
RESY: Requirement Synthesis

for Compositional Model Checking⋆

Bernd Finkbeiner, Hans-Jörg Peter, and Sven Schewe

Universität des Saarlandes
66123 Saarbrücken, Germany

{finkbeiner|peter|schewe}@cs.uni-sb.de

Abstract. The requirement synthesis tool RESY automatically com-
putes environment assumptions for compositional model checking. Given
a process M in a multi-process PROMELA program, an abstraction re-
finement loop computes a coarse equivalence relation on the states of
the environment, collapsing two states if the environment of M can ei-
ther force the occurrence of an error from both states or from neither
state. RESY supports three different operation modes: assumption gener-
ation, compositional model checking, and front-end to the model checker
SPIN. In assumption generation mode, RESY minimizes the size of the
assumption; small assumptions are useful for program documentation
and as certificates for re-verification. In compositional model checking

mode, RESY terminates as soon as the property is proven or disproven,
independently of the size of the assumption. In front-end mode, RESY
terminates when the size of the assumption falls below a specified thresh-
old, and calls SPIN with the simplified verification problem.

1 Requirement Synthesis

RESY is a tool for the automatic synthesis of requirement automata for safety
properties. Requirement automata represent the assumptions an environment
makes on the behavior of a component. Typical applications include program

documentation [1], where the synthesized requirements help the user to under-
stand the interaction of the program components; program certification [2], where
the synthesized requirements simplify the re-verification of the system (possibly
by a different user and a different tool); and compositional model checking [3],
where the requirement is synthesized and used during the same model checking
run, in order to avoid the construction of the full product state space.

RESY implements the requirement synthesis algorithm presented in [4].
Given a system M‖E, which consists of a process M and its environment E,
RESY computes an equivalence relation on the states of M , collapsing two states
if E can either force the occurrence of an error from both states or from nei-

⋆ This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

ther state. The requirement automaton is the quotient of M with respect to the
equivalence relation.

Key advantages of this approach are that the generated requirement automa-
ton is small (RESY’s equivalence is much coarser than language-based equiva-
lences like bisimulation), inexpensive to compute (RESY is often dramatically
faster than L*-based requirement learning), and easy to re-verify (implementa-
tion and requirement are related by a simple homomorphism).

2 Generating Requirements from Abstractions

Computing the equivalence relation requires two traversals of the state space.
In a forward traversal, we identify states of the process M that are all either
reachable or unreachable, depending on the state in the environment E they are
combined with. In a backward traversal, we identify states of M that either all
have or all do not have a path to the error, depending again on the state in E

they are combined with.
To avoid the expansion of the full state graph, RESY considers abstractions

of E. The abstractions are computed in an automatic abstraction refinement
loop that, starting with the trivial abstraction, incrementally increases the size
of the abstraction.

The abstraction E of the environment is a modal transition system that is
defined by an equivalence relation ≃ on E. Replacing E with its abstraction
introduces the possibility that two states of M both lead to an error when com-
posed with E , but only one of them leads to an error when composed with E.
RESY therefore distinguishes situations that may lead to an error (i.e., when
the error is reached in the composition with E but not necessarily in E) from
situations that must lead to an error (both in composition with E and in com-
position with E). Merging two states of M is safe in two cases: (1) if they both

must lead to an error, and (2) if neither of them may lead to an error.
The environment abstraction identifies must and may transitions. In the

backward analysis, for example, a transition ([v], a, [v′]) is a must transition if,
for all states w ≃ v, there is a state w′ ≃ v′ such that (w, a, w′) is a transition
of E. Reachability on must transitions is a sufficient criterion for reachability in
the concrete system; unreachability on may transitions is a sufficient criterion
for unreachability in the concrete system.

In each abstraction refinement step, RESY uses a heuristic to pick some may

transition ([v], σ, [v′]) of the forward or backward analysis that is not also a must

transition, and splits the equivalence class [v′] (respectively [v]), distinguishing
states that either have or do not have the incoming (respectively outgoing) tran-
sition in E. By default, RESY picks forward and backward transitions that are
closest to the initial state and the error, respectively.

RESY recognizes situations in which further refinements of the environment
abstraction will no longer lead to a reduction of the requirement automaton. De-
pending on RESY’s operation mode, the refinement loop may also be interrupted
earlier, yielding a sound but not necessarily minimal requirement automaton.

2

3 Operation Modes of RESY

The input to RESY is a PROMELA program that specifies a distributed system
as a parallel composition of modules, and a specification automaton for the safety
property. RESY can be executed in the following modes:

– Assumption generation. In this mode, RESY minimizes the size of the re-
quirement automaton. This mode is most useful if the automaton is to be
used as a certificate.

– Compositional model checking. In this mode, RESY terminates as soon as the
property is proven or disproven, independently of the size of the requirement
automaton generated so far. This mode is most useful if RESY is to be used
as a stand-alone model checker.

– SPIN front-end. In this mode, RESY also terminates if the size of the re-
quirement automaton falls below a user-defined threshold (for example, 10%
of the states of the program M). If the property has not been proven or
disproven at this point, RESY replaces M with the requirement automaton
and calls SPIN [5] with the modified PROMELA program.

