈ θ1},
– ρ(s, a) = if (s ∈ Q1) then {{p} | p ∈ ρ1(s, a)} else {ρ2(s, a)},
– α = α1 ∪Q2,

4

– β = (Q2\α2) ∪Q1

accepts the language L(A) = L(A1) ∩ L(A2).

Example 2. An alternating automaton for the language L(C) = L(A) ∩ L(B) is
shown in Figure 2.

4 Binary Decision Diagrams

A binary decision diagram (BDD) [Bry86] is a data structure for the representa-
tion of Boolean functions f : Bn → B. In their reduced and ordered form, BDDs
represent Boolean functions canonically for fixed variable orderings. For many
examples BDDs significantly outperform other representations. BDDs can be
used to store sets of states, represented by their characteristic function: Boolean
“or” corresponds to set union, “and” to intersection. BDDs are also used to rep-
resent relations on states, such as the transition function of an automaton. This
is done by adding a second “primed” copy for each variable.

Definition 3 (BDD). A (deterministic) binary decision diagram (BDD)
(V, Q, E0, E1, φ) is a directed acyclic graph with internal nodes Q, edges E0∪E1,
a single root φ and two terminal nodes 0,1. Each internal node n ∈ Q has ex-
actly two departing edges low(n) ∈ E0, high(n) ∈ E1. Every internal node n ∈ Q

is labeled with a variable var(n) ∈ V.

The successor nodes along the low(n) and high(n) edges are referred to as
the low and high successors of n. A BDD d with root node φ defines a Boolean
function fd = fφ : Bn → B as follows:

– the terminal node 1 defines the constant function true.
– the terminal node 0 defines the constant function false.
– an internal node n ∈ Q represents the function

f : (if var(n) then f1 else f0)

where f0, f1 are the functions represented by the low and high successors,
respectively.

Of special interest are BDDs in a canonical form called reduced and ordered.

Definition 4. A BDD is ordered (OBDD), if on all paths through the graph the
labeling respects a given linear order on the variables v1 > v2 > · · · > vn; i.e.,
on all paths through the graph, smaller variables are traversed first. An OBDD
is reduced (ROBDD) if

1. no two different internal nodes have the same label and the same high and
low successors,

2. no internal node has identical high and low successor.

Theorem 2. [Bry86] For any Boolean function f : Bn → B and a given variable
ordering, there is (up to isomorphism) exactly one ROBDD d s.t. fd = f .

5

z

y

x x

0 1

z

x

0 1

z

y

x

0 1

z

y

x

0 1

Fig. 3. Nondeterministic BDD (left) and three embedded deterministic BDDs. Solid
edges are high-successors, dotted edges low -successors.

5 Nondeterministic Binary Decision Diagrams

For the analysis of alternating automata we need a more expressive representa-
tion than BDDs. Sets of sets of states as they occur, for example, in the initial
condition or as sets of configurations, cannot be represented as a conventional
BDD. The extension we present in this section uses nondeterministic BDDs to
represent sets of Boolean functions. We interpret the nondeterministic BDD to
describe the set of all deterministic BDDs that can be embedded in it.

Example 3. Figure 3 shows a nondeterministic BDD and the three embedded
deterministic BDDs.

Nondeterministic BDDs may have more than one root node, and the out-
degree of internal nodes may be higher than two, so we consider the sets of High
and Low departing edges.

Definition 5. A nondeterministic binary decision diagram (NBDD)
(V, Q, E0, E1, Φ) is a directed acyclic graph with internal nodes Q, edges
E0 ∪ E1, a set of root nodes Φ ⊆ Q, and two terminal nodes 0,1. The set of
departing edges from an internal node n ∈ Q is partitioned into Low(n) ⊆ E0

and High(n) ⊆ E1. Every internal node n ∈ Q is labeled with a variable
var(n) ∈ V.

