
A Decision Procedure for Monotone Functions

over Bounded and Complete Lattices

Domenico Cantone1 and Calogero G. Zarba2

1 Università degli Studi di Catania, Italy
2 Universität des Saarlandes, Germany

Abstract. We present a decision procedure for the quantifier-free satis-
fiability problem of the language BLmf of bounded lattices with mono-
tone unary functions. The language contains the predicates = and ≤,
as well as the operators ⊓ and ⊔ over terms which may involve uninter-
preted unary function symbols. The language also contains predicates for
expressing increasing and decreasing monotonicity of functions, as well
as a predicate for pointwise function comparison.
Our decision procedure runs in polynomial time O(m4) for normalized
conjunctions of m literals, thus entailing that the quantifier-free satis-
fiability problem for BLmf is NP-complete. Furthermore, our decision
procedure can be used to decide the quantifier-free satisfiability problem
for the language CLmf of complete lattices with monotone functions.
This allows us to conclude that the languages BLmf and CLmf are
equivalent for quantifier-free formulae.

1 Introduction

Lattices are partial orders in which every pair of elements has a least upper bound
and a greatest lower bound. They have several applications in mathematics and
computer science, including model checking [7], knowledge representation [11],
partial order programming [12], denotational semantics [10], rewrite systems [4],
relational methods in computer science [5], computer security [9], and so on.

In this paper we introduce the language BLmf (Bounded Lattices with mono-
tone functions) for expressing constraints over lattices and monotone functions.
The language BLmf contains the equality predicate =, the ordering predicate
≤, and the operators ⊓ (meet) and ⊔ (join). The language also allows for uninter-
preted unary function symbols, and has the following predicates for expressing
monotonicity properties of functions:

– the predicate symbol inc(f), stating that the function f is increasing;
– the predicate symbol dec(f), stating that the function f is decreasing;
– the predicate symbol const(f), stating that the function f is constant;
– the predicate symbol leq(f, g), stating that f(a) ≤ g(a), for each a.

We prove that the quantifier-free satisfiability problem of BLmf is decidable.
In particular, we present a decision procedure that allows one to decide the



BLmf -satisfiability of normalized conjunctions3 of m literals in polynomial time
O(m4). Such result entails at once that the quantifier-free satisfiability problem
of BLmf is NP-complete.

We also study the language CLmf of complete lattices with monotone func-
tions. The syntax of CLmf is the same of that of BLmf . Semantically, CLmf
differs from BLmf in that a model of the language CLmf involves a complete
lattice rather than just a bounded lattice.

We show that our decision procedure for the quantifier-free satisfiability prob-
lem of BLmf is also a decision procedure for the quantifier-free satisfiability
problem of CLmf . Therefore it follows that a quantifier-free formula is BLmf -
satisfiable if and only if it is CLmf -satisfiable, so that the language BLmf and
CLmf are equivalent for quantifier-free formulae.

1.1 Related work

Cantone, Ferro, Omodeo, and Schwartz [1] provide a decision procedure for the
quantifier-free language POSMF of lattices extended with unary function sym-
bols and the predicates inc(f) and dec(f). The language POSMF does not
contain the operators ⊓ and ⊔, and it does not contain the predicates const(f)
and leq(f, g). The decision procedure for POSMF is based on a nondetermin-
istic quadratic reduction to the quantifier-free fragment of set theory MLS (cf.
[6]).

Sofronie-Stokkermans [13] proved that the quantifier-free languages of (a)
partially ordered sets, (b) totally ordered sets, (c) dense totally ordered sets, (d)
semilattices, (e) lattices, (f) distributive lattices, (g) boolean algebras, and (h)
real numbers can be extended, while still preserving decidability, with one or
more monotone increasing unary functions.

In a preliminary version of this paper [2], which dealt only with the quantifier-
free satisfiability problem of the language CLmf , the authors give a flawed proof
of the decidability of CLmf . The bug is as follows: In [2, page 9], the partial
order 〈A,≤A〉 is not necessarily a lattice, and therefore the functions ⊓A and ⊔A

are not well-defined in general. Here we fix such problem by taking the Dedekind-
MacNeille completion of the partial order 〈A,≤A〉 (see Section 4, Proposition 28,
for details).

Tarski [14] proved that the fully quantified language of lattices is undecidable.

1.2 Organization of the paper

In Section 2 we introduce some basic notions of lattice theory, and we define
the syntax and semantics of the language BLmf . In Section 3 we present our
decision procedure for the quantifier-free satisfiability problem of BLmf , and we
give an example of our decision procedure in action. In Section 4 we prove that
our decision procedure is correct, and we analyze its complexity. In Section 5 we
discuss the language CLmf . In Section 6 we draw some final conclusions.