4 Results

Table 1 shows the performance of RESY on a range of benchmarks, including
the sliding window protocol (SW), an elevator controller (Elevator), a produc-
tion cell (Prodcell), and an industrial document flow (workflow). For each bench-
mark, the table shows the time and memory usage of the assumption generation
mode and compares the performance of the compositional model checking mode
(CMC) and the SPIN front-end mode using a threshold of 10% (R10%) with the
performance of the model checker SPIN alone (SPIN).

The sliding window protocol is parameterized by the buffer and window sizes.
Property A, B, and C are valid properties (e.g., “the protocol does not invent
messages”). Property D (“the receiver never produces any output”) does not
hold. The elevator benchmark is parameterized by the number of floors. (The
property states that a door is never open when no elevator is present.) In the
production cell, two concurrent programs control a plant. The benchmark is
parameterized by the number of components of the plant (which may include
robot arms, a press, lifts, and grippers). The property requires that there is no
arm within the press when it starts working. The workflow benchmark models
an industrial document flow. It is parameterized by the number of participants.

The results in Table 1 show that compositional model checking with RESY
often improves over monolithic model checking with SPIN by more than an
order of magnitude. Computing the minimal requirement automaton typically
does not add significant cost. The minimal requirement automaton is always
much smaller than the original process and often small enough to be presented
to the user.

Availability. RESY and the benchmarks used in this paper are available online
at http://react.cs.uni-sb.de/resy.

3

model assumption verification
size generation CMC R10% SPIN

M E t m A t m t m t m

SW 2/1/A 48 26 86 0.4 3 86 0.3 86 0.4 1149 2.7
SW 3/1/A 256 120 2880 2.6 6 2877 2.4 3960 2.7 9017 3.9
SW 3/2/A 256 120 3882 2.7 5 3872 2.5 5366 2.8 9657 4.1
SW 2/1/B 48 26 86 0.4 28 49 0.3 86 0.4 1148 2.7
SW 3/1/B 256 120 3818 2.9 107 1722 1.9 3818 2.9 9050 3.9
SW 3/2/B 256 120 4979 3.0 209 598 1.7 4979 3.0 9613 4.1
SW 2/1/C 48 26 44 0.3 5 53 0.3 44 0.3 1148 2.7
SW 3/1/C 256 120 985 2.2 9 985 2.8 1958 2.7 9069 4.0
SW 3/2/C 256 120 1524 2.2 9 1523 3.0 2978 2.8 9640 4.1
SW 2/1/D 48 26 22 0.4 1 22 0.2 22 0.4 1148 2.7
SW 3/1/D 256 120 84 2.3 1 84 1.4 84 2.3 8890 3.6
SW 3/2/D 256 120 89 2.4 1 89 1.5 89 2.4 9406 3.7

Elevator 2 48 18 68 0.2 11 61 0.1 68 0.2 636 2.6
Elevator 3 192 30 414 1.0 15 407 0.5 414 1.0 860 2.6
Elevator 4 768 42 2633 4.9 22 2615 2.1 5113 4.9 1152 2.6

Prodcell 2 12 12 23 0.1 5 23 0.1 23 0.1 519 2.6
Prodcell 3 24 24 73 0.2 6 65 0.2 73 0.2 681 2.6
Prodcell 4 40 24 111 0.4 6 118 0.3 802 2.6 803 2.6
Prodcell 5 40 40 296 0.6 6 296 0.5 296 0.6 897 2.6
Prodcell 6 40 48 486 0.7 6 486 0.6 486 0.7 973 2.6
Prodcell 7 72 48 902 1.1 6 906 0.8 1831 2.6 1158 2.7

Workflow 2 64 11 35 0.2 4 31 0.1 35 0.2 526 2.6
Workflow 3 512 16 441 2.5 8 50 0.5 441 2.5 619 2.6
Workflow 4 4096 25 20294 62.9 16 409 4.1 20294 62.9 849 2.7

Table 1. Experimental results of RESY on a range of benchmarks. The table shows
the performance of the assumption generation mode, and compares the performance of
the verification modes compositional model checking (CMC) and SPIN front-end with
a threshold of 10% (R10%) to the performance of SPIN. The time (t) and memory
usage (m) is given in milliseconds and megabytes, respectively; the sizes of the pro-
cess M , environment E, and requirement automaton A are given as the number of
states. All benchmarks were measured on an Intel Pentium M processor 2.13 GHz.

References

1. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proc. ASE, IEEE Computer Society (2002)
3–12

2. Namjoshi, K.S.: Certifying model checkers. In: Proc. CAV, Springer-Verlag (2001)
2–13

3. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning
assumptions. In: Proc. CAV, Springer-Verlag (2005) 548–562

4. Finkbeiner, B., Schewe, S., Brill, M.: Automatic synthesis of assumptions for com-
positional model checking. In: Proc. FORTE, Springer-Verlag (2006) 143–158

5. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts (2003)

4

