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Abstract

Timing attacks have become fairly known in context of the Meltdown exploit,
where attackers used the vulnerability of CPU caches against timing attacks on
kernel space data. The threat of timing attacks on privacy-critical systems raises
the need of time dependent analysis and checking specific properties on these
systems. A well known example of a timing attack is the extraction of the password
from a bad password checking algorithm, which stops processing the input on the
first index where the saved password and the user input differ. We can create
a simple MITL property for a timing-attack free system (”G[2,2] answer”). The
property ensures that the password checker always has to give the answer exactly
after two time units, independently of the correctness of the input. However, this
excludes traces where the password checker can give the answer earlier.

To improve the response time of the password checker while remaining timing-
attack free, an improved property can be formulated as follows: ”Every pair of
execution traces agree on the answer and give an answer at least in two time steps.”.
This cannot be expressed in MITL as it is a hyperproperty. A hyperproperty is a
set of sets of traces and hence relates multiple computation traces. HyperLTL is
a temporal logic to express hyperproperties. The example property additionally
has a timing constraint, which in turn cannot be formalized in HyperLTL.

In this thesis a new logic for timed hyperproperties is constructed. Properties to
prevent timing attacks on password checking systems and cryptographic systems
are formulated and checked on suitable models. The corresponding model checking
problem for Timed HyperLTL is studied together with its complexity.
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1 Introduction

The analysis of security critical systems is a matter of enormous interest, as our
daily life is widely influenced by the fast development of information and com-
munication technologies. However, coming up with formal correctness guarantees
for systems satisfying security policies is not trivial. A main issue of secure in-
formation flow is noninterference between high input and low input, that shall
be accomplished by the implementation. Checking whether information flow in
a system is correct, secure and invulnerable to a specific attack is important.
This ensures systems to deny flow of information or data that do not meet the
boundaries of the policy.

Some policies for security critical systems can already be formalized by trace prop-
erties. Trace properties are sets of execution traces. They define the traces that a
system, satisfying the property, may permit. Trace properties can be distinguished
in two categories: safety and liveness. Safety properties state, that something bad
will never happen. Liveness properties force, that something good will happen
eventually. An example for a safety property is the following:

"A critical section can only be entered, if the the program holds the lock on the
data."

This trace property can formally be written in Linear-time Temporal Logic (LTL):

(enter → lock)

LTL was introduced by Amir Pneuli in 1977 [23]. LTL formulas can describe the
future of paths referring to abstract time terms. Every LTL formula describes
a trace property. Trace properties are sets of traces, that can only prescribe
individual traces. However, trace properties are restricted to only one execution
trace at a time. Many important security policies, especially information flow
policies, cannot be formalized as a trace property. Observational determinism is
an example for this:

"Every pair of traces with the same initial low observation remain
indistinguishable for low users."

Whether one specific trace is allowed by the property depends on the other trace
of the pair. This implies that observational determinism cannot be expressed
by LTL.
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HyperLTL [9] has been introduced to fill this gap. The logic raises the expres-
siveness of LTL to a higher level by adding explicit trace quantification. With
this, one can quantify about the traces and thus reason about the relation of
two or multiple traces at a time. The properties expressed by HyperLTL are hy-
perproperties. In contrast to trace properties, hyperproperties are sets of trace
properties, i.e. sets of sets of execution traces. They have been introduced by
Michael Clarkson and Fred Schneider [8]. With HyperLTL, one can formalize
observational determinism:

∀π1.∀π2. (inπ1 ↔ inπ2)→ (outπ1 ↔ outπ2)

Observational determinism is an information flow property as it connects a sys-
tem’s input and output with each other. HyperLTL is a simple logic in which
many information flow properties can be stated [9].

However, systems satisfying hyperproperties, e.g. observational determinism, are
not completely secure against attackers. In the last few years many attacks have
become publicly known, which were used to break into critical systems. Many of
them were timing attacks, which misuse faulty behaviour of the system to have
different runtime for different inputs. By measuring the difference of runtime for
multiple inputs, an attacker can extract information about the quality of the sent
queries and then compute the real secrets used in the system. Hyperproperties in
general cannot express time of system executions, which are crucial for preventing
timing attacks. In this thesis, we introduce a logic for timed hyperproperties, which
are an extension of hyperproperties by adding time constraints to the temporal
expressions. To describe timed hyperproperties, Timed HyperLTL is presented
and its expressiveness is shown on several example properties.

Especially password checking algorithms have a high risk to be vulnerable to
timing attacks. If the respective algorithm is vulnerable, an attacker can infer
the secret password by multiple queries and measuring the response time for the
query. A timed hyperproperty, which a password checker has to satisfy to be
secure against a timing attack, can be formalized as follows:

∀π1, π2. [0,∞] respπ1 → [0,4] respπ2

The property allows a system to have a delay of maximal four time units between
the responses on the first and the second execution trace. If the respective timing
attack is not efficient, i.e. if the responses only have a difference lower than a given
threshold, then the property described above effectively protects systems against
the attacks.

Another well known timing attack on OpenSSL has been described by Boneh
and Brumley [7]. They built an environment in the SSL handshake protocol,
where an attacking client sends decryption queries to the server. The queries are
initially guessed and iteratively improved to approximate the secret by measuring
the time needed to decrypt the queries. The essential part of the handshake model
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∀π1, π2. [0,∞](CKeyExchangeπ1 ↔ CKeyExchangeπ2) (1)

∧(CKeyExchangeπ1 → ( [0,0] ¬failπ1 ∧ [t,∞] SFinishπ1)) (2)

∧(CKeyExchangeπ1 → ( [0,∞] decryptπ1 ↔ decryptπ2)) (3)

Property 1.1: Safety property to prevent SSL timing attack

is depicted in Figure 1.0.1. A possible restriction to prevent a timing attack is
described by Property 1.1.

Property 1.1 consists of multiple parts, which are explained more detailed in the
following:

(1) The first part requires the system to synchronously end the ClientKey-
Exchange run, such that both traces can start the decryption method at
the same time.

(2) The second part indicates that the system must go into the ServerFinish
state some time after the ClientKeyExchange is done.

(3) Finally, the last part enforces two traces to synchronously decrypt the input
query and send the result back. Decrypting and responding is seen as one
atomic action in this property. Atomic actions may need more than one
time unit for being performed. This can also be stated more granular, what
makes the prevention property more complex.

In company of the new logic, we also present a model checking algorithm for
Timed HyperLTL, that is build upon the well-known and widely used real-time

idle

. . .
CHello Failure

CKeyExchange

Decryption
x ≤ 100

CFinished

SFinished

Finish
x ≥ 100

x ≥ 100

Figure 1.0.1: Section of the Uppaal model for SSL Handshake protocol, secure
against the timing attack of [7]
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model checker Uppaal for timed automata [4]. It is generally based on the model
checking algorithm for HyperLTL. The approach builds an automaton for the
formula to be checked and applies a composition of the automaton and the system
to create a new Büchi automaton with states as tuples of atomic propositions. The
algorithm then maps the trace properties to the respective positions of the state
tuples. To check whether the property is satisfied or not, the algorithm checks the
language of the resulting automaton on emptiness: if the language is non-empty,
the property holds.

Our model checking algorithm works similarly: We compute a self-composition
of the real-time system in dependency of the number of trace quantifiers in the
formula to be checked. This results in a new system with states as tuples of sets
of atomic propositions, where each position is a projection of the respective trace
quantifier. Then, we can handle this timed system to UPPAAL and adapt the
Timed HyperLTL to the UPPAAL verifier language.

Related Work

Nielson et al. [21] describe timed automata as a ’formalism for modelling and
analysing the real-time safety aspects of cyberphysical systems.’ A language-based
approach has been implemented, called Timed Command Language, with which
information flow control can be defined in a type system for Timed Automata.
Similar to MITL, the authors only consider non-zeno and time-divergent trace
behaviours, as only those traces reflect relevant real-world behaviour. Information-
flow control is defined over mappings from lattices to program variables, where
partial order of a complete lattice is given by the directed partial order of the
lattice. The paper uses Timed Commands, build upon the Guarded Commands
of Dijkstra combined with clocks, to develop a type system for a programming
language. Given a program written in Timed Commands, the next step of the
approach translates the commands into a a timed automata, which is done along
several translation rules for the elementary commands.
In contrast to this, Timed HyperLTL does not include a type system for the
formulas, but uses the standard syntax and semantics of the already presented
and well-studied linear-time temporal logics LTL and HyperLTL.

Focardi et al [14] propose an extension to a prior work of the authors to formulate
noninterference properties in a real-time setting. The Security Process Algebra
(SPA) represents the basis of this approach. For this, the authors define the new
logic tSPA, which is a timed variant of SPA. The semantics of tSPA are defined
on a LTS. tSPA uses discrete time where actions are atomic and durationless.
Additionally, it uses an idling operator that allows processes to wait indefinitely.
With the new logic the authors lift the noninterference property into a real-time
framework.
The real-time setting of tSPA is similar to our approach: We also use atomic
actions and delay actions that elapse time. However, a difference is the explicit
synchronization step done in tSPA by the tick action, where the global clock is



1 Introduction 5

synchronized whenever all processes agree on the tick action. Timed HyperLTL
defines the synchronizing on runs by the synchronous elapsing of time in the
respective runs. Hence, the logic does not need to have an extra synchronize step
in the runs of a system.

Köpf et al. [16] worked on analysing information flow in hardware circuits in a
timing-sensitive manner. They created a decision procedure for the security of
hardware implementations. The goal is to find possible ways of timing attacks on
the system and how to prevent them by posing policies on the system behaviour.
The paper concentrates on analysing information flow of synchronous timed hard-
ware circuits. A first and important point is the relation between runtime of the
system and the used secrets.
A similar experiment is done for Timed HyperLTL as we will see in Chapter 5,
where we investigate the model checking of a system depending on the size of the
secret. Additionally, our work is flexible enough to be applicable to more settings
than just hardware circuits as it is a generic approach to any environment.