3 The notion of normalized set of literals will be defined in Definition 20.



2 Preliminaries

2.1 Partial orders

Definition 1. A partial order is a pair (A,≤) where A is a nonempty set
and ≤ is a reflexive, antisymmetric, and transitive binary relation of A. �

Definition 2. Let (A,≤) be a partial order and let ∅ 6= X ⊆ A. We say that y
is a maximum of X with respect to (A,≤) if the following conditions hold:

– y ∈ X ;
– x ≤ y, for each x ∈ X . �

When it exists, the maximum of X with respect to (A,≤) is unique. Conse-
quently, we use the notation max (X,A,≤) to denote the unique maximum of X
with respect to (A,≤) when it exists; otherwise, we let max (X,A,≤) = undef .

Definition 3. Let (A,≤) be a partial order and let ∅ 6= X ⊆ A. We say that y
is a minimum of X with respect to (A,≤) if the following conditions hold:

– y ∈ X ;
– y ≤ x, for each x ∈ X . �

When it exists, the minimum ofX with respect to (A,≤) is unique. Consequently,
we use the notation min(X,A,≤) to denote the unique minimum of X with
respect to (A,≤) when it exists; otherwise, we let min(X,A,≤) = undef .

Definition 4. Let (A,≤) be a partial order and let ∅ 6= X ⊆ A. We say that y
is a least upper bound of X with respect to (A,≤) if the following conditions
hold:

– x ≤ y, for each x ∈ X ;
– if x ≤ z, for each x ∈ X , then y ≤ z. �

When it exists, the least upper bound of X with respect to (A,≤) is unique.
Consequently, we use the notation lub(X,A,≤) to denote the unique least
upper bound of X with respect to (A,≤) when it exists; otherwise, we let
lub(X,A,≤) = undef .

Proposition 5. Let (A,≤) be a partial order and let ∅ 6= X ⊆ A. Then,
max (X,A,≤) 6= undef implies max (X,A,≤) = lub(X,A,≤). �

Definition 6. Let (A,≤) be a partial order and let ∅ 6= X ⊆ A. We say that
y is a greatest lower bound of X with respect to (A,≤) if the following
conditions hold:

– y ≤ x, for each x ∈ X ;
– if z ≤ x, for each x ∈ X , then z ≤ y. �

When it exists, the greatest lower bound of X with respect to (A,≤) is unique.
Consequently, we use the notation glb(X,A,≤) to denote the unique great-
est lower bound of X with respect to (A,≤) when it exists; otherwise, we let
glb(X,A,≤) = undef .

Proposition 7. Let (A,≤) be a partial order and let ∅ 6= X ⊆ A. Then,
min(X,A,≤) 6= undef implies min(X,A,≤) = glb(X,A,≤). �



2.2 Lattices

Definition 8. A lattice is a tuple (A,≤,⊔,⊓) where:

– (A,≤) is a partial order;

– glb({a, b}, A,≤) 6= undef and lub({a, b}, A,≤) 6= undef , for all a, b ∈ A;

– a ⊔ b = lub({a, b}, A,≤);

– a ⊓ b = glb({a, b}, A,≤). �

Definition 9. A bounded lattice is a tuple (A,≤,⊔,⊓,1,0) where:

– (A,≤,⊔,⊓) is a lattice;

– 1 = max(A,A,≤);

– 0 = min(A,A,≤). �

Definition 10. A complete lattice is a tuple (A,≤,⊔,⊓,1,0) where:

– (A,≤,⊔,⊓,1,0) is a bounded lattice;

– glb(X,A,≤) 6= undef and lub(X,A,≤) 6= undef , for each ∅ 6= X ⊆ A. �

Remark 11. If (A,≤,⊔,⊓,1,0) is a complete lattice, we let lub(∅, A,≤) = 0
and glb(∅, A,≤) = 1. �

Proposition 12. Let (A,≤,⊔,⊓,1,0) be a complete lattice. Then, the following
properties hold:

a ⊔ b = b ⊔ a , a ⊓ b = b ⊓ a ,

(a ⊔ b) ⊔ c = a ⊔ (b ⊔ c) , (a ⊓ b) ⊓ c = a ⊓ (b ⊓ c) ,

a ⊔ a = a , a ⊓ a = a ,

a ⊔ (a ⊓ b) = a , a ⊓ (a ⊔ b) = a .

Moreover, we have:

a ≤ b ↔ a ⊔ b = b ↔ a ⊓ b = a . �

Proposition 13. Let (A,≤,⊔,⊓,1,0) be a complete lattice, and let X,Y ⊆ A.
Then, X ⊆ Y implies lub(X) ≤ lub(Y ). �

Proposition 14. Let (A,≤,⊔,⊓,1,0) be a complete lattice, and let X,Y ⊆ A.
Then, X ⊆ Y implies glb(Y ) ≤ glb(X). �



2.3 Dedekind-MacNeille completion

The Dedekind-MacNeille completion allows one to extend a partial order (A,≤)
into a complete lattice. It was introduced by MacNeille [8], who generalized the
Dedekind completion [3] for constructing the set R of real numbers from the set
Q of rational numbers.

