Bernd Finkbeiner Date: July 5, 2011

Automata, Games and Verification: Lecture 13

21 Computation Tree Logic

Example: Examples of CTL* formulas:

e AG(¢ —~Fp)

e AG(EF —p A —q) @
@) *

Definition 1 Let AP be a set of atomic propositions. A Kripke structure over AP is a
tuple M = (S, R, L)

e S : a set of states
e RC S xS : atransition relation

o L:S — 247 : labels each states with the set of atomic propositions that are assured
to be true in S

Definition 2 A pointed Kripke structure (M, s) is a Kripke structure M with an initial
state s € S.

CTL* Syntax (f, g - state formulas, ¢, 1 - path formulas):

e State formulas f:
fruo=AP[=f [fVgl|Ap| Ep

e Path formulas ¢:
pu= flopleVy | Ge| FoleUy | Xe
CTL* Semantics (M - Kripke structure, s - state, n - suffix of 7 starting at):

e M,skEpiff pe L(s) forpe AP

e M,sE=-fiff M,s - f

e M, s = Ey iff there is a path 7 from s such that M, 7 | ¢
e M, s = Ay iff for every path 7 from s such that M, 7 = ¢

o M,7 = fiff M,s = f where m = sr!

e M, —piff M, 7}~

e MtnEoVYift M,mEpor M7=

e M, 7 | Gy iff for every i M, 7' = ¢

o M, 7 |= Fy iff there exists ¢ such that M, 7% =

o M, 7 |= pUt iff there exists i such that for every j < i M, 7/ = p and M, 7' = ¢

o M,mEXpif M,7! E ¢
LTL. Special case of CTL* formulas: A ¢, where ¢ is a path formula with only atomic
propositions as state subformulas.

CTL. Special case of CTL* formulas where each temporal operator must immediately
be preceeded by a path quantifier.

CTL*

Figure 1: Relative expressiveness of LTL, CTL and CTL*

e AF(p A Xp) is not equivalent to AF(p A AXp)

{r}
so = AF(p AXp) but 5o [~ AF(p A AXp)

g

path sgs; (s2)« violates it

e AF AGp is not equivalent to AF Gp

B

S0 S1 592

so = AF Gp but so £ AF AG p

path sy violates it

e The CTL-formula AG EF p cannot be expressed in LTL

Proof by contradiction: assume p = AG EFp; let:

%S é{p} M’:%@

— M, s = AG EFp, and thus—by assumption—M, s = ¢
— Every path in M’ is also a path in M; hence, M’ s = ¢
— But M, s = AG EF p.

M

e The LTL-formula AFGp cannot be expressed in CTL

— Provide two series of Kripke structures M,, and M\n
— such that M,,, s,, = AFGp and M\n, s, = AFGp, and

— for any CTL formula ® with |®| < n :
My, s, E O iff M, s, E®

(proof is by induction on n; omitted here)

0 {r}

only difference: M, includes t,, — s,,, while /T/l\n does not

Theorem 1 For every CTL* formula ®, the following are equivalent:

1. there is an LTL formula Ay that is equivalent to ®

My

2. ® is equivalent to A(removep 4(®)), where removep 4(®) is obtained from ® by
deleting all path quantifiers.

Proof:

MsE® & M,skEAp
&V paths 7 from s: 7= ¢
&V paths 7 from s : M, | ¢
where M is the restriction of M to 7
V paths 7 from s : M, s = Ap
V paths 7 from s : My, s = @
V paths 7 from s : My, s = A(removep A (P))
(because there is only a single path)
V paths 7 from s : 7 |= removeg, 5 (P)
M, s = A(removeg, A (P))

tee

Tt e

22 The Modal p-calculus

Syntax: given a set of atomic propositions AP, the set of formulas is defined inductively
as follows (where ¢ and v are formulas)

o | T
e p,—p for every p € AP
* PAY, Vi

e Oy, Op (Note: the meaning of O and & used here are different from the Box and
Diamond operators of LTL.)

o up @, vp p, where p € AP and p only occurs positively in .

Note: negation only allowed for atomic propositions. However arbitrary negation can
be expressed as follows:

o PV =-a(mpAY)
o Op=-0
o up ¢ = —wp—[p/—p)

Normal form: every p € AP is quantified at most once and all occurrances of p are in the
scope of the quantifier. Let ¢, be the unique subformula starting with this quantifier.

Semantics: Formulas are interpreted as sets of states.
o [Llp=10
[Tl =5
Ipllne = {slp € L(s)}
1=pllp = {slp & L(s)}
o Vol pe = llellag Yl e Al = llellae N N g
0@l p = {slVt.(s,1) € R =t € [lpl| 1}
[O@llp = {sl3t.(s, 1) € RAL € [lol p}
lp-@llpg = OHS" S S | 19l ampssy € 573
lvp-pllae = UL € S [19l mposy 2 5}

Ln)u{p} ifnes

where M[p+— S’ = (S, R, L[p— 5']), Llp— S'|(n) = { Lin)~ {p} ifpe s

Direct evaluation algorithm:
eval(o, M) :
e if o = | then return ()

o if o = up.¢’ then

-5 =0
— repeat
x S0, =9
x S" = eval(¢', M[p — S5'])
— until 57, =95’
— return S’

o if o = vp.¢ then
-5 =S5
— repeat
x S0, =95
x S = eval(¢', M[p — S'])
—until 57, =5’

— return 9’

Examples:

e 1q.(pV <q) contains every state s such that there is a path from s to a state where
p holds

e Attractor set (Let py be an atomic propositions such that py € L(n) iff n € 14.):
up'(p V ((po A Cp') V (=po A OP)))

e Translating CTL:

— (EGfY = vq.(f' A OQ)

