Advanced Topics in Infinite Games

Seminar Summer Term 2014

Kickoff Meeting April 16th, 2014

Outline

1. A Short Introduction to Infinite Games

- 2. Organization
- 3. Paper Bidding

Infinite Games: Motivation

- Model-checking for fixed-point logics.
- Synthesis of correct-by-construction controllers for reactive systems (non-terminating, interacting with antagonistic environment).
- Automata emptiness often expressible in terms of games.
- Semantics of alternating automata in terms of games.

Infinite Games: Motivation

- Model-checking for fixed-point logics.
- Synthesis of correct-by-construction controllers for reactive systems (non-terminating, interacting with antagonistic environment).
- Automata emptiness often expressible in terms of games.
- Semantics of alternating automata in terms of games.

Earliest appearance: Church's problem (1957)

Given requirement φ on input-output behavior of boolean circuits, compute a circuit that satisfies φ (or prove that none exists).

Infinite Games: Motivation

- Model-checking for fixed-point logics.
- Synthesis of correct-by-construction controllers for reactive systems (non-terminating, interacting with antagonistic environment).
- Automata emptiness often expressible in terms of games.
- Semantics of alternating automata in terms of games.

Earliest appearance: Church's problem (1957)

Given requirement φ on input-output behavior of boolean circuits, compute a circuit that satisfies φ (or prove that none exists).

Game theoretic formulation: two-player game

- Player 0 generates infinite stream of input bits,
- Player 1 has to answer each input bit by output bit such that
- combination of streams satisfies φ .

 φ is conjunction of following properties:

- **1.** Whenever the input bit is 1, then the output bit is 1, too.
- **2.** If there are infinitely many 0's in the input stream, then there are infinitely many 0's in the output stream.
- 3. At least one out of every three consecutive output bits is a 1.

 φ is conjunction of following properties:

- **1.** Whenever the input bit is 1, then the output bit is 1, too.
- 2. If there are infinitely many 0's in the input stream, then there are infinitely many 0's in the output stream.
- 3. At least one out of every three consecutive output bits is a 1.

Winning strategy for the output player:

- Answer every 1 by a 1.
- Answer every 0 by a 0,

 φ is conjunction of following properties:

- 1. Whenever the input bit is 1, then the output bit is 1, too.
- 2. If there are infinitely many 0's in the input stream, then there are infinitely many 0's in the output stream.
- 3. At least one out of every three consecutive output bits is a 1.

Winning strategy for the output player:

- Answer every 1 by a 1.
- Answer every 0 by a 0, unless it would the third 0 in a row. Then, answer by a 1.

 φ is conjunction of following properties:

- 1. Whenever the input bit is 1, then the output bit is 1, too.
- 2. If there are infinitely many 0's in the input stream, then there are infinitely many 0's in the output stream.
- 3. At least one out of every three consecutive output bits is a 1.

Winning strategy for the output player:

- Answer every 1 by a 1.
- Answer every 0 by a 0, unless it would the third 0 in a row. Then, answer by a 1.

Infinite Games: Arenas

One more level of abstraction: two-player games on finite graphs.

- An arena $\mathcal{A} = (V, V_0, V_1, E)$ consists of
 - a finite set V of vertices,
 - a set $V_0 \subseteq V$ of vertices owned by Player 0,
 - the set $V_1 = V \setminus V_0$ of vertices owned by Player 1,
 - a directed edge-relation $E \subseteq V \times V$.

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in \mathcal{A}).

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play:

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: v₅

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: v5 v7

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: v5 v7 v8

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: v₅ v₇ v₈ v₅

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: $v_5 v_7 v_8 v_5 v_1$

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: $v_5 v_7 v_8 v_5 v_1 v_0$

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: $v_5 v_7 v_8 v_5 v_1 v_0 v_1$

Rules:

- A token is placed at an initial vertex.
- If the token is at vertex of Player *i*, he moves it to a successor.
- Thereby, the players construct a play (an infinite path in A).

