
Bernd Finkbeiner Date: April 17, 2008
Sven Schewe

Automata, Games and Verification: Lecture 1

1 Motivation

We distinguish

• Transformational programs

x y

• Reactive systems

.

– nonterminating behavior

– interaction (program vs. environment)

1.1 Problem 1: Verification

Example: Mutual execution with program turn

local t: boolean where initially t = 0

P0 ::













loop forever do








00 : noncritical;
01 : await t = 0;
10 : critical;
11 : t := 1;





















|| P1 ::













loop forever do








00 : noncritical;
01 : await t = 1;
10 : critical;
11 : t := 0;





















turn is a finite-state program with 32 states, which can be encoded as bit vectors
(b1, b2, b3, b4, b5), with (b1, b2) for the location of P0, (b3, b4) for the location of P1, and b5

for t.

Behavior: infinite sequence of states
Specification: set of correct behaviors

Example: specifications:

• Mutual execution: it is never the case that P0 and P1 are in their critical sections,
i.e. the states 10100 and 10101 do not occur

• Accessibility: whenever Pi is in location 01 it will eventually reach location 10

The Verification Problem: Given a program P and a specification ϕ, decide whether
P satisfies ϕ.

Underlying concept: Automata over infinite words (more generally: objects)

Solution:

1. Construct automaton that accepts all sequences that are

• possible in P and

• violate ϕ.

2. Check automaton for emptiness.

1.2 Problem 2: Synthesis

Example: Mutual execution by arbiter

local t, r1, r2: boolean where initially t = r1 = r2 = 0

P0 ::













loop forever do








00 : r0 := 1;
01 : await t = 0;
10 : critical;
11 : r0 := 0;





















|| P1 ::













loop forever do








00 : r1 := 1;
01 : await t = 1;
10 : critical;
11 : r1 := 0;





















|| Arbiter:: ?

The Synthesis Problem: Given a specification ϕ, decide if there exists a program P

that satisfies ϕ. If yes: construct such a program.

Underlying concept: Infinite games.
Play of the game = infinite sequence of states.
Player “system” wins the game if sequence satisfies ϕ for all possible behaviors of player
“environment”.

Solution:

1. Decide whether player “system” has a winning strategy.

2. If yes, construct a program that implements that strategy.

1.3 History

1960 – 1970 Fundamental results about ω-automata and games. Motivation: Logical
decision problems, circuit design.

• J. Richard Büchi (1924-1984)
Swiss logician and mathematician; Ph.D. at ETH, then Purdue University, Lafayette,
Indiana. Inventor of Büchi automata. Great influence on theoretical computer sci-
ence, combinatorics, grapth theory.

• Robert McNaughton

taught philosophy; then switched to computer science in 1950s; emeritus at Harvard;
McNaughton’s theorem: each recognizable set of infinite words can be recognized
by a deterministic ω-automaton.

• Michael Rabin (*1931, Breslau)
won Turing award together with Dana Scott for inventing nondeterministic ma-
chines; proved that second order theory of n successors is decidable; determinacy
of parity games.

Since 1980: Revival of the theory in the setting of temporal logics

Motivation today:

• industrial use (especially finite-state verification “model checking”)

• decidability of many problems with infinite structures

• bridge between logic and computer science

2 Büchi Automata

2.1 Basic Definitions

• The set of natural numbers {0, 1, 2, 3, . . .} is denoted by ω.

• An alphabet Σ is a finite set of symbols.

• An infinite sequence/string/word is a function from natural numbers to an alphabet:

α : ω → Σ

An infinite word is composed of its letters, so that in particular α = α(0)α(1)α(2) . . .

• The set of infinite words over alphabet Σ is denoted Σω (finite words: Σ∗).

• An ω-language L is a subset of Σω.

Example:

• ∅ is the empty ω-language.

• {aω} = {aaaa . . .};

• {baω, abaω, aabaω, . . .}.

Definition 1 A nondeterministic Büchi automaton A over alphabet Σ is a tuple (S, I, T, F):

• S : a finite set of states

• I ⊆ S : a subset of initial states

• T ⊆ S × Σ × S : a set of transitions

• F ⊆ S : a subset of accepting/final states

Now we define how a Büchi automaton uses an infinite word as input. Notice that we do
not refer to acceptance in this definition.