Proposition 15 ([8]). Let (A,≤) be a partial order. Then there exists a unique4

minimal complete lattice (B,⊑,⊔,⊓,1,0) such that:

(a) A ⊆ B;

(b) a ≤ b iff a ⊑ b, for each a, b ∈ A;

(c) If lub(X,A,≤) 6= undef , then lub(X,B,⊑) = lub(X,A,≤), for each ∅ 6=
X ⊆ A;

(d) If glb(X,A,≤) 6= undef , then glb(X,B,⊑) = glb(X,A,≤), for each ∅ 6=
X ⊆ A. �

Definition 16. Let (A,≤) be a partial order. The Dedekind-MacNeille

completion of (A,≤) is the unique complete lattice (B,⊑,⊔,⊓,1,0) satisfying
properties (a)–(d) of Proposition 15. �

2.4 Syntax of BLmf

The language BLmf (Bounded Lattices with monotone functions) is a quantifier-
free language containing the following symbols:

– arbitrarily many variables x, y, z, . . . ;

– the constant symbols 1 and 0;

– the function symbols ⊔ and ⊓;

– the binary predicate symbols ≤ and =;

– arbitrarily many unary function symbols f , g, . . .

– the predicate symbol inc(f);

– the predicate symbol dec(f);

– the predicate symbol const(f);

– the predicate symbol leq(f, g).

Definition 17. The set of BLmf-terms is the smallest set satisfying the fol-
lowing conditions:

– Every variable is a BLmf -term;

– 1 and 0 are BLmf -terms;

– If s and t are BLmf -terms, so are s ⊔ t and s ⊓ t;
– If s is a BLmf -term and f is a function symbol, then f(s) is a BLmf -term.

4 Up to an isomorphism.



BLmf-atoms are of the form:

s = t , s ≤ t , inc(f) ,

dec(f) , const(f) , leq(f, g) ,

where s, t are BLmf -terms and f, g are unary function symbol.
BLmf-formulae are constructed from BLmf -atoms using the proposi-

tional connectives ¬, ∨, ∧, →, and ↔. BLmf-literals are BLmf atoms or
their negations. �

If ϕ is a BLmf -formula, we denote with vars(ϕ) the set of variables occurring
in ϕ. If Φ is a set of BLmf -formulae, we let vars(Φ) =

⋃

ϕ∈Φ vars(ϕ).

2.5 Semantics of BLmf

Definition 18. A BLmf-interpretation A is a pair
(

A, (·)A
)

where A 6= ∅
and (·)A interprets the symbols of the language BLmf as follows:

–
(

A,≤A,⊔A,⊓A,1A,0A
)

is a bounded lattice;
– =A is interpreted as the identity in A;
– each variable x is mapped to an element xA ∈ A;
– each unary function symbol f is mapped to a function fA : A→ A;
– [inc(f)]A = true iff a ≤A b implies fA(a) ≤A fA(b), for each a, b ∈ A;
– [dec(f)]A = true iff a ≤A b implies fA(b) ≤A fA(a), for each a, b ∈ A.
– [const(f)]A = true iff fA(a) = fA(b), for each a, b ∈ A.
– [leq(f, g)]A = true iff fA(a) ≤A gA(a), for all a ∈ A. �

Let ϕ be either a BLmf -formula or a BLmf -term, and let A be a BLmf -
interpretation. We denote with ϕA the evaluation of ϕ under A.

Definition 19. A BLmf -formula A is BLmf-satisfiable if there exists a
BLmf -interpretation A such that ϕA = true. A set Φ of BLmf -formulae is
BLmf-satisfiable if there exists a BLmf -interpretation A such that ϕA =
true, for each ϕ ∈ Φ. �

3 A decision procedure for BLmf

In this section we present a decision procedure for the quantifier-free satisfiability
problem for the language BLmf . Without loss of generality, we restrict ourselves
to normalized sets of BLmf -literals.

Definition 20. A set Γ of BLmf -literals is normalized if it satisfies the fol-
lowing conditions:

1. Each BLmf -literal in Γ is of the form

x = y , x 6= y , x ≤ y , x 6≤ y ,

x = y ⊔ z , x = y ⊓ z , x = f(y) ,

inc(f) , dec(f) , const(f) , leq(f, g) ,

where:



– x, y, z can be either variables or the constant symbols 1 and 0;
– f, g are unary function symbols.