A NBDD D with root set Φ defines a set of Boolean functions FD = FΦ ⊆
2B

n→B as follows:

– the terminal node 1 defines the set F1 = {true}.
– the terminal node 0 defines the set F0 = {false}.
– a set of nodes Ψ defines the union of the sets represented by the individual

nodes: FΨ =
⋃

n∈Ψ Fn.
– for an internal node n ∈ Q, let H,L denote the sets defined by its High and

Low successors, respectively. Then n defines the set:

F =

{

(if var(n) then f1 else f0)
s.t. f0 ∈ L and f1 ∈ H

}

6

BDDs are therefore a special (deterministic) case of NBDDs: for a given
BDD (V, Q, E0, E1, φ) the NBDD (V, Q, E0, E1, {φ}) characterizes the singleton
set containing the Boolean function defined by the BDD.

Definition 6. A BDD d = (V, Qd, E0
d, Ed

1 , φd) is embedded in an NBDD D =
(V, QD, E0

D, ED
1 , ΦD) iff there is a simulation function γ : QD → Qd with

γ(0) = 0, γ(1) = 1, φd ∈ γ(ΦD) and for all nodes n ∈ QD, var(n) = var(γ(n)),
if γ(n′) is the lowd-successor of γ(n) then n′ is a LowD-successor of n, if γ(n′)
is the highd-successor of γ(n) then n′ is a HighD-successor of n.

We say that two node sets Φ1, Φ2 in an NBDD are mutually exclusive iff there
is no BDD that is embedded in both the NBDD with root node set Φ1 and the
NBDD with root node set Φ2. The notions of ordered and reduced diagrams can
now be lifted to NBDDs:

Definition 7. A NBDD is ordered (ONBDD), if on all paths through the graph
the labeling respects a given linear order on the variables v1 > v2 > . . . > vn. An
ONBDD is reduced (RONBDD) if

1. no two different internal nodes have the same label and the same High and
Low successor sets,

2. the High and Low successor sets of an internal node are mutually exclusive.

Theorem 3. Let d be a ROBDD and D a ONBDD with the same variable order.
d is embedded in D iff fd ∈ FD.

Proof. By structural induction. ut

RONBDDs are not a canonical representation of sets of Boolean func-
tions. To achieve canonicity, more restrictions on the grouping of functions
(if v then f1 else f0) that have a common negative cofactor f 0 or a common
positive cofactor f 1 are necessary. One such restriction, which we will call the
negative-normal form, is to require that the functions are grouped by their neg-
ative cofactors f0.

Definition 8. A RONBDD D = (V, Q, E0, E1, Φ) is in negative-normal form
iff the following holds for all nodes n ∈ Q:

1. there is only one low-successor: Low(n) = {low(n)},
2. the low-successor is a BDD,

3. no two different High-successors or root nodes are labeled by the same vari-
able and have the same low-successor.

Theorem 4. For any set of Boolean functions F ⊆ 2B
n→B and a given variable

ordering, there is (up to isomorphism) exactly one RONBDD D in negative-
normal form s.t. FD = F .

7

Proof. We show, by induction on m, that for any subset of the set of variables
{v1, . . . , vm} ⊆ {v1, . . . , vn} (with variable order v1 > v2 > · · · > vn), any set of
functions Fm ⊆ (2B

n→B) that only depend on variables in {v1, . . . , vm} can be
canonically represented by a RONBDD in negative-normal form. In the following
we will assume sharing of subgraphs, and identify NBDDs by their root node
sets, BDDs by their root node.

m = 0: There are four different sets of functions not depending on any
variable: ∅, {true}, {false}, {true, false}. These sets are uniquely represented by
the RONBDDs with root node sets ∅, {0}, {1}, {0,1}, respectively.

m → m+1: We construct the set of root nodes F for a set Fm+1, where vm+1

is the least variable some function in Fm+1 depends on. For each function f in
Fm+1 we consider the positive and negative cofactor f b(x1, . . . , xm+1, . . . , xn) =
f(x1, . . . , b, . . . , xn), b ∈ B [the (m + 1)st argument is replaced by b]. This allows
us to separate the subset of functions A that do not depend on vm+1:

A = { f | f ∈ Fm+1 and f0 = f1 }.
For all other functions we separate the positive and negative cofactor in the fol-
lowing set of pairs:

B = { (f0, f1) | f ∈ Fm+1 and f0 6= f1 }.
Next, we group the positive cofactors by the negative cofactors:

C = { (f, X) | ∃g . (f, g) ∈ B, X = {g | (f, g) ∈ B} }.
The resulting sets of positive cofactors contain only functions that do not de-
pend on vm+1. The same holds for the set of functions in A. By the induction
hypothesis, we can therefore find negative-normal RONBDDs as follows:

D = { (df , DY) | df is the canonical ROBDD for f,

DY is the root node set of the canonical RONBDD
for Y with (f, Y) ∈ C },

E = the root node set of the canonical RONBDD for A.
Finally, we can construct the set of root nodes for Fm+1:

F = {〈var = vm+1, low = df ,High = DY 〉 | (df , DY) ∈ D} ∪ E.
The constructed NBDD is ordered, reduced and in negative-normal form since
the NBDDs in D and E are, and the newly constructed nodes maintain all
conditions. It remains to show that the RONBDD is unique.

Assume there was a different negative-normal RONBDD with root node set
F ′ defining Fm+1. Consider the functions in Fm+1 that do not depend on vm+1:
since the High and Low successors of any node must be mutually exclusive,
they cannot be contained in the set represented by a node labeled by vm+1

(reducedness). By the induction hypothesis we know that the set of all nodes in
F that are not labeled by vm+1 is canonical (the functions represented by the
subset depend only on greater variables). Thus F and F ′ must differ in nodes
that are both labeled by vm+1.

Suppose there are two functions f1, f2 that are characterized by the same root
node in one diagram but by two different root nodes in the other. All functions
characterized by the same node in a ROBDD in negative-normal form have the
same negative cofactor (conditions 1 and 2 and Theorem 2). Thus the diagram
that represents them on two different nodes cannot be in negative-normal form
(condition 3). ut

8

Union(N, M)
1 R← (N ∪M) ∩ {0,1}
2 for all n ∈ N

3 if ∃m ∈M . var(n) = var(m), low(n) = low(m)
4 then R← R ∪ { 〈var(n), low(n),Union(High(n),High(m))〉 }
5 else R← R ∪ {n}
6 for all m ∈M

7 if @n ∈ N . var(n) = var(m), low(n) = low(m)
8 then R← R ∪ {m}
9 return R

Fig. 4. Operation Union, computing the union of two sets represented by negative-
normal NBDDs.

It is straightforward to implement traditional BDD operations (like the ap-
plication of boolean operations, variable substitution, or quantification) and set
operations on NBDDs. As an example, consider Union, shown in Figure 4.
We assume sharing of subgraphs and identify BDDs with their root nodes and
NBDDs with their root node sets. The Union operation computes the negative-
normal RONBDD representing the union of two sets represented by two negative-
normal RONBDDs. This is done by considering corresponding nodes in the two
root node sets. Two nodes correspond if they are labeled with the same variable
and have the same low -successor. The union is computed by recursing on pairs of
corresponding nodes and simply adding nodes that do not have a corresponding
node in the other set.

6 Emptiness of Alternating Automata

As discussed in Section 3, the language containment problem between non-
deterministic Büchi automata is easily reduced to the emptiness problem of
alternating automata. In this section we develop a fixpoint algorithm for the
emptiness problem. The reachable configurations of an alternating automaton
can be computed in a forward propagation from θ. To decide if the finite dag
leading to such a configuration can be completed into an accepting run we
identify gratifying segments, i.e., segments that would, if repeated infinitely
often, form the suffix of an accepting run.

Gratifying segments. Consider an alternating automaton A =
〈Σ, Q, θ, ρ, α, β〉. A run segment is a finite dag (N, E), where the nodes are
labeled with states state : N → Q, such that for each state v in a configuration,
the set of states on successor nodes is one of the successor sets in ρ(v, l) for
some input letter l ∈ Σ. We characterize gratifying segments w.r.t. a complete
preorder � on the states in the source configuration. It will be helpful to iden-
tify nodes that are on some path from a source node p to a target node p′, s.t.
state(p) ≈ state(p′); we call such nodes fixed. A run segment S is gratifying if

9

1. the source and target configuration are the same,
2. all fixed nodes are labeled by β-states,
3. all paths in S visit a node with an α-state,
4. all paths originating from a source node labeled by a state p lead to nodes

in the target slice that are labeled with states equivalent to, or smaller than
p, and

5. all paths originating from a source node labeled by a state p that visit a non-
fixed node lead to target nodes that are labeled with states strictly smaller
than p.