Definition 2 A run of a nondeterministic Büchi automaton A on an infinite input word
α = σ0σ1σ2 . . . is an infinite sequence of states s0, s1, s2, . . . such that the following hold:

• s0 ∈ I

• for all i ∈ ω, (si, σi, si+1) ∈ T

Example:

A B

D C

a

a

b

b

In the automaton shown the set of states are S = {A, B, C, D}, the initial set of
states are I = {A} (indicated with pointing arrow with no source), the transitions
T = {(A, a, B), (B, a, C), (C, b, D), (D, b, A)} are the remaining arrows in the diagram,
and the set of accepting states is F = {D} (double-lined state circle).

On input aabbaabb . . . the Büchi automaton shown has only the run:

ABCDABCDABCD . . .

Determinism is a property of machines that can only react in a unique way to their input.
The following definition makes this clear for Büchi automata.

Definition 3 A Büchi automaton A is deterministic when T is a partial function (with
respect to the next input letter and the current state):

∀σ ∈ Σ, ∀s, s0, s1 ∈ S . (s, σ, s0) ∈ T and (s, σ, s1) ∈ T ⇒ s0 = s1

and I is a singleton.

(By Büchi automaton we usually mean nondeterministic Büchi automaton.)

Definition 4 The infinity set of an infinite word α ∈ Σω is the set In(α) = {σ ∈
Σ | ∀i∃j . j ≥ i and α(j) = σ}

Definition 5 • A Büchi automaton A accepts an infinite word α if:

– there is a run r = s0s1s2 . . . of α on A

– r is accepting: In(r) ∩ F 6= ∅

• The language recognized by Büchi automaton A is defined as follows:

L(A) = {α ∈ Σω | A accepts α}

Example: Automaton A from previous example. L(A) = {aabbaabbaabb . . .}.

Comment: A deterministic Büchi automaton A = (S, I, T, F) defines a partial function1

from Σω to a set of runs R ⊆ Sω. End Comment

Definition 6 An ω-language L is Büchi recognizable if there is a Büchi automaton A
such that L(A) = L.

Example: The singleton ω-language L = {σ} with σ = abaabaaabaaaab . . . is not Büchi
recognizable. (Note that all finite languages of finite words are NFA-recognizable. Analog
result does not hold for Büchi-automata)

Proof:

• Suppose there is a Büchi automaton A with L(A) = L.

• Let r = s0s1 . . . be an accepting run on σ.

• Since F is finite, there exists k, k′ ∈ ω with k < k′ and sk = sk′ ∈ F .

• r′ = r0 . . . rk′
−1(rk . . . rk′

−1) is an accepting run on
σ′ = σ(0) . . . σ(k′ − 1)(σ(k) . . . σ(k′ − 1))ω.

• Hence, σ′ ∈ L(A). Contradiction.

Definition 7 A Büchi automaton is complete if its transition relation contains a func-
tion:

∀s ∈ Sσ ∈ Σ∃s′ ∈ S . (s, σ, s′) ∈ T

1A partial function is a function that is not defined on all of the elements of its domain.

Theorem 1 For every Büchi automaton A, there is a complete Büchi automaton A′

such that L(A) = L(A′).

Proof:

We define A′ in terms of the components S, I, T, F of A:

S ′ = S ∪ {f} f new

I ′ = I

T ′ = T ∪ {(s, σ, f) | 6 ∃s′ . (s, σ, s′) ∈ T} ∪ {(f, σ, f) | σ ∈ Σ}

F ′ = F

The runs of A′ are a superset of those of A since we have added states and tran-
sistions. Furthermore, on any infinite input word α the accepting runs of A and
A′ correspond, because any run that reaches f stays in f , and since f 6∈ F ′, such a
run is not accepting.

Example: Completing the Büchi automaton from a previous example we obtain the
following automaton:

A B

D C

f

a

a

b

b

b
b

a
a

a, b

Unless we specify otherwise, we will only consider complete automata when we prove
results.

Comment: A complete deterministic Büchi automaton A = (S, I, T, F) may be viewed
as a total function2 from Σω to Sω. A complete (possibly nondeterministic) Büchi au-
tomaton can produce at least one run for every Σω input word.
End Comment

2A total function, in contrast to a partial one, is defined on its entire domain.