Nguyen et al. [20] take a somewhat similar approach to describe timed systems as
it is done in this work. The authors take STL (Signature Temporal Logic) and add
existential ∃ and universal ∀ trace quantifiers to relate multiple execution traces.
The work concentrates on the signal domain of cyberphysical systems (CPSs) and
expresses safety and security hyperproperties in the resulting logic, HyperSTL.
In companion to the new logic, the authors present a falsifying algorithm for
checking the hyperproperties for CPSs. The authors also consider side-channel
attacks on CPS’s, whereas they also take anomalies in power consumption and
heat generation into account, as well as execution time.
While the work of Nguyen focus on the cyberphysical part, our work concentrates
on specifying properties for software in embedded real-time systems. We can only
check for anomalies in execution time as we cannot measure power consumption
or heat generation by a timed automata.

The work of Finkbeiner et al. [13] shows the enormous potential of the temporal
logics for hyperproperties. It introduces the model checking algorithm for the
temporal logics HyperLTL and HyperCTL*, which builds the basis for our work.
Their work is an automata-based algorithm to check hyperproperties on finite
state systems. They also distinguish the alternation free fragment from formulas
with an alternation depth of at least one. The authors present an efficient model
checking algorithm for HyperCTL*.

Outline

The thesis is structured as follows: In Chapter 2, we will introduce the required
definitions and constructions needed for building the new logic and implement
the model checking algorithm. Chapter 3 will introduce the new logic by pre-
senting syntax and semantics of Timed HyperLTL. Several example policies for
security relevant issues created from the new logic will also be presented. After
that, Chapter 4 will discuss the model checking algorithm for Timed HyperLTL.
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In Chapter 5, we will show experimental results obtained from running our model
checker on timed hyperproperties described so far and some real-world exam-
ples. Finally, Chapter 6 concludes our findings and gives an outlook on possible
future work.



2 Background

In this chapter, we outline the background definitions for this thesis. In Sec-
tion 2.1, we introduce timed automata and Kripke structures as a description
for the systems to be modelled. Furthermore, we introduce the temporal log-
ics LTL, MITL and HyperLTL, which is used to describe hyperproperties, in
Section 2.2. We establish the formal definition of hyperproperties in Section 2.3.
Based on this, we point out the differences of the logics with respect to their
expressibility and why we need to combine them to achieve the formalization of
timed hyperproperties.

2.1 Preliminaries

A timed automata is an automaton with an additional finite set of real-time clocks.
During a run of the automaton, clock-values can be compared to time constants
via clock constraints.

Definition 2.1 (Timed Automata). A Timed Automata is a tuple
T = (Loc,Act, C, ↪→, Loc0, Inv, AP, L), where

• Loc is a finite set of locations, Loc0 is a set of initial locations,

• Act is a finite set of actions,

• C is a finite set of clocks,

• ↪→ ⊆ Loc×CC(C)×Act× 2C ×Loc is a transition relation, where CC(C)
is the set of clock constraints,

• Inv : Loc→ CC(C) is an invariant-assignment function,

• AP is a finite set of atomic propositions,

• L : Loc→ 2AP is a labeling function for the locations.

The transition l
c′,a,X
↪−−−→ l′ is taken with action a if clock constraint c evaluates to

true under clock evaluation η. If the transition is taken, all clocks x ∈ X are
reset to 0.
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A state of a timed automaton is given as s = 〈l, η〉, where l is a location of
the timed automaton and η is the current clock evaluation of state s. The se-
mantics of temporal logics like LTL or CTL can be defined over the paths of a
Kripke structure.

Definition 2.2 (Kripke Structure). A Kripke structure K = (S, so, δ, AP, L) is
given by the set of states S, the initial state s0, a transition function δ : S → 2S,
the set AP of atomic propositions and the labelling function L : S → 2AP . It is
additionally required that: ∀s ∈ S : δ(s) 6= ∅.

A Kripke structure [17] is a general representation for programs. The nodes repre-
sent reachable states of the system and the transitions are the possible state tran-
sitions. One can describe terms of temporal logics by traces of a Kripke structure.
The requirement ∀s ∈ S : δ(s) 6= ∅ ensures that all runs of the Kripke structure
result in infinite traces.

Definition 2.3 (Self-composition). The self-composition of a Kripke Structure
K = (S, s0, δ, AP, L) is computed by applying the cross product on S and adding
new transitions according to the tuples of states. The n-times self-composed
Kripke Structure K ′ = (S ′, s0, δ

′, AP ′, L′) is defined as follows:

• S ′ = {s | s = (s1, s2, . . . , sn)} = S ×n S,

• s0 = (s0, s0, . . . ),

• δ′ : S ′ → 2S
′,

• AP ′ = AP ,

• L′ : S ′ → 2AP
′

For a state tuple s = (s1, s2, . . . , sn) the transition function is defined as follows:

δ′(s) = (s1, s2, . . . , ti, . . . , sn) iff ∃ti s.t. δ(si) = ti and
δ′(s) = t iff ∀si ∈ s ∃ti ∈ t s.t. δ(si) = ti.

The transition function δ′ returns the set of tuples of states that are reachable
from the state tuple s, by applying the standard transition function δ to the
single states of the tuple s.

As shown by Yovine [27], a timed automaton with one clock is a special case of a
Kripke structure. This induces that self-composition of a Kripke structure can be
applied to timed automata in a similar way. The clock constraints of transitions
and states are added according to the respective positions of state tuples and
the new transitions. For a new transition t′ of the self-composed system a clock
constraint is added if:

t′ = l
c′,a,X
↪−−−→ l′ iff ∃t ∈ δS with t = l

c′,a,X
↪−−−→ l′ where l ∈ l ∧ l′ ∈ l′.

Remember that l and l’ are tuples of sets of S.
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2.2 LTL – HyperLTL – MITL

LTL and HyperLTL are both linear-time temporal logics in contrast to CTL* and
HyperCTL*, which are branching-time temporal logics. In this section, we give an
overview of these temporal logics and discuss the differences in their expressiveness
especially regarding security relevant properties. Additionally, we show MITL as
an extension of LTL with timing constraints.

LTL

We first introduce LTL (Linear-Time Temporal Logic). It has been invented by
Amir Pnueli for the formal verification of computer programs [23]. LTL formulas
are based on the grammar depicted in Figure 2.2.1.

ψ ::= a | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | ψ | ψ U ψ

Figure 2.2.1: Syntax of LTL

a is an atomic proposition, the logical operators are defined as usual. The temporal
operators are next and U until. From these, we can derive other operators,
namely eventuall (finally):

ψ ≡ true U ψ

and globally

ψ ≡ ¬ ¬ψ ≡ ¬ ( true U ¬ψ)

The semantics of a LTL formula is defined over traces. A trace is a sequence of
atomic propositions. For an infinite trace t = s0s1s2 . . . and index i ∈ N, we use
the following index notations:

t[i] ≡ si,

t[..i] ≡ s0s1 . . . si,

t[i..] ≡ sisi+1 . . .

A set of traces modelling a system S is called executions of S. The following
equations define the semantic of LTL:
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Definition 2.4 (LTL semantics).

t � a iff a ∈ t[0]

t � ψ1 ∧ ψ2 iff t � ψ1 ∧ t � ψ2

t � ¬ψ iff t 2 ψ
t � ψ iff t[1,∞] � ψ

t � ψ1 U ψ2 iff ∃i ≥ 0 : t[i,∞] � ψ2 ∧ ∀0 ≤ j < i : t[j,∞] � ψ1

LTL formulas define ω-regular languages: Each LTL formula can be translated into
an equivalent Büchi automaton over the alphabet Σ = 2AP that accepts precisely
the traces that satisfy the formula [19, 26].

HyperLTL

HyperLTL, introduced by Clarkson et al. in [9], is an extension of LTL by adding
explicit trace quantification. The syntax shown in Figure 2.2.2 generates formulas
of HyperLTL with the initial symbol ϕ.

ϕ ::= ∃π.ϕ | ∃π.ψ | ¬ϕ
ψ ::= aπ | ψ ∨ ψ | ¬ψ | ψ | ψ U ψ

Figure 2.2.2: HyperLTL syntax

The grammar defines HyperLTL formulas by a quantifier prefix with at least one
quantifier and a following subformula, which is a standard LTL formula.The all-
quantifier is defined as ∀π.ψ ≡ ¬∃π.¬ψ. This relation between the existential and
universal quantifier is essential for the model checking algorithm of HyperLTL and
Timed HyperLTL, as we will see in Chapter 4. Note that for HyperLTL formulas
without quantifier alternation, we use the following abbreviations:

∀π1, ∀π2, . . . ,∀πn ≡ ∀π1, . . . , πn and
∃π1, ∃π2, . . . ,∃πn ≡ ∃π1, . . . , πn.
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Definition 2.5 (HyperLTL semantics).

Π � ∃π. ψ iff ∃t ∈ Traces(K, s0) : Π[π 7→ t] � ψ

Π � aπ iff a ∈ Π(π)(0)

Π � ¬ψ iff Π 2 ψ
Π � ψ1 ∨ ψ2 iff Π � ψ1 or Π � ψ2

Π � ψ iff Π[1,∞] � ψ

Π � ψ1 U ψ2 iff ∃i ≥ 0 : Π[i,∞] � ψ2 and ∀0 ≤ j < i : Π[j,∞] � ψ1

The semantics of HyperLTL are defined over a Kripke structure. A Kripke struc-
ture K satisfies a HyperLTL formula ψ : K � ψ iff s0 � ψ. A path p of K is a
sequence s0s1s2 · · · ∈ Sω with s0 as initial state and it holds: ∀i ∈ N : si+1 = δ(si).
A trace t of a path p = s0s1 . . . is the sequence of the state labeling : t = σ1σ2 . . .
with σi = L(si) ∀i ∈ N. Traces(K, s) is the set of all traces of Kripke structure
K, starting in state s.

