Monitoring Parametric Temporal Logic

Peter Faymonvillel , Bernd Finkbeiner!, and Doron Peled?

! Fachrichtung Informatik 2 Department of Computer Science
Universitét des Saarlandes, Germany Bar Ilan University, Israel

Abstract. Runtime verification techniques allow us to monitor an execution and
check whether it satisfies some given property. Efficiency in runtime verification
is of critical importance, because the evaluation is performed while new events
are monitored. We apply runtime verification to obtain guantitative information
about the execution, based on linear-time temporal properties: the temporal spec-
ification is extended to include parameters that are instantiated according to a
measure obtained at runtime. The measure is updated in order to maintain the
best values of parameters, according to their either maximizing or minimizing
behavior, and priority. We provide measuring algorithms for linear-time tempo-
ral logic with parameters (PLTL). Our key result is that achieving efficient run-
time verification is dependent on the determinization of the measuring semantics
of PLTL. For deterministic PLTL, where all disjunctions are guarded by atomic
propositions, online measuring requires only linear space in the size of the speci-
fication and logarithmic space in the length of the trace. For unambiguous PLTL,
where general disjunctions are allowed, but the measuring is deterministic in the
truth values of the non-parametric subformulas, the required space is exponential
in the size of the specification, but still logarithmic in the length of the trace. For
full PLTL, we show that online measuring is inherently hard and instead provide
an efficient offline algorithm.

1 Introduction

While verifying the complete behavior of a system (e.g., using model checking) is cer-
tainly desirable, it is not always possible, as its internal structure is not always given, or
its state space is prohibitively large. Runtime verification analyzes the ongoing execu-
tion of a system against a given specification, written for example in Linear Temporal
Logic (LTL), based on monitoring its externally measurable events. The challenge in
runtime verification is to provide an efficient algorithm that can perform its required
updates between any two successive monitored events.

We study here the runtime monitoring of a system with respect to temporal prop-
erties, expressed using LTL, where (discrete time) duration counters are added to the
subformulas. The runtime verification reports not only about the conformance between
the currently monitored sequence and the specification, but also provides numerical
values that bound the duration of the scope of subformulas on the checked execution
from either above or below. For example, the specification [(J(r — <><.g) computes the
maximal response time x between a request r and a response g. We call this approach
for runtime verification “runtime measuring” (as “model measuring” [2] is related to

“model checking”). While runtime verification can check and alarm against unwanted
situations, runtime measuring collects statistics on the system behavior.

Our monitoring approach is declarative as opposed to operational. In an operational
approach [7, 8], the measures are collected by explicitly specifying the initialization and
update of counters that calculate the reported values. In a declarative approach, we at-
tach parameters to temporal formulas to specify the measure we are interested in, and
the monitoring algorithm takes care of finding parameter valuations such that the for-
mula is satisfied. Suppose, for example, that we do not want to measure all response
times, but are interested only in the last request that was successfully answered. The
formula (OO (rAOg) V (r = O <xg)) uses the disjunction to filter out all requests
before the last successful request: in every step, if the left disjunct holds, then the re-
sponse time is irrelevant, because the disjunction is true for any value of x; the right
disjunct thus only becomes relevant when the left disjunct is false, i.e., when there is no
future request that is successfully answered.

Research on the runtime verification of LTL [6, 8, 10] distinguishes online algo-
rithms that need to keep only some bounded amount of information about the trace
seen so far, from offfine algorithms that store the entire sequence for later evaluation.
For runtime measuring, we also look for an online algorithm with reasonable space
consumption. Since measuring necessarily entails updating counters, an algorithm that
requires logarithmic space in the length of the trace is acceptable, while an algorithm
that requires linear space in the length of the trace, such as an offline algorithm, is in
general not practical. We show that the complexity of runtime measuring depends on the
disjunctive characterization of the LTL specification; that is, when the formula contains
a disjunction, or some subformula that can be satisfied in different ways (e.g., ¢ Uy
may be satisfied when the first y holds, but also when ¢ continues to hold until some
subsequent occurrences of). Due to this disjunction characteristics, counting results
are not uniquely defined. Consider a sequence of length n where a, b and ¢ happen in
each event. The formula (a U<, (b U<y c)) can obtain any natural number for the pa-
rameters x and y such that x4y = n. One way to obtain unique measures is to impose a
priority order among the parameters and seek for the best (minimal) results according to
the lexicographic ordering. We show that for this case, an online measuring algorithm
with logarithmic memory in the length of the trace is impossible.

An alternative approach to obtain unique measures is to modify the logic. We
present two variations of PLTL that not only provide unique measures, but also have
efficient online measuring algorithms. Deterministic PLTL allows, like deterministic
LTL [11], only guarded disjunctions of the form ((p A1)V (-p Ay2)), where p is
an atomic proposition. Runtime measuring of deterministic PLTL indeed requires only
logarithmic memory. The drawback of deterministic PLTL is, however, its limited ex-
pressiveness: deterministic LTL can only express properties in the intersection of LTL
and ACTL [11]. To eliminate this drawback, we introduce unambiguous PLTL, which
maintains the full expressiveness of LTL. Instead of syntactically restricting the pos-
sible disjunctions, unambiguous PLTL only disambiguates the PLTL semantics with
respect to the measuring. For example, in a disjunction (y; V W), we only measure
if y is is false under all possible parameter values.

Consider, for example, again the problem of measuring the maximal response time
x between a request » and a response g. To express this measuring problem in deter-
ministic PLTL, we use a disjunction guarded by r: O1(—rV (r A <xg)). This encoding
relies on the fact that the condition that triggers the measuring, r, is an atomic proposi-
tion. If we modify the problem, as discussed earlier, to only measure the last successful
request, then this is no longer possible, because the decision whether or not to measure
the current request depends on the success of future requests. The modified measuring
problem can thus no longer be expressed in deterministic PLTL. The PLTL specification
OO (rAOg) V (r— O<xg)), discussed above, does, however, work for unambigu-
ous PLTL. In unambiguous PLTL, the (unguarded) disjunction is allowed, and the right
disjunct is evaluated whenever the left disjunct is false. Hence, the specification com-
putes precisely the response time of the last successful request.

We obtain the following results: for deterministic PLTL, online measuring requires
only logarithmic space in the length of the trace and linear space in the size of the
specification. For unambiguous PLTL, the required space is exponential in the size of
the specification, but still logarithmic in the length of the trace. For full PLTL, we
provide an efficient offline algorithm, which can also be used as an online algorithm
by keeping the trace seen so far in storage. This algorithm requires quasilinear space in
the length of the trace. We also show that, in fact, no online measuring algorithm with
logarithmic space in the length of the trace exists. Unambiguous PLTL thus appears to
be the sweet spot in the trade-off between expressiveness and complexity.

