UpPPAAL/DMC — Abstraction-based Heuristics for
Directed Model Checking

Sebastian KupferschmidKlaus Diaget, Jorg Hoffmanri, Bernd Finkbeinet,
Henning Dierk$, Andreas Podelskj and Gerd Behrmarin

1 University of Freiburg, Germany
{kupfersc,podelski }@informatik.uni-freiburg.de
2 Universitit des Saarlandes, Sadrtken, Germany
{draegerfinkbeiner }@cs.uni-sb.de
3 Digital Enterprise Research Institute, Innsbruck, Austria
joerg.hoffmann@deri.org
4 OFFIS, Oldenburg, Germany
dierks@offis.de
5 Aalborg University, Denmark
behrmann@cs.aau.dk

Abstract. UrPPAAL/DMC is an extension of BPAAL that provides generic heuris-
tics for directed model checking. In this approach, the traversal ofttte space

is guided by a heuristic function which estimates the distance of a searchostate
the nearest error state. Our tool combines two recent approachesigmduch
estimation functions. Both are based on computing an abstraction of tteersys
and using the error distance in this abstraction as the heuristic value. Sinacab
tions, and thus the heuristic functions, are generated fully automaticalld@nd
not need any additional user inputPBAAL/DMC needs less time and memory
to find shorter error paths thanPBAAL's standard search methods.

1 Introduction

UpPpPAAL/DMC is a tool that accelerates the detection of error sthyessing the di-
rected model checking approach [1, 2]. Directed model dnectackles the state ex-
plosion problem by using laeuristic functiorto influence therderin which the search
states are explored. A heuristic functibiis a function that maps states to integers, esti-
mating the state’s distance to the nearest error state.€gretsthen gives preference to
states with lower, value. There are many different ways of doing the lattegfalthich
we consider the wide-spread method calieeledy searclfi3]. There, search nodes are
explored in ascending order of their heuristic values. Onpiecal results show that
this can drastically reduce memory consumption, runtimd,exror path length.

Our tool combines two recent approaches to design heufigtictions. Both are
based on defining an abstraction of the problem at hand, &imtthe heuristic value
to be the length of an abstract solution. It is important ttertbat both techniques are
fully automatic i.e., no user intervention is needed to generate the lieuiisiction.
UpPPAAL has a built-in heuristic mode, but the specification of theriséic is entirely
up to the user. Inventing a useful heuristic is a tediousitalequires expert knowledge
and a huge amount of time.

2 Heuiristics

The next two sections give a brief overview of the abstrastiosed to build our heuris-
tics, and how heuristic values are assigned to search states

2.1 Monotonicity Abstraction

Our first heuristic [4] adapts a technique from Al Planningmelyignoring delete lists
[5]. The idea of this abstraction is based on the simplifyaggumption thagvery state
variable, once it obtained a value, keeps that value forelver, the value of a variable
is no longer an element, butsaibsetof its domain. This subset grows monotonically
over transition applications — hence the name of the aligirac

When applying the monotonicity abstraction to a system oétimutomata, then
each automaton will (potentially) be in several locatiama state. The system’s integer
variables will have several possible values in a state. 6oldaks are not included in
the computation of heuristic values. If we included cloakshe obvious way, every
guard or invariant involving a clock would be immediatelyisiéed. The reason for this
is that clock value sets quickly subsume all possible tiriatpo

Our heuristich™“ assigns to each state encountered during search a heusistc
by solving an abstract problem. Such an abstract problerbt&red by applying the
monotonicity abstraction to the current state. The lendth solution found in this
abstraction is then used as the heuristic estimate for #te'stistance to the nearest
error state. In a nutshell, an abstract solution is comphbtederatively applying all
enabled transitions to the initial abstract state (theedatwhich we want to estimate
the distance), until either the enlarged state subsumesranstate, or a fixpoint is
reached. In the former case, an abstract solution can kecgadtiby backtracing through
the state enlargement steps. In case of reaching a fixpartawexclude this state from
further exploration: the monotonicity abstraction indsie@ over-approximation, i.e. so
if there is no abstract error path, then there is no real aheri

2.2 Automata-theoretic Abstraction

The second heuristic [6] aims at a close representationeoptbcess synchronisation
required to reach the error. Each process is representefirdte astate automaton. The
heuristich®® estimates the error distandés) of a system state as the error distance
of the corresponding abstract statés) in an abstraction that approximates the full
product of all process automata.

