
UPPAAL /DMC – Abstraction-based Heuristics for
Directed Model Checking

Sebastian Kupferschmid1, Klaus Dr̈ager2, Jörg Hoffmann3, Bernd Finkbeiner2,
Henning Dierks4, Andreas Podelski1, and Gerd Behrmann5

1 University of Freiburg, Germany
{kupfersc,podelski }@informatik.uni-freiburg.de

2 Universiẗat des Saarlandes, Saarbrücken, Germany
{draeger,finkbeiner }@cs.uni-sb.de

3 Digital Enterprise Research Institute, Innsbruck, Austria
joerg.hoffmann@deri.org

4 OFFIS, Oldenburg, Germany
dierks@offis.de

5 Aalborg University, Denmark
behrmann@cs.aau.dk

Abstract. UPPAAL/DMC is an extension of UPPAAL that provides generic heuris-
tics for directed model checking. In this approach, the traversal of thestate space
is guided by a heuristic function which estimates the distance of a search stateto
the nearest error state. Our tool combines two recent approaches to design such
estimation functions. Both are based on computing an abstraction of the system
and using the error distance in this abstraction as the heuristic value. The abstrac-
tions, and thus the heuristic functions, are generated fully automatically anddo
not need any additional user input. UPPAAL/DMC needs less time and memory
to find shorter error paths than UPPAAL’s standard search methods.

1 Introduction

UPPAAL/DMC is a tool that accelerates the detection of error statesby using the di-
rected model checking approach [1, 2]. Directed model checking tackles the state ex-
plosion problem by using aheuristic functionto influence theorder in which the search
states are explored. A heuristic functionh is a function that maps states to integers, esti-
mating the state’s distance to the nearest error state. The search then gives preference to
states with lowerh value. There are many different ways of doing the latter, allof which
we consider the wide-spread method calledgreedy search[3]. There, search nodes are
explored in ascending order of their heuristic values. Our empirical results show that
this can drastically reduce memory consumption, runtime, and error path length.

Our tool combines two recent approaches to design heuristicfunctions. Both are
based on defining an abstraction of the problem at hand, and taking the heuristic value
to be the length of an abstract solution. It is important to note that both techniques are
fully automatic, i.e., no user intervention is needed to generate the heuristic function.
UPPAAL has a built-in heuristic mode, but the specification of the heuristic is entirely
up to the user. Inventing a useful heuristic is a tedious job:it requires expert knowledge
and a huge amount of time.



2 Heuristics

The next two sections give a brief overview of the abstractions used to build our heuris-
tics, and how heuristic values are assigned to search states.

2.1 Monotonicity Abstraction

Our first heuristic [4] adapts a technique from AI Planning, namelyignoring delete lists
[5]. The idea of this abstraction is based on the simplifyingassumption thatevery state
variable, once it obtained a value, keeps that value forever. I.e., the value of a variable
is no longer an element, but asubsetof its domain. This subset grows monotonically
over transition applications – hence the name of the abstraction.

When applying the monotonicity abstraction to a system of timed automata, then
each automaton will (potentially) be in several locations in a state. The system’s integer
variables will have several possible values in a state. So far clocks are not included in
the computation of heuristic values. If we included clocks in the obvious way, every
guard or invariant involving a clock would be immediately satisfied. The reason for this
is that clock value sets quickly subsume all possible time points.

Our heuristichma assigns to each state encountered during search a heuristicvalue
by solving an abstract problem. Such an abstract problem is obtained by applying the
monotonicity abstraction to the current state. The length of a solution found in this
abstraction is then used as the heuristic estimate for the state’s distance to the nearest
error state. In a nutshell, an abstract solution is computedby iteratively applying all
enabled transitions to the initial abstract state (the state for which we want to estimate
the distance), until either the enlarged state subsumes an error state, or a fixpoint is
reached. In the former case, an abstract solution can be extracted by backtracing through
the state enlargement steps. In case of reaching a fixpoint, we can exclude this state from
further exploration: the monotonicity abstraction induces an over-approximation, i.e. so
if there is no abstract error path, then there is no real one either.