Related Work. The synthesis of monitors for LTL is a well-studied problem, see [3,
5,6, 8, 10, 13]. The offline backwards runtime algorithm of Havelund and Rosu [6] cal-
culates with each event the truth values of the subformulas according to subformula
order. Thus, with each new monitored event, the calculation would be linearly related
to both the length of the sequence so far and the size of the checked formula. The
testers construction by Pnueli and Zaks [13] can be used to backwards assign values to
variables representing subformulas in a compositional manner. In previous work of the
second author together with Sankaranarayanan and Sipma [8, 7], alternating automata
are used to obtain efficient algorithms for runtime verification. The query language con-
sidered there extends LTL with functions that are executed along the trace in order to
collect measures and more complicated statistics such as the average number of packet
transmissions in a communication protocol. Unlike the declarative approach of this pa-
per, the collection of measures and statistics is specified operationally, not in the form
of parameters. A different type of parametric monitoring has been studied by Rosu
and Chen [14]: They consider traces that contain events with parameter bindings. Such
traces can be considered as several different traces merged together and the challenge
for the monitoring algorithm lies in the efficient slicing of the trace.

2 Parametric Temporal Logic

Syntax. Parametric Temporal Logic (PLTL) [2] is an extension of linear-time temporal
logic (LTL) [12] with parameterized operators, which measure the duration from the
introduction of a temporal goal until it is satisfied. E.g., for a subformula of the form

¢ Uy, we expect to measure the duration until Yy happens. We assign a parameter x
together with a comparison operator to the subformula, e.g., @ U<, y, with the intended
meaning that \ should hold within at most x steps while ¢ holds. In contrast to LTL
variants like Prompt-LTL [9], PLTL allows multiple parameters within a formula.

The syntax of PLTL is given, for a set of atomic propositions AP, with typical ele-
ment p, and a set of parameter variables V as follows:

yo=true | p |-y (WAY) | (W) [Oy O[OV (WUY) | (YRY) | Oy
O<V¥

The operators U-until, $-eventually, -always, R -release, O-next are the usual
temporal operators from LTL. In the two new parametric operators < <,y and C<, W, x
may be either a constant natural number or a parameter variable.

In addition to disjunction, conjunction, and negation, we also allow the usual de-
rived Boolean connectives such as implication —. In addition to &<, W and <, we
also use the following derived parametric operators

O>an>X7 (Z'IS)C, U>X7K§X7 and K>x’

where x is again a parameter or a natural number. We assume that each parameter vari-
able occurs at most once. Let o : X — NU {0} denote a value assignment for the param-
eters. Then oi(x) is the integer value assigned to x by o.. For simplicity, we set o(k) = k
for k € N. We denote by a[k/x] the valuation that maps y to k if y = x and to a(y) if
y # x. Let o\ x be the valuation o, excluding the parameter x.

Semantics. In the following, we adapt the PLTL semantics to the finite traces observed
during monitoring. We interpret a given PLTL formula y over a finite trace ¢ of events,
numbered with nonnegative integers, where each event provides an interpretation to
the Boolean propositions AP, i.e., 6 : {0...|c| — 1} — 24. Let the kth element of &
(starting with k = 0) be denoted by G[k].

We denote by (G,k,0) = W, the fact that trace G satisfies the formula y at position
k with valuation o.. The satisfaction relation |= is defined recursively as follows.
For atomic propositions and Boolean connectives:

- (0,k,a) = piff p € olk]; (0,k,00) =~y iff (G,k,) =W
- (0,k,a) = (W1 Ayn) iff (0,k,) =y and (0,k,) = yo.
- (G,k,OC)): (wl VW2> if (G’k’) |: Y1 or (Gak70(‘)): 2.

For the LTL operators:

- (0,k,0) EOViff |o| > k+ 1 and (0,k+ 1,0) = W.

- (0,k,a) = (y1 Uwy,) if there exists i, k < i < |G| where (0,7,) |= W2, and for each
j’ k <] < i’ (G,j,OC)):\lfl

- (0,k,0) = (w1 R) if for each k < i < |o], it holds that either (0,i,0) =y or
there exists j, k < j < i such that (6,k+ j,) = ;.

We use the following standard abbreviations: $@ = (rrue U @), ¢ = (false R @).
The parametric operators are defined as follows:

- (0,k,a) = O <V if there exists 0 < i < a(x), where k+i < |o], such that (c,k+
o) =
- (0,k,a) = O<yyif forall 0 <i < a(x), where k+i < |G

(0 k+i,0) =y

We also write (0,a) = ¢ for (0,0,a) = ¢. We can extend our syntax and semantic
definitions to allow also constants in addition to (or instead of) the variable parameters:
Constants are simply parameters that have the same values under each valuation.

The semantics of the derived parametric operators is given by the following equali-
ties (see [2], Lemma 2.2):

- <>>x\|f:|:|§x<>ow;

- D>x\‘!:<>§x|:'o\|!;

-y U< W2 = (W1 U2) AO <1¥2);
- V1 R 2 = (W1 R y2) VO W2)s

- Y1 W y2 = O (W1 AO(W1 UW2));
= Y1 Rk W2 = O<k(W1 VO (Y1 R W2)).

Each of the parametric operators is either upward or downward closed. &< is
upward closed: if $ <, for some value o(x) = a, then <, also holds for any o (x) = b
with b > a. If an operator is upward closed, we want to minimize the value we report.
However, as this operator can hold in multiple suffixes of the measured sequence, we
need to report on a value that would guarantee all of them, hence the maximum among
these minimal values. Likewise, (<, is downward closed: if [<, for some value o(x) =
a, then [J<, also holds for any o(x) = a with 0 < b < a. If an operator is downward
closed, we want to maximize the value we report. However, as this operator can hold
in multiple suffixes of the measured sequence, we need to report on a value that would
guarantee all of them, hence the minimum among these maximal values.

