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Abstract. The Stanford Temporal Prover, STeP, is a tool for the com-
puter-aided formal verification of reactive systems, including real-time
and hybrid systems, based on their temporal specification. STeP in-
tegrates methods for deductive and algorithmic verification, including
model checking, theorem proving, automatic invariant generation, ab-
straction and modular reasoning. We describe the most recent version of
STeP, Version 2.0.
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1 Introduction

The Stanford Temporal Prover (STeP) is a tool for the computer-aided formal
verification of reactive systems, including real-time and hybrid systems, based
on their temporal specification. STeP integrates model checking and deductive
methods to allow the verification of a broad class of systems, including param-
eterized (N -component) circuit designs, parameterized (N -process) programs,
and programs with infinite data domains.

Figure 1 presents an outline of the STeP system. The main inputs are a
reactive system and a property to be proven for it, expressed as a temporal logic
formula. The system can be a hardware or software description, and include
real-time and hybrid components (Section 2). Verification is performed by model
checking or deductive means (Section 3), or a combination of the two (Section 4).

This paper presents an overview of the main features of STeP, including re-
cent research and implementation leading up to the latest release, Version 2.0.
Earlier descriptions of STeP are available as [BBC+96, BBC+95, MAB+94]. Re-
cent test cases are reported in [BLM97, BMSU98, MS98]. This paper focuses on
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Fig. 1. An outline of the STeP system

the new developments in STeP 2.0, including modular system description and
verification, symbolic LTL model checking, generalized verification diagrams,
generation of finite-state abstractions, new decision procedures, and a new graph-
ical user interface.

2 Describing Reactive Systems

The various systems STeP can verify differ in their time model—discrete, real-
time, or hybrid—as well as in the domain of their state variables, which can
be finite or infinite. Furthermore, systems can be parameterized in the number
of processes that compose them (N -process systems). All of these systems can
be modeled, however, using the same underlying computational model: (fair)
transition systems [MP95]. This basic model is extended in appropriate ways to
allow for modular structures, hardware-specific components, clocks, or continu-
ous variables. Figure 2 describes the scope of STeP, classified along these three
main dimensions.

Transition Systems: The basic system representation in STeP uses a set of
transitions. Each transition is a relation over unprimed and primed system vari-
ables, expressing the values of the system variables at the current and next state.
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Transitions can thus be represented as general first-order formulas, though more
specialized notations for guarded commands and assignments is also available.
In the discrete case, transitions can be labeled as just or compassionate; such
fairness constraints are relevant to the proof of progress properties (see [MP95]).

SPL Programs: For convenience, discrete systems can be described in the Sim-
ple Programming Language (SPL) of [MP95]. SPL programs are automatically
translated into the corresponding fair transition systems, which are then used
as the basis for verification.

Real-Time Systems: STeP can verify properties of real-time systems, using the
computational model of clocked transition systems [MP96]. Clocked transition
systems consist of standard instantaneous transitions that can reset auxiliary
clocks, and a progress condition that limits the time that the system can stay in
a particular discrete state. Clocked transition systems are converted into discrete
transition systems by including a tick transition that advances time, constrained
by the progress condition. The tick transition is parameterized by a positive
real-valued duration of the time step.
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Hybrid Systems: Hybrid transition systems generalize clocked transition sys-
tems, by allowing real-valued variables other than clocks to vary continuously
over time. The evolution of continuous variables is described by a set of con-
straints, which can be in the form of sets of differential equations or differential
inclusions. Similar to clocked transition systems, hybrid transition systems are
converted into discrete transition systems by including a tick transition, param-
eterized by the duration of the time step. However, for hybrid systems the tick
transition must not only update the values of the clocks, which is straightfor-
ward, but must also determine the value of the continuous variables at the end of
the time step. The updated value of the continuous variables is represented sym-
bolically; axioms and invariants, generated based on the constraints, are used to
determine the actual value or the range of values at the time they are needed.

Other formalisms such as timed transition systems, timed automata and
hybrid automata can be easily translated into hybrid and clocked transition
systems [MP96].