2.2 Automata-theoretic Abstraction

The second heuristic [6] aims at a close representation of the process synchronisation
required to reach the error. Each process is represented as afinite-state automaton. The
heuristichaa estimates the error distanced(s) of a system states as the error distance
of the corresponding abstract stateα(s) in an abstraction that approximates the full
product of all process automata.

The approximation of the product of a set of automata is computed incrementally
by repeatedly selecting two automata from the current set and replacing them with an
abstraction of their product. To avoid state space explosion, the size of these interme-
diate abstractions is limited by a preset boundN : to reach a reduction toN states, the
abstraction first merges bisimilar states and then states whose error distance is already
high in the partial product.

In this way, the precision of the heuristic is guaranteed to be high in close proximity
to the error, and can, by settingN , be fine-tuned for states further away from the error.
In our experiments, fairly low values ofN , such asN = 100, already significantly



speed up the search for the error, and therefore represent a good trade-off between cost
and precision.

3 Results

We compare the performance of UPPAAL/DMC’s greedy search and UPPAAL’s ran-
domised depth first search (rDF), which is UPPAAL’s most efficient standard search
method across many examples. The results for rDF in Table 1 are averaged over 10
runs. TheCi examples stem from an industrial case study called “Single-tracked Line
Segment” [7] and theMi examples come from another case study, namely “Mutual Ex-
clusion” [8]. An error state was made reachable by increasing an upper time bound in
each example.

The results in Table 1 clearly demonstrate the potential of our heuristics. The heuris-
tic searches consistently find the error paths much faster. Due to the reduced search
space size and memory requirements, they can solve all problems. At the same time,
they find, by orders of magnitude,muchshorter error paths inall cases.

Table 1.Experimental results of UPPAAL’s rDF and UPPAAL/DMC’s greedy search withhmaand
h

aa . The results are computed on an Intel Xeon with 3 Ghz and 4 GB of RAM. Dashes indicate
out of memory.

runtime in s explored states memory in MB trace length
Exp rDF h

ma
h

aa rDF h
ma

h
aa rDF h

ma
h

aa rDF h
ma

h
aa

M1 0.8 0.1 0.2 29607 5656 12780 7 1 11 1072 169 74
M2 3.1 0.3 0.9 118341 30742 46337 10 11 11 3875 431 190
M3 2.8 0.2 0.8 102883 18431 42414 9 10 11 3727 231 92
M4 12.7 0.8 1.9 543238 76785126306 22 13 14 15K 731 105

C1 0.8 0.2 0.5 25219 2339 810 7 9 11 1065 95 191
C2 1.0 0.3 1.0 65388 5090 2620 8 10 19 875 86 206
C3 1.1 0.5 1.1 85940 6681 2760 10 10 19 760 109 198
C4 8.4 2.5 1.8 892327 40147 25206 43 11 23 1644 125 297
C5 72.4 13.2 4.0 8.0e+6237600155669 295 21 28 2425 393 350
C6 – 10.1 14.9 – 207845 1.2e+6 – 20 67 – 309 404
C7 – 169.0 162.4 – 2.7e+7 1.3e+7 – 595 676 – 1506 672
C8 – 14.5 155.3 – 331733 1.2e+7 – 23 672 – 686 2210
C9 – 1198.01046.0 – 1.3e+8 3.6e+7 – 2.5G1.6G – 18K 1020

Other heuristis, proposed by Edelkamp et al. [1, 2] in the context of SPIN, are based
on graph distances. The underlying abstraction of these heuristics preserves only edges
and locations of an automata system. For an automatona let d(a) be the distance ofa’s
start location to its target location. Then, thehgd

max heuristic is defined asmaxa d(a).
Thehgd

sumheuristic is defined as
∑

a
d(a).