The approximation of the product of a set of automata is cdetpincrementally
by repeatedly selecting two automata from the current sgétr@placing them with an
abstraction of their product. To avoid state space exphpgtee size of these interme-
diate abstractions is limited by a preset bouvidto reach a reduction t&/ states, the
abstraction first merges bisimilar states and then stateseverror distance is already
high in the partial product.

In this way, the precision of the heuristic is guaranteecetbilgh in close proximity
to the error, and can, by settiig, be fine-tuned for states further away from the error.
In our experiments, fairly low values a¥, such asNv = 100, already significantly

speed up the search for the error, and therefore represeunidatigpde-off between cost
and precision.

3 Results

We compare the performance ofPBAAL/DMC'’s greedy search and RPAAL'S ran-
domised depth first search (rDF), which issRAAL’s most efficient standard search
method across many examples. The results for rDF in Tablee legraged over 10
runs. TheC; examples stem from an industrial case study called “Sitrgleked Line
Segment” [7] and théZ; examples come from another case study, namely “Mutual Ex-
clusion” [8]. An error state was made reachable by increpaimupper time bound in
each example.

The results in Table 1 clearly demonstrate the potentialioheuristics. The heuris-
tic searches consistently find the error paths much fasige. tb the reduced search
space size and memory requirements, they can solve allgmsblAt the same time,
they find, by orders of magnitudmuchshorter error paths iall cases.

Table 1.Experimental results of BPAAL’Ss rDF and PPAAL/DMC's greedy search with™*and
h®®. The results are computed on an Intel Xeon with 3 Ghz and 4 GB of RAMhEB=&indicate
out of memory.

runtime in s explored states [|[memory in MB| trace length
Exp|rDF| ™| h*| rDF| K™ h*|[DF| ™| h"*|| rDF| n™| A"
M| 0.8 0.1 0.2| 29607 5656 1278Q| 7 1| 111072 169 74
M|l 3.1] 0.3 0.9|118341 30742 46337 10 11| 11||3875 431 190
Ms|| 2.8 0.2 0.8|102883 18431 42414| 9| 10| 113727 231 92
M,||12.7 0.8 1.9|543238 76785126306 22| 13| 14| 15K| 731 105

C; || 0.8 0.2 05 25219 2339 810 7, 9| 111065 95 191
Cy || 1.0 0.3 1.0| 65388 5090 2620, 8| 10 19| 875 86| 206
Cs || 1.1 0.5 1.1] 8594Q 6681 2760 10, 10 19| 760 109 198
Cy || 84 25 1.8|892327 40147 25206, 43| 11 23||1644 125 297
Cs ||72.4 13.21 4.0] 8.0e+6237600155669(295 21| 28||2425 393 350

Cs - 10.3 14.9 —|207845 1.2e+6| —| 20| 67 —| 309 404
Cr - 169.9 162.4 —| 2.7e+71.3e+f| -—| 595 676| —{1506 672
Cs - 14.5 155.3 —331733 1.2e+1f| —| 23| 672 —| 686221(Q
Co —1198.01046.0 —| 1.3e+8 3.6e+1| —|2.5G1.6G| —|18K|102(Q

Other heuristis, proposed by Edelkamp et al. [1, 2] in theedrof SPIN, are based
on graph distances. The underlying abstraction of theseadties preserves only edges
and locations of an automata system. For an automateni(a) be the distance af’s
start location to its target location. Then, thg = heuristic is defined asiax, d(a).
Thehg?, heuristic is defined a%_, d(a).

Note thath9¢ andhd? = are rather crude approximations of the systems semantics.

maxr sum

For example, they completely ignore variables and synébation. In contrast, the™¢

andh?* heuristics danot do this. Our approximations are more costly, i.e. one call of
h™a or he takes more runtime than one call bf¢, or h9% . The additional effort
typically pays off: for example, in the case studies showFable 1, greedy search with
max, d(a) and) " d(a) performs only slightly better than rDF, and much worse than

our heuristics; e.g. it cannot solve any@f, C~, Cs, andCy.