2. For each unary function symbol f , no more than one of the following BLmf -
literals is in Γ :

inc(f) , dec(f) , const(f) . �

Proposition 21. Every finite set of BLmf-literals can be converted in polyno-
mial time into a BLmf-equisatisfiable normalized set of BLmf-literals. �

Proof. Let Γ be a finite set of BLmf -literals. By opportunely introducing
fresh variables, we can convert all literals in Γ—while still preserving BLmf -
satisfiability—to literals conforming condition 1 of Definition 20. In particular,
literals of the form ¬inc(f) can be replaced by a conjunction x ≤ y ∧ u =
f(x) ∧ v = f(y) ∧ u 6≤ v, where x, y, u, and v are fresh variables. Similar
replacements can be performed for the literals of the form ¬dec(f), ¬const(f),
and ¬leq(f, g). Finally, condition 2 of Definition 20 can be enforced by exploiting
the following equivalences:

inc(f) ∧ dec(f) ≡ const(f) ,

inc(f) ∧ const(f) ≡ const(f) ,

dec(f) ∧ const(f) ≡ const(f) ,

inc(f) ∧ dec(f) ∧ const(f) ≡ const(f) .

�

Given a normalized set Γ of BLmf -literals, we define the following four
pairwise disjoint sets:

– INC (Γ ) contains all unary function symbols f such that the literal inc(f)
is in Γ .

– DEC (Γ ) contains all unary function symbols f such that the literal dec(f)
is in Γ .

– CONST (Γ ) contains all unary function symbols f such that the literal
const(f) is in Γ .

– NORM (Γ ) contains all unary function symbols that do not belong to
INC (Γ ) ∪ DEC (Γ ) ∪ CONST (Γ ).

Our decision procedure is based on the inference rules shown in Figure 1. In
order to ensure termination we require the following:

– If R is not a fresh-variable rule, then R cannot be applied to a conjunction
of normalized literals Γ if the conclusion of R is already in Γ .

– If R is a fresh-variable rule whose conclusion is a literal ℓ, then R cannot be
applied to Γ if the literal ℓ{fresh/w} is already in Γ , for some variable w.

Definition 22. A normalized set Γ of BLmf -literals is saturated if no infer-
ence rule in Figure 1 can be applied to Γ . �



=-rules

x = x

x = y
ℓ

ℓ{x/y}

≤-rules

x ≤ x

x ≤ y
y ≤ x

x = y

x ≤ y
y ≤ z

x ≤ z x ≤ 1 0 ≤ x

⊓-rules

x = y ⊓ z

x ≤ y
x ≤ z

x = y ⊓ z
w ≤ y
w ≤ z

w ≤ x

⊔-rules

x = y ⊔ z

y ≤ x
z ≤ x

x = y ⊔ z
y ≤ w
z ≤ w

x ≤ w

Functions rules

x = x′

y = f(x)
y′ = f(x′)

y = y′

inc(f)
x ≤ x′

y = f(x)
y′ = f(x′)

y ≤ y′

dec(f)
x ≤ x′

y = f(x)
y′ = f(x′)

y′ ≤ y

const(f)
y = f(x)
y′ = f(x′)

y = y′

leq(f, g)
y = f(x)
y′ = g(x)

y ≤ y′

Fresh-variables rules

leq(f, g)
y = f(x)

fresh = g(x)

leq(f, g)
y = g(x)

fresh = f(x) fresh = f(1) fresh = f(0)

Notes
– In the second =-rule, the literal ℓ does not contain any function symbol. Additionally, by ℓ{x/y}

we mean the literal obtained by replacing any occurrence of x in ℓ by y.
– In the first = rule, first ≤-rule, and last two ≤-rules, the variables x already occurs in Γ .
– In the fresh-variables rules, fresh stands for a newly introduced variable.

Fig. 1: Inference rules for computing closure(Γ ).



If Γ is a normalized set of BLmf -literals, we denote with closure(Γ )
the smallest saturated set of BLmf -literals containing Γ . Note that the set
closure(Γ ) is normalized.

The above two constraints on the applicability of the inference rules in Fig-
ure 1 imply that closure(Γ ) has at most O(m4) literals, for any normalized set
Γ of BLmf -literals with m literals.

Proposition 23. Let Γ be a normalized set of BLmf-literals with m literals.
Then closure(Γ ) has at most O(m4) literals. �

Proof. Clearly, the first two fresh-variables rules introduce at most O(m2)-
variables. The second two fresh-variables rules introduce at most O(k)-variables,
where k is the number of unary function symbols in Γ . Since k = O(m), it
follows that all the fresh-variables rules introduce at most O(m2)-variables, and
therefore closure(Γ ) contains at most O(m2)-variables. Therefore, the remaining
rules can introduce at most O((m2)2) literals, which implies that closure(Γ )
contains at most O(m4)-literals. �

Definition 24. A normalized set Γ of BLmf -literals is consistent if it does
not contain any two complementary literals ℓ, ¬ℓ; otherwise it is inconsistent.�

Given a finite normalized set Γ of BLmf -literals, our decision procedure
consists of the following two steps:

Step 1. Compute ∆ = closure(Γ ).
Step 2. Output satisfiable if ∆ is consistent; otherwise output

unsatisfiable.