Modularity: Complex systems are built from smaller components. Most mod-
ern programming languages and hardware description languages therefore pro-
vide the concept of modularity. STeP includes facilities for modular specification
and verification [FMS98], based on modular transition systems, which can con-
cisely describe complex transition systems. Each module has an interface that
determines the observability of module variables and transitions. The interface
may also include an environment assumption, a relation over primed and un-
primed interface variables that limits the possible environments the module can
be placed in. The module can only be composed with other modules that satisfy
the environment assumption. Communication between a module and its environ-
ment can be asynchronous, through shared variables, and synchronous, through
synchronization of labeled transitions.

More complex modules can be constructed from simpler ones by possibly
recursive module expressions, allowing the description of hierarchical systems of
unbounded depth. Module expressions can refer to modules defined earlier, or
instances of parameterized modules, enabling the reuse of code and of properties
proven about these modules. Besides the usual hiding and renaming operations,
the language provides a construct to augment the interface with new variables
that provide a summary value of multiple variables within the module. Sym-
metrically, a restriction operation allows the module environment to combine or
rearrange the variables it presents to the module.

Real-time and hybrid systems can also be described as modular systems;
discrete, real-time and hybrid modules may be combined into one system. The
evolution constraints of hybrid modules may refer to continuous variables of other
modules, thus enabling the decomposition of systems into smaller modules. To
enable proofs of nontrivial properties over such modules, we allow arbitrary con-
straints on these external continuous variables in the environment assumption.

Hardware Description: A Verilog hardware description language front-end
has recently been added to STeP. Its main component is a compiler that takes
Verilog input and produces a fair transition system, which can then be analyzed
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Fig. 3. STeP Session Editor

using the deductive and algorithmic tools of STeP.

The goal of this compiler is to produce a faithful representation of the input
program, taking into account the delays and events that are part of the Verilog
semantics. The compiler extends the Verilog language by allowing parameters
to be left unspecified. These parameters can be used to declare bit vectors of
arbitrary size, or to compose an array of lower-level modules. These features
cater to the deductive component of STeP, which can verify properties of general
infinite-state systems.

3 Deductive Verification and Model Checking

STeP provides a comprehensive, integrated environment to prove temporal prop-
erties over reactive systems. The STeP Session Editor, presented in Figure 3,
keeps track of the main properties of interest throughout the verification session,
including axioms, assumptions, previously proven properties, and automatically
generated invariants, as well as the module to which each applies. Thus, it can
handle multiple systems and proofs simultaneously. Properties can be activated
or deactivated to control the extent of their use in automatic theorem-proving.
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3.1 Property Specification: Linear-Time Temporal Logic

We use linear-time temporal logic (LTL) to represent properties of reactive sys-
tems [MP95]. A model of LTL is an infinite sequence of states. We use the usual
temporal operators, such as 2p (p is always true), 3p (p is eventually true),
p U q (p is true until q is true, which eventually happens), and pW q (p awaits
q—p is true at least until q is true, but q need not eventually happen).

We distinguish between safety and progress properties. Informally, safety
properties say that certain “bad states” will never be reached, e.g. as in an
invariance 2p for an assertion p.

Progress properties, on the other hand, can say that “good” states will even-
tually be reached (perhaps recurrently). Safety properties do not depend on the
fairness constraints of the system, whereas progress properties require the justice
or compassion of particular transitions in order to be proved.

To specify properties of real-time and hybrid systems, temporal-logic proper-
ties can refer to the global and auxiliary clocks, and to the continuous variables;
the underlying temporal logic remains the same.

3.2 Deductive Verification

The deductive methods of STeP verify temporal properties of systems by means
of verification rules and verification diagrams. Verification rules reduce temporal
properties of systems to first-order verification conditions [MP95]. Verification

diagrams [MP94] provide a visual language for guiding, organizing, and display-
ing proofs, and automatically generating the appropriate verification conditions
as well (see Section 4.1).

As clocked and hybrid transition systems are converted into fair transition
systems, verification rules and diagrams are uniformly applicable to discrete,
real-time and hybrid systems. However, due to the parameterization of the tick
transiton, the resulting verification conditions for real-time and hybrid systems
are usually more complex than those for (unparameterized) discrete systems.