We assume that the PLTL formulas are in negation normal form (i.e., negations
may only occur in front of atomic propositions). Negation normal form can be es-
tablished by pushing negations inward according to the usual rewrite rules for LTL,
e.g., 7(y1 Uvyy) = (—y; R —y,), and, additionally, the following equivalence for the
parametric operators: ~[J<,W = <> <,—W. This transformation increases the size of the
formula only by a constant factor. We also assume that the parameterized operators
are only (<, and & <,. The transformation according to the equalities for the derived
parametric operators can result in an exponential explosion in the size of the formula.
However, one does not need to explicitly represent such a formula: one can introduce
“formula variables” to name repeating subformulas and use them repeatedly. Indeed, in
all algorithms in this paper, one does not pay for the repetition of subformulas resulting
from the rewriting [4].

Unique Measures. An attractive feature of PLTL is that the logic permits more than
one parameter in the same formula. As discussed in the introduction, this means, how-
ever, that a trace can satisfy the formula with multiple incomparable value assignments:
for example, the formula <<, p is satisfied on a trace where p is false in the first
position and true in the second position both for the value assignment & : x +— 1,y +— 0
and for the value assignment o : x — 0,y — 1.

To avoid such ambiguities, we introduce a total (i.e., linear) priority order > on
the parameters in X. Let max(X) be the maximum element of X according to >>. The
priority order induces a total order 1 on value assignments where o; 3 o if, for x =
max(X),

— (0 (x) —02(x)) > 0 and we maximize x (i.e., the operator of x is downward closed)
or

— (0 (x) — a2(x)) < 0 and we minimize x (i.e., the operator of x is upward closed) or

- aj(x) =0p(x) and o \x Jap \ x.

The measure of a PLTL formula ¢ over an infinite trace ¢ is the optimal (with respect
to 1) value assignment o such that (6,0,a) = @.

3 Offline Measuring

We present a first algorithm for measuring a given finite trace. We call the algorithm
offline, because it requires access to the trace positions in reverse chronological order;
this type of access is possible if the trace has been stored before its analysis. The algo-
rithm is less appropriate for the online setting of monitoring, where the trace becomes
available one position at a time. We will study online measuring in Sections 4 and 5.

Intuitively, we focus first on the parameter with highest priority, setting up the other
variables to a default value of 0 for a maximizing parameter, and |G|+ 1 for a mini-
mizing parameter. We perform a binary search on the value of this variable, hence are
left with a formula with constant parameters. After finding the optimal (minimal or
maximal) value for this parameter in this way, we fix it, and move to optimize the next
highest priority parameter and so forth.

Checking Formulas with Constant Parameters. We begin with the simple case of
PLTL formulas without parameters that may still contain parametric operators that refer
to constants. In this case, we are only interested in the truth value, not in an actual
measurement.

Let ¢ be a finite trace and let ¢ be a PLTL formula in normal form with constants
instead of variable parameters. We check the satisfaction of ¢ in a backward traversal of
©. During the traversal, we maintain for every subformula y the truth value by, which
indicates whether y is satisfied on the suffix from the currently considered position. For
every subformula that starts with a parametric operator (referring to some constant
k) we additionally maintain a counter ¢y, which indicates for y = < the number
of steps until u is satisfied, and for y = O<xu the number of steps until u is falsified,
respectively; in case u (respectively, —u) never become true, we set ¢y = L.

Before we process the last event in the trace we set up the values as follows:

- b<>§k‘l/ = false, CoOqy = 1, — b
= bo_y =true, coy = L, b
- boy = false.

(v 1y) = false.
(v1Ry,) = rue.

For the Boolean connectives and the non-parametric operators, the backward prop-
agation proceeds as in a standard backward update algorithm for LTL (c.f., [6]). We

denote the values for the current level i with by and ¢y and the values for the previously
considered level i + 1 with b{, and ¢{,. For Boolean combinations we evaluate bottom-up
as follows: biny) = (be Aby) and by = (be V by).

For the non-parametric temporal operators, we propagate the truth values as follows:

= boy = b
= by, vy, = by, V by,
= Dy, uy,) = (by, V (by, /\b(ul fu\uz))
= by yn) = (byy A (by, Vby 4y,))
For the parametric operators, we need to update the counters. In the following we
assume | +1=0and | £ iforanyie N.

- Cco<ky = if by then 0
else if c’<>§k\v < k then C’<>SW +1else L.

- CO<ky = if —by then L
else if C/ng\v < k then C/ngw +1else 0.

The truth values of the parametric operators can then be derived from the counter
values: bey oy = (co oy < k)i boy = (coqy = k).

In order to check ¢ on 6, we thus update two values for every subformula and trace
position. The running time of our algorithm is therefore in O(2/¢! x |o]).

Measuring Formulas with at least one Parameter. In the case that ¢ contains a
single parameter x, we know that the possible values of x are bounded by the length of
the trace. We carry out a binary search to find the best value. The running time of the
algorithm thus increases by a logarithmic factor in the length of the trace: 0(2“9‘ x |G| x
log|o]). In case that @ contains n > 1 parameters, we focus on the parameter x with the
highest priority by replacing all other parameters by their ‘weakest’ values, i.e., 0 if we
maximize and |G|+ 1 if we minimize that parameter. This clearly does not affect the
value of x in the measure. Once the value of x is obtained, we replace x with its value,
and continue with the parameter with the next-highest priority.

The algorithm from the single-parameter case is therefore applied n times, where n
is bounded by |@|. We therefore obtain the following complexities.

Theorem 1. Let ¢ be a PLTL formula and G be a finite trace. With direct access to all
trace positions, the measure of ¢ on 6 can be computed in space O(|¢| x || x log|a]|)
and time O(|@| x 2/°! x |o] x log|c|).

4 Online Measuring is Hard

The algorithms from the previous section assume direct access to the full trace. Since
huge traces are common in practice for runtime verification, in fact, their size may not
be a priori bounded, one would like to avoid storing the full trace, and instead only
work with a logarithmic representation, such as the current value of a fixed number of
counters. The following theorem shows that, unfortunately, such a monitoring algorithm
cannot exist.

0 ki n n+k 2n (n—Dn (n—1)n+ky, n—i
P o 1 1 { 1
a| |c bla c b| |a a cl |a b
b
T T T
n—1 2n—2 n-n
c p

Fig. 1. Sequences G and p in the proof of Theorem 2.

Theorem 2. There is no online measuring algorithm for PLTL that uses only logarith-
mic space in the length of the trace.

Proof. Suppose that such an online algorithm exists. We run the algorithm on the for-
mula O(a — ((O<xb) V (O<yc))), where x > y. We will show that there is a sequence
o of length O(n?), such that the memory of the monitor must, after processing ©, con-
tain all elements of an arbitrary chosen set K = {k;,ka,...,k,} of n natural numbers.