4 Outlook

The most important piece of future work is to explore the gaitiour tool in the abstrac-
tion refinement life cycle. The basic idea is to use heusstcaaddress the intermediate
iterations where (spurious) errors still exist. As our Iessshow, this has the potential
to speed up the proceandyield shorter, and thus more informative error paths. Hence
our technique for error detection will be able to help witltuatverification

4.1 Availability of the Tool

At http://www.informatik.uni-freiburg.de/"kupfersc/upp aal .dmc/, two
Linux executables of BPAAL/DMC are available. The first version is optimised for
Intel Pentium 4 processors, the other one was compiled veitault optimisation. The
page also provides a short description of the used benclsiremkiall used model and
query files.

References

1. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit edathecking with HSF-
Spin. In: Proceedings of the 8th International SPIN Workshop on M@Hecking of Soft-
ware (SPIN'2001). (2001) 57-79

2. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit-stadelel checking in the
validation of communication protocols. International Journal on So&wWwaols for Tech-
nology Transfer (2004)

3. Pearl, J.: Heuristics: Intelligent search strategies for computéterrosolving. Addison-
Wesley (1984)

4. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, Glapting an Al planning heuris-
tic for directed model checking. In: Proceedings of the 13th InternaltiSRIN Workshop
on Model Checking of Software (SPIN'2006). (2006)

5. Bonet, B., Geffner, H.: Planning as heuristic search. Artificialligence1291-2) (2001)
5-33

6. Drager, K., Finkbeiner, B., Podelski, A.: Directed model checking wisitashce-preserving
abstractions. In: Proceedings of the 13th International SPIN Wopkshdviodel Checking
of Software (SPIN’2006). (2006)

7. Krieg-Biickner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForMikidench, a uni-
versal development environment for formal methods. In Wing, JWbodcock, J., Davies,
J., eds.: FM’'99 — Formal Methods. Volume 1709 of LNCS., Sprir{@669) 1186—1205

8. Dierks, H.: Comparing model-checking and logical reasoningdaktime systems. Formal
Aspects of Computind6(2) (2004) 104-120

9. Dierks, H.: Time, Abstraction and Heuristics — Automatic Verification &tahning of
Timed Systems using Abstraction and Heuristics. (2005) Habilitation thesis.

10. Olderog, E.R., Dierks, H.: Moby/RT: A tool for specification aratification of real-time
systems. Journal of Universal Computer Scie®(@ (2003) 88—105

A Appendix

A.1 Outline of the oral presentation

In the talk, we are going to demonstrate our tool on a typigahgle from our bench-
mark suite. We will discuss what is difficult about these egbaw and how the difficul-
ties are addressed byPBAAL/DMC. We believe that this case study is interesting in
its own right. It is publicly available from the kPAAL/DMCwebpage (see Section 4.1)
as a point of reference for the evaluation of other, forthicgmtools.

The oral presentation of RPAAL/DMC will roughly be as follows (see Fig. 1). First
we will recall what is greedy and* search and how these search methods use heuristics
to guide the search. Hereinafter we will explain our absivas and how heurisitc
values are computed with concrete example. After explgittie used benchmarks we
will compare standard kPAAL with UPPAAL/DMC. Finaly, we will point out how
UPPAAL/DMC can be used for abstraction refinement and talk aboutélesteps of
UppPAAL/DMC.

Fig. 1. preliminary structure of the talk

— Introduction
— Motivation —why DMC at all?
— Heuristic Search
e Explaination of greedy and* search on some small example
— Heuristic Search applied to Model Checking
— Our framework for fully automatically generated heuristics, based stradiions

e The Monotonicity Abstraction

e Demonstration of the effect of the monotonicity abstraction on a small pbeam

e An Automata-Theoretic Abstraction

e Demonstration of the effect of this abstraction on a small example

— Benchmarks
e Short comments on used case studies (see A.2)
e Comparison BrAAL and UPPAAL/DMC

— Demo:

e We are going to demonstrate our tool on a typical example from our besrttsuite. We
will discuss what is difficult about these examples and how the difficulteeaddressed
by UpPAAL/DMC. We believe that this case study is interesting in its own right. It is
publicly available from the BPAAL/DMCwebpage (see 4.1) as a point of reference for
the evaluation of other, forthcoming, tools.

