Date: June 19, 2008

11 Weak Monadic Second-Order Theory of One Successor (WS1S)

Syntax: same as S1S;

Semantics: same as S1S; except:

 $\sigma_1, \sigma_2 \models \exists X. \varphi$ iff there is a **finite** $A \subseteq \omega$ s.t.

$$\sigma_2'(X) = \begin{cases} \sigma_2(X) \text{ if } X \neq X_i \\ A \text{ otherwise} \end{cases}$$

and $\sigma_1, \sigma'_2 \models \varphi$.

Theorem 1 A language is WS1S-definable iff it is S1S-definable.

Proof:

 (\Rightarrow) : Quantifier relativization:

$$\forall X \dots \mapsto \forall X. \operatorname{Fin}(X) \to \dots$$

 $\exists X \dots \mapsto \forall X. \operatorname{Fin}(X) \wedge \dots$

 (\Leftarrow) :

- Let φ be an S1S-formula.
- Let \mathcal{A} be a Büchi automaton with $\mathcal{L}(\mathcal{A}) = \text{models}(\varphi)$.
- Let \mathcal{A}' be a deterministic Muller automaton with $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$...
- By the characterization of deterministic Muller languages, $\mathcal{L}(\mathcal{A}')$ is a boolean combination of languages \overrightarrow{W} , where W is finite-word recognizable.
- Let $\psi(y)$ be a WS1S formula that defines the words whose prefix up to position y is in W.
- $\varphi' := \forall x. \; \exists y. \; (x < y \land \psi(y)).$

12 Alternating Automata

Example:

• Nondeterministic automaton, $L = a(a+b)^{\omega}$, existential branching mode:

• \forall -automaton, $L = a^{\omega}$, universal branching mode:

• Alternating automaton, both branching modes (arc between edges indicates universal branching mode), $L = aa(a+b)^{\omega}$

Definition 1 The positive Boolean formulas over a set X, denoted $\mathbb{B}^+(X)$, are the formulas built from elements of X, conjunction \wedge , disjunction \vee , true and false.

Definition 2 A set $Y \subseteq X$ satisfies a formula $\varphi \in B^+(X)$, denoted $Y \models \varphi$, iff the truth assignment that assigns true to the members of Y and false to the members of $X \setminus Y$ satisfies φ .

Definition 3 An alternating Büchi automaton is a tuple $\mathcal{A} = (S, s_0, \delta, F)$, where:

- S is a finite set of states,
- $s_0 \in S$ is the initial state,
- $F \subseteq S$ is the set of accepting states, and
- $\delta: S \times \Sigma \to \mathbb{B}^+(S)$ is the transition function.

A tree T over a set of *directions* D is a prefix-closed subset of D^* . The empty sequence ϵ is called the *root*. The children of a node $n \in T$ are the nodes children $(n) = \{n \cdot d \in T \mid d \in D\}$. A Σ -labeled tree is a pair (T, l), where $l : T \to \Sigma$ is the labeling function.

Definition 4 A run of an alternating automaton on a word $\alpha \in \Sigma^{\omega}$ is an S-labeled tree $\langle T, r \rangle$ with the following properties:

- $r(\epsilon) = s_0$ and
- for all $n \in T$, if r(n) = s, then $\{r(n') \mid n' \in children(n)\}$ satisfies $\delta(s, \alpha(|n|))$.

Example: $L = (\{a, b\}^* b)^{\omega}$

$$S = \{p, q\}$$

$$F = \{p\}$$

$$\delta(p, a) = p \land q$$

$$\delta(p, b) = p$$

$$\delta(q, a) = q$$

$$\delta(q, b) = T$$

example word $w = (aab)^{\omega}$ produces this run:

(the dotted line means that the same tree would repeat there)

Definition 5 A branch of a tree T is a maximal sequence of words n_0, n_1, n_2, \cdots such that $n_0 = \epsilon$ and n_{i+1} is a child of n_i for $i \geq 0$.