Assume, without loss of generality, that k; < k» < ... < k. The sequence © is con-
structed as follows. There is an a in the first position and then again after n steps, after
2n steps, and so on, for a total of n+ 1 times. In the first interval between two occur-
rences of a, there is a b after n — 1 steps following the first a, and a c after k; steps
following the first a, in the second interval, there is a b after n — 2 steps following the
first a and a c after k; steps, and so on. The construction of ¢ is illustrated on the left in
Figure 1.

The monitor must keep the entire set K in memory after processing G, because we
can force the monitor to retrieve k; € K for any i = 1, ... n, by extending ¢ with a suitable
sequence p such that the y-measurement of G- p is k;. The extension, after the last a,
consists of another n — 1 steps with a b in the (n — i)th step and no further or ¢ (or a).
The construction is illustrated on the right in Figure 1. With only logarithmic memory,
it is impossible to store K. Logarithmic space can only distinguish O(n) cases; however,
there can be 2" different sets K.

The measurement of the higher priority variable x in G- p cannot be smaller than
x =n—1i+ 1, since the last a is followed by a b after that distance, but not with any c.
For the purposes of measuring y, we only need to consider the first i — 1 occurrences
of a, because for all other occurrences, the left disjunct, with the chosen measure of x
being at least x = n — i+ 1, is always satisfied. In order not to increase the value of x
beyond n —i+ 1, we need to satisfy the disjunction for each of the first i — 1 occurrences
of a (which follow by a b at a larger distance, namely, n —i+2,n—i43...n) using its
righthand side, i.e., through the first occurrence of a c after each a. In order to guarantee
that all these distances from a to the first subsequent ¢ are satisfying the formula with
the measurement of y, we must choose y as the maximal value of them. As the distances
appear in ascending order, we must have y = k;_1. a

5 Online Measuring in Logarithmic Space

In this section, we present online measuring algorithms that only need logarithmic space
in the length of the trace. Since we know from Theorem 2 that disjunctions between
subformulas with parameters make this impossible for PLTL, we must look at syntactic
or semantic variations of PLTL that “determinize” such disjunctions. We start with a
syntactic fragment based on deterministic LTL [11]: in deterministic LTL, the only
allowed disjunctions are of the form ((p A1)V (—=p Ay2)), where the subformulas
and Y, are guarded by a proposition p; since the value of p is immediately available,
the choice of the disjunct is deterministic. Indeed, as we show in Section 5.1, runtime
measuring of deterministic PLTL can be done with logarithmic cost in the length of the
trace. Deterministic PLTL is, however, not completely satisfying as a logic for runtime
measuring, because it is less expressive than full LTL: deterministic LTL can express
exactly the properties in the intersection of LTL and ACTL [11].

We solve this problem in Section 5.2 by introducing unambiguous PLTL, which
maintains the full expressiveness of LTL. Instead of syntactically restricting the possible
disjunctions, we only disambiguate the PLTL semantics with respect to the measuring.
For example, in a disjunction (y; V), we only measure Yy if y; is false for all
possible instantiations of the parameters. Again, the complexity of online measuring
drops from linear to logarithmic in the length of the trace.

5.1 Deterministic PLTL

We define deterministic PLTL in analogy to deterministic LTL [11] by restricting the
syntax of PLTL such that disjunctions and eventualities are always guarded by atomic
propositions.

Syntax and Semantics. The syntax of pLTLdet i given, for a set of atomic proposi-

tions AP and a set of parameter variables V as follows:

yu=true | p | =Y [WAV (pAY)V (mpAY) OV | Op | (pAY) U(-pAY) |
Dgxp|<>§xp

pLTLd® i o sublogic of PLTL; the semantics remains the same.

Measuring Automata. We construct a monitor in the form of an extended finite-state
automaton, which maintains the current measurements in a fixed number of integer
variables. We begin with a formal definition of measuring automata.

A measuring automaton is a deterministic finite-state automaton extended with a set
of variables, which are used to store data needed to compute the measure. The variables
are initialized with either O or c. In each step, the automaton may update the integer
variables with a reset to 0, an increment by 1, or by computing the minimum or maxi-
mum of two values. When the automaton reaches a final state it accepts the input word
and outputs its measurement based on the state and the values of the integer variables.

Definition 1. A measuring automaton (X,Q. Q. qo,X,0,d,7,F,®) consists of an input
alphabet ¥, an output domain Q, a finite set of states Q, an initial state q, a finite set
of variables X, an initial assignment 8 : X — {0,000}, a transition function §: Q X X —
(QU{L}), an update functiony: Q x L — (X = N) — (X — N), a set of final states F,
and an output function ® : F x (X — N) — Q. The update function Y is restricted to one
of the following operations for each variable x € X : reset x := 0, an increment x :=y+1,
or with the maximum or minimum of two values: x := min(x,y) or x := max(x,y), where
y is some other variable y € X.

A run of a measuring automaton 4 = (£,Q,0,¢o,X,6,9,v,F,®) on an input se-
quence G = GyGj ...0, € X* is a sequence (s0,M0)(s1,MN1) - - - ($n,Mx) of configurations,
where each configuration is a pair (s;,m;) of a state s; and a valuation 1); : X — N of the
integer variables, such that

= S0 =40

-MNo=86

- Sit1 = S(Si,Gi) fori=0... (n — 1)

- Ni+1 = 'Y(Si,Gi)(T],') fori=0... (I’l* 1)

-speF.
The result of the run is ®(s,,M,). For every input sequence, 4 has either no run at all
or a unique run. If 4 has a run on ¢, we say that 4 accepts ¢ with result ®(s,,M,).

Since the only allowed update operations are reset, increment, maximum, and min-

imum, the values of the variables are always either oo or bounded by the length of the
input sequence. These values can therefore be represented in logarithmic space in the
length of the input.

Lemma 1. The configuration of a measuring automaton can be represented in loga-
rithmic space in the length of the input sequence.

From Formulas to Automata. We measure formulas of PLTLI® with a measuring
automaton with input alphabet £ = 247 and output domain Q : V — N, consisting of the
evaluations of the parameters. The state space of the automaton is based, as in classic
LTL-to-automata translations, on the closure of the formula.

Definition 2. The closure @, denoted by cl(¢), of a PLTL formula ¢ is the set of PLTL
formulas that includes all the subformulas of ¢ and the negations of the non-parametric
subformulas of .