Figure 4 shows the STeP Proof Editor, which is used to apply the basic deduc-
tive temporal verification rules as well as the Gentzen-style interactive theorem
proving rules. In a typical deductive verification effort, the top-level goal is a
temporal formula to be proven valid for a given system. Verification rules or di-
agrams are used to generate verification conditions, as subgoals, which together
imply the system validity of the original temporal property. These subgoals are
then established automatically using decision procedures (Section 5.2) or inter-
actively using the Gentzen-style rules. Model checking is also initiated by the
Proof Editor.

3.3 Model Checking

STeP features automatic explicit-state and symbolic model checking for linear-
time temporal logic. The explicit-state model checker performs an incremental

6



Fig. 4. STeP Proof Editor

(depth-first) search of the state-space, directed by the temporal tableau (automa-
ton) for the negated specification. Thus, only those states that can potentially
violate the specification are visited. This enables the use of the explicit-state
model checker on some infinite-state systems, though it is not guaranteed to
terminate for these systems. The symbolic model checker uses a breadth-first
search through sets of states represented by ordered binary decision diagrams
(OBDDs). Thus, it is limited to finite-state systems, whose variables range over
a fixed, finite number of values.

When transitions can be expressed as guarded commands (i.e., the system is
a set of deterministic actions), symbolic model checking is optimized using tech-
niques for computing predecessor states without computing the entire transition
relation. A specialized backwards search for proving invariants is also available.
The set of states visited in the backwards search is constrained by auxiliary
invariants, which may have been formulated and verified before, or generated
automatically (see Section 5).

The symbolic and explicit-state model checkers complement each other. Al-
though limited to finite-state systems, the symbolic model checker can be consid-
erably more efficient, particularly when the state-space is large and the transition
relation and fixed points are amenable to representation by OBDD’s [McM93].
On the other hand, the explicit-state model checker is often faster on systems
with relatively few reachable states.
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3.4 Modular Verification

Different components of a large system may require the application of different
verification methodologies, depending on their specific type (real-time or dis-
crete, finite- or infinite-state). Using the notion of modular validity, modular
properties can be established by the same set of methods as global properties,
accounting for environment transitions. Automatic property inheritance then
ensures that such properties can be used as lemmas in proofs over composite
modules. In the case of recursively defined systems, properties can be estab-
lished by structural induction.

Many properties are not directly guaranteed by a module, but hold only
under certain assumptions. STeP’s proof management allows assumptions to be
used before their proof is available, checking the resulting dependency diagram
to avoid unsound circular reasoning. Assumptions about the environment can be
made when proving a modular property, and subsequently discharged when the
module is composed with another. The search for appropriate assumptions can
be guided by constructing verification diagrams for each module and attempting
to prove the associated verification conditions [FMS98, MCF+98].

4 Combining Deductive and Algorithmic Methods

STeP includes formalisms that combine deductive and algorithmic verification
in a number of different ways, which differ in the degree and type of intervention
that is required from the user.

4.1 Generalized Verification Diagrams

Generalized verification diagrams [BMS95, MBSU98] are an extension of veri-
fication diagrams that allow the verification of arbitrary temporal properties.
Diagrams can be seen as intermediaries between the system and the property to
be proven. A set of verification conditions is proved, deductively, to show that
the diagram faithfully represents computations of the system. An algorithmic
check then establishes that the diagram corresponds to the formula being proved.
Together, these two stages show that all computations of the system are models
of the temporal property.

The STeP Diagram Editor, shown in Figure 5, allows the user to draw a
diagram and then prove, using the Proof Editor, the associated verification con-
ditions. In STeP 2.0, the Diagram Editor and the Proof Editor are more tightly
coupled, to facilitate the incremental development of diagrams. The user can
draw an initial version and try to prove the associated verification conditions.
If they fail, the user can make local corrections to the diagram (or discover
something wrong with the system) and attempt the proof again.

The verification conditions are local to the diagram; failed verification con-
ditions point to missing edges or nodes, weak assertions, or possible bugs in
the system. Since local changes to a diagram do not affect the verification condi-
tions elsewhere, much of the work from the previous iteration can be saved. Using
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Fig. 5. STeP Diagram Editor

feedback from the Proof Editor, the Diagram Editor can highlight proved and
unproved edges and nodes in the diagram, helping the user correct the diagram.
A change to the diagram automatically invalidates the verification conditions in
the Proof Editor that are affected by the change.