Example play: $v_5 v_7 v_8 v_5 v_1 v_0 v_1 \cdots$

• A strategy for Player *i* in \mathcal{A} is a mapping $\sigma: V^*V_i \to V$ satisfying $(v_n, \sigma(v_0 \cdots v_n)) \in E$ (only legal moves).

- A strategy for Player *i* in \mathcal{A} is a mapping $\sigma \colon V^*V_i \to V$ satisfying $(v_n, \sigma(v_0 \cdots v_n)) \in E$ (only legal moves).
- A play $v_0v_1v_2\cdots$ is consistent with σ , if $v_{n+1} = \sigma(v_0\cdots v_n)$ for every n with $v_n \in V_i$.

- A strategy for Player *i* in \mathcal{A} is a mapping $\sigma: V^*V_i \to V$ satisfying $(v_n, \sigma(v_0 \cdots v_n)) \in E$ (only legal moves).
- A play $v_0v_1v_2\cdots$ is consistent with σ , if $v_{n+1} = \sigma(v_0\cdots v_n)$ for every n with $v_n \in V_i$.
- Note: if we fix an initial vertex and strategies σ and τ for Player 0 and Player 1, then there is a unique play that starts in v and is consistent with σ and τ.

- A strategy for Player *i* in \mathcal{A} is a mapping $\sigma \colon V^*V_i \to V$ satisfying $(v_n, \sigma(v_0 \cdots v_n)) \in E$ (only legal moves).
- A play $v_0v_1v_2\cdots$ is consistent with σ , if $v_{n+1} = \sigma(v_0\cdots v_n)$ for every n with $v_n \in V_i$.
- Note: if we fix an initial vertex and strategies σ and τ for Player 0 and Player 1, then there is a unique play that starts in v and is consistent with σ and τ.

Special types of strategies:

Positional strategies: $\sigma(v_0 \cdots v_n) = \sigma(v_n)$ for all $v_0 \cdots v_n$: move only depends on position the token is at the moment.

- A strategy for Player *i* in \mathcal{A} is a mapping $\sigma \colon V^*V_i \to V$ satisfying $(v_n, \sigma(v_0 \cdots v_n)) \in E$ (only legal moves).
- A play $v_0v_1v_2\cdots$ is consistent with σ , if $v_{n+1} = \sigma(v_0\cdots v_n)$ for every n with $v_n \in V_i$.
- Note: if we fix an initial vertex and strategies σ and τ for Player 0 and Player 1, then there is a unique play that starts in v and is consistent with σ and τ.

Special types of strategies:

- Positional strategies: σ(v₀···v_n) = σ(v_n) for all v₀···v_n: move only depends on position the token is at at the moment.
- Finite-state strategies: implemented by DFA with output reading play prefix $v_0 \cdots v_n$ and outputting $\sigma(v_0 \cdots v_n)$.

- A game G = (A, Win) consists of an arena A and a set Win ⊆ V^ω of winning plays for Player 0.
- Set of winning plays for Player 1: $V^{\omega} \setminus Win$.

- A game G = (A, Win) consists of an arena A and a set Win ⊆ V^ω of winning plays for Player 0.
- Set of winning plays for Player 1: $V^{\omega} \setminus Win$.
- Strategy σ for Player *i* is winning strategy from *v*, if every play that starts in *v* and is consistent with σ is winning for him.

- A game G = (A, Win) consists of an arena A and a set Win ⊆ V^ω of winning plays for Player 0.
- Set of winning plays for Player 1: $V^{\omega} \setminus Win$.
- Strategy σ for Player i is winning strategy from v, if every play that starts in v and is consistent with σ is winning for him.

 $Win = \{ \rho \in V^{\omega} \mid \rho \text{ does not visit all vertices} \}$

- A game G = (A, Win) consists of an arena A and a set Win ⊆ V^ω of winning plays for Player 0.
- Set of winning plays for Player 1: $V^{\omega} \setminus Win$.
- Strategy σ for Player i is winning strategy from v, if every play that starts in v and is consistent with σ is winning for him.

