
Bernd Finkbeiner Date: June 21, 2011

Automata, Games and Verification: Lecture 11

17 McNaughton’s Algorithm

McNaughton(G)

1. c := highest color in G

2. if c = 0 or V = ∅
then return (V, ∅)

3. set σ to c mod 2

4. set W1−σ to ∅

5. repeat

(a) G ′ := G r Attrσ(α
−1(c))

(b) (W ′
0,W

′
1) := McNaughton(G ′)

(c) if (W ′
1−σ = ∅) then

i. Wσ := V rW1−σ

ii. return (W0,W1)

(d) W1−σ := W1−σ ∪ Attr (1−σ)(W
′
1−σ)

(e) G := G r Attr (1−σ)(W
′
1−σ)

18 Tree Automata

Binary Tree: T = {0, 1}∗.
Notation: TΣ : set of all binary Σ-trees

Definition 1 A tree automaton (over binary Σ-trees) is a tuple A = (S, s0,M, ϕ):

• S: finite set of states

• s0 ∈ S

• M = S × Σ× S × S

• ϕ: acceptance condition (Büchi, parity, . . .)

Definition 2 A run of a tree automaton A on a Σ-tree v is a S-tree (T, r), s.t.

• r(ǫ) = s0

• (r(q), v(q), r(q0), r(q1)) ∈ M for all q ∈ {0, 1}∗

Definition 3 A run is accepting if every branch is accepting (by ϕ). A Σ-tree is accepted
if there exists an accepting run.
L(A) := set of accepted Σ-trees.

Example: {a, b}-trees with infinitely many bs on each path.

A = (S, s0,M, c); Σ = {a, b};
S = {qa, qb}; s0 = qa;
M = {(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb), (qb, b, qb, qb)};
Büchi F = {qb}.

Σ-tree:

. . .

a

a b

a b a b

run:

qa

qa qa

qa qa qb qb

qa qa qb qb qa qa qb qb

. . .

Theorem 1 A parity tree automaton A = (S, s0,M, c) accepts an input tree t iff Player 0
wins the parity game GA,t = (V0, V1, E, c′) from position (ε, s0).

• V0 = {(w, q) | w ∈ {0, 1}∗, q ∈ S};

• V1 = {(w, τ) | w ∈ {0, 1}∗, τ ∈ M};

• E = {((w, q), (w, τ)) | τ = (q, t(w), q′0, q
′
1), τ ∈ M}

∪ {((w, τ), (w′, q′)) | τ = (q, σ, q′0, q
′
1) and

((w′ = w0 and q′ = q′0) or (w′ = w1 and q′ = q′1))};

• c′(w, q) = c(q) if q ∈ S;

• c′(w, τ) = 0 if τ ∈ M .

Example:

ε, qa

ε, (qa, a, qa, qa) ε, (qa, a, qb, qb)

. . .

Proof:

• Given an accepting run r construct a winning strategy f0:

f0(w, q) = (w, (r(w), t(w), r(w0), r(w1))

• Given a memoryless winning strategy f0 construct an accepting run r(ε) = s0
∀w ∈ {0, 1}∗

– r(w0) = q where f0(w, r(w)) = (w, (, , q,))

– r(w1) = q where f0(w, r(w)) = (w, (, , , q))

Lemma 1 For each parity tree automaton A over Σ-trees there exists a parity tree au-
tomaton A′ over {1}-trees, such that L(A) = ∅ iff L(A′) = ∅.

Proof:

• S ′ = S;

• s′0 = s0;

• M ′ = {(q, 1, q0.q1) | (q, σ, q0, q1) ∈ M,σ ∈ Σ}

• c′ = c

Theorem 2 The language of a parity tree automaton A = (S, s0,M, c) is non-empty iff
Player 0 wins the parity game GA,t = (V0, V1, E, c′) from position s0.

• V0 = S;

• V1 = M ;

• E = {(q, τ) | τ = (q, 1, q′0, q
′
1), τ ∈ M}

∪ {(τ, q′) | τ = (q, 1, q′0, q
′
1) and

(q′ = q′0 or q′ = q′1)};

• c′(q) = c(q) for q ∈ S;

• c(τ) = 0 for τ ∈ M .

Theorem 3 Büchi tree automata are structly weaker than parity tree automata.

Proof:

• Consider the tree language T = {t ∈ T{a,b} |
every branch of t has only finitely many b}

• T is recognized by a parity tree automaton. For exam-
ple by A = (S, s0,M, c) with S = {qa, qb}; s0 = qa; M =
{(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb), (qb, b, qb, qb)}; c(qa) = 0, c(qb) = 1.

• T is not recognized by any Büchi tree automaton. Assume, by way of con-
tradiction, that there is a Büchi tree automaton A = (S, s0,M, F) such that
L(A) = T .

– Let n = |S|.

– Consider the input tree tn, where b appears exactly at nodes
1+0, 1+01+0, . . . , (1+0)n.

– tn ∈ T ⇒ there exists an accepting run r of A on tn.

– On the branch consisting of the finite prefixes of 1ω there are infinitely
many visits to F ⇒ ∃m0 ∈ ω such that r(1m0) ∈ F .

– Analogously, on the branch consisting of the finite prefixes of 1m001ω, there
are infinitely many visits to F ⇒ ∃m1 ∈ ω such that r(1m001m1) ∈ F .

– Repeating this argument, we obtain n + 1 positions
1m0 , 1m001m1 , . . . , 1m001m10 . . . 01mn where F is visited.

– There must exist two different nodes u, v on the path to 1m001m10 . . . 01mn

such that u is a prefix of v and r(u) = r(v) ∈ F . The path from u to v
contains a left turn and therefore contains a node labeled with b.

– We construct a new input tree tn and a run tree r′ by repeating the path
from u to v infinitely often:

∗ let v = u · π.

∗ t′n(x) = tn(u · y) if x = u · π∗ · y for some shortest y ∈ {0, 1}∗

t′n(x) = tn(x) otherwise

∗ r′(x) = r(u · y) if x = u · π∗ · y for some shortest y ∈ {0, 1}∗

r′(x) = r(x) otherwise

∗ r′ is accepting: the branch consisting of the finite prefixes of u ·πω has
infinitely many visits to F ; all other branches have the same labeling
as in r after some finite prefix. Since r is accepting, these branches
thus must also visit F infinitely often.

∗ Hence t′n is accepted by A, but t′n /∈ T , because the branch consisting
of the finite prefixes of u · πω has infinitely many bs. Contradiction.