Example 25. Let Γ be the following set of BLmf -literals

Γ =























inc(f) ,
dec(g) ,
leq(f, g) ,
f(0) = g(0) ,
f(x) 6= g(x)























.

We claim that Γ is BLmf -unsatisfiable. In fact, the first four literals imply that
f = g, which contradicts the last literal.

We use our decision procedure in order to automatically check that Γ is
BLmf -unsatisfiable. First, note that Γ is BLmf -equisatisfiable with the follow-
ing normalized set Γ ′ of BLmf -literals:

Γ ′ =























































inc(f) ,
dec(g) ,
leq(f, g) ,
y1 = f(0) ,
y2 = g(0) ,
y1 = y2 ,
z1 = f(x) ,
z2 = g(x) ,
z1 6= z2

























































Then, note that closure(Γ ′) must contain, among others, the following literals:

0 ≤ x , by the fifth ≤-rule ,

y1 ≤ z1 , by the second functions rule ,

z1 ≤ z2 , by the fifth functions rule ,

z2 ≤ y2 , by the third functions rule ,

z2 ≤ y1 , by the second =-rule ,

y1 ≤ z2 , by the third ≤-rule ,

z2 = y1 , by the second ≤-rule ,

z1 ≤ y1 , by the second =-rule ,

z1 = y1 , by the second ≤-rule ,

z1 = z2 , by the second =-rule .

Since closure(Γ ′) contains the complementary literals z1 = z2 and z1 6= z2,
our decision procedure outputs unsatisfiable, as desired. �

4 Correctness and complexity

Proposition 26. Let Γ be a BLmf-satisfiable normalized set of BLmf-
literals, and let Γ ′ be the result of extending Γ by means of an application of
one of the inference rules in Figure 1. Then Γ ′ is BLmf-satisfiable. �

Proof. Let A be a BLmf -interpretation satisfying Γ . If Γ ′ involves the same
variables of Γ , then it is routine to verify that A satisfies Γ ′ too. Otherwise, if Γ ′

is obtained from Γ by applying a fresh-variables rule, and therefore it involves a
variable fresh not present in Γ , then it can easily be argued that Γ ′ is satisfied
by a suitable variant A′ of the BLmf -interpretation A, which assigns the same
values to every symbol of the language, except possibly the variable fresh. �

Proposition 27 (Soundness). Let Γ be a BLmf-satisfiable finite normalized
set of BLmf-literals. Then closure(Γ ) is BLmf-satisfiable. �

Proof. By Propositions 23 and 26. �

Proposition 28. Any saturated and consistent normalized set of BLmf-literals
is BLmf-satisfiable. �

Proof. Let Γ be a saturated and consistent set of BLmf -literals.
Let X = vars(Γ ) ∪ {1,0}, and let ∼ be the binary relation of X induced by

the literals of the form x = y in Γ . By saturation with respect to the =-rules, ∼
is an equivalence relation. Consequently, we can form the quotient set A = X/∼.

Let � be the binary relation of A defined as follows:

[x]∼ � [y]∼ ⇐⇒ x ≤ y is in Γ .



Since ∼ is an equivalence relation, � is well-defined. Moreover, by saturation
with respect to the ≤-rules, (A,�) is a partial order with maximum [1]∼ and
minimum [0]∼.5

Let (B,⊑,+, ·,⊤,⊥) be the Dedekind-MacNeille completion of (A,�). Note
that we have ⊤ = [1]∼ and ⊥ = [0]∼.

We define a BLmf -interpretation B =
(

B, (·)B
)

by letting:

– a =B b iff a = b.
– a ≤B b iff a ⊑ b;
– a ⊔B b = a+ b;
– a ⊓B b = a · b;
– 1B = ⊤ = [1]∼;
– 0B = ⊥ = [0]∼;
– xB = [x]∼;
– fB(a) = lub(Zf,a, B,⊑) where

Zf,a = Xf,a ∪
⋃

leq(h,f)∈Γ

Xh,a ,

and

Xf,a =



















{[y]∼ | y = f(x) is in Γ and a = [x]∼} , if f ∈ NORM (Γ ) ,

{[y]∼ | y = f(x) is in Γ and [x]∼ ⊑ a} , if f ∈ INC (Γ ) ,

{[y]∼ | y = f(x) is in Γ and a ⊑ [x]∼} , if f ∈ DEC (Γ ) ,

{[y]∼ | y = f(x) is in Γ} , if f ∈ CONST (Γ ) .

By construction, B is a BLmf -interpretation. Next, we show that B satisfies
all BLmf -literals in Γ .

Literals of the form x = y. We have x ∼ y, which implies xB = [x]∼ =
[y]∼ = yB.