Deductive model checking [SUM98] uses diagrams to explore and refine the
state-space of possibly infinite-state systems, searching for a counterexample
computation by transforming the diagram. The STeP Diagram Editor supports
some of these diagram transformations for interactive state-space exploration.
We will include a more comprehensive implementation in upcoming releases.

4.2 Constructing Finite-State Abstractions

Temporal properties can be proved for a complex system by finding a simpler ab-

stract system such that if the abstract system satisfies a related property, then
the original concrete system satisfies the original one as well. If the abstract
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system is finite-state, its temporal properties can be established automatically
using a model checker. We have developed methods for automatically generating
finite-state abstractions of possibly infinite-state systems, using the decision pro-
cedures in STeP [CU98, Uri98]. We describe some of these decision procedures
in Section 5.2.

The abstraction algorithm compositionally abstracts the transitions of the
system, expressed as first-order relations, relative to a given, fixed set of asser-
tions which define the abstract state-space. The number of validity checks is
proportional to the size of the system description, rather than the size of the
abstract state-space.

Once the finite-state abstraction is generated, it can be model checked, explic-
itly or symbolically (see Section 3.3). The generated abstractions are weakly pre-

serving for universal (∀CTL*) temporal properties, including LTL. This means
that validity at the abstract level implies the validity of the original property over
the concrete system; however, if the abstract property fails, the original property
might still hold. In this case, we say that the abstraction was not fine enough. An
abstract counterexample can be used, manually, to determine if a corresponding
concrete counterexample exists, or else to build a finer abstraction.

5 Deductive-Algorithmic Support

Besides model checking, described in Section 3.3, STeP provides two basic au-
tomatic tools that support deductive and deductive-algorithmic verification: au-
tomatic invariant generation and decision procedures. Both are used extensively
in the combinations of deductive and algorithmic verification presented in Sec-
tion 4.

5.1 Automatic Invariant Generation

Deductive verification is usually an incremental process: simple properties of
the system being verified are proved first and then used to help establish more
complex ones. STeP implements techniques for the automatic generation of in-

variants, as described in [BBM97]. Invariant generation is based on approximate
propagation, starting from the set of initial states, through the state-space of
the system until a fixpoint is reached. Depending on the approximation method
used, different types of invariants can be generated:

– Local invariants result from analyzing the possible values of individual vari-
ables, as well as the relation between control locations and data values.

– Linear invariants express linear relationships between system variables.
– Polyhedral invariants generalize linear invariants, expressing polyhedral con-

straints over sets of system variables.

For real-time and hybrid systems STeP provides an alternative technique
of invariant generation, also based on forward propagation of system behavior
through the state space, but now starting from the entire state space [BMSU98].

10



In this case every propagation step leads to an invariant; no fixpoint needs to
be computed. For hybrid systems these techniques have been further optimized
to take advantage of the structure of the constraints, resulting in stronger in-
variants. In [MS98] we show an example where the invariants thus generated are
sufficiently strong to prove the main property of interest.

5.2 Decision Procedures

The verification conditions generated in deductive verification refer to the do-
main of computation of the system being verified. To establish verification con-
ditions in the most automatic and efficient manner, STeP includes decision pro-

cedures for a number of theories frequently used in computation domains, and
thus common in formal verification [Bjø98].

The basic integration of decision procedures is a variant of Shostak’s con-
gruence closure-based algorithm [Sho84, CLS96, Bjø98]. At the top-level, an
algorithm based on congruence closure propagates equality constraints through
function symbols. It invokes the other decision procedures as auxiliary simplifiers
and solvers. The theories supported in this way include:

– Partial orders. Beyond basic equality, partial orders are a more expressive
constraint language to specify relations between variables.

– Linear and non-linear arithmetic. STeP provides Fourier’s quantifier elimi-
nation procedure to deal with formulas involving linear arithmetic; this pro-
cedure also extracts implied equalities. Verification conditions involving non-
linear arithmetic, which are common in the verification of hybrid systems,
are dealt with by techniques that eliminate first- and second-degree variables,
as described in [Wei97].

– Bit-vectors. Reasoning about bit-vectors is essential for hardware verifi-
cation. STeP includes decision procedures for fixed-size bit-vectors with
boolean bitwise operations and concatenation, and for non-fixed size bit-
vectors with concatenation [BP98].

