SLAB: A Certifying Model Checker for
Infinite-State Concurrent Systems *

Klaus Drager!, Andrey Kupriyanov!, Bernd Finkbeiner!, Heike Wehrheim?

L Universitit des Saarlandes, Saarbriicken, Germany
2 Universitit Paderborn, Germany

Abstract. Systems and protocols combining concurrency and infinite
state space occur quite often in practice, but are very difficult to verify
automatically. At the same time, if the system is correct, it is desirable
for a verifier to obtain not a simple ”yes” answer, but some independently
checkable certificate of correctness. We present SLAB — the first certify-
ing model checker for infinite-state concurrent systems. The tool uses a
procedure that interleaves automatic abstraction refinement using Craig
interpolation with slicing, which removes irrelevant states and transitions
from the abstraction. Given a transition system and a safety property to
check, SLAB either finds a counterexample or produces a certificate of
system correctness in the form of inductive verification diagram.

1 Slicing Abstractions

SLAB (for slicing abstractions) is an automatic certifying model checker that
implements the abstraction refinement loop presented in [1]. It interleaves refine-
ment steps with slicing, which tracks the dependencies between variables and
transitions in a system and removes irrelevant parts.

SLAB maintains an explicit graph representation of the abstract model: each
node represents a set of concrete states, identified by a set of predicates; each edge
represents a set of concrete transitions, identified by their transition relations.

Starting with the initial abstraction, the abstract model is transformed by
refinement and slicing steps until the system is proved correct or a concretizable
error path is found.

A refinement step increases the precision of the abstraction by introducing a
new predicate, which is obtained by Craig interpolation from the unsatisfiable
formula corresponding to some spurious error path. To minimize the increase
in the size of the graph, the new predicate is only applied to one specific node
on the error path. This node is split into two copies, the labels of which now
additionally contain the new predicate and its negation, respectively.

A slicing step reduces the size of the abstraction while maintaining all error
paths. Elimination rules drop nodes and edges from the abstraction if they have

* This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

become unreachable or if their label has become unsatisfiable. Simplification
rules remove constraints from transition relations that have become irrelevant
and simplify the graph structure of the abstraction.

2 Certifying Model Checker

If SLAB proves a concurrent system correct, then it produces from the final
abstraction an efficiently and independently checkable certificate of the correct-
ness. Such a certificate is much more useful than the usual binary response
”correct” /” incorrect” (see e.g. [6]): it provides higher degree of confidence in the
results of the verification run; it can be employed in automated theorem proving
by importing it into a theorem prover and composing with certificates from other
subgoals into a single proof; finally, it can be used to obtain proof-carrying code.

SLAB produces certificates in the form of inductive verification diagrams [5]:
directed graphs in which nodes n are labeled with state predicates ¢,,, and edges
— with sets of transition relations. They satisfy the following properties (where
we use @ for the disjunction over all ¢,):

— Every initial state is represented by some node, i.e., init implies @;

— If a state s is represented by a node and has an outgoing transition s — s,
then s’ is also represented by some node. Equivalently, for each transition
relation 7, the Hoare triple {@}7{®} must be valid.

— Every node label precludes the error condition, i.e. @ implies —error.

Thus the disjunction of the certificate node labels forms an inductive invariant
which ensures that an error can never occur, and checking the correctness of the
certificate boils down to verifying the above conditions on @.

The edge labels provide an alternative set of simpler Hoare triples for the
second condition: For each node n and transition 7, {¢, }7{V/,, ©m} must hold,
where the disjunction is over all m with n = m.

As an example, Fig. 2 shows the specification of a simplified ring-buffer for a
double-ended queue, consisting of cells (represented by integer variables) which
can be either free (0) or occupied (1). Starting with a single occupied cell 1, we
can toggle a cell’s state if the states of its neighbors differ.

init r1=1ANx22=0A---ANz,, =0
error r1=1ANxs=1A---Nzp=1
71| Tntae=1A21=1—21 AA{x1})
T2 :81+583:1/\:E/2:171'2/\A({582})

Tn |14+ Tn—1 =1Az, =1 -2, AA({z0})

Fig. 1. Initial condition, error condition, and transitions of the deque example. A(S)
denotes the frame condition that all variables « ¢ S remain unchanged.