The states of the measuring automaton consist (in addition to a unique initial state
qo) of subsets of the closure called aroms. Intuitively, an atom represents the state of the
temporal specification after processing a prefix of the trace.

Definition 3. An atom of a PLTL formula ¢ is subset of formulas from cl(Q) that is
consistent with respect to propositional logic, locally consistent with respect to the until,
release, globally, and parametric globally operators, and maximal.

— A subset A C cl(@) of the closure is consistent with respect to propositional logic if
the following conditions hold: (Wi A2) €A iff W) €A and ¥ € A; ¥ € A implies
that -\ € A; and true € cl(Q) implies that true € A.

10

— A subset A C cl(@) of the closure is locally consistent with respect to the until
operator if for all (W UW,) € cl(Q) the following conditions hold: \y, € A implies
that (W1 Us) € A; and (W1 Ur) € A and) € A implies that) € A;

— A subset A C cl(9) of the closure is locally consistent with respect to the release
operator if for all (W1 RW>) € cl(Q) the following conditions hold: y, € A and
W, € A implies that (W R W2) € A; and (W1 R W2) € A implies that ¥, € A;

— A subset A C cl(9) of the closure is locally consistent with respect to the globally
operator if for all Oy € cl(@) it holds that if QY € A then ¥ € A;

— A subset A C cl(9) of the closure is locally consistent with respect to the parametric
globally operator if for all <,y € cl(Q) it holds that if Q<Y € A then Yy € A.

— A subset A C cl(@) of the closure is maximal if, for all non-parametric subformulas
v € cl(Q), we have that either y € A or —\ € A.

Let Az, denote the set of atoms of @. We consider the following successor relation
on atoms:

Definition 4. Let —C Atq x 247 x Aty be a successor relation between atoms of ¢ and
foreacht, e CAP, 1, we have t — 1" if t' is the smallest set s.1.

- t'NAP=e.

IfOVErtheny et

IfOvyets, thenOQy et’.

If (y1 UN,) €t then either W, € t or Yy €t and (W UY,) € 1.
IfOyetthenyetor OYet.

IFO<yetthenyetor O Yer.
IfO0<yettheny €rand Y &1 or J<x Yy €1

For PLTLdet, this successor relation leads to a deterministic automaton.

Lemma 2. For every atom t € At(Q) of a pLTLde! formula @ and every event e there
is at most one atom t' € At(Q) such thatt ',

The transition function 8 of the measuring automaton is therefore directly based on
the successor relation:

— For the initial state qo, the successor 8(qo, e) is the unique atom that contains ¢ and
is consistent with e, i.e., the atom ¢ € Aty with @ € f and tNAP = e, or L if no such
atom exists.

— For every other state t € At, the successor 6(t,e) is, whenever it exists, the unique

atom ¢’ with r — ¢/. If no successor atom exists, then 8(,¢) = L.

The set X of variables of the measuring automaton contains two variables n, and
m,, for each parameter v € V. The variable n, is a counter, similar to the counter used in
the offline algorithm: n, indicates the number of steps since the formula that starts with
the operator that is parametric in v has existed in the atom. Since the same formula may
be generated several times along the trace, e.g., the subformula ><.q of the formula
O(p — O <xq) (written in negation normal form) is generated whenever p is true, we

11

additionally keep track of the worst (maximal, if we need to minimize, or minimal, if
we need to maximize the measure) value of n, seen so far (thus ensuring that the final
measurement will cover all occurrences). This is the purpose of the second variable m,:
for the upward-closed operator <y, m, contains the greatest value of n, seen so far,
for the downward-closed operator [J<y, m, contains the smallest value of n, seen so far.
In 6, we initialize n, with 0 and m, with e for (J<, and with 0 for <.

For the update function (s, e), which maps a state and an input to a mapping be-
tween successive valuations, we need to distinguish situations where a parametric for-
mula is freshly generated from situations where the formula is present in order to con-
tinue a measurement started earlier.

Definition 5. A formula y € t is generated in a pair of atoms t,t'" € Aty, denoted by
generated(,t,1'), if one of the following conditions is true:

— Y is the direct subformula of some other formula int';
- OV is a formula in t.

For simplicity of notation, we extend generated(\, s, s’) to pairs of states s,5" € Q of
the measuring automaton, where we set generated(y,qo,t") = true for all ' € Aty y € 1’
to also cover the designated initial state. The updates of m, and n, take into account
whether we want to maximize or minimize a subformula. Also, the updates take into
account the fact that a measured subformula may be regenerated while predecessor
atoms already include that subformula, hence it is already in the process of being mea-
sured. For example, when monitoring (J(p — <xq), the subformula ><,g may be
generated, or a result of it appearing in the previous atom, or both. We need to mea-
sure an overall worst minimal value (i.e., maximum among minimal values from the
time ><yp is generated in an atom until p it holds a subsequent atom). In this case,
we ignore any new generation of the subformula in the current atom. The situation is
reversed when we have an [J<,q subformula: Since we need the worst among maximal
measurements, we ignore the occurrence of the subformula that is propagated from a
predecessor atom in favor of a current generation, and start to count from fresh.

For &< m € 8(s,e): if N € ¢’ then m, := max(my,ny);ny :=0
else my ;= my; ny == ny,+ 1.

For (<M € 8(s,e): if N € 8(s,e) then if generated(D<xM, s,(s,e))
then m, := my;n, :=0
else my :=my;n, :=n,+1;
else m, := min(my,ny);n, :=0.

If x does not occur in the new atom, then m, and n, remain unchanged: m, := m, and
ny := ny. The final states of the measuring automaton are the atoms without unfulfilled
obligations, i.e., t € F, iff for allm Uu € ¢ also u € ¢, for all O« also u € ¢, and there
is no formula QW in ¢. For such states, ® reports the parameter assignment v — m,, for
all parameters, with the exception of remaining formulas of type []<,u, where it reports
min(my, ny) to take care of a new possible minimum on the last event on the trace.

12

Theorem 3. For every pLTLde! formula @ there exists a measuring automaton Ay =
(2,2,0,90,X,0,0,v, F,®) with a linear number of states Q in |Q| and a linear number
of variables X in |@| such that for every sequence & € (247)*, G is accepted by A, with
result r iff r is the measure of ¢ on G.

Soundness. We split the correctness argument of Theorem 3 into two lemmata:

Lemma 3. If there exists a run of Ay on the trace 6 = epey ...e,_1 € (24P)* with result
r, then (6,0,r) = @.