As Alur et al. showed in [2], the property describing observational determinism
is not a regular tree property, so it is not expressable in LTL. Additionally, LTL
is obviously a sublogic of HyperLTL, so it is subsumed. You can write every LTL
formula as a HyperLTL formula with a single leading forall quantifier. However,
observational determinism is expressible in HyperLTL as we can relate multiple
execution traces.

MITL

MITL (Metric Interval Temporal Logic) is another extension of LTL, where timing
constraints in form of intervals are added to the temporal operators [3]. MITL is
a fragment of MTL (Metric Temporal Logic), where punctuality is not inherited.
Thus, MITL is a decidable fragment, while model checking and the satisfiability
for MTL is in general undecidable [22].

MITL formulas are generated by the following grammar:

ψ ::= a | g | ¬ψ | ψ ∨ ψ | ψ U [a,b] ψ

The other boolean connectives and temporal operators can be defined by standard
conventions. For this work, we stipulate a, b ∈ N as it is specified for the decid-
able fragment. It is also possible and straightforward to choose R as domain for
time intervals.

Definition 2.6 (MITL semantics). Let TA = (Loc,Act, C, ↪→, Loc0, Inv, AP, L)
be a timed automaton, a ∈ AP, g ∈ ACC(C) and [a, b] ⊆ N>0. With s = 〈l, η〉 ∈
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TS(TA) and the MITL state formula ψ and path formula φ, we define the seman-
tics of MITL as follows:

s � a iff a ∈ L(l)

s � g iff η � g

s � ¬ψ iff s 2 ψ
s � ψ1 ∨ ψ2 iff s � ψ1 ∨ s � ψ2

π � φ1 U [a,b] φ2 iff ∃i ≥ 0.si + d � ψ2 for some d ∈ [0, di] with
i−1∑
k=0

dk + d ∈ [a, b] and

∀j ≤ i.sj + d′ � ψ1 ∨ ψ2 for any d′ ∈ [0, dj] with
j−1∑
k=0

dk + d′ ≤
i−1∑
k=0

dk + d

For si = 〈li, ηi〉 and d ≥ 0 we define si + d = 〈li, ηi + d〉.
We can rewrite the timed temporal operators eventually and globally similar to
LTL in this way:

[a,b] ψ ≡ true U [a,b] ψ [a,b] ψ ≡ ¬ [a,b] ¬ψ

For time-divergent path π = s0
d0−→ s1

d1−→ . . . , the following two equations hold

• A timed eventually formula [a,b] ψ is satisfied if ψ is true at some time
instant t ∈ [a, b].

π � [a,b] ψ iff ∃i ≥ 0. si + d � ψ for some d ∈ [0, di] with
i−1∑
k=0

dk + d ∈ [a, b].

• A timed globally formula [a,b] ψ is satisfied if ψ holds on all time instants
t ∈ [a, b].

π � [a,b] ψ iff ∃i ≥ 0.si + d � ψ for any d ∈ [0, di] with
i−1∑
k=0

dk + d ∈ [a, b].

2.3 Hyperproperties

Trace properties are sets of traces. Thus, a system satisfying a trace property φ
has at least all traces τ that satisfy the property φ. A hyperproperty is a set of sets
of traces, so a set of trace properties. Security policies, for example noninteference,
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are not policies of individual traces, but of unspecified trace variables since the
hyperproperty claims restrictions on all possible runs of the system.

If a security policy is given as a hyperproperty H, then H is the set of all systems,
satisfying the security policy, as each element of the hyperproperty is a trace
property that specifies the allowed executions of a system. A trace property P is
defined by a set of traces T that consists of the traces fulfilling the property:

T � P ≡ T ⊆ P

This is a first step of formalizing the satisfaction of a hyperproperty H by a trace
property T :

Definition 2.7. Given a trace property T and a hyperproperty H. Then it holds:

T � H iff T ∈ H

As trace properties are subsumed by hyperproperties, it is also possible to express
every trace property by a hyperproperty as it is shown by [8].

Theorem 2.1 (Lift of trace properties [8]). The lift of a trace property P to
a hyperproperty H is given as the power-set of the trace property:

[P ] ≡ P(P )

where P denotes the powerset function.

This can be extended to get a relation between the satisfaction of hyperproperties
and trace properties by a system, as the following Theorem 2.2 shows.

Theorem 2.2. A system satisfying a hyperproperty H that contains the trace
properties H = {P1, . . . , Pn} also satisfies all trace properties of the hyperproperty:

S � H → ∀i = 0, . . . , n S � Pi

Trace properties can always be written as intersection of a liveness and a safety
property [1]. This also holds for every hyperproperty, which can be split into a
safety hyperproperty (hypersafety) and a liveness hyperproperty (hyperliveness)
as shown by Clarksond et al. [8].
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The intended use of the new logic is the formalization of timed hyperproperties.
For this, Timed HyperLTL formulas are built upon the syntax of HyperLTL and
MITL. Our logic extends HyperLTL with timing constraints on temporal opera-
tors, which are defined in MITL. Therefore, we can express hyperproperties, where
parts of the property are valid from a time point onwards or in the bounds of a
time interval.

We define the syntax and semantics of Timed HyperLTL in Section 3.1 and 3.2
and describe how the standard temporal operators can be derived in the time
constraint environment. Additionally, we examine how to express the untimed
temporal operators with the new logic. In Section 3.3, we present example timed
hyperproperties which can be expressed by Timed HyperLTL.

3.1 Syntax

Timed HyperLTL formulas are defined by the following grammar:

ϕ = ∀π. ϕ | ∃π. ϕ | ψ

ψ = aπ | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | ψ U [a,b] ψ

Figure 3.1.1: Syntax of Timed HyperLTL

The formula ψ1 U [a,b] ψ2 means that ψ1 has to hold from time step a until time
step b. From time step b + 1 onwards, ψ2 has to hold. ∀ and ∃ have the usual
meanings as universal and existential trace quantifiers, derived from HyperLTL.
The same holds for the logical operators, which have their classical definition. The
atomic proposition aπ holds if the first state in π is true for a, i.e. a ∈ π[0].

We only consider one global clock c for all execution traces in a system checked
with a Timed HyperLTL formula. This results in running all traces of the system
synchronously. Note that the time of one clock tick may vary depending on the
environment. For our later examples we will use different notions of time unit,
e.g. one time unit may be equivalent of comparing two bits with each other, see
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Section 5.1. This is the reason why we omit the next operator a of HyperLTL.
The definition of a "next step" is not clear in the real-time setting and may change.
A possible definition of a could be true U [1,1] a ≡ [1,1] a, to simulate the next
step with an interval of one time unit. This means, that a has to hold exactly one
time unit after the current state. However, we use the interval definitions of MITL
which prohibits singular intervals, i.e. intervals I = [a, b] with a = b, because the
language then gets undecidable.

3.2 Semantics

Similar to HyperLTL, Timed HyperLTL defines the semantics over a set T of
traces. Π : V → T is a trace assignment with V as the set of trace variables.
We write Π[π 7→ τ ] for the updated trace assignment, where π is mapped to τ .
For the validity judgement, we write the trace set T as subscript since the validity
depends on the trace mapping. For the sake of decidability, we assume that x < y.
The semantics of Timed HyperLTL are defined in Figure 3.2.1.

Π �T aπ iff a ∈ Π(π)[0]

Π �T ψ1 ∧ ψ2 iff Π �T ψ1 ∧ Π �T ψ2

Π �T ψ1 ∨ ψ2 iff Π �T ψ1 ∨ Π �T ψ2

Π �T ¬ψ iff Π 2T ψ
Π �T ∀π. ψ iff ∀τ ∈ T : Π[π 7→ τ ] �T ψ

Π �T ∃π. ψ iff ∃τ ∈ T : Π[π 7→ τ ] �T ψ

Π �T ψ1 U [x,y] ψ2 iff ∃z ∈ R+ : Π �T+z ψ2 such that z ∈ [x, y]

and ∃z′ ∈ R+ : x ≤ z′ < z : Π �T+z′ ψ1

Figure 3.2.1: Semantics of Timed HyperLTL

A Kripke structure K, defined in Chapter 2, satisfies a Timed HyperLTL for-
mula φ iff all traces of K, denoted by Traces(K), satisfy φ, i.e. Traces(K) � φ.
Traces(K) denotes the set of all traces starting in the initial state s0 of K and
∀i ≥ 0 si+1 ∈ δ(si). We use τ [i] to denote element i of trace τ , where i ∈ N. A
trace position τ [i] is composed of a subset of atomic propositions which hold in
this position and the current delay value: τ [i] = (Xi, di), where Xi ⊆ AP and
di ∈ R+ such that di =

∑i
j=0 dj for dj ∈ τ [j]. This means for the validity of an

atomic proposition Π �T aπ iff a ∈ X. We need the following definition:

τ + z = (X, d) + z = (X, d+ z)

With this, we can define T + z as ∀τ ∈ T : τ + z. We then get Π �T+z ψ iff
∀τ ∈ T : τ + z � ψ. The above definition of adding time to trace set is crucial
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as we declare at this point to synchronize all traces. Another definition of the
U operator could allow comparison of asynchronous runs of the system, which is
shortly discussed in Chapter 6.