 $Win = \{ \rho \in V^{\omega} \mid \rho \text{ does not visit all vertices} \}$

Player 0 wins from every vertex

- A game G = (A, Win) consists of an arena A and a set Win ⊆ V^ω of winning plays for Player 0.
- Set of winning plays for Player 1: $V^{\omega} \setminus Win$.
- Strategy σ for Player i is winning strategy from v, if every play that starts in v and is consistent with σ is winning for him.

 $Win = \{ \rho \in V^{\omega} \mid \rho \text{ does not visit all vertices} \}$

Player 0 wins from every vertex with positional strategies.

- A game G = (A, Win) consists of an arena A and a set Win ⊆ V^ω of winning plays for Player 0.
- Set of winning plays for Player 1: $V^{\omega} \setminus Win$.
- Strategy σ for Player i is winning strategy from v, if every play that starts in v and is consistent with σ is winning for him.
- Winning region *W_i*(*G*): set of vertices from which Player *i* has a winning strategy.
- Always: $W_0(\mathcal{G}) \cap W_1(\mathcal{G}) = \emptyset$.
- \mathcal{G} determined, if $W_0(\mathcal{G}) \cup W_1(\mathcal{G}) = V$.
- Solving a game: determine the winning regions and winning strategies.

Win is an (possibly) infinite set of infinite words, and therefore unsuitable as input to an algorithm \Rightarrow need finite representation.

Win is an (possibly) infinite set of infinite words, and therefore unsuitable as input to an algorithm \Rightarrow need finite representation.

• Reachability games: for $R \subseteq V$ define

 $\operatorname{REACH}(R) = \{ \rho \in V^{\omega} \mid \rho \text{ visits } R \text{ at least once } \}$

Win is an (possibly) infinite set of infinite words, and therefore unsuitable as input to an algorithm \Rightarrow need finite representation.

• Reachability games: for $R \subseteq V$ define

 $\operatorname{REACH}(R) = \{ \rho \in V^{\omega} \mid \rho \text{ visits } R \text{ at least once} \}$

• Parity games: for $\Omega \colon V \to \mathbb{N}$ define

 $PARITY(\Omega) = \{ \rho \in V^{\omega} \mid \text{minimal priority seen infinitely often} \\ \text{during } \rho \text{ is even } \}$

Win is an (possibly) infinite set of infinite words, and therefore unsuitable as input to an algorithm \Rightarrow need finite representation.

• Reachability games: for $R \subseteq V$ define

 $\operatorname{REACH}(R) = \{ \rho \in V^{\omega} \mid \rho \text{ visits } R \text{ at least once} \}$

• Parity games: for $\Omega \colon V \to \mathbb{N}$ define

 $PARITY(\Omega) = \{ \rho \in V^{\omega} \mid \text{minimal priority seen infinitely often} \\ \text{during } \rho \text{ is even } \}$

■ Muller games: for
$$\mathcal{F} \subseteq 2^{V}$$
 define
MULLER $(\mathcal{F}) = \{ \rho \in V^{\omega} \mid \text{set of vertices seen infinitely often}$
during ρ is in $\mathcal{F} \}$

Win is an (possibly) infinite set of infinite words, and therefore unsuitable as input to an algorithm \Rightarrow need finite representation.

• Reachability games: for $R \subseteq V$ define

 $\operatorname{REACH}(R) = \{ \rho \in V^{\omega} \mid \rho \text{ visits } R \text{ at least once} \}$

• Parity games: for $\Omega \colon V \to \mathbb{N}$ define

 $PARITY(\Omega) = \{ \rho \in V^{\omega} \mid \text{minimal priority seen infinitely often} \\ \text{during } \rho \text{ is even } \}$

There are many other winning conditions.

- Both players have positional winning strategies.
- Reachability games can be solved in linear time.

Parity Games

Parity Games

Both players have positional winning strategies.

Solving: in $NP \cap CO$ -NP, not known to be in PTIME.

