Date: May 29, 2008

7 McNaughton's Theorem

Theorem 1 (McNaughton's Theorem (1966)) Every Büchi recognizable language is recognizable by a deterministic Muller automaton.

Definition 1 A Büchi automaton (S, I, T, F) is called semi-deterministic if $S = N \uplus D$ is a partition of S, $F \subseteq D$ and $(D, \{d\}, T, F)$ is deterministic for every $d \in D$.

Lemma 1 For every Büchi automaton \mathcal{A} there exists a semi-deterministic Büchi automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

Given $\mathcal{A} = (S, I, T, F)$, we construct $\mathcal{A}' = (S', I', T', F')$:

- $S' = 2^S \uplus 2^S \times 2^S$;
- $I' = \{I\};$
- $T' = \{(L, \sigma, L') \mid L' = pr_3(T \cap L \times \{\sigma\} \times S)\};$ $\cup \{(L, \sigma, (\{s'\}, \emptyset)) \mid \exists s \in L. (s, \sigma, s') \in T\}$ $\cup \{((L_1, L_2), \sigma, (L'_1, L'_2)) \mid L_1 \neq L_2$ $L'_1 = pr_3(T \cap L_1 \times \{\sigma\} \times S),$ $L'_2 = pr_3(T \cap L_1 \times \{\sigma\} \times F) \cup pr_3(T \cap L_2 \times \{\sigma\} \times S)\}$ $\cup \{((L, L), \sigma, (L'_1, L'_2)) \mid L'_1 = pr_3(T \cap L_1 \times \{\sigma\} \times S),$ $L'_2 = pr_3(T \cap L_1 \times \{\sigma\} \times F)\}$
- $\bullet \ F' = \{(L,L) \mid L \neq \emptyset)\}$

$\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$:

- Let $\alpha \in \mathcal{L}(\mathcal{A}')$.
- Let $r' = P_0, P_1, \ldots, P_n, (L_0, L'_0), (L_1, L'_1), \ldots$ be an accepting run of \mathcal{A}' on α .
- For every $s \in L_0$ there is a run prefix of \mathcal{A} on $\alpha(0, n), p_0, p_1, \ldots, p_n, s$ such that $p_i \in P_i$ and
- Let i_0, i_1, \ldots be an infinite sequence of indices such that $i_0 = 0, L_{i_j} = L'_{i_j}, L_{i_j} \neq \emptyset$ for all $j \in \omega$.
- For every j > 1, and every $s' \in L_{i_j}$ there exists a state $s \in L_{i_{j-1}}$ and a sequence $s = s_{i_{j-1}}, s_{i_{j-1}+1}, \ldots, s_{i_j} = s'$ such that $(s_k, \alpha(k), s_{k+1}) \in T$ for all $k \in \{i_{j-1}, \ldots, i_{i_j-1}\}$ and $s_k \in F$ for some $k \in \{i_{j-1} + 1, \ldots, i_{i_j}\}$. Let $predecessor(s', i_j) := s$, $run(s', i_0) = p_0, p_1, \ldots, p_n, s'$ where $L_0 = \{s'\}$, and $run(s', i_j) = s_{i_{j-1}+1}, s_{i_{j-1}+2}, \ldots, s_{i_j}$, for j > 0.

- Consider the following $\left(\bigcup_{j\in\omega}L_{i_j}\times\{j\}\right)$ -labeled tree:
 - the root is labeled with (s, 0), where $L_0 = \{s\}$, and
 - the parent of each node labeled with (s', j) is labeled with $(predecessor(s', i_j), j 1)$.
- The tree is infinite and finite-branching, and, hence, by König's Lemma, has an infinite branch $(s_{i_0}, i_0), (s_{i_1}, i_1), \ldots$, corresponding to an accepting run of A:

$$run(s_{i_0}, i_0) \cdot run(s_{i_1}, i_1) \cdot run(s_{i_2}, i_2) \cdot \dots$$

$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$:

- Let $\alpha \in \mathcal{L}(\mathcal{A})$.
- Let $r = s_0, s_1, \ldots$ be an accepting run of \mathcal{A} on α .
- Let i be an index s.t. $s_i \in F$ and for all $j \ge i$ there exists a k > j, such that

$$\{s \in S \mid s_i \to^{\alpha(i,k)} s\} = \{s \in S \mid s_j \to^{\alpha(j,k)} s\}.$$

This index exists:

- " \supseteq " holds for all i, because there is a path through s_j .
- Assume that for all i, there is a $j \geq i$ s.t for all k > j " \supseteq " holds. Then there exists an i' s.t. $\{s \in S \mid s_{i'} \to^{\alpha(i',k)} s\} = \emptyset$ for all k > i'. Contradiction.
- We define a run r' of \mathcal{A}' :

$$r' = P_0, \dots, P_{i-1}, (\{s_i\}, \emptyset), (L_1, L'_1), (L_2, L'_2) \dots$$

where $P_j = \{s \in S \mid p_0 \in I, p_0 \to^{\alpha(0,j)} s\}$, and L_j, L'_j are determined by the definition of \mathcal{A}' .

- We show that r' is accepting. Assume otherwise, and let m be an index such that $L_n \neq L'_n$ for all $n \geq m$.
- Then let j > m be some index with $s_j \in F$; hence $s_j \in L'_j$. There exists a k > j such that $L'_{k+1} = \{s \in S \mid s_j \to^{\alpha(j,k)} s\} = \{s \in S \mid s_i \to^{\alpha(i,k)} s\} = L_{k+1}$.
- Contradiction.

Lemma 2 For every semi-deterministic Büchi automaton \mathcal{A} there exists a deterministic Muller automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

Let $\mathcal{A} = (N \uplus D, I, T, F)$, d = |D|, and let D be ordered by <. We construct the DMA $(S', \{s'_0\}, T', \mathcal{F})$:

$$\bullet \ S' = 2^N \times \{0, \dots, 2d\} \to D \cup \{ \mathbf{a} \}$$

- $s'_0 = (\{N \cap I\}, (d_1, d_2, \dots, d_n, \square, \dots, \square)),$ where $d_i < d_{i+1}, \{d_1, \dots, d_n\} = D \cap I\}.$
- $T' = \{((N_1, f_1), \sigma, (N_2, f_2)) \mid N_2 = pr_3(T \cap N_1 \times \{\sigma\} \times N)$ $D' = pr_3(T \cap N_1 \times \{\sigma\} \times D)$ $g_1 : n \mapsto d_2 \in D \Leftrightarrow f_1 : n \mapsto d_1 \in D \land d_1 \to^{\sigma} d_2$

 g_2 : insort the elements of D' in the empty slots of g_1 (using <) f_2 : delete every recurrence (leaving an empty slot)

• $\mathcal{F} = \{ F' \subseteq S' \mid \exists i \in 1, \dots, 2d \text{ s.t.}$ $f(i) \neq \Box \text{ for all } (N', f) \in F' \text{ and }$ $f(i) \in F \text{ for some } (N', f) \in F' \}.$

(... to be continued.)