Deriving temporal operators

With the semantics of U [x,y] we can derive the typical temporal operators:

[x,y] ψ ≡ true U [x,y] ψ
[x,y] ψ ≡ ¬ [x,y] ¬ψ

ψ1W [x,y] ψ2 ≡ ψ1 U [x,y] ψ2 ∨ [x,y] ψ1

ψ1R[x,y] ψ2 ≡ ¬
(
¬ψ1 U [x,y] ¬ψ2

)

The Finally and Globally operators differ slightly in their semantic on an equal in-
terval:

Π � [0,4] ψ iff ∃z ∈ [0, 4] : Π �T+z ψ

Π � [0,4] ψ iff ∀z ∈ [0, 4] : Π �T+z ψ

It is crucial to carve out the differences of formulas depending on different time
intervals of temporal operators.

Π � [0,0] ψ iff Π �T ψ

Π � [0,0] ψ iff Π �T ψ

which implies the following:

[0,0] ψ ≡ [0,0] ψ ≡ ψ.

We can also connect the new timed temporal operators and the standard temporal
operators of HyperLTL:

ψ1 U ψ2 ≡ ψ1 U [0,∞] ψ2

ψ ≡ [0,∞] ψ

ψ ≡ [0,∞] ψ

The equations given above underline that HyperLTL is a sub-fragment of Timed
HyperLTL. We can express every HyperLTL formula as a Timed HyperLTL for-
mula by replacing every temporal operator with an operator equipped with the
interval [0,∞].
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3.3 Example Policies

In this section, we show the potential of Timed HyperLTL as well as some timed
hyperproperties related to information flow policies. Most of the hyperproper-
ties discussed by [8] can be extended by a timing constraint on their respective
temporal operators and thus, are expressible in Timed HyperLTL. We perform
this for the classical information flow properties as observational determinism,
noninterference and declassification.

Timed Noninference

Noninference states that any change in the high input may not influence the low-
observable output. This is expressed by HyperLTL Property 3.1:

∀π1.∃π2.( λπ2) ∧Oπ1 ↔ Oπ2

Property 3.1: Standard Noninference

With the first variant of timed noninference, we force the public output not to be
influenced by dummy inputs for at least t time units. After that, the output may
differ on one trace to the output on the other trace.

∀π1.∃π2. λπ2 ∧ [0,t]Oπ1 ↔ Oπ2

Property 3.2: TNI1 - Timed Noninference, Variant 1

This first variant of timed noninference allows a delay in the output behaviour of
the system of t time units. The following trace τ would satisfy the first variant of
timed noninference. λ denotes the dummy input and in the standard input. As
the property has two trace variables, we have 2-tuple states after applying the self-
composition onto the system. We depict the full structure of the trace here.

τ [0]︷ ︸︸ ︷
({in}, 0), ({λ}, 0)

τ [1]︷ ︸︸ ︷
({in}, 1), ({λ}, 1) . . .

τ [t]︷ ︸︸ ︷
({in}, t), ({λ}, t)

τ [t+1]︷ ︸︸ ︷
({b}, t+ 1), ({a}, t+ 1)

In this case, the delay steps are in measures of one time unit. Therefore, the delays
agree with the position indexes of the trace. For the rest of the thesis, we will leave
out the delay values in the trace tuples if they can be intuitively derived.

We can also give another variant of timed noninference, where we restrict the time
span for dummy inputs. This is shown in Property 3.3. The second variant of
timed noninference would not be satisfied by the above trace, because the outputs
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∀π1.∃π2.( [0,4] λπ2) ∧ [0,∞]Oπ1 ↔ Oπ2

Property 3.3: Timed Noninference, Variant 2

of π1 and π2 do not coincide on all positions. This violates variant two of timed
noninference. Trace τ1 satisfies Property 3.3.

τ1 = ({in}, {λ})({in}, {λ})({in}, {λ})({in}, {λ})({a}, {a})({a}, {a}) . . .

We give a third variant of timed noninference to demonstrate how the meaning
of the property is influenced by the scope of the time constraint. Property 3.4
depicts the corresponding Timed HyperLTL formula.

∀π.∃π2. [0,4] ((λπ2) ∧Oπ1 ↔ Oπ2)

Property 3.4: Timed Noninference, Variant 3

Neither of the traces seen so far satisfy this Timed HyperLTL property. We give
a satisfying trace below.

τ2 = ({in}, {λ})({in}, {λ})({in}, {λ})({in}, {λ}) . . .

The crucial point is, that the scope of the [0,4] operator ranges over the complete
LTL fragment of the Timed HyperLTL formula. So a system satisfying the last
property has to agree in its observable output on all execution traces for four time
steps. As the above trace only has input atomic propositions, this is trivially true.
The below trace satisfies Property 3.4, too:

τ3 = ({in}, {λ})({in}, {λ})({a}, {a})({a}, {a})({b}, {a}) . . .

The above trace shows, that the timing constraint has either limited the possible
prefixes for traces or, for the output case, any extensions of traces of the system.
Both cases together illustrate a natural extension of the result shown in [8] for
hyperproperties. They can always be written as the intersection of hypersafety
and hyperliveness properties. The same holds for timed hyperproperties.

Theorem 3.1. Timed HyperLTL properties can be formulated as intersections of
liveness and safety timed hyperproperties.

Proof. This results from reformulating the timing constraints on the temporal
operators as clock constraints. Then, the new formula is essentially a HyperLTL
formula for which the theorem is already shown [8]. �
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Timed Observational Determinism

Observational Determinism forces a system to behave deterministic in the low-
security view. The observable output of such a system must be deterministic
depending on the public observable input. Therefore, no trace pair (π1, π2) may
exist with same low input but different low output. The HyperLTL property is
depicted in Property 3.5.

∀π1, π2. (Iπ1 = Iπ2)→ (Oπ1 = Oπ2)

Property 3.5: Standard Observational Determinism

To satisfy the hyperproperty, the traces for π1 and π2 have to agree on the low
input and output respectively. The respective trace τ4 of the self-composed system
may look like the following:

τ4 = ({in}, {in}) . . . ({in}, {in})({b}, {b})({b}, {b})({a}, {a})({a}, {a}) . . .

With the timed variant of observational determinism shown in Property 3.6, we
admit the output to be equal once in a four seconds interval.

∀π1, π2 [0,0](Iπ1 ↔ Iπ2)→ [0,4](Oπ1 ↔ Oπ2)

Property 3.6: TOD1 - Timed Observational Determinism

We illustrate the satisfying trace τ5 below.

τ5 = ({in}, {in})({a}, {b})({b}, {b})({b}, {a}) . . .

The property forces the system to give an output at most 4 time steps after the
input arrived. Compared to the standard Observational Determinism, this is a
weaker property with respect to restrictiveness, because the standard hyperprop-
erty forces the output to be globally equal, whereas the timed version is satisfied
if this happens at one position of the trace.

To carve out the differences between [0,4] and [0,4], a second variant for timed
observational determinism is considered in Property 3.7.

∀π1, π2 [0,0](Iπ1 ↔ Iπ2)→ [0,4](Oπ1 ↔ Oπ2)

Property 3.7: Timed Observational Determinism, Variant 2

Now the output has to agree on all positions of the execution traces for the time
span of four units, illustrated by the trace below:

τ6 = ({in}, {in})({a}, {a})({b}, {b})({b}, {a}) . . .
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Trace τ6 again shows the relation between the structure of the time intervals
and the structure of the allowed traces of the system. Note that the property is
satisfied, although the atomic propositions in the last shown position (b, a) do not
agree. This does not harm the satisfiability since the position is out of the time
scope.

Timed Declassification

A password checker may reveal whether the entered password is correct or in-
correct. A classical variant of declassification can be expressed by the following
HyperLTL formula:

∀π1, π2. (Iπ1[0] = Iπ2[0] ∧ (pwπ1 ↔ pwπ2))→ Oπ1 ↔ Oπ2

Property 3.8: Standard Declassification

As described in Section 3.2, there is no unique translation of the next operator
to Timed HyperLTL as in a continuous setting. We allow a delay in revealing

the correctness of the password. This is given by the Timed HyperLTL formula in
Property 3.9. A system satisfying this property is still preserving declassification

∀π1, π2
(
Iπ1[0] = Iπ2[0] ∧ [0,4] declass

[0,1]
(π1,π2)

(pw)
)
→ Oπ1 ↔ Oπ2

Property 3.9: TD1 - Timed Declassification

if two traces declassify the correctness of the password both in a time interval of
one time unit. This is a much weaker property as the classical version because
it permits leaking the correctness of the password in a non-atomic way. If the
threshold for a possible timing attack on the password checker is known, the
bounds of the intervals can be adapted. The definition of the proposition declass
is given below.

declass
[x,y]
(τ1,τ2)

(a) ≡
(

(aτ1 → [x,y] aτ2) ∧ aτ1
)

Property 3.10: Propositional Formula for Declassification of a

The trace τ7, given below, would satisfy Property 3.9. Let "{_}" denote any
possible atomic proposition occurring in the system and pw the declassification of
the entered password.

τ7 = ({in}, {in})({pw}, {_})({_}, {pw})({_}, {_})({b}, {a})({out}, {out}) . . .

As pw appears on π1 earlier, pw must hold on π2 at most one time step after,
because of the time constraint [0, 1] on the declassification proposition. However,
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Property 3.9 also features another constraint, namely [0,4] at the beginning of the
declass scope. Therefore, we can give more traces satisfying the property.

τ8 = ({in}, {in})({pw}, {_})({_}, {pw})({_}, {_})({out}, {out}) . . .

τ9 = ({in}, {in})({_}, {_})({pw}, {_})({_}, {pw})({out}, {out}) . . .

τ10 = ({in}, {in})({pw}, {pw})({_}, {_})({_}, {_})({out}, {out}) . . .