Example 4. The segment from slice 2 to slice 4 (configurations {a, D, A},
{b, D, B, C}, {a, D, A}) of the computation in Figure 2 is gratifying w.r.t. the
preorder a ≈ D ≺ A. In slices 2 and 4 all nodes are fixed; in slice 3 the nodes
labeled by b, D and C are fixed.

Lemma 1. Let L be a gratifying run segment of an alternating automaton, and
P a finite run prefix leading to the source slice of L. Then the dag G = P · Lω,
constructed by appending an infinite number of copies of L to P , is a computation
of A.

Proof. All paths in L visit an accepting state; the paths in Lω therefore visit an
accepting state infinitely often. A path that does not visit a fixed node in L leads
to a target node that is labeled by a strictly smaller state than the state on the
node it visited in the source slice. Thus, since there are only finitely many states
in the source configuration of L, every path in Lω eventually visits a fixed node.
From there, a path can either (1) stay forever in fixed nodes (and therefore in
stable states) or (2) visit a non-fixed node and, again, lead to a target node with
a strictly smaller state. Hence, eventually (1) must occur. ut

Lemma 2. Let G be a computation of the alternating automaton A. There is a
preorder � and a finite prefix P of G that leads to a segment L that is gratifying
w.r.t. �.

Proof. For the given computation G we apply a ranking construction by Kupfer-
man and Vardi [KV97]. Consider the following sequence of subgraphs of G.

– G0 = G.
– G2i+1 = G2i minus all nodes from which there are only finitely many nodes

reachable. Assign rank 2i to all the subtracted nodes.
– G2i+2 = G2i+1 minus all nodes from which only nodes with β-states are

reachable. Assign rank 2i + 1 to all the subtracted nodes.

G2|Q|+1 is empty [KV97], i.e., the number of ranks is bounded. There must be
infinitely many occurrences of some configuration x, s.t. the nodes with the same
state label have the same rank in the two occurrences. We select two occurrences
s.t. all paths on the run segment L between them visit an α-state and a node with
odd rank. L is a gratifying segment with the order � induced by the ranking.
The fixed states have odd rank, non-fixed states even rank. Along a path the
rank never increases. ut

10

Annotated configurations. To recognize gratifying segments we keep track
of the gratification conditions in configurations. An annotated configuration is
a tuple 〈x, f, t, u,�〉 where x is a set of states, t, u are subsets of x, f is a
subset of β ∩ x, and � is a complete preorder on x. The goal is to capture
the states on fixed nodes in f , “trapped” states (i.e., states on nodes s.t. all
originating paths visit a fixed node) in t, and “fulfilling” states (i.e., states on
nodes s.t. all paths that originate from this node visit an α-node) in u. We now
introduce constraints that ensure that these sets are propagated consistently in
a sequence of annotated configurations. Consider two consecutive configurations
〈x, f, t, u,�〉 and 〈x′, f ′, t′, u′,�′〉. We require that there exists a letter l of the
input alphabet s.t. for each state v ∈ x there is a set yv ∈ ρ(v, l) so that the
following constraints are satisfied:

1. for all v ∈ x, yv ⊆ x′,
2. for all v′ ∈ f ′ there is a v ∈ f s.t. v′ ∈ yv,
3. for all v ∈ f , f ′ ∩ yv 6= ∅,
4. for all v ∈ t− f , yv ⊆ t′,
5. for all v ∈ u− α, yv ⊆ u′,
6. for all v′ ∈ f ′ and v ∈ x − f , s.t. v′ ∈ yv, there is a w ∈ f s.t. v′ ∈ yw and

w ≺ v,
7. for all v′ ∈ f ′ and all w′ ∈ x′ with w′ ≺′ v′, there exists a v ∈ f s.t. v′ ∈ yv

and for all w ∈ x with w′ ∈ yw, v ≺ w, and
8. for all v ∈ f s.t. there is a w ∈ x with w ≺ v, there exists a v ′ ∈ f ′ with

v′ ∈ yv s.t. for all w′ ∈ yw, w′ ≺′ v′.

