Bernd Finkbeiner

Date: June 21, 2011

Automata, Games and Verification: Lecture 11

17 McNaughton’s Algorithm
MeNaughton(G)

1. ¢ := highest color in G

2. ifc=00rV=>0
then return (V, ()

3. set o to ¢ mod 2
4. set Wi_, to ()
5. repeat
(a) G =G~ Attr,(a™(c))
(b) (W{, W) := McNaughton(G')
(c) if (Wi_, = 0) then
. Wo =V~ Wi_,
ii. return (Wy, W)
(d) Wl—o = Wl_g U Att?”(l_a)<W1/_U)
(e) G:=G\ Attrg_o(W{_,)

18 Tree Automata

Binary Tree: 7= {0, 1}*.
Notation: Ty : set of all binary Y-trees

Definition 1 A tree automaton (over binary X-trees) is a tuple A = (S, so, M, ¢):

e S: finite set of states
e 508
e M=S5SxYX¥xS5xS

e ©: acceptance condition (Bichi, parity, ...)

Definition 2 A run of a tree automaton A on a X-tree v is a S-tree (T, 1), s.t.

o 7(€) = 50

o (7(q),v(q),7(q0),r(ql)) € M for all q € {0,1}*

Definition 3 A run is accepting if every branch is accepting (by ¢). A Y-tree is accepted
if there exists an accepting run.
L(A) := set of accepted X-trees.

Example: {a,b}-trees with infinitely many bs on each path.
A= (Sa 807M7 C); Y= {a7 b}a

S ={qa, B }; S0 = Gu;

M = {(QIM @, 4q, QG)a <Qb7 @, 4q, Q(L)7 (QG7 b? db, qb)7 (Qba b7 Qb, Qb)}y
Biichi F = {q}.

Y-tree:

N
ANAN

run:

Theorem 1 A parity tree automaton A = (S, so, M, ¢) accepts an input tree t iff Player 0
wins the parity game Gay = (Vo, Vi, E, ') from position (e, so).

e Vo={(w,q) | we{0,1}",q€ S};
o Vi ={(w,7) | we{0,1}*, 7€ M};

o E={((wq),(w,7)) | 7= (q,t(w),q0,q1), 7 € M}
U {((w77)7(w,7Q)) ‘ T = (q,O', C]E),Qi) and
(=00 and ¢ = gf) or (u' = wl and ¢ = gi))}:

o d(w,q)=clg) ifqeS;
o d(w,T)=0ifT € M.

Example:

€ (a: @, Ga, a) | (G @ @) |

Proof:

e Given an accepting run r construct a winning strategy fo:
folw,q) = (w, (r(w), t(w), r(w0), r(wl))

e Given a memoryless winning strategy fo construct an accepting run r(g) = s
Vw € {0,1}*

— r(w0) = g where fo(w,r(w)) = (w, (-, - q,-))
— r(wl) = g where fo(w,r(w)) = (w, (-, -, -, q))

Lemma 1 For each parity tree automaton A over X-trees there exists a parity tree au-

tomaton A’ over {1}-trees, such that L(A) = 0 iff L(A") = 0.

Proof:
« S'=S5;
® 5, = S0;
o M'={(¢;1,90-01) | (¢,0,00,q1) € M,0 € 3}
e /=c

Theorem 2 The language of a parity tree automaton A = (S, so, M, c) is non-empty iff
Player 0 wins the parity game Gar = (Vo, Vi, E, ') from position sg.

e Vo =5;
o Vi =M;

o B={(q,7) | 7= (¢, 1,q0,q1), 7 € M}
U{(r.q) | 7=(q,1,qp,¢;) and
(@ =q,ord =q)};

e d(q) =clq) forqe S;

o ¢(1)=0 forTe M.

Theorem 3 Biichi tree automata are structly weaker than parity tree automata.

Proof:
e Consider the tree language T = {t € Tapy |
every branch of ¢ has only finitely many b}
e 7' is recognized by a parity tree automaton. For exam-

ple by A = (550, M,c) with § = {qw}liso = ¢ M =
{(9a> @5 4as Ga) (@b @5 Gas Ga) s (Gas bs Gos @) (@0, b5 Gvs) }; €(qa) = 0, ¢(gp) = 1.

e T is not recognized by any Biichi tree automaton. Assume, by way of con-
tradiction, that there is a Biichi tree automaton A = (S, sg, M, F') such that
L(A)=T.

— Let n =19].

— Consider the input tree t,, where b appears exactly at nodes
170,170170,...,(170)".

— t, € T = there exists an accepting run r of A on t,.

On the branch consisting of the finite prefixes of 1 there are infinitely
many visits to F' = Img € w such that r(1™°) € F.

— Analogously, on the branch consisting of the finite prefixes of 1™°01%, there
are infinitely many visits to F' = Im; € w such that r(1™°01™) € F.

— Repeating this argument, we obtain n + 1 positions
1mo 1moQ1™ ... 1™001™0...01™" where F' is visited.

— There must exist two different nodes u, v on the path to 1"°01™0...01™"
such that u is a prefix of v and r(u) = r(v) € F. The path from u to v
contains a left turn and therefore contains a node labeled with b.

— We construct a new input tree ¢,, and a run tree r’ by repeating the path
from u to v infinitely often:

x let v=u-m.
x t(x) =t,(u-y)if x =u-7" -y for some shortest y € {0,1}*
t (x) = t,(x) otherwise

x 1/(x)
r(z)

x 1’ is accepting: the branch consisting of the finite prefixes of v -7 has
infinitely many visits to F'; all other branches have the same labeling
as in r after some finite prefix. Since r is accepting, these branches
thus must also visit F' infinitely often.

=1
=r(u-y)if x = u-7* -y for some shortest y € {0, 1}*
= r(x) otherwise

« Hence ¢/, is accepted by A, but ¢/, ¢ T', because the branch consisting
of the finite prefixes of u - 7* has infinitely many bs. Contradiction.