By comparing the above traces, we see the role of the second time constraint
I1 = [0, 1] in relation to [0,4] as I1 is relative to [0, 4]. [0, 1] does not result in
the absolute point zero in time but in the range zero to one time steps after the
starting point of [0,4]. This is interesting as we only have one global clock in
the synchronous setting, but still allow these kinds of constraints. To realize the
correct checking of the timed hyperproperties we need to consider the relative
bounds of all constraints for the global clock. This will further be discussed in
Chapter 6.

Of course τ10 satisfies the property also, as we do not prohibit the declassification
to occur synchronously. The definition of [0,1] allows the immediate start of
declassify on trace π1.

τ11 = ({in}, {in})({pw}, {_})({_}, {_})({_}, {pw})({b}, {a})({out}, {out}) . . .

Note that trace τ11 does also satisfy Property 3.9. The declassification of the
password on trace π2 did not appear in the allowed time bounds of one time step
after declassification on π1. But therefore the premise of the timed hyperproperty
is false, which makes the complete implication true. We give a short explanation
why this is intuitive:
It is not important for the security of the system to have equal outputs on two
traces if the inputs have been different. Neither it is important if the declassifi-
cation of the password did not appear in the given interval. The same argument
holds for the following trace τ12 satisfying Property 3.9, too.

τ12 = ({in}, ∅)({pw}, {in})({_}, {_})({_}, {pw})({b}, {a})({out}, {out}) . . .

The trace has a delay for input on trace π2 later than occurring on trace π1. The
property forced Iπ1[0] = Iπ2[0], so the trace makes the premise of the implication
false and the complete implication true.

In context of this setting, one could think of relaxing the declassification premise
by allowing delays of inputs.

Timing attacks

We describe some timing attacks on security systems in the following section.
More detailed experiments are depicted in Section 5.2. This section essentially
contains the timed hyperproperties used to check if systems satisfy the properties
and hence, are not vulnerable to specific attacks.
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Cache-timing attacks

Timing attacks may not only be based on the different execution times of al-
gorithms, but also on the behaviour of the memory. A special case are cache-
timing attacks where the runtime of a system depends on cache hits and cache
misses.

A special attack is described by Bernstein [5] on the AES specification. AES
(Advanced Encryption Standard) is a block cipher used worldwide for encryption
tasks. It uses multiple lookup tables in the encryption definition. The attack
described by the author bases on the relation between a single array lookup and the
whole AES computation time depending on all table lookups. By measuring the
time for lookups with different indexes, one can retrieve information about the used
index, which partly consists of the encryption key, i.e. k[0]⊕ n[0], where n is the
input. The same argument holds for the other parts of the key k[1]⊕n[1], k[2]⊕n[2]
and so on. The attacker then can compute k[0] by observing the suitable value for
k[0]⊕ n[0] where the overall AES computation time is maximal, and additionally
by approximating the value for n[0] to get the maximal computation time.

The different computation times of table lookups depend on the cache behaviour
and the RAM, as it is possible to have lower lookup time for different inputs.
The runtime also depends, whether the table lookup is done on cache lines or
in the RAM. Therefore, the author suggests in his conclusion to use a constant
time encryption standard, where constant means the AES implementation to be
independent of key k and input n. This is connected to widely more problems
than just resolving the timing issue of AES. It would be a huge trade-off for
high-class and middle-class hardware if a constant time encryption standard was
widely used.

At this point we can leverage the problem of stating timing restrictions on systems
implementing the AES encryption. We do this by providing timed hyperproperties
for systems to prevent the described timing attack above. The crucial point of the
cache-timing attack is that different indexes for table queries result in different
result times. The timed hyperproperty shown in Property 3.11 requires a system
to retrieve all results for a table lookup in a given time interval for t units.

∀π1.∀π2. (queryπ1 ↔ queryπ2)→
(
resπ1 → [0,t] resπ2

)
Property 3.11: Preventing cache-timing attack

The atomic proposition query is satisfied if the system gets an input query with
an index of the form k[i] ⊕ n[i]. res stands for the event to have finished the
computation and sending the response to the inquirer.

The huge difference between demanding a constant-time encryption mechanism
and restricting the system to a minimal allowed delay is the amount of trade-off
between efficiency and security. In our case, this trade-off depends on the dimen-
sions of the response time. Assume the attacker is only capable to retrieve useful
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information if the response time is in units of 10 milliseconds. Then our property
can set t = 5ms such that many systems, satisfying the timed hyperproperty, are
still considered to be secure.

Attack on RSA & Diffie-Hellmann

Diffie-Hellmann and RSA (Rivest-Shamir-Adleman) are methods used in private-
key encryption systems. They both use exponentiation operations to hide the
plaintext of data and compute the corresponding ciphertext. We will present a
model of the SSL handshake protocol, which uses an implementation of RSA, in
Section 5.2 and will explain the RSA algorithm in more detail.

Diffie-Hellmann is an approach for secure key exchange between Alice and Bob on
a public channel. It works as follows:

• Choose two numbers p prime number and g a primitive root of p.

• Alice chooses an arbitrary integer a and computes A = ga. Then Alice sends
(g, p, A) to Bob.

• Bob chooses an arbitrary integer b and computes B = gb. Then Bob sends
(B) to Alice.

• After that, Bob additionally computes K = Ab, whereas Alice computes
K = Ba. Both agree on the secret key K = ga·b.

The essential part of the key exchange is the computation of A and B by ex-
ponentiation of a prime number. Finding the exponent by an inverse attack is
in general computationally expensive. However, if the implementation of those
schemes is vulnerable, the attacks can be efficiently performed. The aim of an
attacker is extracting the secrets a, b from the interaction between Alice and Bob
by eavesdropping their public communication. g and p are public values, which
the attacker hence knows. The attacker can measure the response time of sending
(g, p, A) to Bob and thus, is able to deduce the exponents a and b bitwise. For an
attacker knowing bits 0 . . . k− 1 of a it is possible to efficiently compute bit k and
so the complete exponent.

The attack shown here is taken from Kocher [15]. The paper contains more detailed
information on the structure of the attack and the application environment.

Based on this attacking description, we can already define another timed hyper-
property, that protects the system against the described attack.

"Any two executions of modular exponentiation in Diffie-Hellmann encryption
has to take the same amount of time."

We formalize the property in Timed HyperLTL as depicted in Property 3.12.

A system satisfying Property 3.12 must execute the encryption tasks, i.e. the
exponentiation described above, synchronously and in time lower than t time
units, on all runs. This ensures for all runs to have the same runtime for the
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∀π1.∀π2. (inπ1 ↔ inπ2)→ [0,t](encryptionπ1 ↔ encryptionπ2)

Property 3.12: Prevent the timing attack on Diffie-Hellmann

exponentiation. Obviously, the untimed version of the hyperproperty also prevents
the timing attack. However, the extension with the time constraint narrows the
possible runs of the system. This results in less runs, which conversely carry out
the exponentiation only in the given time span.

At this point we want to explicitly show the difference of [0,t] and , where the
last operator is equivalent to the timed variant [0,∞]. We therefore consider
two traces: The first one, τ1 satisfies Property 3.12, and the second one fulfills
Property 3.12, where the timed operator is replaced by .

τ1 = ({in}, {in})({encrypt}, {encrypt})
t−2 times︷︸︸︷. . . (({encrypt}, t− 1), ({encrypt}, t− 1)) . . .

τ2 = ({in}, {in})({encrypt}, {encrypt})
t times︷︸︸︷. . . (({encrypt}, t+ 1), ({encrypt}, t+ 1)) . . .

In the second trace, the encryption task is allowed to run longer than t time
units. Although the traces satisfying the property still have to synchronously be
in encryption state, the overall runtime of encryption is longer than in the time
constraint variant.

The above explanation almost translates to the operator as depicted in Property 3.13.

∀π1.∀π2. (inπ1 ↔ inπ2)→ [0,t](encryptionπ1 ↔ encryptionπ2)

Property 3.13: Timed and untimed Finally operator

The following two traces outline the different meaning of the above property when
replacing [0,t] by .

τ1 = ({in}, {in})({_}, {_})
t−2 times︷︸︸︷. . . (({encrypt}, t− 1), ({encrypt}, t− 1))({_}, {_}) . . .

τ2 = ({in}, {in})({_}, {_})
t times︷︸︸︷. . . (({_}, t+ 1), ({_}, t+ 1))({encrypt}, {encrypt}) . . .

The timed variant [0,t] shortens the possible positions where the encryption
proposition may appear in the trace.
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The model checking problem of Timed HyperLTL is strongly related to the one of
HyperLTL and MITL. Therefore, we first present the model checking algorithms
for both underlying logics in Section 4.1. Based on this we investigate how to check
Timed HyperLTL formulas in Section 4.2. Furthermore, we prove the complexity
of the model checking problem.

4.1 HyperLTL – MITL

As Timed HyperLTL is built upon HyperLTL and MITL, we first introduce the
corresponding model checking algorithms together with a short description of their
complexity.

HyperLTL

We will focus on the model checking approach for the alternation free fragment of
HyperLTL in this section. Model checking HyperLTL is based on an automata-
theoretic approach for LTL. The question to answer is whether for a given Kripke
structure K and a HyperLTL formula ψ it holds that K � ψ [11]. It is first as-
sumed, that all quantifiers occurring in the formula ψ are existential quantifiers. If
they are universal,K � ψ is equivalent toK not satisfying the negated formula:

K � ∀π1 . . . ∀πn.ψ iff K 2 ∃π1 . . . ∃πn.¬ψ.

The model checking of HyperLTL proceeds in three steps:

1. Create an ψ-equivalent Büchi automaton Aψ with alphabet (2AP )n, where
each letter of Aψ is a n-tuple of states of atomic propositions. Position i of
such a tuple contains all atomic propositions of trace πi.