Note thathgd
max andhgd

sum are rather crude approximations of the systems semantics.
For example, they completely ignore variables and synchronisation. In contrast, thehma



andhaa heuristics donot do this. Our approximations are more costly, i.e. one call of
hma or haa takes more runtime than one call ofhgd

max or hgd
sum . The additional effort

typically pays off: for example, in the case studies shown inTable 1, greedy search with
maxa d(a) and

∑
a
d(a) performs only slightly better than rDF, and much worse than

our heuristics; e.g. it cannot solve any ofC6, C7, C8, andC9.

4 Outlook

The most important piece of future work is to explore the value of our tool in the abstrac-
tion refinement life cycle. The basic idea is to use heuristics to address the intermediate
iterations where (spurious) errors still exist. As our results show, this has the potential
to speed up the processandyield shorter, and thus more informative error paths. Hence,
our technique for error detection will be able to help with actual verification.

4.1 Availability of the Tool

At http://www.informatik.uni-freiburg.de/˜kupfersc/upp aal dmc/ , two
Linux executables of UPPAAL/DMC are available. The first version is optimised for
Intel Pentium 4 processors, the other one was compiled with default optimisation. The
page also provides a short description of the used benchmarks, andall used model and
query files.

References

1. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-
Spin. In: Proceedings of the 8th International SPIN Workshop on Model Checking of Soft-
ware (SPIN’2001). (2001) 57–79

2. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit-statemodel checking in the
validation of communication protocols. International Journal on Software Tools for Tech-
nology Transfer (2004)

3. Pearl, J.: Heuristics: Intelligent search strategies for computer problem solving. Addison-
Wesley (1984)

4. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuris-
tic for directed model checking. In: Proceedings of the 13th International SPIN Workshop
on Model Checking of Software (SPIN’2006). (2006)

5. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence129(1–2) (2001)
5–33

6. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. In: Proceedings of the 13th International SPIN Workshop on Model Checking
of Software (SPIN’2006). (2006)

7. Krieg-Br̈uckner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForM Workbench, a uni-
versal development environment for formal methods. In Wing, J.M., Woodcock, J., Davies,
J., eds.: FM’99 – Formal Methods. Volume 1709 of LNCS., Springer(1999) 1186–1205

8. Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal
Aspects of Computing16(2) (2004) 104–120

9. Dierks, H.: Time, Abstraction and Heuristics – Automatic Verification andPlanning of
Timed Systems using Abstraction and Heuristics. (2005) Habilitation thesis.

10. Olderog, E.R., Dierks, H.: Moby/RT: A tool for specification and verification of real-time
systems. Journal of Universal Computer Science9(2) (2003) 88–105



A Appendix

A.1 Outline of the oral presentation

In the talk, we are going to demonstrate our tool on a typical example from our bench-
mark suite. We will discuss what is difficult about these examples and how the difficul-
ties are addressed by UPPAAL/DMC. We believe that this case study is interesting in
its own right. It is publicly available from the UPPAAL/DMCwebpage (see Section 4.1)
as a point of reference for the evaluation of other, forthcoming, tools.

The oral presentation of UPPAAL/DMC will roughly be as follows (see Fig. 1). First
we will recall what is greedy andA∗ search and how these search methods use heuristics
to guide the search. Hereinafter we will explain our abstractions and how heurisitc
values are computed with concrete example. After explaining the used benchmarks we
will compare standard UPPAAL with UPPAAL/DMC. Finaly, we will point out how
UPPAAL/DMC can be used for abstraction refinement and talk about thenext steps of
UPPAAL/DMC.