— Future Work and an application to Abstraction Refinement

A.2 Case Study Single-tracked Line Segment

The examples’;, i = 1, ..., 9, come from a case study called “Single-tracked Line
Segment”. This study stems from an industrial project partf the UniForM-project

[7]. The problem was to design a distributed real-time aaligr for a segment of tracks
where trams share a piece of track. Figure 2 sketches thensysthitecture.

Fig. 2. Architecture of the SLS case study.

The railway lines are marked by thick lines and share a slaott phe short arrows
describe the directions of trains. The movements of traieglatected by six sensors,
three for each direction. The arrival of trains is recogdibg entrance sensors ES1 and
ES2. The sensors CS1 and CS2 check whether a train entendtitted section, while
LS1 and LS2 recognise leaving trains. The information @eéd by the sensors are
processed by two computing devices called PLCs. These Pbtierthe movements
of trains and compute which direction is allowed to use tlitcat section.

A distributed controller was modelled in terms of PLC-Autatan [9], which is an
automata-like notation for real-time programs. The sysd@agram of the controller for
the SLS is given in Fig. 3. According to their tasks, we carinligish five different
automata in the system:

— First the signals of the sensors are filtered by six compaené&ihie purpose of these
filters is to compensate some inherent unreliabilities efgdnsor hardware.

— Four counters accumulate the information about passingstiaroduced by the
filters. For each zone of interest we need a counter to daterthie number of
trains in this zone. There is for each directiomvaiting zone(zone between the
entrance sensor and the critical sensor) and thereiigieal zone(zone between
the critical sensor and the leaving sensor).

If a counter recognises that the number of trains in its gpoading zone leaves
the plausible range, which |8, 2] for the SLS, an error signal is raised.

— One component summarises the error signals of all filtersandters.

— The permissions which direction is allowed to enter thaaaitsection are com-
puted in the main controller. The decision depends on theeotivalues of the
counter and the current state of the main controller.

— Two automata produce the signal for the traffic lights fortedicection. To this end
they need the information whether there is a train in its iwgizone, whether its
direction has got the permission to enter the critical sactand whether there is
an error in the system or not.

filter FES1

—»(4 4
— m@m counter EC1 Actuator 1
—X» & trains: 2| e 4l
filter FCS1 [1/2(7/8 Jum [é;, —>
—p|a 4 f main controller A
—p m@m counter CL1 a]
_1’0 trains: 4|
filter FLS1 o~ 1/2]7(8 |
4— a uj

—p|d
—> m@m
filter FES2

E 4
m@m] counter EC2

SV

—>
—p _X'
) A trains: 0: a 5 _)
filter FCS2 f 1/2|7/8] —ll ’
—p 4 4| »@ 5
—> m@m _X, counter CL2 [é;,« —>
& traing: &)
filter FLS2 f gilil || error detection Actuator 2

4 s d

o

—p| a—
»Qﬂ

\A 4

Fig. 3. System diagram of the SLS controller.
This figure shows the system diagram of the SLS case study. It contisigsfiem nodes,
which are represented by icons. For example, on the left side the diagnatains six filte
components, which are responsible for the transformation of the iIseuguts into reliable
values. The resulting signals, which are delivered to the traffic lights omatheay, are
generated by the two actuator components on the right of the diagram.

This system of PLC-Automata can be transformed into (abistras of) their se-
mantics in terms of timed automata with the tool Moby/RT [183dr the evaluation of
our approach we choose the property that never both directice given permission to
enter the shared segment simultaneously. This propertysisred by 3 PLC-Automata
(main controller, actuator 1, actuator 2) of the whole coligr, and we injected an error
by manipulating a delay so that the asynchronous commimicaetween these au-
tomata is faulty. In Moby/RT abstractions are offered far thanslation into the timed
automata. The given set of PLC-Automata has eight inputliées. We constructed
nine models with increasing size by decreasing the numbabstfacted inputs.