2. Intersect the automaton Aψ with the K-equivalent automaton and reduce
the alphabet by one exponent of 2AP to eliminate one existential quantifier.
Repeat this until all existential quantifiers are removed.

3. Emptiness-check. K � ψ iff L(Aψ) 6= ∅
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The complexity of model checking the alternation free fragment of HyperLTL is
essentially the same as for LTL [12]. This is due to the reduction of the HyperLTL
model checking to LTL model checking.

Theorem 4.1 ([12]). The model checking problem for the alternation free frag-
ment of HyperLTL is PSPACE-complete in the size of the formula and NLOGSPACE-
complete in the size of the Kripke structure.

Model checking gets undecidable for the complete fragment of HyperLTL [12].

Theorem 4.2 ([12]). Model checking the complete fragment of HyperLTL is in
general undecidable.

MITL

The model checking algorithm for MITL has been proposed by Alur et al. [3]. It
is based on the satisfiability problem of the language and works as follows: The
model checking problem for MITL is to decide whether or not all timed state
sequences that are accepted by a given timed automaton A satisfy a given MITL
formula φ:

L(A) ⊆ L(φ)

The authors use the construction for testing the satisfiability of MITL formulas
to solve the model checking problem. First, they construct the timed automaton
B¬φ, that accepts precisely the models of the negated formula ¬φ. Then, the
model checking problem reduces to the emptiness check of the disjunction of all
accepted traces of the timed automaton A and the created automaton N¬φ. Hence,
the model checking problem can be reformulated as follows:

L(A) ⊆ L(φ) iff L(A) ∩ L(B¬φ) = ∅

Thus, the model checking problem for MITL is in general hard [3].

Theorem 4.3 ([3]). Model checking of MITL formulas is EXPSPACE-complete.

4.2 Algorithm

As mentioned above, we combine the essential approaches of the model checking
algorithms for HyperLTL and MITL to build the algorithm for Timed HyperLTL.
A main difference consists in the setting of formula and system. We use a timed
automaton At as specification for a timed system and handle the timed formula
to Uppaal [4] to check it against the system. Hence, it is not necessary for us to
create a ψ-equivalent automaton for the Timed HyperLTL formula ψ. As we have
to reduce the explicit trace quantification of Timed HyperLTL to MITL, we do
a self-composition on the timed automaton At with iteration depth depending on
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the number of quantifiers. Through the self-composition of the system we obtain
a mapping of trace variables to state positions.

1. Given are the system to be checked as a timed automaton A and the Timed
HyperLTL formula φ with n leading universal quantifiers without alterna-
tion. First, do a self composition of the automaton n− 1 times as described
in Definition 2.3. As result, get a new system A’ with states consisting of
n-tuples of atomic propositions, where one can match position i of the state
tuple to the respective trace variable πi.

2. To check the given formula on the system, convert it to Uppaal syntax and
adapt the trace variables to match the self-composed state tuples. This is
done by a fast-forward implementation of replacing the trace variables by
their equivalent mapped trace instances. Save whether the input formula
is an universal quantified property or an existential quantified property, as
the universal one has to be converted to a formula with existential quanti-
fier prefix.

3. Check the formula for the resulting automaton by calling the verifyTA rou-
tine of Uppaal. Distinct two cases:

• If the input formula is universally quantified, then the formula given
to Uppaal is in existential normal form. If the converted formula is
satisfied, the input formula is not satisfied.

• Otherwise, the input formula is existentially quantified and the result
of Uppaal model checker translates to the overall result.

The algorithm is shown in Algorithm 1 as pseudocode.

Algorithm 1 Model checking algorithm of Timed HyperLTL
Input: K = (S, s0, δ, AP, L),

Timed HyperLTL formula φ, n = # trace quantifiers in φ
Output: Yes if K � φ else No
A′ = Self − composition(K,n)
φ′ = Convert(φ)
result = Uppaal.verifyTA(A′, φ′)
if φ starts with ∀π1.∀π2 . . . then

output(¬ result)
else

output(result)
end if

The self-composition is a crucial part of the model checking, and we therefore
explain it now in more detail. By applying the self-composition once, we obtain
a system, where each state s′ consists of a pair of states of the initial system:
s′ = (s1, s2). Each of the positions of this pair is again a tuple of X ⊆ AP
and the current delay value d. Hereby, we get a projection of the trace variables
π1 and π2 to the positions in the tuple of s′. After the self-composition is applied,
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the initial formula has to be adapted with the projection of the trace variables.
The trace variables have to be removed from the formula and replaced by the
concrete projected sequences of state tuple positions.

This is a slightly different approach as for HyperLTL, where an additional automa-
ton is created from the formula and then composed with the system to eliminate
the quantifier. However, the last step is quite the same because the model checking
of HyperLTL results in an emptiness check of the language of the resulting automa-
ton. The language emptiness check can be translated into a reachability check for
accepting states of the system. For Timed HyperLTL, we have a search for a spe-
cific trace in the last step, which does not satisfy our timed hyperproperty.

Note on the usage of UPPAAL

To get a more detailed view on the model checking algorithm implemented in
Uppaal by Larsen et. al [18], we describe the verifyTA routine in the following
section. The query language for the verifier is a fragment of MITL extended by
path quantifier and clock constraints. Uppaal implements a reachability check,
i.e. whether a given combination of clock constraints and data is reachable from
the initial configuration of the timed system. This reachability check is built as
goal directed search for a diagnostic trace σ. If a diagnostic trace exists for the
system A and the formula φ, then φ 2 A because ∃τ ∈ A. τ 2 φ. The search
performs by applying several inference rules on the timed system. The rules are
shown in detail on p. 7 of [18]. The search has two termination criteria:

1. Success : If a diagnostic trace is found, then the search stops by outputting
this trace as counterexample.

2. Fail : If the backtracking does not find a diagnostic trace, the formula is
satisfied on the system: φ � A.

If the call to Uppaal returns a counterexample, our model checking algorithm
currently does not forward this counterexample, as it is not applicable to the input
system. This is due to the fact, that the projection from the trace of self-composed
system to the initial one is not intuitive.

We already mentioned the usage of two time constraints in one formula, e.g.
[0,t](aπ1 → [0,1] aπ2). Uppaal allows the check of subtractions of two clocks,

i.e. 3 ≤ x− y ≤ 5. This feature allows a constant translation of the above usage
of timing constraints in Timed HyperLTL. We therefore do not need to compute
multiple clock constraints to match on one clock. We can just use two clocks in a
synchronous manner, i.e. starting at the same time. Then we can carry out the
respective operation directly on the two clocks.
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Complexity

The complexity of the model checking problem for Timed HyperLTL depends on
the fragment of Timed HyperLTL to be checked. The bigger part of informa-
tion flow properties presented in our work can be described by formulas of the
alternation-free fragment of Timed HyperLTL.

As shown by Bouyer et al. [6], the model checking problem for MITL (a relaxed
fragment of MTL without punctuality), which is partially used in the verifying
language of Uppaal, is EXPSPACE-complete. We investigate in the following,
whether this complexity translates to our model checking approach. After applying
the self-composition to a timed system, we have a polynomial blow up of the state
space of the system. The self-composition always computes the cross-product of
the state sets. The polynomial degree depends on the numbers of trace variables
of the formula to be checked.

The model checking problem for Timed HyperLTL is at least as expensive as the
model checking problem for MITL.

Theorem 4.4 (Model Checking Complexity). The model checking problem
for the alternation free fragment of Timed HyperLTL is EXPSPACE-complete in
the size of the formula.

Proof. We have to prove two things: the model checking problem for Timed
HyperLTL is EXPSPACE-hard and it is in the class EXPSPACE.

EXPSPACE: By applying the self-composition on A, the size of A is enlarged poly-
nomially in the number of trace quantifiers. The state set of the self-composed
system increases quadratically for two trace quantifier in the formula, because the
new state set is the cross-product of the old state set with itself. The transi-
tion set grows at most quadratically because of the mapping of old transitions to
new transitions.
The check whether a non-satisfying trace is part of the timed automaton can be
reduced to the emptiness check for non-satisfying traces in the timed automa-
ton. As shown by Alur et al. [3], the emptiness check for timed automata is
PSPACE-complete. The model checking of MITL is performed by building a
timed automaton B¬φ for the formula φ and checking, whether the disjunction of
the languages of A and B¬φ is empty, i.e.:

L(A)
?

⊆ L(B¬φ)

B¬φ is built by a construction described by Alur et al. [3]. The authors distinguish
between six types of MITL-subformulas of φ. These are grouped by the occur-
rence of the temporal operators and and the structure of the interval on the
operators. If the intervals are of the form [0, b] then the construction of a timed
automata for subformula φ′ is straightforward and the automaton only needs one
clock for checking validity. If the intervals do not start at zero, the construction
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is more complex as it needs pairs of clocks for checking the subformula in the
interval. Overall, the construction is exponential in the number N of temporal
operators in φ and in K as the largest occurring constant of a clock constraint in
φ. More detailed, the complexity is in O(2N ·K·log(N ·K)). Hence, checking emptiness
for a non-satisfying trace in the self-composed system is in EXPSPACE. Thus, the
self-composition does not enlarge the complexity of the model checking problem.
In sum, model checking of Timed HyperLTL formulas is in EXPSPACE.