Muller Games

$$\mathcal{F} = \{\{v_0, v_1, v_2\}\}$$

Muller Games

$$\mathcal{F} = \{\{v_0, v_1, v_2\}\}$$

- Both players need finite-state strategies.
- Complexity depends on encoding of \mathcal{F} : PTIME, NP \cap CO-NP, PSPACE.

Outline

1. A Short Introduction to Infinite Games

- 2. Organization
- 3. Paper Bidding

Your Grade

- Seminar paper (8-10 pages)
- Presentation (40 minutes + discussion)
- 3-Minute-Madness
- Participation in discussions
- Meet all deadlines

Schedule

Presentations	August, 4th & 5th
 Practice talk (optional, but strongly encouraged) 	
1st Draft of slides	before July, 27th
Deadline for seminar paper	July, 13th
1st Draft of seminar paper	before June, 29th
3-Minute-Madness	Friday, May 9th
 Meeting with your tutor 	asap
 Kickoff Meeting 	Right now

3-Minute-Madness

Present topic of your paper in three minutes!

3-Minute-Madness

Present topic of your paper in three minutes!

Focus on concepts and intuition:

- How do games in your paper extend the basic setup described here (interaction between players, winning condition, type of strategies,..)?
- Maybe give an example explaining the extensions.
- No theorems, proofs, etc.
- Preferably: even no formal definitions.

3-Minute-Madness

Present topic of your paper in three minutes!

Focus on concepts and intuition:

- How do games in your paper extend the basic setup described here (interaction between players, winning condition, type of strategies,..)?
- Maybe give an example explaining the extensions.
- No theorems, proofs, etc.
- Preferably: even no formal definitions.

Rules:

- Three minute presentation (strict)
- As many slides as you need (the less the better)
- Format: pdf
- Slides have to be submitted 24 hours before meeting.

Outline

1. A Short Introduction to Infinite Games

- 2. Organization
- 3. Paper Bidding

Paper Bidding - Rules

- Short introduction to each paper on the next slides.
- Sheets where you can rank your favorite papers.
- Papers are assigned trying to accommodate your preferences as much as possible.
- Notification by email as soon as possible.

Paper Bidding - Rules

- Short introduction to each paper on the next slides.
- Sheets where you can rank your favorite papers.
- Papers are assigned trying to accommodate your preferences as much as possible.
- Notification by email as soon as possible.

Topics:

- 1. Quantitative winning conditions
- 2. Delay
- 3. Imperfect information/Concurrent games
- 4. Further topics

 Mean-payoff Games: Positional Determinacy Andrzej Ehrenfeucht and Jan Mycielski. Positional Strategies for Mean Payoff Games. International Journal of Game Theory, 8(2):109-113 (1979)

 Mean-payoff Games: Positional Determinacy Andrzej Ehrenfeucht and Jan Mycielski. Positional Strategies for Mean Payoff Games. International Journal of Game Theory, 8(2):109-113 (1979)
 Mean-payoff Games: Algorithms Uri Zwick, Mike Paterson. The Complexity of Mean Payoff Games on Graphs. Theor. Comput. Sci. 158(1&2): 343-359

(1996)

- Mean-payoff Games: Positional Determinacy Andrzej Ehrenfeucht and Jan Mycielski. Positional Strategies for Mean Payoff Games. International Journal of Game Theory, 8(2):109-113 (1979)
- Mean-payoff Games: Algorithms
 - Uri Zwick, Mike Paterson. **The Complexity of Mean Payoff Games on Graphs.** Theor. Comput. Sci. 158(1&2): 343-359 (1996)

Finitary Games

Krishnendu Chatterjee, Thomas A. Henzinger, Florian Horn. **Finitary Winning in omega-regular Games.** ACM Trans. Comput. Log. 11(1) (2009)

 Mean-payoff Games: Positional Determinacy Andrzej Ehrenfeucht and Jan Mycielski. Positional Strategies for Mean Payoff Games. International Journal of Game Theory, 8(2):109-113 (1979)

Mean-payoff Games: Algorithms

Uri Zwick, Mike Paterson. **The Complexity of Mean Payoff Games on Graphs.** Theor. Comput. Sci. 158(1&2): 343-359 (1996)