Let Y be a set of annotated configurations. We say that an annotated config-
uration a is eventually accepting w.r.t. Y iff there is a sequence of annotated
configurations, where a is the first and some b ∈ Y the last configuration,
and where every two consecutive configurations satisfy the constraints above.
Let EventualAccept(Y) denote the set of annotated configurations that are
eventually accepting w.r.t. Y .

Lemma 3. Let S be a gratifying segment leading from a configuration x back to
x; then there is an annotation for the source configuration a = 〈x, f, t = x, u =
x,�〉 and an annotation for the target configuration a′ = 〈x′ = x, f ′ = f, t′ =
f, u′ = x ∩ α,�〉 s.t. for every set Y of annotated configurations that includes
a′, a ∈ EventualAccept(Y).

Proof. First, we construct a segment S ′ in which every path visits a fixed node
(by appending as many copies of S as needed). For each slice s in S ′ we define
the following annotated configuration 〈xs, fs, ts, us,�s〉:

– xs contains the states on nodes in s,
– fs contains exactly the states on the fixed nodes in s,
– ts contains exactly the states on those nodes for which all paths that originate

from the node visit a fixed node,
– us contains exactly the states on those nodes for which all paths that origi-

nate from the node visit an α-node,

11

– �s is the following preorder:
for two states v, w on nodes p, q that are both in fs or both in xs − fs,
v ≺s w iff there is a target node q′ reachable from q s.t. for all target nodes
p′ reachable from p, state(p′) ≺ state(q′);
for two states v ∈ fs, w ∈ xs − fs on nodes p, q, v ≺s w iff there is a
target node q′ reachable from q s.t. for all target nodes p′ reachable from p,
state(p′) � state(q′).

The resulting sequence of annotated configurations satisfies the constraints. Due
to space limitations we skip the detailed argument here. ut

Let Unmark(X) denote the set of annotated configurations, s.t. 〈x, f, f, x∩
α,�〉 ∈ Unmark(X) for 〈x, f, t, u,�〉 ∈ X. Let Filter(X) be the subset of the
set of annotated configurations X s.t. u = x, t = x.

Lemma 4. Let a = 〈x, f, t, u,�〉 be an annotated configuration in a set Y s.t.
Y = Filter(EventualAccept(Unmark(Y))). Then there is a gratifying seg-
ment S.

Proof. Because of constraint (1) there is a run segment S corresponding to the
sequence of configurations in the construction of EventualAccept. We show
that S is gratifying. For a slice s, let 〈xs, fs, ts, us,�s〉 denote the corresponding
annotated configuration.

Claim 1: For two nodes p, q in the same slice s, if state(q) ≺s state(p),
state(p) ∈ fs then there is a path from p to a node p′ in the target slice labeled
by an f -state, s.t. for all nodes q′ in the target slice that can be reached from q,
state(q′) ≺ state(p′).
Proof by induction on the length of S using constraint (8).

Claim 2: For two nodes p′, q′ in the same slice s, if state(p′) ≺s state(q′),
state(p′) ∈ fs then there is a path from a source node p, with state(p) ∈ f , to
p′, s.t. for all nodes q in the source slice that can reach q ′, state(p) ≺ state(q).
Proof by induction on the length of S using constraint (7).

Claim 3: For all nodes p′ in the target slice that are reachable from a source
node p: state(p′) � state(p).
Proof: Case (A): state(p) ∈ f . Assume there is a path from p to a node p′

in the target slice with state(p) ≺ state(p′). Let q′ be the node in the target
s.t. state(q′) = state(p). By Claim 2, there is a path from a node q in the
source slice with state(q) ∈ f to q′ with state(q) ≺ state(p′), state(q) ∈ f .
Hence, state(q) ≺ state(p) = state(q′). Let o′ be the node in the target slice
s.t. state(o′) = state(q). Again, using Claim 2, we can find a node in the source
slice with an f -state that is smaller than state(q). Since this argument can be
repeated infinitely often the source configuration must contain infinitely many
different states.
Case (B): state(p) 6∈ f . Let s′ be the first slice with a fs′ -node p1 on the path
from p to p′, and s the slice with the non-fs predecessor p0 of p1. By constraint
(6) there must be a fs-predecessor p′0 of p1, s.t. state(p′0) ≺ state(p0). By Claim
2, there is a source node q with state(q) ∈ f and state(q) ≺ state(p). By case

12

(A) all target nodes that are reachable from q are labeled by states smaller than
or equivalent to state(q). In particular, state(p′) � state(q) ≺ state(p).