EXPSPACE-hard: As we saw before, MITL and HyperLTL are both subsumed
by Timed HyperLTL. The model checking problem of MITL is EXPSPACE-
complete [6], whereas the model checking problem of HyperLTL (for the alter-
nation free fragment) is PSPACE-complete [12]. To prove EXPSPACE hardness,
we give a reduction of model checking MITL to the problem of model checking
Timed HyperLTL. Given an arbitrary MITL formula φ. Then φ is satisfied in a
timed automaton A, i.e. A � φ, iff all timed state sequences, that are accepted by
a given timed automaton A, satisfy φ:

∀τ ∈ L(A) : τ � φ,

where τ is a timed state sequence of the form (s, I). We have to built a Timed
HyperLTL φ′ with

A � φ′ ↔ A � φ

This is done by the following construction. Take all timed state sequences of A,
that satisfy φ. We add the universal quantifier, a trace variable and update the
formula to index all atomic propositions with the trace variable:

φ′ ≡ ∀π. φ[a 7→ aπ]

φ′ is a Timed HyperLTL formula for which we can apply our model checking
algorithm. Hence, the model checking problem of MITL can be reduced to the
one of Timed HyperLTL, which proves, that model checking Timed HyperLTL is
EXPSPACE-hard.

�



5 Experimental Results

Chapter 5 outlines some case studies of the properties described before and the
experimental results of running our model checker for these formulas on suitable
systems. We will present several models for password checking systems. Addi-
tionally, we depict a model of the SSL handshake protocol and give some safety
properties a system should satisfy to prevent a timing attack on the OpenSSL
implementation, introduced by Boneh and Brumley [7]. With these experiments,
we want to show some benchmarks of our prototype model checker and hence, the
possible applications of model checking timed hyperproperties.

5.1 Password checker

Simple Password Checker

We model a simple password checking system that should not reveal any secure
information to an eavesdropper if the entered password is incorrect in a time
interval [0, t]. The model is depicted in Figure 5.1.1. It simply reads the complete
input given by the user and then compares it to the saved password. The check
whether input and password coincide is finished only after all bits have been
compared. This ensures the checking routine to only depend on the length of
the input and not on the quality of its correctness. For simplicity we set the
time constraint to 2. This depends on the real implementation of the system and
therefore, may be adapted.

initstart

x ≤ 2

input

x ≤ 2

pw
x ≥ 2

x ≥ 2

x = 0

Figure 5.1.1: SPWC - Model of a password checker
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The system shown in Figure 5.1.1 is checked against the formula with our pro-
totype model checker. The property below states, that the system has to show
the same behaviour for the validation of the input if the input is the same on two
traces. The property is an adapted variant of the timed observational determinism
property shown in Property 3.6.

∀π1, π2. [0,2](inπ1 ↔ inπ2)→ (pwπ1 ↔ pwπ2)

As contrast to the secure system modelled in Figure 5.1.1, we additionally modelled
an insecure password checker, that also reads in the complete input, but has a
different runtime when checking correct or incorrect input. The formulas used in
the check are shown in Table 5.1.1.

SPC1 ∀π1, π2 [0,t] pwπ1 ↔ pwπ2

SPC2 ∃π1, π2. [0,t] ¬(pwπ1 ↔ pwπ2)

SPC3 ∀π, π′. [0,4] ¬(pwπ ↔ pwπ′)

SPC4 ∀π1, π2. [0,2](inπ1 ↔ inπ2)→ (pwπ1 ↔ pwπ2)

Table 5.1.1: Results for model checking the password checker example

With SPC1, we postulate that the system must always behave deterministically in
the validation of the password. We state Formula SPC2 as a possible vulnerability
of a password checker. It is satisfied by a system with at least one trace pair
where the passwords are once not validated in the same time interval. If a system
A satisfies SPC3, then it automatically satisfies SPC2, as SPC3 is satisfied, if all
runs of a system do not coincide on the validation of the password. One could think

initstart

x ≤ 2

input

x ≤ 2

pw

inputfalse

x ≤ 3

pwfalse

x ≥ 2

x ≥ 2

x ≥ 2

x ≥ 3

x = 0

x = 0

Figure 5.1.2: SPWCnc Model of a vulnerable system
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of the system ASPC3 to be more unsafe than ASPC2, because all runs of the system
are bad, whereas ASPC2 could have less possibilities for unsafe executions.

Bitwise Password Checker

Based on System 5.1.1 we modelled a bitwise password checker that compares the
input bit for bit with the password. When the first position is reached, where
input bits and secret bits differ, the system goes into the incorrect state. This
variant differs from the previous system. It is possible to extract information from
the output of the system if the implementation is insecure with respect to the
output behaviour. An eavesdropper can easily extract the wrong and correct bits
by the computation time and the dijkstra-distance of the different inputs. This
is possible, as the system can stop the input parsing at any time to go into the
false state, whereas it can only reach the correct state after t time steps. Thus,
by relating the input to the time needed for validation, the attacker can compute
which prefix of the input was correct and which position of the input is the first
with another bit compared to the secret.

initialstart readbit x ≤ t

false

correct

x ≥ t

x = 0

x = 0

Figure 5.1.3: Bitwise password checker for t bit input length

The properties we checked build upon the formula template of Property 5.1. The
main difference is the scaling in the input length. The larger the size of the
password, the larger is the runtime of the password checker before outputting the
result.

∀π1, π2.( [0,t] inπ1 ↔ inπ2)→ ( [t,∞] correctπ1 ↔ correctπ2)

Property 5.1: BWt - Hyperproperty for the bitwise password checker model

To prevent a timing attack on the bitwise password checker, the system’s runtime
needs to be independent of the correctness quality of the input. That’s why we
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force the model to satisfy the correct state on all traces for the time steps t, t+1, . . .
if the input is equal beforehand.

The following property distinguishes the safe password checker of Figure 5.1.1 and
the unsafe bitwise password checker of Figure 5.1.3.

∀π1, π2. (inπ1 ∧ ¬inπ2)→ [0,t](pwπ1 ∧ ¬pwπ2)

The above formula is satisfied by Figure 5.1.1, because the validation of the pass-
word solely depends on the input. If the input on trace π2 differs at one position
to the input of π1, then the traces cannot match on all positions on the password
checking. The property is not satisfied by the system of Figure 5.1.3. There are
two traces π1 and π2 where the inputs have different positions for the first differ-
ence in bits to the password. Hence, the system of Figure 5.1.3 is insecure and
vulnerable against a timing attack.

Experimental Results

We checked different scales of the input bit lengths and give an overview of the
results in Table 5.1.2. It contains the number of states and transitions of the
system after the self-composition has been applied, as well as the time needed
for model checking the property. It is worth to note that almost all runs of the
model checker were finished in less then 1 second on this low-size models. We will
later on present similar experiments on a system with larger number of states and
transitions. In this context, we will discuss the enlarging of time needed by our
prototype model checker for validating properties on the respective systems.

The runtime for model checking depends on whether the property is satisfied
by the system. Intuitively, this makes sense with respect to the model checking
algorithm of Uppaal. It is implemented as a search for a counterexample trace
for the property. So the algorithm searches through the system to find a violation
state sequence. If the property is not satisfied, the algorithm will find one before
having checked all sequences. If the property is satisfied, the algorithm won’t find
one trace and thus, has to check all state sequences.

The experiments were carried out on a medium-class machine running Windows
10 on an Intel Core i5-4200U CPU with 2.3 GHZ and 8 GB RAM.

We provide other models to demonstrate the correlation between the structure of
the models, the constants in the clock guards and the verification runtime. Both
again describe a bitwise password checker, however with differences to the model
of Figure 5.1.3. The first model is a system with a branching structure for every
bit check, i.e. the system takes other transitions if the bit at position i of the input
differs from the password. However, the model does not fail directly. Instead it
checks the next position and branches again if the bit at position i + 1 differs.
This model is a secure variant of a bitwise password checker. We set the input
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Model # States # Transitions Runtime in ms
SPC1

SPWC 9 15

307 3

SPC2 254 5

SPC3 230 5

SPC4 273 3

SPC1

SPWCnc 25 48

176 5

SPC2 256 3

SPC3 296 3

SPC4 291 5

BW6 BPWC 16 20 391 3

BW8 493 3

SPC1

BWPC 16 20

491 3

SPC2 254 5

SPC3 230 5

SPC4 273 3

Table 5.1.2: Overview of the examples

bit length to 8 bits for this example. With 8 bits, we can handle 255 different
passwords, if the domain is limited to integers. The basic structure of the model
is depicted in Figure 5.1.4. The index of the read propositions represent, which
positions of the input are different to the bit positions of the password.

start

initial

read0

read1

read00

read10

read01

read11

. . .

. . .

read00000000

Figure 5.1.4: Bitwise password checker – Branching
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start

initial read1 read11 read111

. . .

read111111111

Figure 5.1.5: Bitwise password checker – Linear

The second model, depicted in Figure 5.1.5, is another variant of bitwise password
checking. It is built linear where the input validation can fail at every position
of the model, in contrast to the branching checker. The validation shows that
the runtime of the second model depends on the first position where input and
password differ.

We check the same properties on the two models as for the simple password
checker, namely SPC1 to SPC4. The results presented in Table 5.1.3 show the large

Model # States # Transitions Runtime in ms
SPC1

Branching 3969 3968

18145 3

SPC2 15354 5

SPC3 16157 5

SPC4 19396 3

SPC1

Linear 81 256

408 3

SPC2 387 5

SPC3 273 5

SPC4 198 3

Table 5.1.3: Overview of the examples

increase of the validation time for the branching bitwise password checker. The
initial system already has 63 states and 62 transitions, which leads by quadratic
blow-up of the self-composition to more than 3.900 states and transitions. In
contrast to this, the linear bitwise password checker only has 9 states and still 16
transitions, as every state can directly go back to the initial state on a failure.

The results underline the dependency of the validation time on the structure of the
model. We have seen two possibilities for modelling a bitwise password checker,
where both are realizable. The two presented models serve as a synthetic exam-
ple for the scalability of our prototype model checker and the efficiency of the
developed model checking algorithm.