Finitary Games

Krishnendu Chatterjee, Thomas A. Henzinger, Florian Horn. **Finitary Winning in omega-regular Games.** ACM Trans. Comput. Log. 11(1) (2009)

Energy Parity Games

Krishnendu Chatterjee, Laurent Doyen. **Energy Parity Games.** Theor. Comput. Sci. 458: 49-60 (2012)

Delay

Delay in Regular Games

Michael Holtmann, Łukasz Kaiser, Wolfgang Thomas. **Degrees of Lookahead in Regular Infinite Games.** Logical Methods in Computer Science 8(3) (2012)

Delay

Delay in Regular Games

Michael Holtmann, Łukasz Kaiser, Wolfgang Thomas. **Degrees of Lookahead in Regular Infinite Games.** Logical Methods in Computer Science 8(3) (2012)

Delay in Context-free Games

Wladimir Fridman, Christof Löding, Martin Zimmermann. Degrees of Lookahead in Context-free Infinite Games. CSL 2011: 264-276

Imperfect Information/Concurrent Games

Games with Imperfect Information

Laurent Doyen and Jean-François Raskin. **Games with Imperfect Information: Theory and Algorithms.** Lectures in Game Theory for Computer Scientists. Cambridge University Press, pp. 185-212 (2011)

Imperfect Information/Concurrent Games

Games with Imperfect Information

Laurent Doyen and Jean-François Raskin. **Games with Imperfect Information: Theory and Algorithms.** Lectures in Game Theory for Computer Scientists. Cambridge University Press, pp. 185-212 (2011)

Concurrent Reachability Games

Luca de Alfaro, Thomas A. Henzinger, Orna Kupferman. **Concurrent Reachability Games.** Theor. Comput. Sci. 386(3): 188-217 (2007)

Imperfect Information/Concurrent Games

Games with Imperfect Information

Laurent Doyen and Jean-François Raskin. **Games with Imperfect Information: Theory and Algorithms.** Lectures in Game Theory for Computer Scientists. Cambridge University Press, pp. 185-212 (2011)

Concurrent Reachability Games

Luca de Alfaro, Thomas A. Henzinger, Orna Kupferman. **Concurrent Reachability Games.** Theor. Comput. Sci. 386(3): 188-217 (2007)

Distributed Games

Swarup Mohalik, Igor Walukiewicz. **Distributed Games.** Proceedings of FSTTCS'03, LNCS 2914: 338-351 (2003)

Further Topics

Zielonka Trees

Stefan Dziembowski, Marcin Jurdziński, Igor Walukiewicz. How Much Memory is Needed to Win Infinite Games? LICS 1997: 99-110

Further Topics

Zielonka Trees

Stefan Dziembowski, Marcin Jurdziński, Igor Walukiewicz. How Much Memory is Needed to Win Infinite Games? LICS 1997: 99-110

Games of Ordinal Length

Julien Cristau, Florian Horn. **Graph Games on Ordinals.** FSTTCS 2008: 143-154

Further Topics

Zielonka Trees

Stefan Dziembowski, Marcin Jurdziński, Igor Walukiewicz. How Much Memory is Needed to Win Infinite Games? LICS 1997: 99-110

Games of Ordinal Length

Julien Cristau, Florian Horn. Graph Games on Ordinals. FSTTCS 2008: 143-154

Permissive Strategies

Julien Bernet, David Janin, Igor Walukiewicz. **Permissive Strategies: from Parity Games to Safety Games.** ITA 36(3): 261-275 (2002)

Your Choice

- 1. Mean-payoff Games: Positional Determinacy
- 2. Mean-payoff Games: Algorithms
- 3. Finitary Games
- 4. Energy Parity Games
- 5. Delay in Regular Games
- 6. Delay in Context-free Games
- 7. Games with Imperfect Information
- 8. Concurrent Reachability Games
- 9. Distributed Games
- 10. Zielonka Trees
- 11. Games of Ordinal Length
- 12. Permissive Strategies