The certificate produced by SLAB for an instance with 5 cells is shown on
Fig. 2. The inductivity of the diagram guarantees that no error state is reachable.

x3+x1>1
x2>0
x3<1
/////' x4>0
‘//// x5>0
x3+x1>1
x2>0
1345 1?:4\'5 /Sv x4<1 FYeTIe)
3 x5>0 ‘K\\\\ x3+x1>
2 [xavxicel o 3 \x3+xl>l x1<l
x5<1 vii~— x3>0
‘\\\\\\\\\sfii”’////// x4>0
x5>0

Fig. 2. A certificate of correctness for the deque example.

3 Results

SLAB is written in C+++, and is available for the Linux platform. As an under-
lying mechanism for satisfiability checking and Craig interpolation, SLAB uses
the MathSAT 4 SMT solver [2].

The model checker produces certificates both in graphical format as in Fig. 2
for visual inspection by the user, and in the SMT-LIB format, which can be
checked by any of a large number of standard SMT solvers.

The user can customize several parameters of the abstraction refinement loop:

— The initial abstraction: The user can choose either a simple 4-state abstrac-
tion, based on the initial and error conditions, or a control flow graph.

— The trace selection strategy: The user can choose between random and de-
terministic selection of traces.

— The node splitting strategy: The user may allow several nodes to be split
along any unsatisfiable trace of the abstraction.

Table 1 shows the performance of SLAB on a range of benchmarks. For com-
parison, we also give the running times of the Abstraction Refinement Model
Checker ARMC [7], the Berkeley Lazy Abstraction Software Verification Tool
BLAST [4] and the New Symbolic Model Checker NuSMV [3], where appli-
cable. The benchmarks include a finite-state concurrent systems (Deque and
Philosophers), an infinite-state discrete system (Bakery), and a real-time system
(Fisher). BLAST and NuSMYV are not applicable to the real-time system Fischer.
Because NuSMYV is able to verify only finite state systems, the running times for
this tool are given for two cases: when all integer variables are bounded to 10
and 100 values.

ARMC | BLAST NuSMV SLAB

Benchmark time time |[time (10)|time (100)| time |certificate size
Deque 5 1.81 0.55 0.03 5.64 0.06 6
Deque 10 776.33 || 2.32 0.05 13.89 0.18 11
Deque 15 timeout|| 6.40 0.08 22.71 0.40 16
Deque 20 timeout|| 13.41 0.14 36.08 0.69 20
Bakery 2 2.26 21.71 0.03 0.72 0.43 25
Bakery 3 33.44 || 134.72 0.04 6.44 1.45 35
Bakery 4 753.15 || error 0.17 293.65 4.00 45
Bakery 5 timeout|| 879.71 0.33 timeout || 10.26 55
Philosophers 3|| 125.82 || 15.02 0.24 7.82 0.76 11
Philosophers 4||timeout|| 92.04 0.89 25.16 3.05 26
Philosophers 5||timeout|| 658.80 4.36 554.86 11.50 57
Philosophers 6||timeout|[timeout 9.24 timeout || 42.57 120
Fischer 2 1.45 N/A N/A N/A 0.65 24
Fischer 3 48.68 || N/A N/A N/A 9.16 170
Fischer 4 1842.85(N/A N/A N/A 122.77 1014

Table 1. Experimental results of SLAB, comparing its performance on a range of
benchmarks to the tools ARMC, BLAST and NuSMV. Running times are given in
seconds, with a timeout of 1 hour. All benchmarks were measured on AMD Opteron
2.6Ghz processors.

Availability. SLAB is available online at http://react.cs.uni-sb.de/slab,
including documentation and the benchmarks used in this paper.

Acknowledgements. We would like to thank Alberto Griggio for fruitful
discussions about the MathSAT 4 SMT solver.

References

1. I. Briickner, K. Drager, B. Finkbeiner, and H. Wehrheim. Slicing abstractions. In
F. Arbab and M. Sirjani, editors, FSEN, volume 4767 of LNCS, 2007.

2. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. TheMath-
SAT 4 SMT solver. In CAV, volume 5123 of LNCS, pages 299-303. Springer, 2008.

3. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An OpenSource tool for symbolic model
checking. In CAV, volume 2404 of LNCS, pages 241-268. Springer, 2002.

4. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
BLAST. In SPIN, volume 2648 of LNCS. Springer, 2003.

5. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

6. K. Namjoshi. Certifying model checkers. In CAV, volume 2102 of LNCS, pages
2-13. Springer, 2001.

7. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction refinement. In PADL, volume 4354 of LNCS, pages 245—
259. Springer, 2007.