Literals of the form x 6= y. If it were xB = yB, we would have x ∼ y, which
implies that the literal x = y is in Γ , a contradiction.

Literals of the form x ≤ y. We have [x]∼ � [y]∼, so that [x]∼ ⊑ [y]∼.
Therefore [x]∼ ≤B [y]∼, which in turn implies [x ≤ y]B = true.

Literals of the form ¬(x ≤ y). We have [x]∼ � [y]∼. Hence [x]∼ 6⊑ [y]∼,
which implies [x ≤ y]B = false .

5 In general, (A,�) is not a lattice. As an example, consider Γ = closure({u ≤ x, v ≤
x, u ≤ y, v ≤ y}). This is the flaw in [2], which we correct in this paper by taking
the Dedekind-MacNeille completion of (A,�).



Literals of the form x = y ⊓z. By saturation with respect to the ⊓-rules, we
have that [x]∼ = glb({[y], [z]}, A,�). It follows that [x]∼ = glb({[y], [z]}, B,⊑).

Literals of the form x = y ⊔z. By saturation with respect to the ⊔-rules, we
have that [x]∼ = lub({[y], [z]}, A,�). It follows that [x]∼ = lub({[y], [z]}, B,⊑).

Literals of the form y = f(x). Let the literal y = f(x) be in Γ . We need to
show that yB = fB

(

xB
)

. This amounts to verify that [y]∼ = lub(Zf,[x]∼ , B,⊑).
Since the literal y = f(x) is in Γ , we have immediately [y]∼ ∈ Xf,[x]∼ ⊆ Zf,[x]∼ .
Therefore, it is enough to show that [y′]∼ ⊑ [y]∼ holds, for each [y′]∼ ∈ Zf,[x]∼ .

Thus, let [y′]∼ ∈ Zf,[x]∼ . It is convenient to distinguish the following two
cases.

Case 1: [y′]∼ ∈ Xf,[x]∼ . We consider the following four subcases.

(1a) Let f ∈ NORM (Γ ). Then a literal of the form y′ = f(x′) is in Γ , and
[x]∼ = [x′]∼. Hence the literal x = x′ is in Γ . By saturation with respect
to the rules of Figure 1, it follows that also the literal y = y′ is in Γ , and
therefore [y]∼ = [y′]∼.

(1b) Let f ∈ INC (Γ ). Then a literal of the form y′ = f(x′) is in Γ . Moreover,
[x′]∼ ⊑ [x]∼, which implies [x′]∼ � [x]∼, so that the literal x′ ≤ x is
in Γ . By saturation, it follows that the literal y′ ≤ y is in Γ too, which
implies [y′]∼ � [y]∼, and therefore [y′]∼ ⊑ [y]∼.

(1c) Let f ∈ DEC (Γ ). Then a literal of the form y′ = f(x′) is in Γ . Moreover,
[x]∼ ⊑ [x′]∼, which implies [x]∼ � [x′]∼, so that the literal x ≤ x′ is in
Γ . By saturation, it follows that also the literal y′ ≤ y must be in Γ ,
which implies [y′]∼ � [y]∼, and therefore [y′]∼ ⊑ [y]∼.

(1d) Let f ∈ CONST (Γ ). Then a literal of the form y′ = f(x′) is in Γ .
By saturation, it follows that the literal y = y′ is in Γ , and therefore
[y]∼ = [y′]∼.

Case 2: [y′]∼ ∈ Xh,[x]∼ , where the literal leq(h, f) is in Γ , and h is a function
symbol distinct from f . We consider the following four subcases.

(2a) Let h ∈ NORM (Γ ). Then a literal of the form y′ = h(x′) is in Γ , such
that [x]∼ = [x′]∼. By saturation, it follows that the literal y = f(x′) is
in Γ . But then, again by saturation, the literal y′ ≤ y must be in Γ .
Therefore, [y′]∼ � [y]∼, which implies [y′]∼ ⊑ [y]∼.

(2b) Let h ∈ INC (Γ ). Then a literal of the form y′ = h(x′) is in Γ , such that
[x′]∼ ⊑ [x]∼. Therefore, [x′]∼ � [x]∼, so that the literal x′ ≤ x is in Γ .
By saturation, a literal of the form y′′ = h(x) must be in Γ . Therefore,
again by saturation, the literals y′ ≤ y′′ and y′′ ≤ y are in Γ , so that also
the literal y′ ≤ y is in Γ . Hence, [y′]∼ � [y]∼, which implies [y′]∼ ⊑ [y]∼.

(2c) Let h ∈ DEC (Γ ). Then a literal of the form y′ = h(x′) is in Γ , such that
[x]∼ ⊑ [x′]∼. Therefore, [x]∼ � [x′]∼, so that the literal x ≤ x′ is in Γ .
By saturation, a literal of the form y′′ = h(x) must be in Γ . Therefore,
again by saturation, the literals y′ ≤ y′′ and y′′ ≤ y are in Γ , so that also
the literal y′ ≤ y is in Γ . Hence, [y′]∼ � [y]∼, which implies [y′]∼ ⊑ [y]∼.