Claim 4: For a node p′ in some slice s with state(p′) ∈ fs there is a path from
a source node p to a target node p′′ with state(p) ≈ state(p′′) and state(p) ∈
f, state(p′′) ∈ f that visits p′.
Proof: An induction on the size of the segment of S up to s using constraint
(2) and a second induction on the size of the segment beginning with s using
constraint (3) shows that there is indeed a source node p ∈ f and a target node
p′′ ∈ f s.t. p′ is on a path between them. By Claim 3, state(p′′) � state(p).
Now assume state(p′′) ≺ state(p). By Claim 2, there is a source node q ∈ f s.t.
state(q) ≺ state(q). Let o be the node in the target slice labeled by state(q).
Again, using Claim 2, we can find a node in the source slice with an f -state
smaller than state(q). Since this argument can be repeated infinitely often the
source configuration must contain infinitely many different states.

Claim 5: If there is a path from a source node p to a target node p′′ with
state(p) ≈ state(p′′), then for all nodes p′ on the path (where p′ is a node in slice
s), state(p′) ∈ fs.
Proof: Since all states in the source slice are contained in t, we know (because
of constraint 4) that every path in S visits at least one fs′ -node in some slice s′.
Consider the case that state(p) 6∈ f . Now let s′ be the first slice with a fs′ -node
p1 that is visited on the path from p to p′′. Let s be the previous slice containing
p0, the non-fs predecessor of p1. By constraint (6), there is a node q0 in s, s.t. p1

is a successor of q0, state(q0) ∈ fs and state(q0) ≺s state(p0). By Claim 2, there
is a source node q s.t. state(q) ≺ state(p) and there is a path from q to q0. Since
p′′ is reachable from q, by Claim 3, state(p′′) � state(q). This is in contradiction
to state(p) ≈ state(p′′).
Now consider the case that state(p) ∈ f . Let s′ be the first slice with a non-
fs′ -node p1 that is visited on the path from p to p′′. Let s be the previous slice
containing p0, the fs-predecessor of p1. By constraint (8) there is a node q1 in
s′, s.t. p0 is a predecessor of p1, state(q1) ∈ fs′ , and state(p1) ≺s′ state(q1). By
Claim 1, there is a target node q′′ s.t. state(m′′) ≺ state(q′′), and there is a path
from q1 to q′′. Since q′′ is reachable from p, by Claim 3 state(q′′) � state(p).
This again is in contradiction to state(p) ≈ state(p′′).

Proof of the lemma: By Claims 4 and 5, the fixed nodes are exactly the nodes
labeled by fs-states. Because of u = x and constraint 5 all paths in S visit an
α-node. By Claim 3, all paths lead to smaller or equivalent states in the target.
Paths that visit a non-fixed node lead to target nodes with strictly smaller states
by Claim 5. ut

With these results we can now formulate the algorithm for the emptiness
check of alternating automata, shown in Figure 5. Let Reachable(A) denote
the set of reachable configurations. Annotate(X) computes for a set of con-
figurations X a set of annotated configurations, s.t. for a configuration x all
annotations 〈x, f, f, x ∩ α,�〉 are added where f ⊆ x ∩ β. We state the correct-
ness of the algorithm as the following two theorems.

Theorem 5. If L(A) = ∅ then Empty(A).

13

Empty(A)
1 A← ∅
2 B ← Annotate(Reachable(A))
3 while (A 6= B) do

4 A← B

5 B ← B ∩ Filter(EventualAccept(Unmark(B)))
6 return (B = ∅)

Fig. 5. Fixpoint algorithm for the emptiness check of alternating automata.

Proof. Suppose there is an annotated configuration 〈x, f, t, u,�〉 ∈ B. By
Lemma 4 there exists a gratifying segment L leading from configuration x to
x. Since x ∈ Reachable(A) there is a run segment P leading from an initial
configuration to x. Thus, by Lemma 1, A has a computation P · Lω. ut

Theorem 6. If Empty(A) then L(A) = ∅.

