Bernd Finkbeiner Date: June 28, 2011

Automata, Games and Verification: Lecture 12

19 Complementation of Parity Tree Automata

Reference: W. Thomas: Languages, Automata and Logic, Handbook of formal lan-
guages, Volume 3.

Theorem 1 For each parity tree automaton A over X there is a parity tree automaton

A" with L(A") =Ts, — L(A).
Proof:

e A does not accept some tree t iff Player 1 has a winning memoryless strategy
fin G4, from (e, s¢)

e Strategy
f:{0,1}* x M — {0,1}* x S

can be represented as
40,1} x M — {0,1}

(Where f(u7 (qv g, Q67 qg)) = (U : ia qz) iff f/(u7 7—) = Z)
e [’ is isomorphic to

9:10,1}" = (M — {0,1})
(M — {0, 1} is the finite “local strategy”)

e Hence, A does not accept ¢ iff

(1) there is a (M — {0, 1})-tree v such that
(2) for all io,il, iQ, RS {O, 1}0.1
(3) for all 7o, 7,... € M¥

(4) if
— for all j,
T = (q7a7Q(l)7q/1)
= a = t(io,il, c. ,ij) and
- ioil L. = ’U(E)(TQ)’U(Z.())(’H) ce

then the generated state sequence qoq; . . .
with do = So, (q]7 a, q07 q1> = Tj,
g1 = q°C0i=0) for all j
violates c.



e Condition (4) is a property of words over

YW =(M-—={0,1})x X x M x{0,1
(M = {0,1}) x 2 x M_x {0,1}

v t o i

and can be checked by a parity word automaton Ay = (Sy, {s4}, T4, c4):
- Sy=SuU{l}
— S84 = So0;
- Ty=A{(q,(f,a,(q,0,95,41),%),4i) | g € 5, f : M —{0,1},
(¢, 0,40, ) € M.i= f(q,a,q5,41)}

U {(q,(fra,(q,d,q5,q1),7), L) | a#a" ori# f(q,a',q0,¢1)}
U {(L,al)]aec¥}

— ¢4(q) = c(q) + 1 for g € S;
- C4<J_> =0.
e Condition (3) is a property of words (M — {0,1}) x ¥ x {0, 1} which results
from (4) by universal quantification (= complement; project; complement) =

there is a deterministic parity word automaton Az that checks (3).

e Condition (2) defines a property of (M — {0,1}) x X-trees. It can be checked
by a tree automaton Ay = (S5, s2, Ma, ¢2), simulating A3 along each path:

— Sy = S3;
— 82 = 833
— My ={(q,(f,a), g5 q)) | (¢.(f,a,0),q)) € Ts,(q,(f,a,1),q}) € T5};
— C9 = Cq1.

e Condition (1) is a property on Y-trees: Use nondeterminism to guess M —
{0,1} label: Ay = (51, 81, M1, 1), where

— 51 = 5y;
— 81 = S3;
— My ={(¢q,a,q0,q1) | 3f : M —{0,1}.(¢. ([, @), 45, ¢1) € Ma};
— C1 = Ca.

20 Monadic Second-Order Theory of Two Successors

(S28)
Syntax:

e first-order variable set V} = {zg,z1,...}
e second-order variable set V5, = { Xy, X3,...}

e Terms ¢:

tu=el|x|t0]tl



Formulas ¢:

QO:tEX’tlth‘_\QDIQOQ\/vl’EL’EQO‘HX%O

Semantics:

first-order valuation oy : V; — B*

second-order valuation oy : Vo — 2B

Semantics of terms:

[e] =€

[2],, = o1(2)
[to],, = [],,0
[t1],, = [t],,1

Semantics of formulas:

® 01,09 ): te X iff [[t]]Ul S UQ(X)
® 01,09 ’: tl = t2 lff Htl]]gl = [[t2]]01
® 01,09 ’: 'z iHO'l,O'Q l?é (2
e 01,00 = wo V1 iff 01,00 = o or 01,00 = o1
e 01,09 = Jz;.p iff there is a a € B* s.t.
/ . Ul(y) ifx 7£ Y,
o1(y) = { a otherwise;
and 0,09 =
e 01,09 | 31X, iff there is a A C B* s.t.
/ oY) HX #Y
75 (Y) = { A otherwise;
and 01,0, = ¢
Examples:
e “node z is a prefix of node y”
r<y & VX (yeXAVz:x0e X =2 X)AVz(zle X =2z X))=12e€ X)
e “X is linearly ordered by <”