(2d) Let h ∈ CONST (Γ ). Then a literal of the form y′ = h(x′) is in Γ . By
saturation, a literal of the form y′′ = h(x) is in Γ . Therefore, again
by saturation, the literals y′ = y′′ and y′′ ≤ y are in Γ , so that also
the literal y′ ≤ y must be in Γ . Therefore, [y′]∼ � [y]∼, which implies
[y′]∼ ⊑ [y]∼.

Literals of the form inc(f). Let the literal inc(f) be in Γ . We need to
show that the function fB is increasing in the lattice (B,⊑,+, ·,⊤,⊥). Thus,
let a, b ∈ B such that a ⊑ b. To prove that fB(a) ⊑ fB(b), or equivalently that
lub(Zf,a, B ⊑) ⊑ lub(Zf,b, B,⊑), it is enough to show that for each [y]∼ ∈ Zf,a

there exists [y′]∼ ∈ Zf,b such that [y]∼ ⊑ [y′]∼.
Thus, let [y]∼ ∈ Zf,a. We distinguish two cases.

Case 1: [y]∼ ∈ Xf,a. Then the literal y = f(x) is in Γ and [x]∼ ⊑ a ⊑ b, which
implies [y]∼ ∈ Xf,b ⊆ Zf,b.

Case 2: [y] ∈ Xh,a, where the literal leq(h, f) is in Γ , and h is a function symbol
distinct from f . We consider the following four subcases.

(2a) h ∈ NORM (Γ ). Then a literal of the form y = h(x) is in Γ , and a = [x]∼.
It follows that the literal y′ = f(x) is in Γ . But then, by saturation, the
literal y ≤ y′ is in Γ . Therefore, [y]∼ � [y′]∼, which implies [y]∼ ⊑ [y′]∼.
Moreover, [y′]∼ ∈ Xh,b ⊆ Zf,b.

(2b) h ∈ INC (Γ ). Then a literal of the form y = h(x) is in Γ , and [x]∼ ⊑ a ⊑
b. Therefore, [y] ∈ Xh,b ⊆ Zf,b.

(2c) h ∈ DEC (Γ ). Then a literal of the form y = h(x) is in Γ , and a ⊑ [x]∼.
By saturation, the following literals are in Γ : y′ = h(0), y′′ = f(0),
y ≤ y′, y′ ≤ y′′, and y ≤ y′′. It follows that [y]∼ � [y′′]∼, which implies
[y]∼ ⊑ [y′′]∼. Moreover, since [0]∼ = 0B ⊑ b, we have [y′′]∼ ∈ Xf,b ⊆
Zf,b.

(2d) h ∈ CONST (Γ ). Then a literal of the form y = h(x) is in Γ . By satura-
tion, the following literals are in Γ : y′ = h(0), y′′ = f(0), y = y′, y′ ≤ y′′,
and y ≤ y′′. It follows that [y]∼ � [y′′]∼, which implies [y]∼ ⊑ [y′′]∼.
Moreover, since [0]∼ = 0B ⊑ b, we have [y′′]∼ ∈ Xf,b ⊆ Zf,b.

Literals of the form dec(f). This case is similar to the case of literals of the
form inc(f).

Literals of the form const(f). This case is similar to the case of literals of
the form inc(f).

Literals of the form leq(f, g). We have Zf,a ⊆ Zg,a. Therefore, fB(a) =
lub(Zf,a, B,⊑) ⊑ lub(Zg,a, B,⊑) = gB(a). �

Proposition 29 (Completeness). Let Γ be a normalized set of BLmf-
literals, and assume that closure(Γ ) is consistent. Then Γ is BLmf-satisfiable.�



Proof. By Proposition 28, closure(Γ ) is BLmf -satisfiable. Since Γ ⊆
closure(Γ ), it follows that Γ is BLmf -satisfiable. �

Proposition 30. The satisfiability problem for finite sets of BLmf-literals is
decidable in polynomial time. �

Proof. By Propositions 21 and 23. �

Proposition 31. The satisfiability problem for BLmf-formulae is NP-
complete. �

Proof. The satisfiability problem for BLmf -formulae is clearly NP-hard, In
order to show membership to NP , it suffices to note that one can check whether
a BLmf -formula is BLmf -satisfiable by:

1. guessing a disjunct Γ of a DNF of ϕ;

2. converting Γ to a conjunction of normalized literals Γ ′;

3. computing closure(Γ ′);

4. checking whether closure(Γ ′) is consistent. �

5 The language CLmf

In this section we define the language CLmf (complete lattices with mono-
tone functions) and we prove that it is equivalent to the language BLmf for
quantifier-free formulae.