Proof. Suppose there is a computation G of A. By Lemma 2, there is an ini-
tial segment P and an infinitely often repeated gratifying segment L. Let x

be the source configuration of L. x ∈ Reachable(A). By Lemma 3 there is
an annotated configuration a = 〈x, f, t = x, u = x,�〉 that is included in
EventualAccept(Y), if a′ = 〈x, f, t′ = f, u′ = x ∩ α,�〉 ∈ Y . Since a ∈
Annotate(Reachable(A)), a′ ∈ Unmark(Y) if a ∈ Y , and a ∈ Filter(Y) if
a ∈ Y , a is included in every iteration of B. ut

7 Conclusions

The data structures and algorithms presented in this paper are the basis of a
symbolic verification system for language containment. In comparison to the
classic construction, that starts with the determinization of the specification au-
tomaton, our algorithm is both simpler and, for certain problems, more efficient:
because the two automata are combined early, no effort is wasted on the deter-
minization of parts of the specification automaton that are not reachable in the
intersection with the implementation automaton.

It should be noted, however, that our solution does not improve on the
worst-case complexity of the standard algorithm. While first results with our
prototype implementation are encouraging, advanced implementations and case
studies are necessary to determine the characteristics of systems for which the
symbolic approach is useful. The performance of NBDDs depends strongly on
implementation issues like the constraints of the chosen normal form.

Efficient representations of sets of Boolean functions are of interest beyond
the language containment problem. An example is the state minimization of
incompletely specified finite state machines [KVBSV94]: the standard algorithm
computes sets of sets of (compatible) states.

14

Acknowledgements: I am grateful to the members of the STeP research group
at Stanford University for our discussions and their comments on drafts of this
paper, as well as to the anonymous referees for their comments and suggestions.

References

[AHM+98] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.
Mocha: modularity in model checking. In A. Hu and M. Vardi, editors,
CAV 98: Computer-aided Verification, Lecture Notes in Computer Science
1427, pages 521–525. Springer-Verlag, 1998.

[BD96] V. Bertacco and M. Damiani. Boolean function representation using paral-
lel access diagrams. In The Sixth Great Lakes Symposium on VLSI. IEEE,
1996.

[BMUV97] N. Buhrke, O. Matz, S. Ulbrand, and J. Vöge. The automata theory
package omega. In WIA’97, vol. 1436 of LNCS. Springer-Verlag, 1997.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[KV97] O. Kupferman and M. Vardi. Weak alternating automata are not that

weak. In 5th Israeli Symposium on Theory of Computing and Systems,
pages 147–158. IEEE Computer Society Press, 1997.

[KVBSV94] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully
implicit algorithm for exact state minimization. In 31st ACM/IEEE Design
Automation Conference, pages 684–690. ACM, 1994.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees.
Theoretical Computer Science, 54(2–3):267–276, October 1987.

[MS00] Z. Manna and H.B. Sipma. Alternating the temporal picture for safety.
In U. Montanari, J.D. Rolim, and E. Welzl, editors, Proc. 27th Intl. Col-
loq. Aut. Lang. Prog., vol. 1853, pages 429–450, Geneva, Switzerland, July
2000. Springer-Verlag.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp.
Found. of Comp. Sci., pages 319–327, 1988.

[TBK95] H. Touati, R.K. Brayton, and R. Kurshan. Testing language containment
for ω-automata using BDDs. Inf. and Comp., 118(1):101–109, April 1995.

[THB95] S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using
non-deterministic omega-automata. In Proc. of CHARME ’95: Advanced
Research Working Conference on Correct Hardware design and verification
methods, vol. 987 of LNCS. Springer-Verlag, 1995.

[Tho94] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier Science Publishers
(North-Holland), 1994.

[TNB+97] K. Takagi, K. Nitta, H. Bouno, Y. Takenaga, and S. Yajima. Compu-
tational power of nondeterministic ordered binary decision diagrams and
their subclasses. IEICE Transactions on Fundamentals, E80-A(4):663–669,
April 1997.

[Var95] M.Y. Vardi. Alternating automata and program verification. In J. van
Leeuwen, editor, Computer Science Today. Recent Trends and Develop-
ments, vol. 1000 of LNCS, pages 471–485. Springer-Verlag, 1995.

15