Lemma 4. For a trace 6 = epey ...e,—1 € (24F)%, if (6,0,7) |= @, then there exists a
run T = (to,Mo), (t1,M1) - - - (ta,Mn) of Ap on & with result r', where r' T r.

Because 4, has at most one run on a given trace and therefore a unique result,
provided that some run exists, Lemmata 3 and 4 imply that the result of A, is the
measure of @ on the given trace. To prove Lemma 3, we first establish that the formulas
in the atoms are satisfied for the respective suffixes of the trace.

Lemma 5. If there exists a run of @ in Ay with atom sequence ty . ..t,, then we have
that for all subformulas \y, for all positions i, if \ € t; then (,i— 1,r) E .

The proof of Lemma 5 is by induction on the length of the trace, progressing back-
wards from the last position. It remains to show that the result of the run satisfies .

Lemma 6. If there exists a run T = (to,Mo), (t1,M1) .- (tn,Na) in Ay with result r, we
have that (,0,r) = .

To prove Lemma 6, we show, inductively, that for a subformula & <,y in atom ¢,
the distance to the next atom with [y] is at most r(x) —n;(ny) steps; and, likewise, that
for a subformula <,y in atom #;, the distance to the next atom with —[y] is at least
r(x) —Mi(ny) steps.

For the reverse direction, stated as Lemma 4, we first construct the sequence of
atoms corresponding to the given trace. Based on the semantics definition, we show
inductively that the subformulas in the atoms hold over the respective suffices.

Lemma 7. For a trace ¢ = epey...ey—1 and a deterministic PLTL formula o, if

(6,0,7) = @, then there exists an atom sequence 1y . . .t, such that ty is the unique atom
. . . . Si .

that contains ¢ and is consistent with eq, t; — tiy foralli=0...n—2, and for every

subformulas y and positioni=0...n—1,ify €t;, (c,i—1,r) = .

We complete the atom sequence of Lemma 7 into a complete run by computing
the values of n, and m, for each parameter x and each trace position according to the
definition of the automaton.

Lemma 8. For a trace ¢ = egpey,...e,—1 and a deterministic PLTL formula @, if
(6,0,r) |= @, then there exists a run of Ay, T = (to,Mo), (t1,M1).--(tn,Nn) Where
t; =55 111 and for all subformulas and positions i, if ¥ € t;, (G,i—1,r) =, with
result ®(e,,n,) Cr.

13

To prove the claim in Lemma 8, that the result of the run is at least as good as r,
we show, inductively, that for each subformula <> <,y and each trace position i, 1;(n,)
is less than or equal to the difference of r(x) and the distance of the closest atom that
contains [y]; and that for each subformula (<, and each trace position i, the sum of
Mi(ny) and the distance of the closest atom that contains —[y] is greater than or equal
to r(x). Since m, maintains for &<y and for <y, the maximum and minimum
measure, respectively, the claim of Lemma 8 follows.

From Theorem 3 and Lemma 1 it follows that the space required by the online
monitor is linear in the size of the specification and logarithmic in the length of the
trace.

Theorem 4. A PLTLY¢! formula @ can be measured in linear space in the size of ¢ and
logarithmic space in the length of the trace.

5.2 Unambiguous PLTL

As discussed in the introduction of Section 5, the disadvantage of the syntactic re-
striction in deterministic PLTL is that it affects the expressiveness of the logic. In un-
ambiguous PLTL, we modify the semantics of PLTL, rather than its syntax, in order
to determinize the measuring behavior. Because the change does not affect the truth
value of the non-parametric subformulas, we maintain the full expressiveness of LTL.
In particular, under the unambiguous interpretation we give priority in (¢ V y) to ¢, and
measure according to W only when [@] does not hold. Similarly, for & <@, we measure
x to the first occurrence where ¢ holds.

Syntax and Semantics. We use the full PLTL syntax as defined in Section 2. The
changes in the semantics (we do not redefine the cases that remain the same) are as
follows:

- (p.k,0) = (wvn)if (p,k,0) = wor (p,k,) = (—[w] A1)

- (p,k,0) = (y Un) if there exists i where |o]| < k+1, such that (p,k+i,a) E 1,
and for each j, 0 < j <i, (p,k+j,a) EwA[m];

- (0,k,a) |= O <, if there exists 0 < i < a(x), where k+i < |o|, such that (c,k+
i,a) = and for each j, 0 < j <i, (p,k+j,) =[m];

- (0,k,a) = (y R 1) if for each k <i < |o|, either (G,i,a) =1 A[-y] or there exists
j» k < j <isuchthat (0,k+ j,0) E .

The definition uses the LTL abstraction [y] of a PLTL formula y, which is the LTL
formula that is satisfied exactly if the PLTL formula is satisfiable for some instance of
the parameters, i.e.,

pl = pil=p] = —p: (w1 Aw2)] = (il Alwa]): (w1 V)] = ([wi] V [w2)):
Ov] = O] [Ow] = & vl [Ov] = O[]
(w1 Uy2)] = ([y1] U w2]); [(w1 Rw2)] = ([w1] R [w2)]).

14

Example. Consider the PLTL formula ¢ = a U $<xb on the trace 6 = {a}{a,b}0.
According to the standard semantics from Section 2, we have both (c,0,x+— 1) = @,
because (6,0,x — 1) E O<b, and (0,0,x — 0) = ¢ because (6,0,x — 0) = a and
(0,1,x— 0) = O <ib. The result according to the standard semantics is therefore 0.
According to the unambiguous semantics, we only have (6,0,x — 1) = @, because
(6,0,x— 1) | [C<xb] = Ob, and (6,0,x — 1) |= & <ib. The result is therefore 1.

Note that for formulas in the syntax of deterministic PLTL, the unambiguous and
the standard semantics agree. Unambiguous PLTL is thus a strict generalization of de-
terministic PLTL.

From Formulas to Automata. Measuring unambiguous PLTL is more difficult than
deterministic PLTL, since the disjuncts are no longer guarded by atomic propositions,
we generally do not know the truth value of a disjunct until the end of the trace. Our
construction exploits the fact that the counting that is needed to compute the measure
of the trace is deterministic in the truth value of the temporal subformulas. While the
actual value of the future formulas is not known during monitoring, it is possible to split
the analysis into a fixed set of cases based on the possible truth values of the temporal
subformulas.