– Lists, queues, and word decision procedures. Lists and queues are common
data structures, especially in systems using abstract datatypes or asyn-
chronous channels. Both lists and queues can be viewed as special cases of
words, with concatenation being the basic operation. Although the known
decision procedures for word equalities have prohibitive complexity, the spe-
cial cases of lists and queues can be solved efficiently.

– Recursive data-types. STeP supports equality reasoning for general recursive
datatypes, which allow the specification of S-expressions and other tree-like
structures. Enumeration types and records are treated as special cases of
recursive datatypes.
Co-inductive data-types, such as lazy lists, are also supported. Both equality
constraints and subterm relationships are supported in the integration of
decision procedures.

– Set theory. STeP provides basic support for Multi-level Syllogistic Set-theory
(MLSS) [CFO89, CZ98]. MLSS terms range over sets, and operations include
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union, intersection, set-difference, and finite set-enumeration. Atomic rela-
tions include set equality, inclusion and membership.

STeP uses decision procedures not only to check validity, but to simplify

formulas as well, rewriting them to smaller, logically equivalent ones. Efficient
formula simplification can make verification conditions more readable and man-
ageable, and improves the efficiency of subsequent validity checking.

The above decision procedures check validity of ground formulas, where no
first-order quantification is present. STeP extends this combination of ground
decision procedures to include theory-specific unification algorithms, which find
quantifier instantiations needed for first-order validity checking [BSU97].

As mentioned in Section 3.2, an interactive Gentzen-style theorem prover is
available as part of the Proof Editor to establish verification conditions that are
not proved automatically.

6 Case Study: Steam boiler

The incorporation of modularity and abstraction in STeP has enabled us to ana-
lyze much larger systems than was previously possible. An example is the steam

boiler case study [ABL96], a benchmark for specification and verification meth-
ods for hybrid controlled systems. At the time of its appearance we developed
a comprehensive model of this system, including both the plant and the con-
troller. The model consisted of some 1000 lines of SPL code and contained eight
parallel processes. However, verification proved impractical and further analysis
was suspended. Recently the case study was revived. The system was rewrit-
ten as a modular transition system consisting of ten modules with a total of 80
transitions, 18 real-valued variables and 28 finite-domain variables.

Modularity allowed us to prove properties over selected subsystems and in-
herit them for the full system, thus reducing the number of verification condi-
tions to be proven. In some cases, involving discrete finite-state modules only,
the model checker could be applied, making the verification fully automatic.
In our previous implementation finite-state components could not be separated
from the infinite-state ones, and thus use of the model checker was not possible.

Assertion-based abstraction (see Section 4.2) enabled us to indirectly apply
the model checker to infinite-state modules as well, by eliminating the real-valued
variables. The relationships between the relevant real-valued variables captured
by a small set of assertions were sufficient to let us prove the properties.

A more detailed description of the case study is given in [MCF+98].

7 Implementation

The parsing, theorem-proving and invariant generation components of STeP are
implemented in Standard ML of New Jersey. The graphical user interface for
STeP 2.0 was developed in Java. The Java graphical packages and the inheritance
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features of the language are well-suited for the implementation of a variety of
visual formalisms with common features, as in the STeP Diagram Editor.

The explicit-state model checker is implemented in C, while the symbolic
model checker uses ML linked together with external OBDD libraries, written
in C. Similarly, the polyhedral invariant generation uses external polyhedra ma-
nipulation routines, implemented in C [HP95].

Stand-alone components: Many of the components of STeP described above
can be used in batch mode, as stand-alone components, including:

– the parser/translator from SPL into fair transition systems (Section 2)
– the explicit-state and symbolic model checkers (Section 3.3)
– the linear, local and polyhedral invariant generators (Section 5.1)
– the validity checker and formula simplifier (Section 5.2)

These options are available as command-line options to a separate executable
binary file.

External systems: Verification conditions in STeP can be output to external
theorem provers or decision procedures. In particular, the MONA package for
monadic second order logic can be used; output to the OTTER and Gandalf
resolution theorem provers is also provided. STeP interacts with these provers
by invoking them in the background and digesting their output to check if the
verification conditions have been discharged.

Obtaining STeP

To obtain STeP, send email to step-request@cs.stanford.edu. For more in-
formation on the system, see the STeP web pages at

http://www-step.stanford.edu
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