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23 Alternating Tree Automata

Definition 1 An alternating tree automaton over binary X-trees is a tuple A =
(878075790)"

e S: finite set of states

e 508

e §: S XX —=BT({0,1} x S) is the transition function.

e : acceptance condition (Bichi, parity, ...)
More general: set of directions D = {0,...,k — 1}, T C D*, degree d : D* — {1,...,k}
Definition 2 An alternating tree automaton over X-trees is a tuple A = (.S, so, 0, ¢):

e S: finite set of states

e 508

e §:SxXx{l,...k} - B"({0,1,...k — 1} x S) is the transition function.

e ©: acceptance condition (Bichi, parity, ...)

Definition 3 A run of a tree automaton A on a X-tree v is a D* x S-tree (T,r), s.t.

1. r(e) = (¢, 80)

2. Let y € T with r(y) = (z,q) and §(q,v(z),d(z)) = 0. Then there is a (possibly
empty) set Q = {(co,q,), (c1,q1),---,(cnq,)} C{0,...,d(x)—1} xS, such that the
following hold:

e Q0

o forall0<i<n, wehawey-i€T andr(y-i)=(z-¢,q).

Definition 4 A run is accepting if every branch is accepting (by p). A X-tree is accepted
if there exists an accepting run.



Tree automata on Kripke structures

Example: For a pointed Kripke structure (M, so):

o=l

we build a computation tree ¢

Let k£ be the max number of successors in M = (S, R, L).
{0,....k=1}* = S:

o f(&) = s,

Define a mapping: f :

e Assume there is, for each s € S, a fixed order on the successors (s, 1), (s, 55),... € E

f(w i) = s, where s is the ith successor of s = f(w).

Definition 5 For a pointed Kripke structure (M, sg) over AP with M = (S, R, L), the
computation tree of (M, sg) is a 247 -tree (T,t) with t(v) = L(f(v)) and d(v) = d(f(v))

forallveT.

Theorem 1 The computation tree of a pointed Kripke structure (M, qo), M
(Sm, R, L) is accepted by an alternating tree automaton A = (S, so,0,9) iff Player
Accept has a winning strategy from (so, qo) in the following game:

OVOISAXSM



° VO SA % 2{0 ,,,,, k—1}xS4 X SM

o E={((s,9), (s, 7)(1)|) |1 [=0(s, L(q), d(q))}

U{((s,m,9),(s',¢")) | (i,q") € n,s" is the ith successor of s}

o winning condition: ¢ applied to the first component

CTL

Translation from CTL formula ¢ to alternating Biichi tree automaton A.:

e S =closure(y):= set of all subformulas and their negations

for p € AP:

p,o, k) =trueifp € o

o
d(p,o,k) = false if p & o
d(—p,0,k) = false if p € o

— §(—p,0 k) =trueif pd o
e N, o,k)=0(p,0,k) No(¥,0,k)
e V,o,k)=0(p,0,k) Vi, ok)
3(AXgp, 0,k) = NiZy(c, )
J(EXp,0,k) = Vi (c, o)
S(Ap U, 0,k) = 5(1),0,k) V (5(p,0,k) A Ny (e, Ap U o)
o S(Ep U b,0,k) = 6(,0,k) V (8(p, 0, k) AV (e, Bp U o)
(

o )(—p,0,k)=0(p,0,k)

Theorem 2 For every CTL formula ¢ and a set of directions D there is an alternating
Biichi tree automaton A, such that L(Ap,) is exactly the set of D-branching trees that

satisfy .

Alternation-free p-calculus

Guarded formulas: A p-calculus formula is guarded if it is in normal form and for every
quantified atomic proposition p, all occurrences are in the scope of a modality that is in
the scope of the quantifier.

Example: py.(p VvV $y) is guarded, Ouy.(p V y) is not guarded. L

Theorem 3 For every p calculus formula in normal form there is an equivalent guarded
formula.



Proof:

e Function new : p-calculus formulas x{u, v} x AP — p-calculus formulas:

— new(p, u,p) = false

— new(p,v,p) = true

— new(p AN, A\, p) = new(p, A, p) A new(, A, p)
— new(p V1, \,p) = new(p, A, p) V new(y, A\, p)
— For all other formulas ¢: new(p, A\,p) = ¢

e Note that the definition of the new function ensures that A\y.¢(y) is semanti-
cally equivalent to Ay.new(p, i, y)(y) for all p-calculus formulas p(y).

e Translation: Starting from the innermost quantified subformulas,
replace Ay.p(y) by new (i, A, y)(Ay.new(, A, y)(y)) (1)

e Note that in new(p, 1, y)(y), all occurrences of y are in the scope of a modality,

hence in (1), all occurrences of variables (e.g. z) that are in the scope of a
fixpoint operator are also in the scope of a modality.

Closure cl(y) of a p-calculus formula ¢:

@ € cl(p)

if V1 € cl(p) then 1,0 € cl(p)

if 1) A € cl(p) then ¥, n € cl(p)

if O1p € cl(p) then ¢ € cl(p)

if O € cl(y) then ¥ € cl(y)

if py.(y) € cl(p) then P(uy.b(y)) € cl(y)
if vy (y) € cl(p) then Y(vy.v(y)) € cl(p)

Alternation-free p-calculus: no v between py. and y; no p between vy. and y.
Translation from a guarded alternation-free u-calculus formula ¢ to an alternating Biichi
tree automaton A,

d(p,o,k) =true if p € o
5(p, 0, k) = false it p & o
§(—p,o,k) = false if p € o
5(—p,o,k) = true if p & o
(o N, 0,k) =6(p,0,k) NS(¢, 0, k)
(

e V,o,k)=0(p,0,k) Vo, ok)



k—

o 5(Op,0.k) = Ao (e, )
o 5(Op,0.k) = Vi (e, )

o (pyw(y),0.k) = 0(V(uy-¥(y)), o, k)
d 5(Vy-¢(y)7av k) - 5(1/1(”?/-1/1(24)),0» k)

Note that since ¢ is guarded, the definition is not circular.

Let &~ be an equivalence relation on u-calculus formulas such that ¢ ~ v if ¢ € cl(v))
and ¥ € cl(yp).

F = {set of formulas that are equivalent to some formula vy.1)(y) € cl(¢)}

Theorem 4 For every alternation-free p-calculus formula ¢ and a set of directions D
there is an alternating Biichi tree automaton A, such that L(Ap ) is exactly the set of
D-branching trees satisfying .