The states of the measuring automaton are sets of atoms. The intuitive idea is that
each atom represents a possible future behavior. The sets of atoms correspond to a
determinization of the possible futures. As the execution unrolls, some of the future
possibilities are ruled out. As before, an atom is a subset of the formulas of the closure.
We extend the closure of the PLTL formula ¢ with the subformulas of [@] and the
negations of the subformulas of [@]. Under the unambiguous semantics, we additionally
require unambiguity with respect to disjunction and until:

Definition 6. An atom of an unambiguous PLTL formula @ is subset of formulas from
cl(Q) that is consistent with respect to propositional logic, locally consistent with re-
spect to the until, release, globally, and parametric globally operators, maximal, and
unambiguous with respect to disjunction and until.

— A subset A C cl(Q) of the closure is unambiguous with respect to disjunction if; for
everyMVu € A either] € Aandn €A, or —-n] € A and u € A.

— A subset A C cl(Q) of the closure is unambiguous with respect to the until operator
if, for everym Uu € A, eitherm € A and —[u] € A, or u € A.

The transition function 8 of the measuring automaton computes the set of successor
atoms analogously to the construction for deterministic PLTL; the difference is that the
successor atoms are no longer unique and we maintain a set of atoms.

— For the initial state go, the successor 8(go, e) is the set of atoms that contain ¢ and
are consistent with e, i.e., the atoms ¢ € Az, with ¢ and t NAP =e.
— For every other state t = s C Atg, the successor d(s,e) is the set of atoms ¢ with

€ /
t — t' for some ¢t € s.

We observe that the only nondeterminism in the successor relation — is in the
selection of the non-parametric subformulas; once the non-parametric formulas have
been chosen, the parametric formulas to be included in an atom are determined.

15

Lemma 9. Let t,t' be two atoms in a state of the measuring automaton reached after

reading some trace G = epeie;...e,, such that there exists a sequence tity...th+1 of
. . e .

atoms with t; € s; fori =1...n+ 1 and t; — tiy| for i = 1...n such that t,y| =1t,

and a sequence tit)...1, , of atoms with 1] € s; for i=1...n+1 and 1] N 1, for

i=1...nsuch thatt), =1t If t; and t] agree on the non-parametric formulas for all

i=1...n+1, thent=t".

The set X of variables contains now the variables n, ; and m,; for each parameter x ¢
V and each atom ¢ € Aty, where the intended meaning is the same as in the construction
for deterministic PLTL: the variable n,, is the counter, the variable m,, maintains the
greatest counter value reached so far if x is an upward-closed parameter, and the smallest
counter value reached so far if x is a downward-closed parameter.

As before, 0 initializes n, with 0, and m, with e for [J<, and with O for &<, The
key observation that allows us to define the update function v is that every atom has a
unique predecessor: while, for a pair of successor states s,s’, each atom ¢ € s may have
multiple atoms ¢’ € s’ such that 1 — ¢/, we have that, reversely, each atom 7’ € s’ has
exactly one atom in s with = #'; we denote this unique atom by pre(s,s’,t").

Lemma 10. Let t1,t, be two atoms in a state of the measuring automaton reached af-
ter reading some trace ©, and let t' be an atom in the state reached after reading the
additional event e, such that t; ——t' and ty —>t'. Then t; = to.

The update function Y computes the new values of n,, and m, ; based on the values
of nx,pm(“/’t/) and mx_’p,e@v«’,/), i.e.,

for O € t'rif n €1’ then my y := max(my pre(s,s 1) M, pre(s.o' 1)) s eyt =0

else My p1 7= My pre(s.s' 1/)3 Mat! *= Mg pre(s,s’ 1) T I;

for O<,m € ¢': if n € ¢’ then if generated(D<,M, pre(s,s’,t'),t")
then My g1 1= My pre(s,s 1) s Pt *= 0
else Myt 2= My pre(s,s' ') M t’ *= Ny pre(s,s' 1) +1;
else Myy = min(mx,pre(s,s',t’)7nx7pre(s,s’,t’));nx,t’ =0.

If x does not occur in the atom, then my 1 1= My pro(s,s 1) AN My g1 2= Ny pres,sf 17
The final states of the measuring automaton are the sets that contain an atom without
unfulfilled obligations, i.e., f € F iff thereisaz € f such that forallm Uuectralsou <1,
forall MR u € t also N € ¢, and there is no formula OV in . As the following lemma
clarifies, every reachable final state f € F contains in fact exactly one such atom.

Lemma 11. Every final state f € F reached by the measuring automaton on some
trace contains exactly one atom t € f, without unfulfilled obligations, i.e., where for
allmnUuetalsouct, forallmR u €t alson € t, and there is no formula QW in t.

The output is based on this unique atom ¢ € f: ® reports the parameter assignment
x — my, for all parameters, with the exception of remaining formulas of type Cl<.u,
where it reports min(m, ,, n,,) to take care of a new possible minimum on the last event
on the trace.

16

Theorem 5. For every PLTL formula ¢ there exists a measuring automaton Ay =
(X,9,0,90,X,0,d,7,F,®) with an exponential number of states Q in |@| and a lin-
ear number of variables X in |Q| such that for every sequence 6 € (24F)*, & is accepted
by Ay with result r iff r is the measure of @ on & under the unambiguous semantics.

Soundness. The proof of the correctness of the construction of Ay in Theorem 5 fol-
lows the structure of the proof of Theorem 3 for the corresponding construction for
deterministic PLTL. The key difference is in the proof of Lemma 7, where we claim
that for every trace ¢ and formula @, if (5,0,7) |= @, then there exists an atom se-
quence that satisfies the successor relation. For deterministic PLTL, this sequence can
be constructed in a simple induction, progressing from the first position forwards, be-
cause the semantics is deterministic, i.e., the subformulas of the successor atom are
uniquely determined by the present atom and the next event. For unambiguous PLTL,
the parametric subformulas are chosen based on the truth value of the non-parametric
subformulas. We therefore construct the sequence of atoms in two steps. In the first
step, we compute, progressing backwards from the final position, precisely the set of
non-parametric formulas that are satisfied in each position. In the second step, we add,
progressing forwards from the initial position, the parametric subformulas according to
the (now deterministic) semantics of unambiguous PLTL.

From Theorem 5 and Lemma 1 it follows that the space required by the online
monitor is exponential in the size of the specification and logarithmic in the length of
the trace.

Theorem 6. Under the unambiguous semantics, a PLTL formula ¢ can be measured in
exponential space in the size of ¢ and logarithmic space in the length of the trace.