Syntactically, the language CLmf coincides with BLmf . Semantically, we
have the following definition.

Definition 32. A CLmf-interpretation A is BLmf -interpretation in which
the lattice

(

A,≤A,⊔A,⊓A,1A,0A
)

is complete. �

Proposition 33. Let ϕ be a quantifier-free BLmf- or CLmf-formula. Then ϕ
is BLmf-satisfiable if and only if ϕ is CLmf-satisfiable. �

Proof. Assume first that ϕ is CLmf -satisfiable. Since every CLmf -
interpretation is also a BLmf -interpretation, it follows that ϕ is BLmf -
satisfiable.

Conversely, assume that ϕ is BLmf -satisfiable. Without loss of generality,
we can assume that ϕ is a normalized set of BLmf -literals. Let ψ = closure(ϕ).
By Proposition 26, ψ is BLmf -satisfiable. It follows that ψ is consistent. By
Proposition 28, ψ is CLmf -satisfiable. Since ϕ ⊆ ψ, it follows that ϕ is CLmf -
satisfiable. �



6 Conclusion

We presented a decision procedure for the quantifier-free satisfiability problem
of the language BLmf (Bounded Lattices with monotone functions). The lan-
guage contains the predicates = and ≤, the operators ⊓ and ⊔ over terms which
may involve uninterpreted unary function symbols, predicates for expressing in-
creasing and decreasing monotonicity of functions, and a predicate for pointwise
function comparison.

We proved that our decision procedure runs in polynomial time O(m4) for
conjunctions of literals, thus entailing that the quantifier-free satisfiability prob-
lem for BLmf is NP-complete.

Finally, we defined the language CLmf (Complete Lattices with monotone
functions), and we proved that the languages CLmf and BLmf are equivalent
for quantifier-free formulae.

In our proofs, we used the hypothesis that lattices are bounded (see, for
instance, Proposition 28, case of literals of the form inc(f), subcases 2c and 2d).
Thus, a possible direction of future research would be to relax this hypothesis,
and study the language Lmf (Lattices with monotone functions) in which the
semantics does not require lattices to be bounded. We conjecture that Lmf
is decidable. A promising result in this direction can be found in [13], where
decidability is proved after removing from Lmf the predicates dec(f), const(f),
and leq(f, g).

Acknowledgments

We are grateful to Viorica Sofronie-Stokkermans for fruitful discussions on lattice
theory.

References

1. D. Cantone, A. Ferro, E. G. Omodeo, and J. T. Schwartz. Decision algorithms
for some fragment of analysis and related areas. Communications on Pure and
Applied Mathematics, 40(3):281–300, 1987.

2. D. Cantone and C. G. Zarba. A decision procedure for monotone functions over
lattices. In F. Buccafurri, editor, Joint Conference on Declarative Programming
APPIA-GULP-PRODE, pages 1–12, 2003.

3. R. Dedekind. Stetigkeit und Irrationale Zahlen. Braunschweig: F. Vieweg, 1872.
4. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. V. Leeuwen, editor,

Handbook of Theoretical Computer Science (vol. B): Formal Models and Semantics,
pages 243–320. MIT Press, Cambridge, MA, USA, 1990.

5. J. Desharnais, B. Möller, and G. Struth. Modal Kleene algebra and applications
— A survey —. Journal on Relational Methods in Computer Science, 1:93–131,
2004.

6. A. Ferro, E. G. Omodeo, and J. T. Scwhartz. Decision procedures for elementary
sublanguages of set theory. I. Multi-level syllogistic and some extensions. Commu-
nications on Pure and Applied Mathematics, 33(5):599–608, 1980.



7. S. Hazelhurst and C.-J. H. Seger. Model checking lattices: Using and reasoning
about information orders for abstraction. Logic Journal of the IGPL, 7(3):375–411,
1999.

8. H. M. MacNeille. Partially ordered sets. Transactions of the American Mathemat-
ical Society, 42:416–460, 1937.

9. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.

10. P. D. Mosses. Denotational semantics. In J. V. Leeuwen, editor, Handbook of
Theoretical Computer Science (vol. B): Formal Models and Semantics, pages 575–
631. MIT Press, Cambridge, MA, USA, 1990.

11. F. J. Oles. An application of lattice theory to knowledge representation. Theoretical
Computer Science, 249(1):163–196, 2000.

12. M. Osorio, B. Jayaraman, and D. A. Plaisted. Theory of partial-order program-
ming. Science of Computer Programming, 34(3):207–238, 1999.

13. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
R. Nieuwenhuis, editor, Automated Deduction – CADE-20, volume 3632 of Lec-
ture Notes in Computer Science, pages 219–234. Springer, 2005.

14. A. Tarski. Undecidability of the theory of lattices and projective geometries. Jour-
nal of Symbolic Logic, 14(1):77–78, 1949.


