CTL™ synthesis via
LTL synthesis

Roderick Bloem?, Sven Schewe?, Ayrat Khalimov!

in the next 30 minutes

o LTL/CTL* synthesis problem
 Why reduce CTL* synthesis to LTL synthesis?

- unrealizable specifications

* Reduction
- annotating trees with strategies

 Conclusion

LTL/CTL* synthesis problem by example

Specification:
e LTL formula: G(r = F g)
* Inputs: r, outputs: g

Find a state machine with such inputs/outputs
whose all executions satisfy the formula.

An example solution Another solution

SN0,

-r 1

LTL/CTL* synthesis problem by example

Specification:
e CTL* formula: AG(r - F g) NAGEF—g
* Inputs: r, outputs: g

Find a state machine with such inputs/outputs
whose all executions satisfy the formula.

An example solution other solution

why reduce CTL* synth. to LTL synthesis?

1. Handle unrealizable CTL* efficiently
2. Avoid building specialized CTL* synthesizers

- re-use state-of-the-art LTL synthesizers

unrealizable specifications: LTL

| D71, 1,0, type] is unrealizable <&
| =P, 0,1, Atype] is realizable

Example:
e g Xr, I ={r},0 ={g} is unrealizable.

* —=(g © Xr), I ={g},0 = {r} is realizable:
output the negated first value of g.

unrealizable specifications: CTL*

| P71, 1, 0, type] is unrealizable &

| =D, O, 1, =type] is realizablw

Counterexample:

 AGo, I ={i}, O = {0} isrealizable:
always output o.

* EF—o0,I = {0}, 0 = {i} isrealizable:

~

%

£5

steps in standard LTL/CTL* synthesis

(@) ()

LTL formula CTL* formula cannot negate CTL*

negation | N : e
Is cheap EXP‘ no.n et tranS|t|-o.ns --- formulas E¢@
universal transitions --- formulas A@

atemating
automaton

require system to resolve nondeterminism

universal negation is EXPensive
automaton

check (EXP)
non-emptiness

system or
“unrealisable”

our reduction

(=))

CTL* formula

3 ~Exp require system to resolve nondeterminism

D71+ is realizable < HLTLf | ’ l:\eg;‘ltlon
- . ormuia

@, r; is realizable) is cheap
@ ~EXP

the total blow-up universal
is as before: EXP automaton

L

check
. (EXP)
non-emptiness

L

system or
"unrealisable”V

system size can grow

automata for CTL*

- EGEX(g A X(g A F—yg))

* Dpxy = EX(g A X(g A F—|g))

—)'- NBW for GpEX

g 1

model checking EGEX(g A X(g A Fg))

1

—@—@->@) 8

PEX

* pex = EX(g A X(g A F—yg)) ~@
* Pe¢ = EGpgy
qs ~ (q4,7)
qz » (44, 7) q: » (q3,T)
qo ~ (q1,7) q1 - (qz, 1)
do - (q0,7) do - (qo,7)
PEc PEx PEx

11

annotated model

qa+—>(qq,T) q2+(q3,7)
q3++(q4,7) q1+—+(q2,T)
q0—(q1,7) q0+—(q1,7)
a6+ (q(m) a5 (q7)
PEX>PEG PEX

Every state is additionally labeled with:
* subformulas — {true, false}
*) - Q X Direction

12

annotated tree

g 1
INCEROENCER ST

PEX

~@

blue and pink paths
are equivalent:
they merge into one

how many
different paths
can pass a node?

qo—(q1,7) \
ao—(a,m) h 10|: the number of
PEX g the nondet states!
q1—(q2,7)

a0 '—>(Q‘} ,7)
70> (qq:7) q0+—>(q1.7)
PEX 96— (a,r)

PEX>PEG 13

core ideas of reduction

* “merging” paths are equivalent

- max |Q| non-equiv paths can pass through a node

* Assign a number 1 ...max |Q| to each witness of pgy
- the whole witness is encoded by this number
- require the witness to satisfy the LTL formula of pgy
- use the same number for equiv paths

— blue and pink paths
g are equivalent:

they merge into one

PEXPEG

newly annotated tree

Assign a number 1 ... max | Q| to each witness of pgx
- the whole witness is encoded by this number

- require the witness to satisfy the LTL formula of pgx

- use the same number for equiv paths

15

LTL formula

* For each subformula E:

/\ G| Vg =1 — (Gd; » ¢')] (1)
i€{1...|Q|}

* For each subformula Ag:
G[pay = ¢] 2)

e The LTL formula is

16

our result

* For each subformula E¢:

G[vgp =1 — (Gd; - ¢')]
ie{1..]Q}

* For each subformula A:
G[pAgo - (p’]

* The LTL formula is

@, isrealizable & @1+ is realizable
* The complexity stays in 2EXP
* The system can get larger!

17

example: EX(g A X(g AX~g))

p £ 0A /\ Glv=i - (Gd; > X(gAX(gAXg)))]

i€{1,....5}
r v = -7
dl = —r
—(g — > g d]_ =7
T -_r t
to 1
-r
~(9) ""
r 1
to i1
Y
a smallest system satisfying @7},
to di =r

a smallest system satisfying ®;1;

18

conclusion

We reduced CTL* synthesis to LTL synthesis
without incurring a blow up.

Now we can use the reduction to handle
unrealizable CTL* specifications and to re-use LTL

synthesizers.

D7+ is realizable <
@7 is realizable

the total blow-up
is as before: EXP

system size can grow

@
E

JgL ~Exe require system to resolve nondeterminism

negation
is cheap

i

LTL formula

automaton

non-emptiness

i3

“unrealisable”