5.2 SSL

We present a model of the SSL handshake protocol in this section as developed in
[10] and [25]. We will use this to simulate the timing attack of Brumley and Boneh
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on SSL [7]. First, we define the RSA factorization problem to understand, how
the gap of OpenSSL is used by the authors to break the system. Then, we run
our model checker with properties defining safety against the timing attack on two
systems, one modelling a secure system, one modelling an insecure system.

RSA

RSA (Rivest-Shamir-Adleman) is a public-key cryptosystem for secure data broad-
casting and digital signatures [24]. It was invented by Ron Rivest, Adi Shamir
and Leonard Adleman. In the RSA cryptosystem, Alice first computes a public
key that is built from two large prime numbers, p and q. The prime numbers
themselves may not be revealed as they are the secrets. The public key is the
product of the prime numbers n = p · q and the exponent e computed by e · d ≡ 1
mod φ(n) with φ(.) as Euler’s totient function. (N, e) is Alice’s public key and
(N, d) is Alice’s private key. (N, e) may be revealed and is used to encrypt a
message m, while (N, d) is used to decrypt a cipher text c: c = me mod N and
m′ = cd mod N .

Timing attack

The timing attack presented by Boneh and Brumley is based on the specific im-
plementation of the RSA modulus factorization in OpenSSL. OpenSSL uses the
Chinese remainder Theorem (CRT) to compute the exponent d in m = cd:

m1 = cd1 mod p and
m2 = cd2 mod q

=⇒ m = (q−1(m1 −m2) mod p) · q +m2

An attacker client starts a client key exchange with a guessed value for one RSA
factor, q. The guess will be iteratively improved by approximating the decryption
time of the guess g and ghi, where bit i of g is set to 1. Two cases for ghi have to be
distinguished: g < ghi < q and g < q < ghi. Case 1 implies that bit i of q is indeed
1, otherwise it is 0. With this, they compute ugR = gR−1modN and ughi = ghiR

−1.
These two values are send to the server, such that the decryption of both is started.
t1 = DecryptT ime(ug) and t2 = DecryptT ime(ughi). If ∆ = |t1 − t2| is big, then
g < q < ghi has to hold and qi = 0, otherwise if ∆ is small, then g < ghi < q and
qi = 1. The attacking client iteratively repeats the process of sending the guesses
and measuring the decryption time.

The proposed attack is working for a software-only implementation of SSL, since
hardware-based solutions have additional defences against timing attacks. They
did some experiments to explore the bounds on the number of queries to extract
the factor N in the RSA setting. As a result, they obtained 1.433.600 queries to
recover a single bit of the factor.
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idle

CHello

SHello

SCertificateASKeyExchange

SKeyExchange

SCertificateRequest

SHelloDone Failure

CCertificate

CKeyExchange

Decryption
x ≤ 100

CFinished

SFinished

Finish x ≥ 100

x ≥ 100

Figure 5.2.1: SSLsec – Uppaal model of the SSL Handshake protocol [10], secure
against the timing attack of [7]

We provide a timed system to model the SSL handshake between server (S) and
client (C), that is secure against the timing attack described above. Then we
validate a Timed HyperLTL property on this system that checks the vulnerability
of against the timing attack. Additionally, we give an insecure system, that is
vulnerable against the attack and check the Timed HyperLTL properties on this
system, too. The secure model to be checked can be seen in Figure 5.2.1.

Property 5.2 states that there may not be a delay in the client key exchange state
on two distinct traces and the handshake protocol may not fail after a handshake.
This is a very restrictive property to prevent the SSL timing attack [7], as the
attack relays on the different runtime of the decryption algorithm and the following
failure message. Through the restriction of part (2) of the formula, the system is
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∀π1, π2. [0,∞](CKeyExchangeπ1 ↔ CKeyExchangeπ2)

∧(CKeyExchangeπ1 → ( [0,0] ¬failureπ1 ∧ ServerF inishπ1)︸ ︷︷ ︸
(2)

)

∧(CKeyExchangeπ1 → ( [0,∞] decryptionπ1 ↔ decryptionπ2)︸ ︷︷ ︸
(3)

)

Property 5.2: Safety property to prevent SSL timing attack

forced to have no delay to go to the finish state after the ClientKeyExchange is
done. If the system would have different runtime in the decryption method, the
property would not be satisfied and the system may be vulnerable.

We additionally stipulate (3), such that the decryption algorithm runs in a syn-
chronous way on all traces after the ClientKeyExchange has been done, which
prohibits different runtime of the decryption method for different inputs. The
different possible inputs are the guesses computed iteratively in the timing attack.
To prevent the dependency of runtime from inputs we use implicit timed nonin-
terference for the decryption algorithm, which is expressed by the above property
fragment.

The model for the insecure model is depicted in Figure 5.2.2.

The second timed hyperproperty shown in Property 5.3 describes the behaviour
of the system to have a delay of at least t time steps between the first decryption
query to be finished and the second one. This is a kind of bad security property
as it expresses the vulnerability of the system for the OpenSSL timing attack. If
a Decrypt query may be finished on one run of the system t time steps later than
another run, then the system’s decryption method may violate the noninterference
hyperproperty.

∀π1, π2. CKeyExchangeπ1 ∧ (Decryptπ1 → [0,t] ¬Decryptπ2) ∧ [t,∞]Decryptπ2

Property 5.3: Property of a system being vulnerable for SSL timing attack

If we investigate the second property and the last part of property 5.2, we see that

∀π1, π2. (CKeyExchangeπ1 ∧ (Decryptπ1 → [0,t] ¬Decryptπ2) ∧ [t,∞]Decryptπ2

∧(CKeyExchangeπ1 → ( [0,∞]Decryptπ1 ↔ Decryptπ2))

cannot be satisfied by the same system if t > 0, since

∀π1, π2. (Decryptπ1 → [0,t] ¬Decryptπ2) ∧ [0,∞](Decryptπ1 ↔ Decryptπ2) ≡ ⊥
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CKeyExchange
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Figure 5.2.2: SSLinsec – Uppaal model of the SSL Handshake protocol [10], vul-
nerable for the timing attack of [7]

This holds because of the definitions of [0,t] and [0,∞]. Note that the two tempo-
ral operators are in different scopes and thus the time intervals are independent.

The first system, which is a model with an implemented defence, ensures that all
decryption queries take at least as long as the longest decryption run. This is
forced by the guard x ≥ 100 on the transition and the state inference x ≤ 100
where we assume the longest query to take 100ms. Thus all decryption queries take
exactly 100ms. Although this slows down the complete system, we have a higher
security in the decryption section. The optimization of this trade-off between
efficiency and security is non-trivial, as it always has to take specific conditions of
the single systems into account.

Better defences than artificially enlarging the decryption runtime have been ex-
amined and published. One possible fix is so called RSA blinding, where a random
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Nr Model # States # Transitions Runtime Space Satisfied?
Prop1 SSLsec 225 243 1080ms 20 MB 3

Prop2 734ms 20 MB 5

Prop1 SSLinsec 225 235 449ms 16 MB 5

Prop2 861 ms 21 MB 3

Table 5.2.4: Results of model checking the SSL systems against the properties

number is exponentiated re, instead of computing ge. With this, it is harder to
compute the secret part g as r is random for each decryption query. The ar-
tificial change of the decryption runtime is bad for the overall runtime of the
OpenSSL implementation.

Table 5.2.4 shows the results of checking the two properties against the secure
and insecure models of the SSL Handshake Protocol. It contains the runtime and
space needed for the verification as well as the numbers of states and transitions
of the self-composed systems.

The experiments show that our approach is able to verify timed hyperproperties
for medium and large scaled models in efficient time. The runtime for validation
increases significantly by the number of states and transitions of the self-composed
systems compared to the models of the password checkers. However, models with
more than thousands states after self composition could still be checked in reason-
able time. The required space has been kept within limits of up to 100 MB. There
is still potential for optimization, for example by handling the returned diagnostic
trace of Uppaal in case the property is not satisfied on the system. It has to be
reworked, such that it matches the traces of the original system.





6 Conclusion & Future work

We introduced a new temporal logic, Timed HyperLTL, for the verification of
temporal hyperproperties. These properties are used to establish requirements
of a system to be secure against timing attacks. For the construction of Timed
HyperLTL we combined the two logics HyperLTL and MITL to obtain a logic,
which is able to express timing restrictions on multiple execution traces of a sys-
tem.

After that, we extended several classical hyperproperties to timed hyperproper-
ties. Additionally, we modelled well-known timing attacks on encryption schemes
and cryptographic systems. We proposed some possible defences by stating re-
quirements on the systems as Timed HyperLTL formulas. We outlined the model
checking algorithm of Timed HyperLTL as a combination of the respective algo-
rithms of HyperLTL and MITL. The resulting model checking problem has been
proven to be EXPSPACE-complete.Then, we developed a prototype model checker
based on the verifying module of Uppaal. Using the prototype model checker,
we evaluated some timed hyperproperties on several models, e.g. models of pass-
word checkers, and checked properties against timing attacks on a model of the
SSL handshake protocol. The experiments show that the usage of Uppaal as
underlying verification tool for timed systems is efficient in time.

Future work contains the solution to the asynchronous setting of stuttering traces.
While the synchronous case considered in this thesis deals with only one clock
for all traces, the asynchronous case can be defined by introducing clocks for
each individual trace. Therefore, two traces τ, τ ′ starting at the same time point,
can have different delay transitions. When one of both traces stutters, we allow
∃z ∈ R : Π �τ+z,τ ′ ψ. Then, we cannot match the respective positions of the
traces as defined before.

Also, the complexity of the satisfiability problem in general, the model checking
problem for the ∃∗∀∗ fragment and the complete language are points of interest.
This involves the question for a bounded satisfiability and model checking problem.
In context of hyperproperties it would be interesting whether the synthesizing
approach of reactive systems from hyperproperties can intuitively be extended to
properties formulated in Timed HyperLTL.
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