Fig. 1.preliminary structure of the talk

– Introduction
– Motivation – why DMC at all?
– Heuristic Search

• Explaination of greedy andA∗ search on some small example
– Heuristic Search applied to Model Checking
– Our framework for fully automatically generated heuristics, based on abstractions

• The Monotonicity Abstraction
• Demonstration of the effect of the monotonicity abstraction on a small example
• An Automata-Theoretic Abstraction
• Demonstration of the effect of this abstraction on a small example

– Benchmarks
• Short comments on used case studies (see A.2)
• Comparison UPPAAL and UPPAAL/DMC

– Demo:
• we are going to demonstrate our tool on a typical example from our benchmark suite. We

will discuss what is difficult about these examples and how the difficulties are addressed
by UPPAAL/DMC. We believe that this case study is interesting in its own right. It is
publicly available from the UPPAAL/DMCwebpage (see 4.1) as a point of reference for
the evaluation of other, forthcoming, tools.

– Future Work and an application to Abstraction Refinement

A.2 Case Study Single-tracked Line Segment

The examplesCi, i = 1, . . . , 9, come from a case study called “Single-tracked Line
Segment”. This study stems from an industrial project partner of the UniForM-project



[7]. The problem was to design a distributed real-time controller for a segment of tracks
where trams share a piece of track. Figure 2 sketches the system architecture.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

PLC 1 PLC 2

ES1 CS1 LS1

ES2
LS2

CS2

Fig. 2. Architecture of the SLS case study.

The railway lines are marked by thick lines and share a short part. The short arrows
describe the directions of trains. The movements of trains are detected by six sensors,
three for each direction. The arrival of trains is recognised by entrance sensors ES1 and
ES2. The sensors CS1 and CS2 check whether a train enters the critical section, while
LS1 and LS2 recognise leaving trains. The information delivered by the sensors are
processed by two computing devices called PLCs. These PLCs notice the movements
of trains and compute which direction is allowed to use the critical section.

A distributed controller was modelled in terms of PLC-Automata [9], which is an
automata-like notation for real-time programs. The systemdiagram of the controller for
the SLS is given in Fig. 3. According to their tasks, we can distinguish five different
automata in the system:

– First the signals of the sensors are filtered by six components. The purpose of these
filters is to compensate some inherent unreliabilities of the sensor hardware.

– Four counters accumulate the information about passing trains produced by the
filters. For each zone of interest we need a counter to determine the number of
trains in this zone. There is for each direction awaiting zone(zone between the
entrance sensor and the critical sensor) and there is acritical zone(zone between
the critical sensor and the leaving sensor).
If a counter recognises that the number of trains in its corresponding zone leaves
the plausible range, which is[0, 2] for the SLS, an error signal is raised.

– One component summarises the error signals of all filters andcounters.
– The permissions which direction is allowed to enter the critical section are com-

puted in the main controller. The decision depends on the current values of the
counter and the current state of the main controller.



– Two automata produce the signal for the traffic lights for each direction. To this end
they need the information whether there is a train in its waiting zone, whether its
direction has got the permission to enter the critical section, and whether there is
an error in the system or not.

filter FES1

filter FCS1

counter EC1

error detection

filter FLS1

filter FES2

filter FCS2

filter FLS2

counter EC2

counter CL2

main controller

Actuator 1

Actuator 2

counter CL1

Fig. 3. System diagram of the SLS controller.
This figure shows the system diagram of the SLS case study. It contains 14 system nodes,
which are represented by icons. For example, on the left side the diagram contains six filter
components, which are responsible for the transformation of the sensor outputs into reliable
values. The resulting signals, which are delivered to the traffic lights on therailway, are
generated by the two actuator components on the right of the diagram.

This system of PLC-Automata can be transformed into (abstractions of) their se-
mantics in terms of timed automata with the tool Moby/RT [10]. For the evaluation of
our approach we choose the property that never both directions are given permission to
enter the shared segment simultaneously. This property is ensured by 3 PLC-Automata
(main controller, actuator 1, actuator 2) of the whole controller, and we injected an error
by manipulating a delay so that the asynchronous communication between these au-
tomata is faulty. In Moby/RT abstractions are offered for the translation into the timed
automata. The given set of PLC-Automata has eight input variables. We constructed
nine models with increasing size by decreasing the number ofabstracted inputs.