Chain(X) <& VaVy(zeXAyeX)=(x<yVy<ux))



e “X is a path”

Path(X)
XCY & Vi(zeX=z€Y)
X=Y & XCYAYCX

e “X is infinite”

Inf(X)

&  Chain(X)A—-3Y. (X CY AX #Y A Chain(Y))

& WY AIAVyeYI eV e X (y<y ANy <))

Theorem 2 For each Muller tree automaton A = (S,sq, M, F) over ¥ = 2"2 there is a
528 formula p over Vy s.t. t € L(A) iff oo = ¢ where o9(P) ={q € {0,1}" | P € t(q)}.

Proof:

Use R = (R,)qes to encode the run tree.

%2
Part

State,(x)

Init

Trans

InfOcc, (P)
Inf(P)
Muller(P)

Accept

=
=

Tt ¢

Tt ¢

JR.(Part A Init A Trans A Accept)
V. \/ State,(x)

qeS

Ry(z) A /\ Ry ()

qg'eS~{q}

States, (€)

V. \/

(Stateg(z) A (\ V(@) A N\ =V(x)) A

(9,A,q0,01) €M VeA VA
AStateq (v0) A Stateg (1))
JQ.(Q S PAQ C Ry A Inf(Q))
AP (P £ 0NV e P3ye P3y e P.(a/ <yAy<y))

\/ (/\ InfOcc, (P) A /\ —InfOcc,(P))

FeF qeF

Q¢ r

VP.(Path(P) = Muller(P))

Theorem 3 For every S25 formula ¢ over Vi, Vs, there is a Muller tree automaton A
over ¥ = 2192 gych that t € L(A) iff 01,09 = ¢ where

Proof:

oi(r) =

O'Q(X) =

q iff z € t(q);
{¢€{0,1}7 | X € t(q)}.

First, we rewrite S2S formulas to a normal form, for which we only have the following
types of equalities:

T =€, x:y()?:[,':yl, ZCGY,Z':y

Next we inductively translate S2S formulas to tree automata. (Analogous to the
proof for S1S in Lecture 7.)



e xcyY:

- S ={q,q}

— S0 = 4o

- M ={(0,4,q0 1) | = & A}
U {(q0, A4, q1,q) | v ¢ A}
U{(q, A q,q) |z €AY € A}
U{(q, A qi,q1) | = ¢ A}

- ]::{Ch}

o 1z =y0:
- S ={q,q1, %}
— S0 = qo

— M ={(q0,4,9,¢) | {r,y} N A= Q)}
U {(q0, 4, g2, 0) | {z,y} N A =0}
U{(q0, A, q1,q) | v ¢ A,y € A}

U{(q, A q,¢) |z Ay¢ A}

U {(QQ7A7Q17Q2> ’ z ¢ Auy € A}

U{(g2, 4, ¢, ) [{z,y} NA= Q)}

- F:{fh}

e ctc.

Corollary 1 52§ is decidable.
SnS is the monadic second order theory of n successors.
Corollary 2 SnS is decidable.

Proof:
Repeat exercise for automata on n-ary trees.

SwS is the monadic second order theory of w successors.
Theorem 4 SwS is decidable.

Proof:
We give an effective translation from SwS to S2S.

e Bijection § from w* to 0B*:

— Ble) :==¢
- Blen) = Bu)or



e One-to-many relation R between SwS and S2S structures: label a position
f(x) in the binary tree with o iff z is labeled with o in the w-ary tree.

e Bring given SwS formula in normal form and translate as follows:
—Tr=€r>T=¢€
—x=yn+—x=y01" forn € w
—zrzeY—xeY
—r=y—xeyY
- 3X. .. 3X . (WyeX . 1<y A...

WS2S is the weak monadic second order theory of two successors. It has the same syntax
as S1S and the following difference in the semantics:
01,09 = 3X.p iff there is a finite A C B* s.t.

o [ oY) X AY
3 (Y) = { A otherwise

and 01,05 = .
Corollary 3 WS2S is decidable.

Theorem 5 For a language L C Ty, the following are equivalent:

1. Both L and its complement are recognizable by a Biichi tree automaton.

2. L 1s WS2S-definable.

Corollary 4 WS2S is strictly weaker than S25.