6 Experiments

We have implemented the offline measuring algorithm for PLTL from Section 3 and the
online algorithm for unambiguous PLTL from Section 5. (Since unambiguous PLTL is
a generalization of deterministic PLTL, the online algorithm handles the deterministic
case as well.) The offline algorithm traverses the trace several times in backwards di-
rection from the last event to the first event; the online algorithm traverses the trace just
once in forward direction. Table 1 shows data from two experiments carried out with
our Java implementation on a Intel Core i7 processor with 2.6 GHz and 8 GB main
memory. The traces were generated based on simulation runs from two applications, a
bus arbiter and a memory controller, and stored on a solid-state disk drive. We tested
traces of varying length, between 10 000 and 10 000 000 events, and report the running
time of both algorithms in milliseconds.

Bus arbiter. In this benchmark, we measure traces generated from an implementation
of a synchronous bus arbiter for three clients. The parameters measure the duration
between the occurrence of a request until a grant is given to the client.

Memory controller. Our second benchmark is a memory controller. The memory con-
troller provides a bus interface to a memory module. We measure the retention
period of a memory cell over a trace.

17

bus arbiter memory controller
trace length offline online| offline online
10k events| 2027 ms 74 ms| 444 ms 84 ms
100k events| 6679 ms| 263 ms| 752 ms| 246 ms
1M events| 63711 ms| 1484 ms| 6275 ms| 727 ms
10M events| 180281 ms|13642 ms|65209 ms|15606 ms

Table 1. Running times for the offline and online measuring algorithms.

The online algorithm is significantly faster than the offline algorithm. In part, this
can be explained by the fact that the offline algorithm has to perform several passes
over the data, which is read anew from the disk every time. Additionally, the algorithm
needs to evaluate all subformulas for every event, because a subformula might be satis-
fied from an earlier position onwards. The online algorithm only needs to evaluate the
reachable sets of atoms and thus typically performs less work per event.

7 Conclusions

We have presented a logical and algorithmic framework for runtime measuring: a way to
provide quantitative results for a trace that needs to conform with an LTL specification,
based on duration parameters attached to the LTL subformulas. This is a declarative
approach, where minimal/maximal results need to be reported, as opposed to an opera-
tional approach, where counters are spawned and updated explicitly while the LTL for-
mula is being verified. The complexity of runtime measuring depends on the disjunctive
nature of a formula. Due to explicit disjunctions and temporal operators with implicit
disjunctive semantics, such as until, there can be multiple answers. Disambiguating the
results using priority among the measured variables resulted in an algorithm that re-
quires quasilinear space in the length of the trace.

We showed that an efficient online algorithm is possible if one determinizes the
measuring semantics of PLTL. The completely deterministic semantics of deterministic
PLTL leads to a logarithmic space requirement in the length of the trace and a linear
space requirement in the size of the specification; the combination of standard LTL
semantics for non-parametric formulas with deterministic measuring in unambiguous
PLTL increases the space requirement to exponential in the size of the specification, but
still maintains the logarithmic dependency on the length of the trace.

Our interpretation is based on finite sequences, and thus differs a bit from the usual
LTL interpretation. Indeed, in runtime verification, only a finite part of the sequence
is always revealed. This is consistent with the formation of runtime verification algo-
rithms for LTL [8, 6]. A promising direction for future work is to consider an interpre-
tation over infinite sequences. Then, we obtain three possible result values instead of
the two Boolean values: true, false and maybe [10]. In the last position of the trace, we
need to check whether the formulas in any of the closures are still satisfiable. Such a
satisfiability algorithm would be similar to the one presented in [2].

18

Acknowledgments. This work was partly supported by the German Research Council
(DFQG) as part of the Transregional Collaborative Research Center “Automatic Verifi-
cation and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org). The
first author was supported by an IMPRS-CS PhD Scholarship. The third author was
supported by ISF grant 126/12 “Efficient Synthesis Method of Control for Concurrent
Systems”.

References

10.

11.

13.

14.

. Ben D’ Angelo, Sriram Sankaranarayanan, César Sdnchez, Will Robinson, Bernd Finkbeiner,

Henny B. Sipma, Sandeep Mehrotra, Zohar Manna, Lola: Runtime Monitoring of Syn-
chronous Systems. TIME 2005: 166-174.

. Rajeev Alur, Kousha Etessami, Salvatore La Torre, Doron Peled, Parametric temporal logic

for “model measuring”. ACM Trans. Comput. Log. 2(3): 388-407 (2001).

. Andreas Bauer, Martin Leucker, Christian Schallhart, Runtime Verification for LTL and

TLTL. ACM Trans. Software Engineering Methodologies 20(4): 14 (2011)

. Kousha Etessami, A note on a question of Peled and Wilke regarding stutter-invariant LTL,

Information Processing Letters 75, Volume 200, 261-263.

. Rob Gerth, Doron Peled, Moshe Y. Vardi, Pierre Wolper, Simple on-the-fly automatic verifi-

cation of linear temporal logic. PSTV 1995: 3-18.

Klaus Havelund, Grigore Rosu, Synthesizing Monitors for Safety Properties. TACAS 2002,
Grenoble, France, 342-356.

Bernd Finkbeiner, Sriram Sankaranarayanan, Henny Sipma, Collecting statistics over run-
time executions. Proceedings of Runtime Verification (RV02), Electronic Notes in Theoreti-
cal Computer Science, Volume 70, Issue 4, 36-54 (2002).

. Bernd Finkbeiner, Henny Sipma, Checking Finite Traces Using Alternating Automata. For-

mal Methods in System Design 24(2): 101-127 (2004).

Orna Kupferman, Nir Piterman, Moshe Y. Vardi, From Liveness to Promptness, Formal
Methods in System Design 34(2): 83-103 (2009).

Orna Kupferman, Moshe Y. Vardi, Model Checking of Safety Properties, Formal Methods in
System Design 19(3): 291-314 (2001).

Monika Maidl: The Common Fragment of CTL and LTL. FOCS 2000, Rodendo Beach, CA,
USA, 643-652.

. Zohar Manna, Amir Pnueli, Completing the Temporal Picture, Theoretical Computer Science

83, 91-130, 1991.

Amir Pnueli, Aleksandr Zaks: PSL Model Checking and Run-Time Verification Via Testers.
FM 2006: 573-586.

Grigore Rosu, Feng Chen, Semantics and Algorithms for Parametric Monitoring, Logical
Methods in Computer Science 8:1, 2012.

. M. Vardi, P. Wolper, An Automata-Theoretic Approach to Automatic Program Verification,

LICS 1986, Cambridge, MA, 332-344.

19

