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using Branching Time Temporal Logic



Complementation of Parity Tree Automata

Theorem 1. For each parity tree automaton A over Σ there is a parity

tree automaton A′ with L(A′) = TΣ − L(A).

A does not accept t iff

(1) there is a (M → {0, 1})-tree v such that

(2) for all i0, i1, i2, . . . ∈ {0, 1}ω

(3) for all τ0, τ1, . . . ∈ Mω

(4) if
• for all j,

τj = (q, a, q′0, q
′
1)

⇒ a = t(i0, i1, . . . , ij) and

• i0i1 . . . = v(ε)(τ0)v(i0)(τ1) . . .

then the generated state sequence q0q1 . . .

with q0 = s0, (qj, a, q
0, q1) = τj,

qj+1 = q
v(i0,...,ij−1)(τj)

violates c.
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Monadic Second-Order Theory of Two Successors (S2S)

Syntax:

• first-order variable set V1 = {x0, x1, . . .}

• second-order variable set V2 = {X0, X1, . . .}

• Terms: t ::= ǫ | x | t0 | t1

• Formulas ϕ ::= t ∈ X | t1 = t2 | ¬ϕ | ϕ0 ∨ ϕ1 | ∃x.ϕ | ∃X.ϕ

Semantics:

• first-order valuation σ1 : V1 → B
∗

• second-order valuation σ2 : V2 → 2B
∗

• terms: JǫK = ǫ, Jt0Kσ1
= JtKσ1

0, etc.

• formulas: σ1, σ2 |= ∃xi.ϕ iff there is a a ∈ B
∗ s.t.

σ′
1(y) =

{

σ1(y) if x 6= y,

a otherwise;
and σ′

1, σ2 |= ϕ

etc.
Bernd Finkbeiner AG&V – Summary #12 2



Theorem 2. For each Muller tree automaton A = (S, s0,M,F) over

Σ = 2V2 there is a S2S formula ϕ over V2 s.t. t ∈ L(A) iff σ2 |= ϕ where

σ2(P ) = {q ∈ {0, 1}
∗
| P ∈ t(q)}.

Theorem 3. For every S2S formula ϕ over V1, V2 there is a Muller tree

automaton A over Σ = 2V1∪V2 such that t ∈ L(A) iff σ1, σ2 |= ϕ where

σ1(x) = q iff x ∈ t(q);

σ2(X) = {q ∈ {0, 1}
∗
| X ∈ t(q)}.

Corollary 1.

S2S is decidable.

Bernd Finkbeiner AG&V – Summary #12 3



• SnS is the monadic second order theory of n successors.

Corollary 2.

SnS is decidable.

• SωS is the monadic second order theory of ω successors.

Theorem 4. SωS is decidable.

• WS2S is the weak monadic second order theory of two successors.

σ1, σ2 |= ∃X.ϕ iff there is a finite A ⊆ B
∗ s.t.

σ′
2(Y ) =

{

σ2(Y ) ifX 6= Y

A otherwise
and σ1, σ

′
2 |= ϕ.
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Corollary 3.

WS2S is decidable.

Theorem 5. For a language L ⊆ TΣ, the following are equivalent:

1. Both L and its complement are recognizable by a Büchi tree automaton.

2. L is WS2S-definable.

Corollary 4.

WS2S is strictly weaker than S2S.
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