Automata, Games & Verification

Summary #3

Today at 2:15pm in SR 016:

Seminar "Games, Synthesis, and Robotics" Synthesis of Reactive(1) Designs

Deterministic Büchi Automata

Theorem 1. The ω -language $(a + b)^*b^\omega$ is not recognizable by a deterministic Büchi automaton.

Definition 1. [Substrings] Let $\alpha \in \Sigma^*$. For two integers $n \leq m$ we define

$$\alpha(n,m) = \alpha(n)\alpha(n+1)\dots\alpha(m) .$$

Definition 2. [Limit] For $W \subseteq \Sigma^*$:

 $\overrightarrow{W} = \{ \alpha \in \Sigma^{\omega} \mid \text{there exist infinitely many } n \in \omega \text{ s.t. } \alpha(0,n) \in W \}$.

Theorem 2. An ω -language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there is a regular language $W \subseteq \Sigma^*$ s.t. $L = \overrightarrow{W}$.

Theorem 3. For any deterministic Büchi automaton A, there exists a Büchi automaton A' such that $\mathcal{L}(A') = \Sigma^{\omega} \setminus \mathcal{L}(A)$.

Proof: We construct A' as follows:

- $S' = (S \times \{0\}) \cup ((S \setminus F) \times \{1\}).$
- $I' = I \times \{0\}$.
- $T' = \{((s,0), \sigma, (s',0)) \mid (s,\sigma,s') \in T\}$ $\cup \{((s,0), \sigma, (s',1)) \mid (s,\sigma,s') \in T, s' \in S - F\}$ $\cup \{((s,1), \sigma, (s,1)) \mid (s,\sigma,s') \in T, s' \in S - F\}.$
- $F' = (S F) \times \{1\}.$

Complementation of Nondeterministic Büchi Automata

Definition 3. Let $\mathcal{A}=(S,I,T,F)$ be a nondeterministic Büchi automaton. The run DAG of \mathcal{A} on a word $\alpha\in\Sigma^{\omega}$ is the directed acyclic graph G=(V,E) where

•
$$V = \bigcup_{l\geqslant 0} (S_l \times \{l\})$$
 where $S_0 = I$ and $S_{l+1} = \bigcup_{s\in S_l, (s,\alpha(l),s')\in T} \{s'\}$

•
$$E = \{(\langle s, l \rangle, \langle s', l+1 \rangle) \mid l \geqslant 0, (s, \alpha(l), s') \in T\}$$

A path in a run DAG is accepting iff it visits F infinitely often. The automaton accepts α if some path is accepting.

Definition 4. A ranking for G is a function $f: V \to \{0, \dots, 2 \cdot |S|\}$ such that

- for all $\langle s, l \rangle \in V$, if $f(\langle s, l \rangle)$ is odd then $s \notin F$;
- for all $(\langle s, l \rangle, \langle s', l' \rangle) \in E$, $f(\langle s', l' \rangle) \leqslant f(\langle s, l \rangle)$.

A ranking is odd iff for all paths $\langle s_0, l_0 \rangle, \langle s_1, l_1 \rangle, \langle s_2, l_2 \rangle, \ldots$ in G, there is a $i \geqslant 0$ such that $f(\langle s_i, l_i \rangle)$ is odd and, for all $j \geqslant 0$, $f(\langle s_{i+j}, l_{i+j} \rangle) = f(\langle s_i, l_i \rangle)$.

Lemma 1.

If there exists an odd ranking for G, then A does not accept α .

rank 1 — rank 2 — rank 3 — rank 4

Let G' be a subgraph of G. We call a vertex $\langle s, l \rangle$

- safe in G' if for all vertices $\langle s', l' \rangle$ reachable from $\langle s, l \rangle$, $s' \notin F$, and
- \bullet endangered in G' if only finitely many vertices are reachable.

We define an infinite sequence $G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots$ of DAGs inductively as follows:

- $G_0 = G$
- $G_{2i+1} = G_{2i} \setminus \{\langle s, l \rangle \mid \langle s, l \rangle \text{ is endangered in } G_{2i}\}$
- $G_{2i+2} = G_{2i+1} \setminus \{\langle s, l \rangle \mid \langle s, l \rangle \text{ is safe in } G_{2i} \}.$

$$G = G_0 = G_1$$

 G_1

 G_4

Lemma 2.

If A does not accept α , then the following holds: For every $i \ge 0$ there exists an l_i such that for all $j \ge l_i$ at most |S| - i vertices of the form $\langle -, j \rangle$ are in G_{2i} .

- i = 0: In G, for every l, there are at most |S| vertices of the form $\langle -, l \rangle$.
- $i \rightarrow i + 1$:

- i=0: In G, for every l, there are at most |S| vertices of the form $\langle -, l \rangle$.
- $i \rightarrow i + 1$:
 - Case G_{2i} is finite: then $G_{2(i+1)}$ is empty.
 - Case G_{2i} is infinite:

- $G_0 = G$
- $G_{2i+1} = G_{2i} \setminus \{\langle s, l \rangle \mid \langle s, l \rangle \text{ is endangered in } G_{2i}\}$
- $G_{2i+2} = G_{2i+1} \setminus \{\langle s, l \rangle \mid \langle s, l \rangle \text{ is safe in } G_{2i} \}.$

- i = 0: In G, for every l, there are at most |S| vertices of the form $\langle -, l \rangle$.
- $i \rightarrow i + 1$:
 - Case G_{2i} is finite: then $G_{2(i+1)}$ is empty.
 - Case G_{2i} is infinite:
 - * There must exist a safe vertex $\langle s, l \rangle$ in G_{2i+1} . (Otherwise, we can construct a path in G with infinitely many visits to F).

- i=0: In G, for every l, there are at most |S| vertices of the form $\langle -, l \rangle$.
- $i \rightarrow i + 1$:
 - Case G_{2i} is finite: then $G_{2(i+1)}$ is empty.
 - Case G_{2i} is infinite:
 - * There must exist a safe vertex $\langle s, l \rangle$ in G_{2i+1} . (Otherwise, we can construct a path in G with infinitely many visits to F).
 - * We choose $l_{i+1} = l$.
 - * We prove that for all $j \ge l$, there are at most |S| (i+1) vertices of the form $\langle -, j \rangle$ in G_{2i+2} .

We prove that for all $j \ge l$, there are at most |S| - (i+1) vertices of the form $\langle -, j \rangle$ in G_{2i+2} .

- Since $\langle s, l \rangle \in G_{2i+1}$, it is not endangered in G_{2i} .
- Hence, there are infinitely many vertices reachable from $\langle s, l \rangle$ in G_{2i} .
- By König's Lemma, there exists an infinite path $p = \langle s, l \rangle, \langle s_1, l + 1 \rangle, \langle s, l + 2 \rangle, \ldots$ in G_{2i} .
- No vertex on p is endangered (there is an infinite path). Therefore, p is in G_{2i+1} .
- All vertices on p are safe ($\langle s, l \rangle$ is safe) in G_{2i+1} . Therefore, none of the vertices on p are in G_{2i+2} .
- Hence, for all $j \ge l$, the number of vertices of the form $\langle -, l \rangle$ in G_{2i+2} is strictly smaller than their number in G_{2i} .