Notation: Infinity set of a branch β in a run tree (T, r):

$$In(\beta) = \{ s \in S \mid \forall i \exists j : j \ge i \land r(\beta(j)) = s \}$$

Definition 6 A run (T,r) is accepting iff, for every infinite branch $Y' \subseteq Y$,

$$In(Y') \cap F \neq \emptyset.$$

Theorem 2 For every LTL formula φ , there is an alternating Büchi automaton \mathcal{A} with $\mathcal{L}(\mathcal{A}) = models(\varphi)$

Proof:

- $S = \text{closure}(\varphi) := \{ \psi, \neg \psi \mid \psi \text{ is subformula of } \varphi \};$
- $s_0 = \varphi$;
- $\delta(p, a) = true$ if $p \in a$, false if $p \notin a$; $\delta(\neg p, a) = false$ if $p \in a$, true if $p \notin a$; $\delta(true, a) = true$; $\delta(false, a) = false$;
- $\delta(\psi_1 \wedge \psi_2, a) = \delta(\psi_1, a) \wedge \delta(\psi_2, a);$
- $\delta(\psi_1 \vee \psi_2, a) = \delta(\psi_1, a) \vee \delta(\psi_2, a);$
- $\delta(\bigcirc \psi, a) = \psi;$
- $\delta(\psi_1 \ \mathcal{U} \ \psi_2, a) = \delta(\psi_1, a) \lor (\delta(\psi_2, a) \land \psi_1 \ \mathcal{U} \ \psi_2);$
- $\delta(\neg \psi, a) = \overline{\delta(\psi, a)};$
- $\overline{\psi} = \neg \psi$ for $\psi \in S$:
- $\overline{\neg \psi} = \psi$ for $\psi \in S$;
- $\overline{\psi_1 \wedge \psi_2} = \overline{\alpha} \vee \overline{\beta};$
- $\overline{\psi_1 \vee \psi_2} = \overline{\alpha} \wedge \overline{\beta};$
- $\overline{true} = false$;
- $\overline{false} = true$;
- $F = {\neg(\psi_1 \ \mathcal{U} \ \psi_2) \in \operatorname{closure}(\varphi)}$

For a subformula ψ of φ let $\mathcal{A}^{\psi}_{\varphi}$ be the automaton A_{φ} with initial state ψ . Claim: $\alpha \in \mathcal{L}(\mathcal{A}^{\psi}_{\varphi}) \Leftrightarrow \alpha \in models(\psi)$. Proof by structural induction.

Example: $\varphi := \Diamond p \equiv (true \ \mathcal{U} \ p)$ $S = \{true \ \mathcal{U} \ p, \neg (true \ \mathcal{U} \ p), true, \neg true, p, \neg p\}$ $\delta(true \ \mathcal{U} \ p, \emptyset) = \delta(p, \emptyset) \lor (\delta(true, \emptyset) \land true \ \mathcal{U} \ p) = true \ \mathcal{U} \ p$ $\delta(true \ \mathcal{U} \ p, \{p\}) = \delta(p, \{p\}) \lor (\delta(true, \{p\}) \land true \ \mathcal{U} \ p) = T$

 $\varphi := \Box \Diamond p \equiv \neg (true \ \mathcal{U} \ \neg (true \ \mathcal{U} \ p))$

$$\begin{split} \delta(\varphi, a) &= \overline{\delta(\neg(true\ \mathcal{U}\ p), a) \lor (\delta(true, a) \land true\ \mathcal{U}\ \neg(true\ \mathcal{U}\ p))} \\ &= \delta(true\ \mathcal{U}\ p, a) \land \neg(true\ \mathcal{U}\ \neg(true\ \mathcal{U}\ p)) \\ &= (\delta(p, a) \lor (\delta(true, a) \land true\ \mathcal{U}\ p)) \land \varphi \\ &= (\delta(p, a) \lor true\ \mathcal{U}\ p) \land \varphi \\ \delta(\varphi, \emptyset) &= true\ \mathcal{U}\ p \land \varphi \\ \delta(\varphi, \{p\}) &= \varphi \end{split}$$

ø